
ANOTHER LOOK AT THE BRAYTON-MOSER NETWORK EQUATIONS 
J.M. Schumacher 

The problem of reducing a general set of linear algebraic and differential equations to state form has been dis­
cussed 1n system theory by Rosenbrock. Luenberger. J. C Willems, and others. Recently, the author proposed 
an algorithm which is able to deal with all kinds of singularities. Of course, the problem of writing state equa­
tions 1s a classical one. Bray1on and Moser presented a solution of this problem for LCR networks 1n 1964. 
Their method works under a certain parametrization condition, and they show that the resulting state equations 
have a gradient structure. In this paper. 1t will be shown that the Brayton-Moser algorithm for linear networks 
can be obtained in a natural way from the general linear reduction algorithm, with full account of the gradient 
structure. The notion of 'redundancy type' is introduced 1n order to classify the various forms of redundancy 
that can occur in systems of linear algebraic and d1fferent1al equations, and characteristics are given of the first 
few redundancy classes for LC networks with ports. 

I. INTRODUCTION 

A mathematical model for a physical system is often obtained by writing constitutive equa­
tions and connection constraints. This procedure leads to a system of mixed algebraic and 
differential equations. Although the option exists of simulating such a mixed system directly, 
it may be useful for several purposes to rewrite the equations in state form. This problem has 
been discussed in system theory for instance by Rosenbrock [8, 9], Luenberger [6, 7], and 
J.C. Willems [ 13, 14]. Recently, the author has proposed a method to perform the reduction 
by algorithms gleaned from the 'geometric approach' to linear systems [ 12]. 

Of course, the problem of writing state equations for systems described by constitutive 
equations and element connections is of central importance in electrical and mechanical 
engineering, and there are well-known methods in these areas to obtain state equations. 
These methods have been developed with particular applications in mind and so there is 
often a special structure (Hamiltonian, gradient) which plays a role. In this paper, we shall 
consider in particular the method proposed by Brayton and Moser [3) (see also [2]) for non­
linear LCR networks. They show that state equations in a gradient form can be given for such 
networks, and give an explicit form for the equations under a certain 'parametrization condi­
tion'. In this paper we shall consider only linear networks; moreover, we shall limit ourselves 
to networks without resistors (for our purposes here, this is just a matter of technical conveni­
ence). The Brayton-Moser theory can be extended to networks with ports (see [10]) and we 
shall incorporate this feature so that, effectively, we will be discussing LCP networks. It will 
be shown that the algorithm proposed in [ 12] allows the definition of a redundancy O-pe for 
systems of linear algebraic and differential equations. The redundancy type is given by a pair 
of nonnegative integers. For the case of LCP networks, the first nontrivial redundancy class is 
described exactly by the Brayton-Moser parametrization condition. We shall also discuss the 
characteristics of larger redundancy classes, and give explicit state equations in gradient form 
for systems in these classes. 

Due to space limitations, no proofs are included in this paper. A more complete account 
will be given elsewhere. 
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2. NOTATION 
If x and Vare vector spaces (all vector spaces will be over the reals), then ix will denote the 
natural embedding of X into the product XX V, and 'Trx will denote the natural projection 
from x x v onto X. This notation will be used even when it is ambiguous, as is the case when 
we are dealing with a product of more than two vector spaces; it will be clear from the con­
text which embedding or projection is intended. If T: X-> Y is any mapping between vector 
spaces and y 0 is a subspace of Y, then, as usual, the set of all x E X for which TX e: Y 0 will 
be denoted by T- 1 y 0• For the type of symplectic algebra we need here, in particular the 
definition and basic properties of Lagrangian subspaces, see [I, § 5.3]. 

