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We present a formal derivation of program schemes that are usually called Backtracking programs 
and Branch-and-Bound programs. The derivation consists of a series of transformation steps, 
specifically algebraic ma11ipula1ions, on the initial specification until the desired programs are 
obtained. The well-known notions of linear recursion and tail recursion are extended, for structures, 
to elementwise linear recursion and elementwise tail recursion; and a transformation between them 
is derived too. 

1. Introduction 

Methodologies for the construction of correct programs have attracted wide 
interest in the past, and in the present. Well known is the assertion method of Floyd 
for the verification of programs, and the axiomatic basis for computer programming 
that Hoare [13] founded on this idea. Subsequently, Dijkstra [9, 10] refined the 
method to a calculus for the construction of so-called totally correct programs. The 
influence of the work of these three persons is apparent in almost every textbook 
on programming. 

More recently, quite another method for the construction of correct programs 
has attracted attention: the method of transformational programming; see e.g. 
Feather [ 11] and Partsch [ 18] and the references cited. Basically, one starts with 
an obviously correct program, or rather specification, for it doesn't need to be 
effectively computable; and then one applies a series of transformation steps that 
preserve the correctness but, hopefully, improve the efficiency. In order that the 
method is practically feasible, it is necessary that the program notation is suitable 
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for algebraic manipulation; that is, it must be easy to decompose a program into 
its (semantically meaningful) constituent parts and to recombine them into an 
operationally slightly different but semantically equivalent form, very much like the 
"transformations" of a 2 - b 2 into (a + b )(a - b) and of sin( x + y) into sin x cos y + 
cos x sin y. (Notice that here the "transformations" are just algebraic identities; the 
same will be true of the kind of transformations that we shall explore in this paper.) 
A second necessary property of the program notation is its brevity and terseness, 
for otherwise it would be practically infeasible to rewrite and transform a program 
in a series of steps until a satisfactory version has been obtained. Imagine, for 
instance, how one should do elementary high-school algebra with a fully parenthe
sized prefix notation, dealing with equations like: 

minus(exp(a, 2), exp(b, 2)) = mult(plus(a, b), minus( a, b)) 

For the transformational approach to succeed it is really necessary that several 
programs of high algorithmic content can be placed in a single line and related by 
the equals sign, say. 

A framework for algorithmic programming that meets the above requirements, 
and many more, has been developed by Meertens in the paper "Algorithmics: 
towards programming as a mathematical activity" [16]. It is a mathematically 
rigorous approach to programming that is highly algebraic in nature. Meertens calls 
it "algorithmics" and we shall refer to his paper as "the Algorithmics paper". We 
set out to derive in the framework of Algorithmics (the well-known!) programs for 
Backtracking and Branch-and-Bound (see the explanation below). Apart from the 
insight in Backtracking and Branch-and-Bound that the reader may get from our 
high-level, algorithmic discussion and derivation, we also attempt to satisfy Meer
tens' request for "the discovery and the formulation of 'algebraic' versions of 
high-level programming paradigms and strategies" [16]. 

2. Informal discussion of Backtracking and Branch-and-Bound 

"Backtracking" is a problem solving method according to which one systematically 
searches for one or all solutions to a problem by repeatedly trying to extend an 
approximate solution in all possible ways. Whenever it turns out that such a solution 
fails, one "backtracks" to the last point of choice where there are still alternatives 
available. For most problems it is of the utmost importance to spot early on that 
an approximate solution cannot be extended to a full solution, so that a huge amount 
of failing trials can be saved. This is called "cutting down the search space". It may 
diminish the running time of the algorithm by several orders of magnitude. 

Now suppose that it is required to find not just any one or all solutions, but an 
optimal one. In this case one can apply the same method, but every time a solution 
is encountered the search space can be reduced even further: from then onwards 
one need not try to extend approximate solutions if it is sure that their extensions 
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cannot be as good as the currently optimal one. In this case we speak of"Branch-and
Bound". 

The above description of Backtracking and Branch-and-Bound is rather 
operational. It is indeed a description of the sequence of computation steps evoked 
by the program text, or taken by a human problem solver. It is not at all necessary 
that the program text itself clearly shows the "backtracking" steps and the "bound
ing" of the search space. On the contrary, the program text need only show that 
the required result is delivered; the way in which the result is computed is a property 
of the particular evaluation method. 

Backtracking and Branch-and-Bound are thoroughly discussed in the literature; 
see e.g. Wirth [21, 22], Alagic and Arbib [1], and many other textbooks on program
ming. Many of these also provide some sort of correctness argument in the form 
of assertions or just informal explanation. On close inspection most of them seem 
incomplete: either the assertions are too weak to carry the proof through, or the 
implication between assertions (and the invariance of loop assertions) is not proved 
with mathematical rigour. Even our own previous attempt [12] is not satisfactory 
in this respect. It also appears that the method of invariant assertions leads to some 
overspecification: in order to show that the whole search space, i.e., all possibilities, 
has been investigated some total ordering is imposed on the search space (often 
some lexicographic order) and it is shown that the search space is traversed along 
this order. In the transformational approach such an ordering is not needed at all: 
the very first program, or rather specification, clearly expresses that no possibility 
is by passed. 

We shall illustrate our high-level, algorithmic discussion of Backtracking and 
Branch-and-Bound by the following simple, but typical, examples: the Problem of 
an Optimal Selection and a simplification of it, the Problem of a Legal Selection. 