3. THE 'GENERAL LINEAR' ALGORITHM 
We shall now briefly describe the algorithm in [12] for reduction of a general system of linear 
algebraic and differential equations to state form. Actually, this algorithm can be cast into 
different forms depending on the way in which the system one starts with is written (although 
there is no essential difference, of course), and we shall present here a derivation that is 
adapted to the form in which the equations for LCP networks appear. Every system of linear 
algebraic and differential equations in 'internal variables' z (t) and 'external variables' w (r) 
can be written in the form 

Gi: = Fz 

[~] EL 

(3.1) 

(3.2) 

where G and Fare mappings from the 'internal variable space' Z to an 'equation space' V, G 
is surjective, Lis a subspace of ZX W, and the time argument has been suppressed (as will 
also always be done below). We consider such a system as defining a set of trajectories of the 
external variables, and two systems will be considered 'equivalent' if the sets of trajectories 
defined by them are equal (cf. [13]). A system (3.1-3.2) can be reduced to input/state/output. 
form in three steps, which will now be briefly described. 

3.1 First step: elimination of static constrains 
A system of the form (3.1-3.2) is said to have static constraints if 'TrzL is smaller than Z. An 
equivalent system in which the static constraints have been removed can be constructed in 
the following way. Define sequences of subspaces of Zand Vas follows: 

z1=1rzL, V 1 = GZ 1 

(k >I). 

(3.3) 

(3.4) 

The sequence (Zk)k is non-increasing and so it must reach a limit after a finite number of 
steps; the resulting limit subspace will be denoted by z•. We define v• similarly and, of 
course, we have GV* = Z*. By the way that Z* and v• are defined, it follows that F maps z• 
into V* and we can replace the system (3.1-3.2) by one in which all mappings and spaces are 
restricted to z• and V*. It can be verified that the resulting system is equivalent to the origi­
nal one, and that it has no static constraints. 
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3.2 Second step: Removal of redundant integrations 

A system of the form (3.1-3.2) is said to have redundant integrations if ker G intersects ii 1 L 
non trivially; see [ 12] for an explanation of this terminology. Redundant integrations have to 
be removed in order to understand the system as being driven by some of the external vari­
ables ('inputs'). For this, we have the following procedure. Define a sequence of subspaces of 
Z as follows: 

Q 1 == ker G n ii. 1 L 

Qk = G·-lpQk-1 n ii1L (k > 1). 

(3.5) 

(3.6) 

This sequence is non-decreasing, and so it will reach a limit after a finite number of steps. The 
limit subspace will be denoted by Q*. In the given system (3.1-3.2), we can now replace Zand 
V respectively by the quotient spaces Z IQ* and VI FQ*, while replacing F, G and L by their 
induced versions. The resulting system is equivalent to the original one and is free of redun­
dant integrations. Moreover, if the original system had no static constraints, then the system 
resulting from this reduction step will also have no static constraints. 

3. 3 Third step: Selection of inputs, outputs, and states 

We now suppose we have a system in the form (3.1-3.2) which is free of static constraints and 
of redundant integrations; so not only G is surjective, but also TTzL = Z and 
kerG n iz 1 L = {0}. When dealing with a system in this form, it is convenient to add as a 
standing assumption that i w1 L = { 0). This means that there are no external variables for 
which there are no equations at all; these variables would be trivial to describe, of course. 

We will now first select inputs and outputs. Define a subspace w0 of Was follows: 

W0 = {wEW / 3z EkerG: [~]EL}. (3.7) 

Now, let (U, Y) be a pair of subspaces of W that parametrizes w0 ; that is, Y and U are com­
plementary subspaces and for every u EU there is a unique y E Y such that u + y E w0 . Note 
that there are many such pairs: Y may be any complement of w0 , and U may then be any 
complement of Y. 