The Problem of a Legal Selection (PLS). There is given a collection of N objects, 
say object 1, 2, ... , N Each object x has its own weight w(x) and value v(x). The 
task is to find a selection of the objects, i.e., a subset of {l, ... , N}, whose aggregate 
weight does not exceed a given limit W. (Slightly more general, the task may be to 
find all such selections.) 

The Problem of an Optimal Selection (POS). With the same assumptions as in PLS, 
the task is to find a selection of the objects whose weight does not exceed the given 
limit W and, in addition, whose aggregate value is maximal. 

Wirth [22] also discusses POS and we shall arrive at essentially the same algorithm. 

3. Preliminaries 

In this section we explain the notation and we recall the well-known transformation 
of linear to iterative recursion. 
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3.1. About the notation 

We use the notation suggested in the Algorithmics paper. In order to be self
contained we list here briefly the conventions, operations, and algebraic laws that 

we need in the sequel. Some names and symbols have been taken from Bird [ 4]. 
The reader is recommended to consult the Algorithmics paper for a thorough 
motivation and discussion of these topics. 

The overall aim of the notational conventions is to make an algebraic manipulation 
of programs possible and easy, the ideal being that one calculates with programs 

(terms) without a necessity to interprete them. To this end one should allow syntactic 
ambiguity whenever it does not result in semantic ambiguity, for in this way many 

trivial transformation steps become superfluous. Imagine for instance what would 

happen if all parentheses were required in x + y + · · · + z even when + is associative. 
The notation below is designed such that reasoning on the function level becomes 
as easy as reasoning on the point level, cf. "the message" of Backus [2]. 

Functions and operations 

There are binary operations and functions; all functions have a single argument. 

There is no loss of generality here, because arguments may be structured or tuples, 
and a function or operation result may itself be a function. The argument of a 
function and the right argument of an operation must be chosen as large as possible. 
Function composition (associative!) is the most frequently occurring operation, and 
is therefore written by juxtaposition, in this paper: a wide space. Meertens [16] 
proposes to denote application by juxtaposition too, since the resulting syntactic 
ambiguity is (mostly) not semantically ambiguous: one would have f( g x) = (f g) x = 
f g x. However, to ease the interpretation of the formulas we will indicate application 
explicitly by a tiny semicolon, with the convention that its left argument (the function 

expression) must be chosen as large as possible. (Meertens uses the semicolon 
merely as a closing parenthesis for which the opening parenthesis must be placed 

as far as possible to the left.) Thus 

fgh:x+y = "(fgh) applied to (x+y)" 

A binary operation with only one argument (in this paper: the left argument) 
provided is considered to be a function of its missing argument; it is called a section. 

We shall always enclose a section in parentheses, except for the special operations 

discussed below. Thus (x+) (yx): z = x+(yxz). 
We use symbols like EB and ® as variables ranging over binary operations, in the 

same way as f and g are used as variables ranging over functions. 

Structures 
We use four kinds of structured data, namely trees, lists, bags and sets; these are 

generically called structures. The type of a structure is denoted a*, where a is the 
type of the values (elements) contained in the structure; specifically we sometimes 
write -tree -list -bag or -set instead of *. Operation A: a---? a* (written Ax or x) 

, ' ' 
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forms a singleton structure containing only x. Operation tt: a* x a*~ a* com
poses two structures of the same kind; in particular, for lists tt is the append (or 
concatenation) operation and for sets tt is the union u. The difference between 
the four kinds of structures and between the four tt operations is algebraically 
expressed by the laws that hold for tt: for trees ++ satisfies no laws, for lists ++ is 
associative, for bags++ is associative and commutative, and for sets++ is associative, 
commutative and idempotent (or absorptive): 

associative (x++y)++z = x++(yttz) 

commutative x ++ y yttx 

idempotent x++x = x 

The constant 0: a* denotes the empty structure; this is formalized by the law 

0++x = x = x++0 

Thus any tree is a list as well, any list is a bag as well, and any bag is a set as well. 
This hierarchy of structures is sometimes called the Boom hierarchy, after Boom [7]. 

Special operations 
We need four operations that act on functions and operations rather than on 

"elements": reduce or insert (/ ), map ( * ), filter ( <l) and left-reduce or left-insert 
( -f ). The first three are special only in that we write them as postfix operations, 
hence having the highest priority (exactly like primes). Thus 

®/ f* p<l = (EB/) (/*) (p<J) and EB/* = (EB/)* 

In other words, one may consider /, *, <l as normal binary operations for which 
the sections (®/ ), (/* ), and ( p<l) are written without parentheses. The four 
operations are completely characterized by means of the laws below. (Actually, a 
theory is being developed in which one can derive these laws from the data type 
definition for the structures; see e.g., Malcolm [15]. It is outside the scope of this 
paper to do so here.) In the accompanying examples we assume that++ is associative 
so that we need not give the parentheses. 

map f *' x is the result of applying f to every element of x. Example: 

The laws are: 

(map.O) f *' 0 

(map.I) f*' x 
(map.2) f*;x++y = <f*;x)++(J*'Y) 
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reduce fB/; x is the result of inserting EB at every construction node of x. Example: 

fB/; x1++· · ·++xn = X1EB· · ·®xn 

Operation EB should satisfy at least the same laws as++ does; otherwise there would 
arise inconsistencies from the laws below, since they allow us to prove (by induction) 
that EB satisfies the laws of++, cf. Lemma (4). In the same way, fB/; 0 has to be the 
unit of®; if operation fB has no unit, then we adjoin a fictitious value w to the 
domain of fB and define w EB x = w = x fB w for all x (like the introduction of oo 
as the unit of the "minimum" operation). The laws are: 

(reduce.O) ®/; 0 = the (possibly fictitious) unit of fB 

(reduce.I) EB/:x = x 

(reduce.2) ®/:x++y = (ffJ/;x)fB(EB/;y) 

filter p<J; x is the result of filtering out those elements of x for which predicate p 
doesn't hold. Example: 

odd <J: 7 ++ 2 ++ 6 ++ 5 ++ 4 = 7 tt 5 
The laws are: 

(filter.O) p<J; 0 

(filter. I) p<J; x 
0 

x if P' x else 0 

(filter.2) p<J: x ++ y = (p<J; x) tt (p<J: y) 

left-reduce ( EB f e ): x is the result of a left to right traversal over x, taking EB at every 
construction node and starting with initial left argument e. Example: 

(fBf e):.X1++· · ·ttxn = (· · · (efBx1)Etl· · ·)fBxn 

The laws are: 

(lreduce.O) (®f e): 0 = e 

(lreduce.l) (®f e); x eEtlx 

(lreduce.2) (®fe);xtty = (Etlf((Etlfe):x)):y 

Here again operation EB must be as rich (with respect to commutativity and idem
potency) as tt in order to avoid inconsistencies. 

Thus, for s : a-bag, p a predicate on a, and f: a-> r\I, we have 

+/ f* p<J; s = I f(x) 
xin.,lp(x) 

Similarly, for s: a*, p: a-> IB, f: a-> {3-set (mapping each element onto a set), if tt 
is set-union (i.e., ++ is associative, commutative and idempotent), then 

tt/ f* p<J; s = LJ{f(x)\xinsAp(x)} 
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In the sequel the term tt/ f* p<l will occur over and over again. The new notation 
is better suited for algebraic calculation than the conventional set-theoretic notation, 
since there are no bound variables and each "semantic action" is denoted by a 
distinct syntactic operation for which algebraic laws have been stated above. 

Definitions 
In order to distinguish between equalities and definitions, we use the symbol := 

for the latter and = for the former. By definition, the left-hand side and right-hand 
side of a definition are equal, so that := may always be replaced by =. Conversely 
this is not true; e.g., for any object x we have x = x, but the definition x := x 
will in general not define that object called x. 

Some more laws 
Here we list some laws that we need in the sequel and have already been given 

in the Algorithmics paper and also by Bird [ 4]. The promotion and distribution 
laws may be proved by structural induction; the other ones are immediate by the 
laws above. 

(filter promotion) p<l tt/ = tt/ p<l* 

(map promotion) f* ++/ = ++/ f ** 

(reduce promotion) ffi/ tt/ 09/ ffi/* 

in particular 

(map distribution) 

tt/ tt/ tt/ ++/* 
f* g* = (f g)* 

++/ A id of type a~ a 

++/ Cl* id of type a*~ a* 
f* A = A f 

p<l q<l = (pflq)<l 

(eEB) EB/ = (EB-fe) forassociativeffi 

The derivation of the Branch-and-Bound algorithm in Section 5 triggers the formula
tion of some specific laws. However, they may be generalized and then turn out to 
be of a very general nature, comparable to the laws given above. Here we formulate 
them in the form of a lemma. 

(1) Lemma. 

(!reduce-join fusion) 

(!reduce-map fusion) 

(!reduce-filter fusion) 

(ffif e) ++/ = (@f e) 

where e@x = (EBf e); x 

(ffife) f* = (@fe) 

where e@x = effi(f x) 

(ffife)p<l = (@fe) 

where e@x = e09x if p: x else e 
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Proof. By induction on the structure of the argument. For (!reduce-join fusion): 

Basis 1. 

(EBf e) ++/: 0 

Basis 2. 

(EBf e) ++/: x (EBfe):x e@x 

Induction step. 

(EBf e) ++/: s ++ t 

law (reduce.2) in which EB := ++ 

(EBfe): (++/:s)++(++/:t) 

law (lreduce.2) 

(EBf((EBfe) ++/: s)) ++/: t 

induction hypothesis 

(®f ((@f e): s)): t 

law (lreduce.2) 

(@f e): s ++ t. 

The other parts are proved similarly. 0 

(®fe):x 

Here follow two corollaries. Neither of these corollaries is used in the sequel; 

however, Corollary (3) is a simplified form of Theorem (21) in Section 5. In that 

theorem the predicates PN, ... , p0 "change dynamically, during the computation". 

(2) Corollary. 

(EBfe) ++/ f* p<J = (@f e) 

where e ® x := ( EB f e) f x if p: x else e. 

(3) Corollary. 

(EBf e) ++/ fN* PN-1<J · · · tt/ f1* Po<J (®of e) 

where 

(for n=N-1, .. .,0). 
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Proof. By induction on N - n it is easy to prove that 

(EBf e) -tt/ fN* PN-1<J 

(@,,fe) -tt/ f,,* p,,_,<J 

using Corollary (2). D 

Here are two other useful lemmas. 