Next, we shall call a vector space X a state space for the system (3.1-3.2) if there exists a 
surjective mapping S: Z-> X such that ker S = ker G. (Obvious choices for the state space 
could be V or the quotient space Z/(kerG), but, as we shall see in the application to LCP 
networks, the circumstances in a particular situation may suggest other choices.) It can then 
be verified that for every x EX and u E U there exist a unique z EZ and y E Y such that 

~~~E~ and~=~ 0~ 
By applying F and G to the vector z that is defined in this way, we get two mappings that take 
the pair (x, u) to vectors in V. Note that Gz does not depend on u since ker S = ker G. With z 
andy satisfying (3.8), define E, A, B, C, and D by 

Gz =Ex 

Fz =Ax+ Bu 

y = Cx +Du. 

It can be verified that the system 

E.i: =Ax+ Bu 

(3.9) 

(3.10) 

(3.11) 

(3.12) 
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y = Cx +Du (3.13) 

is equivalent to the original system. Moreover, it is easy to check that Eis invertible, so that 

the above equations can be taken to standard input/ state/ output form if desired. 

We see that a reduction to input/state/output form can be achieved by two algorithms, 

which each are completed in a finite number of steps. We shall say that a system of the form 

(3.1-3.2) has redundan~y type (k, j) if the static constraints are removed in k steps (that is, 

zk = Z*) and subsequently the redundant integrations are removed in j steps (Qi = Q*). We 

shall also use the term redundancy class (k, j) to denote the set of all systems of the form 

(3.1-3.2) that are of redundancy type (k, j). Note that the definition is such that the redun­

dancy class (k, j) is contained in the redundancy class (k',j') for all k';;. k and j';;. j. 

4. LCP NE1WORKS 

For the description of linear LCP networks, we employ the vectors of currents through and 

voltages across inductors, capacitors, and ports, to be denoted respectively by iL, ic, ip, VL, 

Ve, and Vp (this notation will be changed shortly). There is a natural duality between the 

current and the voltage variables, which allows us to define a symplectic structure on the pro­

duct space. The element constitutive equations are 

ML :tiL = VL 

Mc :t Ve= ic 

(4.1) 

(4.2) 

where ML and Mc are symmetric matrices. In the natural coordinate system ML and Mc will 

in fact often be diagonal; however, the condition of symmetry is invariant under canonical 

coordinate transformations and allows coupled inductors. Kirchhoff's current and voltage 

laws state that there exists a mapping N from the space of current variables to another vector 

space such that 

i EkerN and V EimN\ (4.3) 

where i denotes the vector with components iL, ic, and ip, and Vis the vector with as com­

ponents the corresponding voltage variables. It should be noted that the product 

ker N X imNT is a Lagrangian subspace of the product space of i- and V-variables with its 

natural symplectic structure. 

We shall now rewrite the above equations in a slightly more abstract framework, in 

order to make the notation somewhat more compact. Let X denote the vector with com­

ponents iL and Ve, and let v have components VL and ic. Denote by z the vector with com­

ponents x and v so that z contains all the 'internal' variables, and write w for the vector of the 

port variables ip and Vp. The vector spaces corresponding to these variables will be indi­

cated by capital letters, so that for instance Z = X X V. The element constitutive equations 
can now be summarized as 

Gi == Fz, G =[M OJ, F = [O /], (4.4) 

where M: X-+ Vis a symmetric mapping formed from ML and MC· If we write L for the 

Lagrangian subspace of Z X W that is specified by Kirchhoff's laws, then (4.3) can be written 
as 

[~,] EL. (4.5) 
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lbis brings our equations into the form (3.1-3.2). Our goal will be to rewrite the equations in 
the form (3.12-3.13), with E being invertible and with the following extra requirements which 
come from the special structure of the network equations: 

(i) the spaces X and V are dual; 

(ii) U and Y are both Lagrangian subspaces of W, so that there is a natural induced duality 
between U and Y; 

(iii) the mapping E : X -7 Vis symmetric; 

(iv) the mapping 

[~ ~]:xx u""" vx Y 

is also symmetric. 

Explicitly, the i/s/o form is given by 

x = E - l Ax + E 1 Bu 

y = Cx +Du. 

(4.6) 

(4.7) 