-tt/ f1* Po<J 

-tt/ f,* Po<J 

27 

(4) Lemma. Let EB be associative, commutative, and idempotent, and let m be ins. Then 

EB/; s = (mEB) EB/ ; s 

Proof. Let ® be any operation and consider ®/' s. Let -tt be the construction 
operation of s. Then, within the argument of ®/, operation -tt may be considered 
to be as rich as ® with respect to associativity, commutativity and idempotency. 
More precisely, 

®associative =? ®/; x-tt(y-ttz) = ®/; (x-tty)++z 

®commutative =? ®/' x-tt y ®/; y ++ x 

® idempotent =? ®/; x -tt x 

This is easily proved; e.g., for commutativity we argue 

®/; x-tt y 

(®/; x)®(®/; y) 

commutativity of® 

(®/; y)®(®/; x) 

®/; y-tt x. 

Hence, for associative, commutative and idempotent EB we have, when m is in s, 

EB/; s = EB/' m -tt s = (mEB) EB/' s. D 

The next lemma is formulated for a specific operation t. We suppose that the 
domain of j is linearly ordered, say by ~; then x j y is the maximum (with respect 
to~) of x and y. (One might generalize the lemma by just looking at what properties 
are used, but we refrain from doing so here.) 

(5) Lemma. Let s be an arbitrary structure, linearly ordered by ~' and let m be 
arbitrary (not necessarily ins). Then 

(mt) f /; s = (mt) 1'/ (m~)<J; s 

Proof. By induction on the structure of s. 
Case s = 0. Trivial. 
Cases= x. Immediate from the meaning of j and (m,,;:; )<J. 



C<:HC s = r.,..... t. For define p := m ~ l. Then 

(mn 

m~i; rJt t; 

. commutativity, and idempotence of r 

induction hypothesis twice 

p< I) 

r r n / p< tl 

( m; i i' r ....,. ( Ill 

1.mn t/ s 

rhis completes the- proof. n 

3 . .?. Li11ear and iterative recursion 

in Section 4.1 we- shall introduce the notions of "elementwise linear recursive" 
and "dementwise iteratiw" and the transformation between them. These concepts 
are analogous to the well-known notions of .. linear recursion" and "iteration" and 
the corresponding transformation. As an aid to the reader we recall these well-known 
concepts here. formulated in the current notation. 

Consider/;, ( 11 = 0, I, ... I defined by 

j;, -- some given value 

};, .- h,, _t;, .. 1 for11>0 

This definition has a lini:ar recursive form (meaning that there is only one occurrence 
off in the right-hand side). For example, for the factorial function};, = n ! we have 
f;, == O! = I and h., x == n x x. A definition in iteratire form (or tail recursit1e form) of 
g" such that f.., =g., .t:i. may be derived by aiming at 

(*l g,,·f;,=f ... 

In other words, g" captures the future '"extension" of/;, to .t:v. For n == N we find 
from the aim ( * l that f.., = g-, 'f..,; hence we may define 

g.., :o= id 

Now we proceed by induction; for n < N we try to establish ( *) from right to left: 

f-, 

induction hypothesis 

g,,' l . .r;, ' l 
definition of J;,, 1 
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which we want to be equal to g,,; / 11 • Hence we may define 

and by construction the aim ( *) has been achieved. All of the above may be clarified 
further by noticing that JN= hN hN-i · · · h1 ; / 0 (by repeatedly unfolding the 
definition of fn ), f,, = hn · · · h1 ' / 0 and therefore, immediately, g11 = hN · · · h11 +i • 

For the factorial example we find 

x 

g,,;x 

Nx· · ·x(n+l)xx 

Notice also that g,, has one parameter more than f 11 • This parameter is sometimes 
called the accumulating parameter, and the transformation of the linear recursive 
definition to the iterative definition may be called parameter accumulation: the final 
result f N is accumulated in this parameter. 

The importance of the iterative definition is two-fold. First, it allows us to express 
precisely "what is to be computed further to obtain f N when given some ! 11 ". This 
is a concept that might be useful in an algorithmic analysis; we shall make heavy 
use of it in the sequel. Secondly, the iterative definition allows for a more efficient 
implementation, in particular with respect to the storage space. For example, the 
canonical imperative implementations of linear recursive and iterative definitions 
read: 

fctf(n:int) = ifn=Othen/Oelseh(n,f(n-1)) 

fct f( N: int) = begin var x :=JO, n := O; 

end 

4. Backtracking 

while n < N do n, x := n + 1, h ( n + 1, x); 

f:=x 

In this section we discuss Backtracking at a high level of abstraction. We present 
a definition (or specification) of the problem in Section 4.1, and derive well-known 
algorithms in Section 4.2. (In Section 6 the algorithms are implemented in a 
Pascal-like language.) 

4.1. Definition and initial exploration 

By definition we say that the following kind of problems may be called Backtrack
ing problems: the task is to yield any or all of p<:J; sN where sN is inductively defined 
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by 

s0 .- some given structure 

(6) Sn .- tt/ In*; Sn-I for n > 0 

Here, j,, is a function that constructs substructures of sn out of elements of sn-I, 

and p is some given predicate called the legality constraint. Thus we have the typing: 

s11 : a*, In: a--> a* and P: a--> IEB, for some a. Mostly a is /3-bag or {3-set, and then 

in imperative implementations the members of sn are represented by an array of {3. 