It is easily verified that, under the conditions above, this system is a linear gradient system as 
defined in (10] with respect to the quadratic form on X given by [xi.x 2 ] = <Exi.x2>, 
where < · , · > denotes the duality between X and V. Also, the transfer matrix 
C (sE - A)- 1 B + Dis clearly symmetric. 

Actually, one might like to have more than the condition (ii) above: from each pair of 
port variables, we would like to let one be an input and one be an output. This is possible if 
the subspace w-0 that was discussed in the previous section is Lagrangian, according to the 
following proposition. 

PROPOSITION 4.1 Let W be a symplectic space that appears as the product of n two-dimensional 
symplectic spaces W,, which in turn are each a product of two one-dimensional spaces w? and 
W] that are dual to eachother: 

i ·=- n 
w = II<w? x W;1). (4.8) 

i ~I 

Let L be a Lagrangian subspace of W. Then it is possible to choose for every' i a k, E {O, I} in 

such a w~ that Lis parametrized ~y the pair <IT 7 ~I W;'·' rr; ~I w;- k, ). 

We shall work under the following two standing assumptions: 

(i) dimW>O; 

(ii) ij;) L = {O}. 

The first assumption says that the network has ports; since we define equivalence of descrip­
tions as equality of port behavior, the problem would be trivial without this assumption. The 
second standing assumption states that there are no ports that are disconnected from the rest 
of the network. 
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5. REDUNDANCY CLASSES OF LCP NETWORKS . 

The next theorem summarizes the extent of the first redundancy classes of linear LCP net-

works. 

THEOREM 5.1 Consider the equations (4.4-4.5). Under the assumptions stated above, the follow­

ing holds. 

(i) The rystem (4.4-4.5) is never of redundancy type (0, k),for any k;;:;., 0. 

(ii) The system (4.4-4.5) is of redundancy type (1, 0) if and on!y if the following two equivalent 

conditions hold: 

7rxL = X 

i"v 1L = {O}. 

(5.1) 

(5.2) 

(iii) The system (4.4-4.5) is of redundancy type (1, j),for any j;;,. 0, if and only if it is of redun­

dancy r;pe (1, 0). 

(iv) The system (4.4-4.5) is of redundancy type (2, 0) if and only if the following two equivalent 

conditions hold: 

x = <rrxL E9M- 1r;; 1L 

V = iv 1L E9 M7rxL. 

(5.3) 

(5.4) 

(v) Thqystem (4.4-4.5) is of redundan~y type (2, I) if the foll0»•ingfour equivalent conditions 

hold: 

X = 'TrxL + M- 1i"ji 1<rrzL 

iv 1L n M7rxii 1L = {O} 

'Trxii 1L n M- 1iv 1L = {O} 

v = iv 1'TrzL + M'TrxL. 

For generic values of M, the ~ystem (4.4-4.5) is of redundancy type (2, 0). 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

The redundancy class (I, 0) is the one that is found in most textbooks (for instance (5, 

§ 12.4]): the corresponding condition says that the capacitor voltages and inductor currents 

must form a state for the system. This is also the 'parametrization condition' used by Brayton 

and Moser [3]. For certain network topologies this condition does not hold, and a method 

due to Bryant [4] can be used to arrive at state equations. For certain special parameter 

values, even this method may break down. As we shall see in the next section, the procedure 

discussed here allows one to give an explicit expression for the state equations in gradient 

form even in such cases. 

6. SETTING UP STATE EQUATIONS 

Let us consider the most general situation encountered in the previous section, the one 

covered by the condition (v) of Thm.5.1. Application of the algorithms of§ 3 leads, after 

elimination of the static constraints and the redundant integrations, to a description of the 

form (3.1-3.2) with 

(6.1) 

and 
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(6.2) 

and with induced versions of F, G and L For instance, the induced version of G is defined by 

(6.3) 

It can be shown that the subspace w0 is Lagrangian, so that it is possible to assign inputs 
and outputs in the way discussed in§ 3. Moreover, if we introduce a space 'X' by 

'X' = 7TxL/(7TxLnM-" 1iv 1 L) 

and a mapping S from 'Z' to 'X' by 

S: [~] >->X mod 7TxLnM-- 1iv 1L, 

(6.4) 

(6.5) 

then it can be shown that S satisfies the requirements mentioned in § 3, so that the space 
defined in (6.4) will serve as a state space. The final steps of the algorithm of § 3 lead to a 
definition of E as an induced version of M which is still symmetric. The definition of the map­
pings A, B, C, and D comes down to requiring that 