For the example problem PLS we have 

sn = all selections (subsets) of { 1, ... , n} : N-set-set 

so that we may define 

So := 0 : N-set-set 

f;,; x := x tt A(x tt n) : N-set---> N-set-set 

p := (W~) +/ w* :N-set-->IB 

We shall explain the adjective "backtracking" at the end of Section 4.2. 

Before attacking the problem of finding an efficient way to compute any or all 

of p<J; sN, we play somewhat with definition (6) and derive alternative but semanti

cally equivalent (i.e., equal) formulations. The reader may notice that the following 

manipulations would have been practically impossible had we chosen Pascal as the 

program notation. 
First, we repeatedly unfold the definition of s.,: 

tt/ IN*; SN I 

tt/ .IN* tt/ .IN- I*' SN-2 

(7) tt/ IN* · · · tt/ / 1*; s0 

Next, we apply map promotion (f,,* tt/ tt/ f,,**) repeatedly, and obtain 

by equation (7) 

tt/ fN* ++/ JN I* · · · ++/ /1*' 5o 

by (map promotion) on the sub term f N* ++/ 

tt/ ++/ fN** f~- I* · · · tt/ f1*; So 
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Here a superscript n means n-fold repetition ( n occurrences after each other). By 
repeatedly applying map distribution U* g* = (f g )*)we find from equation (8) 

(9) SN = (tt/)N (· · · U~* f~-1)* · · · J~)*' So 

Consider once more equation (7): 

Theparttt/ fn* · · · ++/ f1*' soclearlyequalss,,.Letusgive++/ fN* · · · tt/ fn+i* 
the name r,,; so r11 maps s11 onto sN and has type a*..;. a*: 

(11) r,, = tt/ fN* """ tt/ !11+1* 

It is easy to give an inductive, even iterative, definition of r". However, in the 
following section it turns out to be more helpful to have a name for the contribution 
to sN of each element of s" separately. That is, we are looking for t11 : a..;. a* that 
satisfy 

(12) SN = tt/ ln*' Sn. 

In words, for x from s,,, t,,' x is the contribution of x to sN. Now we derive an 
explicit definition for t11 from the desired equation ( 12). First, for n = N we desire 
sN = ++/ tN *' sN so that we may define tN :=A. Next, proceeding by induction 
and therefore assuming that sN = tt/ t,,+ 1*' s,,+ 1, we aim at t,, such that 
++/ ln*' S11 =SN: 

induction hypothesis 

definition of s,, + 1 

(map promotion) 

++/ tt/ l,,+1** .f.1+1*' Sn 

(reduce promotion) 

(map distribution) 

which we want to be equal to++/ ! 11 *' sn. So we may define 
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and aim (12) has been achieved. Together: 

(13) t,, '.= tt/ t,,+1* fn+l· 

We conclude this exploration by an important observation. In analogy with the 

notions of linear recursion and iteration (or tail recursion), we call definitions of 

the form (6) elementwise linear recursive and those of the form (13) elementwise 
iterative (or elementwise tail recursive). The derivation above of the elementwise 

iterative definition (13) from the original elementwise linear recursive definition (6) 

is exactly analogous to the transformation of linear recursion into iteration; see 

Section 3. 

The importance of the elementwise iterative definition is two-fold, as explained 

in Section 3 for iterative definitions in general. Firstly, ln is the precise formulation 

of "the contribution to sN for x drawn from sn"; we'll need this concept in the 

algorithmic analysis below. Secondly, the direct imperative implementations based 

on the tn are simpler and more efficient than those based on the s,, ; see Section 6. 

4.2. Improving the efficiency of the algorithm 

The specification of the task, namely to yield any or all of p<J; sN with sN defined 

by (6), happens to be executable. Without further knowledge about the f,, and in 

particular p we cannot give a more efficient program. But note that a direct execution 

will in many cases take too much time due to exponential growth of the sizes of 

structures s,,. For example, for PLS structure s,, has r elements. Even if only one 

element of p<J: sN is requested, and in principle only a small portion of the 2N 

elements needs to be inspected in search for one that satisfies p, this will take too 

much computational time. 

One way to reduce the computational time is to reduce the structures sn without 

omitting elements that would eventually contribute something to sN and would pass 

the filter p<J. In other words, one should try to promote (parts of) the filter p<J as 

far as possible into the generation of the structures s,,. Darlington [8] has coined 

the name filter promotion for this technique (see also Bird [3 ]), and Wirth [21, 22] 

calls it pruning the search space and preselection. For example, for PLS each element 

of sn gives rise to 2 N-n elements in sN, so that omitting it may save quite a lot. 

More precisely, one should find predicates p,, that are a necessary condition on 

elements x of s,, in order that their contribution t,,: x to sN may satisfy p, i.e., 

0 = p<J tt/ t,,* (1p,,)<J: s,, 

where 1 is the negation operation. For then we have 

p<J; SN 

p<Jtt/ f~* · · · tt/ f.,* · · · tt/ f1*' So 

proved in detail in the appendix, Theorem (27) 

(14) p<J PN<J tt/ fN* · · · p,,<J tt/ fr,* · · · P1<J ++/ f1*' so. 
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Now notice that 

Pn<l ++/ fn* 

filter promotion 

++/ Pn<l* fn* 

map distribution 

so that by defining/~:= Pn<l fn we find from (14) 

(15) p<J; SN = p<J ++/ f~* ''. ++/ f;*; So. 
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Equation (15) has the same form as equation (7), so that we immediately know an 
elementwise linear recursive and an elementwise iterative algorithm for computing 
p<:J; sN; cf. (6) and (13): 

sb .- Po<l' So 

(16) 

p<J; SN = p<J; S~ 
and 

t',. .-

(17) t~ := ++/ 1~+1* f~+l = ++/ 1~+1* Pn+l<J fn+I 

We observe that a further, sometimes important but far less drastic, efficiency 
improvement is possible. For Pn was supposed to be a condition on elements of 
Sn = ++/ fn*; sn- 1, but it is actually used in a filter on ++/ fn*' s~- 1 and by 
construction we know that elements of s~_ 1 already satisfy p,,_ 1 • Therefore, the 
actual test may sometimes be simplified to, say, qn; formally q,, should satisfy 

p,,<l ++/ fn*; s,,_, = q,,<l ++/ f,,* Pn-l<J; Sn-l · 

For our PLS example we have the following. Clearly, a selection out of n objects 
that already exceeds the limit weight cannot become legal by putting more objects 
into it. So p,, is the predicate that, exactly like p, says whether the aggregate weight 
does not exceed the limit. Further, q,, need only check whether the newly added 
object, if any, does not raise the aggregate weight too much. So for PLS we find 
qn = p,,. (For the well-known Eight Queens Problem, Pn is the legality constraint 
that no queen is attacked by any other, whereas q,, only says whether the newly 
added queen does not attack the others. Here we find p,,=>q,, but q,, ;C p,,.) 

Once one has succeeded in performing a filter promotion along the lines just 
sketched, one may try to do so a second time, with predicates p~ say, and find 
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definitions analogous to ( 6 ), ( 16) and (13), (17) for s~, t~ and f~. It turns out that 

J~ := p~<J J~ = p~<J Pn<J f., = (p~ A Pn)<J Jn 

and therefore we conclude that repeated filter promotions may be done at once, 
taking p~ A Pn as the filter on sn. (Here, p A q is a notation of the predicate r defined 
by '' x := (p; x) 11 (q; x).) This observation might be formulated as an Algorithmics 
theorem. 

We conclude the discussion by a remark on the mechanical evaluation of "pro
grams" (16) and (17), or, completely unfolded, (15). First of all notice that they 
just express, mathematically, the result to be computed. There are many ways to 
evaluate the expressions and thus compute the result. One of them is the full 
computation of sb, followed by the full computation of s;, and so on. Another 
method is as follows. The evaluator tries to output the requested result and therefore 
computes sN only as far as is needed-and this in turn may trigger the computation 
of sN-i (only as far as is needed to proceed with the main computation), and so 
on. This method of evaluation is called lazy or demand driven evaluation and is 
more or less the same as normal order reduction in the Lambda Calculus. Under 
lazy evaluation the computations according to (16), (17) and (15) behave as a 
backtracking process. In effect, the process repeatedly extends (by fn) an already 
found partial solution (elements of s~_ 1 ) and checks whether the extensions pass 
the filter Pn· This is done in a depth-first way, so that upon a failure of an extension 
to pass the filter, the process "backtracks" to the last passed point where further 
alternatives are still available. 

5. Branch-and-Bound 

In the previous section we discussed the problem of delivering any or all of 
p<J; sN. Now we consider the task of computing the optimal element of p<J; sN. To 
this end we assume that there exists a linear order :,;;;; on the element of sN and that 
1' / p<J; sN is requested; operation 1' is defined by 

x j y = the maximum of x and y with respect to :,;;;; 

Without further knowledge we cannot, of course, give a more efficient algorithm 
than the specification 1' / p<J; sN itself. So let us assume that we know something 
more. First of all, as in the previous section there may exist predicates Pn that are 
a necessary condition for elements of sn in order that their contribution to sN may 
satisfy p. Then we can apply the technique of filter promotion or preselection. The 
improved algorithm, however, has still exactly the same structure as the original 
one: the functions fn are simply replaced by f~ = Pn<J f,,. We shall not deal with 
this aspect any further. Secondly, there may exist predicates Pn,m that are a necessary 
condition on elements of sn in order that their contribution to sN may dominate 
m; here m is some element that plays the role of "the currently found maximum 
of sN" and informally Pn.m says whether an element of sn "looks promising" with 
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respect to m. It is this knowledge that we are going to exploit in the sequel. 
At first sight it seems that we still can apply the technique of filter promotion. 

For, when given m in p<l sN, we have 

ii p<J; SN 

Lemma (4) 

(mi) ii p<J; SN 

= Lemma (5) in which s .- p<J; sN 

(mi) ii (m,,;;:)<J p<J: sN 

"filter promotion" as in Section 4 

(mi) ii (m~)<J p<l PN,m<l ++I fN* · · · P1,m<l f1* Po.m<J; So. 

However, the problem is that we want the argument m in Pn,m to change dynamically 
as the computation proceeds: it should be updated as soon as a new currently 
maximal element is found. Had we had dynamically assignable variables at our 
disposal, we could have written: 

var m :=some (fictitious) element of p<J; sN ; 
fct test(x) :=if m ~ x then m := x; true else false fi; 

result-is (mi) ii test<l p<l PN,m<l ++I fN* · · · P1,m<l ++I /1* Po.m<J; So. 