(6.6) 

where' L' is an induced version of L. It follows from [ 1, Prop. 5.3.10] that' L' is Lagrangian, 
and this implies that the "parametrization mapping" appearing in (6.6) is symmetric. So, we 
have state equations which are in the desired form. 

7. ANEXAMPLE 

Consider a network consisting of one port and two capacitors, all connected in parallel. Let 
the values of the capacitors be C 1 and C2 • By the procedures given above, it is straightfor­
ward to verify that the system of equations that appears when one writes down the element 
constitutive relations and Kirchhoff's laws is of redundancy type (2, 0) as long as 
C 1 + C 2 ~ 0. If C 1 + C 2 == 0 (note that a capacitor with a negative value may be realized 
using active elements), then the system is of type (2, 1) and we may still write down state 
equations following the development in the previous section. It turns out that in this case the 
state space becomes trivial and the relation between the port variables reduces to a static one; 
the two parallel capacitors with equal but opposite values are equivalent to an open circuit. 

8. CONCLUSIONS 

In this note, it has been shown that the procedure given in (12] for the reduction of a general 
system of linear algebraic and differential equations to input/state/output form can be 
applied to the equations that appear in the modeling of LCP networks, and that one is abl.e to 
reproduce the special structure of the resulting state equations emphasized in [3]. The 
approach is clearly different from the standard one, which is based on consideration of trees 
and cotrees in the graph associated with the network. As shown above, the method presented 
here provides formulas for the state equations even in special cases where Bryant's method 
fails. 

The results we obtained call for further development. It should be no problem to gen­
eralize the discussion to RCLP networks, but it will require more work to carry the ideas over 
to the nonlinear case. (Note that a nonlinear generalization of the algorithms in (12] is 
already available in (11].) We haven't had room here to discuss the meaning of the 'mixed 
potential', introduced by Brayton and Moser, in the present framework, nor have we 
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explicitly discussed the role of energy. It should prove worth wile to work out the relation with 
the traditional approach which is based on an analysis of the graph associated with the net­
work. The extension to non-reciprocal networks also calls for attention; although algorithms 
on the 'general linear' and the (local) 'general nonlinear' level have already been given in [ 12] 
and [l I], one would probably like to retain some of the special structure of electrical net­
works in the state equations, even when the network contains non-reciprocal elements. 

Three more subjects for further research are the following. The classification of the 

redundancy classes of LCP networks as given here is not complete. An open question is 
whether there exists a maximal redundancy for LCP networks in the sense that there is a 
redundancy class to which every LCP network belongs. More generally, one can ask for a 
complete description of all different redundancy classes of LCP networks. Moreover, one 
would like to show that for all these classes the state equations can be given in gradient form. 
A second question relates to the choice of inputs and outputs. We have shown here that, at 
least for the redundancy classes we considered, it is possible to select one input and one out­
put from each pair of port variables in such a way that the resulting state equations are in the 
standard (causal) form. One could ask what remains of the gradient structure if the inputs 
and output variables are prescribed rather than free to be chosen, so that a causal description 
may no longer be possible. Finally, there is an intuitive relation between redundancy and 
approximation which remains to be explored. If a system of algebraic and differential equa­
tions is 'close' in a suitable sense to one of a high redundancy type, then one would expect 
that the given system can be represented to a good degree of approximation by state equa­
tions of relatively low order. This rather vague idea should be made more precise, possibly 
with the help of techniques from singular perturbation theory. 
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