Under lazy evaluation of the result-is expression, this program specifies the desired 
computation. Our aim, now, is to express and formally derive in a functional, 
algorithmic setting what is intended by the above imperative program. 

The assumed property of Pn,m is formalized as: 

(18) 0 = (m,,;;:)<J p<J ++I ln* (1Pn,m)<J; Sn 

where 1 is the negation operation. As in the previous section, and in detail shown 
in Lemma (26) in Appendix A, we find 

(19) (m~)<J ++I ln*' S = (m~)<J ++I ln* Pn,m<J; S for Sc:; Sn 

where x c:; y means that x is a (possibly noncontiguous) substructure (i.e. subset, 
sub bag, subsequence) of y. As a preparatory step we derive from this, for x c:; s": 

(mi) ii p<l fn; X 

Lemma (5) at the left part 

(mi) ii (m~)<l p<l ++I ln*; X 

equation (19) together with the Jaw p<J q<J 

(mi) ii (m~)<l p<J ++I fn* Pn.m<J; X 

= Lemma (5) 

(mi) i I p<J ++I In* Pn,m<J; X 

(20) (mi) i I p<l tn' x if Pn,m' X else m 

q<J p<J 



36 M.M. Fokkinga 

This equation will allow us to skip elements x of s,. that do not look promising with 
respect to m. We call these elements bad. 

Now we tackle the problem of deriving an efficient algorithm for the computation 

oft I p<J; sN, i.e., ( mt) i I p<J; sN where m is some element of p<J; sN, or, slightly 
more generally, where m is some (fictitious) element satisfying 

(mi) f/ p<J: SN == i/ p<J; SN 

The key to the solution is to sequentialize the computation so as to be able to control 
future computations by "'the currently found maximum m' of sN"· The sequentializ

ation of ( m tl i /is (if m ); see Section 3. Here follow the initial steps of a derivation 
of the desired algorithm. These steps motivate the formulation and proof of Theorem 
(21) below. 

requested value 

(mi) [/ p<J: SN 

(i fr m) p<J: SN 

(f fr m) p<J tt/ fN*; SN-I 

At this point we wish to promote ([fm) to sN-i in order to skip bad elements of 
sN-i and not subject them to p<J tt/ fN*· The promotion laws for f in Section 3 
were "invented" for this very purpose here. Applying Lemma ( 1) we get: 

(ffif m); SN-t 

with m'EBx :== ([f m') p<J fN; x 

aiming at the use of (20), rewrite the rhs of:== of the previous line, 
using (ei) i/ == ([fe) and tN_,==fN 

(ffif m); SN-I 

with m'EBx (m'i) f/ p<J (N-1; X 

equation (20), noting that x r:; sN-I 

(m'i) i/ p<J tN-1; x if PN-I,m'; x else m' 

([fm') p<JfN; x if PN-t,m'; xelsem' 

and we see that bad elements of sN-i are skipped; the search space is bounded 
more and more during the search (EB f m). Of course, we wish to do the same with 
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bad elements of sN _ 2 and therefore we continue the derivation: 

(ffif m) tt/ J~- 1 *' sN-l with EB as before 

fusion of (EB-f m) with tt/ fN-i* using Lemma (1) 

(@f m); SN-2 

with m'®x .- (EB-f m') fN-i: x 

slight generalization of the derivation so far 

equation (20), noting that .Xc:;:; sN-2 

(m'j) ii p<J tN-1' x if PN-l,m'' x else m' 

(EB-f m') fN-i' x if PN-2,m'' x else rn' 
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and it should be clear that we can continue in this way. We shall now do it all at 
once: we generalize operations EB, ®,. . . to an inductively defined sequence 
ffi N, EB N __ 1 , EB N _ 2 , ••• and formulate (the required slight generalization of) the trans
formation in a theorem. 

Define operations EBn as follows: 

rn ix if (p APN,m): x else m 

rnEBnx .- (EBn+ 1 fm)J;,+ 1 ' ifpn,m:xelsem (forn=N-1, ... ,0). 

(21) Theorem. For all n and alls with 0 ~ n ~ N and s c:;:; Sn: 

(mi) i/ p<J ttl tn*' s = (EB,, f m): s. 

Proof. By induction on N - n. 
Basis. For s s sN: 

(mi) ii p<J ttl (N*' S 

(mi) ii p<J: s 

(i-fm)p<J:s 

(!reduce-filter fusion), i.e., Lemma (1) 

(EBf m): s 

with m'EBx m' ix if p: x else m' 
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(m'j) i/ p<J; x 
equation (20), noting that x c:;; s <;; sN 

(m'j) i/ p<J; x if PN,m'; x else m' 

m' j x if (p /\ PN,m' ); x else m' 

m'EBNx 

Induction step (from n to n - l). For s <;; Sn-1: 

(mj) j/ p<l ++/ tn-1*; S 

(mj) j/ p<l ++/ fn* ++/ fn*; S 

induction hypothesis for n 

(EBn f m) ++/ fn*; s 

(!reduce join, !reduce-map fusion), i.e., Lemma (1) 

(®f m); s 

with m'®x := CEBn f m') fn; X 

(EBn-1 f m); s 

induction hypothesis 

(m'j) i/ p<J ++/ ln* fn; X 

(m'j) i/ p<l tn-1; X 

equation (20), noting that x c:;; s <;; Sn-i 

(m'j) i/ p<l ln- 1 ; x if Pn-l,m';xelsem' 

back again 

(EBnf m') fn; x if Pn-i,m·;x else m' 

This completes the proof. D 

As an immediate corollary we have that, when m is the smallest with respect to 
~ or when m is in p<J; sN, 

(22) p<J; SN = (mj) ii p<J; SN = (EBof m); So 

Algorithm (EB0 f m) describes precisely the desired computation: each operation 
EBn carries in its left argument the current maximum and skips those elements (i.e., 
does not subject them to further computation) that do not look promising with 
respect to the current maximum. 



Exercise in transformational programming 39 

6. Imperative implementations 

In this section we give some imperative implementations of the algorithms derived 
in the previous two sections. It turns out that the elementwise iterative version has 
a conventional implementation, whereas the elementwise linear recursive version 
looks unconventional. We also provide assertions needed for the correctness proofs, 
and it appears that the invariance of the assertions can be verified by precisely the 
derivations of the previous sections. 

For reasons of time efficiency we want to describe the computation that corre
sponds to the demand driven (or lazy) evaluation. Also, for reasons of storage 
efficiency (and again to simulate the demand driven evaluation as far as possible), 
we shall use one global variable x in which the elements of sn are built in succession 
(so actually we assume that each s,, is a list, bag or set, and not a tree); the structures 
s., are not stored in any other way. 

We consider programs (16), (17) and (22). In the imperative programs 
f(n ), p( n ), s'( n) correspond to f,,, Pn and s~ from the algorithmic expressions. For 
simplicity we assume that p 0<J; s0 == x0 (a singleton). 

6.1. Implementation of (16) 

Coroutines make an imperative description of demand driven evaluation easy. A 
coroutine differs from a subroutine only in that it may "return" several times during 
the execution of its body; whenever it is re-invoked it continues the execution at 
the last point of return. The notation below is ad-hoe but self explanatory. 

var x; 

fct p(): boo! == {yields p; x}; 
fctp(n:int):bool == {yieldsp";x}; 
coroutine j( n: int) == 

{returns each element off,,; x in succession in var x}; 
coroutine s' ( n : int) = 

{returns each element of s~ in succession in var x} 
if n =O 
then begin x := xO; return end 
else for each return of s'(n -1) do 

for each return off( n) do 
if p ( n) then return; 

for each return of s'(N) do if p() then print 

(or: for the first return of s'(N) do if p() then print) 

Thus an expression like++/ f *; s is transcribed as 

for each return of s do 

for each return of j do ... 
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where s and j are coroutines implementing s and f 
For the PLS example we may choose to represent elements x from sn by an array 

a such that a[i] = (i belongs to x), together with a variable wgt that equals the 

aggregate weight of x. For the representation of elements from s,, only a [ 1 ], ... , a[n] 

and wgt are significant; a[ n + l ], ... , a [ N] are meaningless. (Hence, in the context 

of n = 0 the initialization x := xO is implemented by skip.) The problem dependent 

definitions now read as follows. 

var x: record a : array [ 1 .. N] of boo!; 

wgt: real 

end; 

fct p() :- superfluous, or identically true; 

fct p(n:int):bool = (x.wgt~ W); 

coroutine f(n: int) = 

begin x.a[n]:= true; wgt:= wgt+ w(n); return; 

wgt:=wgt-w(n); 

x.a[n]:=false; return 

end; 

proc print= write(x.a[l. .N]). 

6.2. Another implementation of (16) 

Coroutines are not readily available. Therefore we present here an implementation 

not using them. At first sight this seems very problematic, for the imperative program 

should describe that the computation corresponding to tt/ f:,* is to be performed 

for each result (element) of s;, .1 • The results of s;,_ 1 , however, are stored one after 

the other in var x. Nevertheless this can be done satisfactorily. The idea is to pass 

tt/ J> as a "continuation parameter" to the procedure that implements s~_ 1 • 

Whenever this procedure is about to yield a result (one element of s~- 1 ), it should 

now invoke the continuation parameter. To explain this more precisely, we express 

this transformation first in the algorithmic notation. 

From equation (10), sN = r~; s~, we see that the continuation of s~ in the 

computation of sN is r;,. (The primes intend to indicate that the p,, are taken into 

account; cf. (16) versus (6), and (17) versus (13).) We wish to define some s;~ that, 

given r;, as continuation parameter, produces sN. So we aim at 

From this aim one derives quite easily the definition 

s ;; ; c - c; s0 = c; X0 

s~;c s~ 1 ;(ctt/J>l 

p<J; SN = p<J s'{v' r~ = p<J s~' id s'{v' p<J. 
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(The very last equation is justified by an inductive proof off s;;' c = s~' (f c) 
for all f and c.) Similarly we assume that also c ++/ f;,* can be turned inside-out: 
that is there exists some f~ for which f;:' c = c tt/ f>. The imperative 
implementation now suggests itself: 

var x; 

proc /"( n : int; proc c) 
{yields in succession in var x each element of (f;;' c ): x }; 

proc s"(n:int; proc c) = 
{yields in succession in var x each element of s~' c} 
if n = 0 then x := xO; c else s" ( n - 1, proc: f" ( n, c)); 

s"( N, proc: if p( ) then print) 

Specifically for PLS the problem dependent definitions read: 

procf"(n:int; proc c) = 

begin x.a[n] :=true; wgt := wgt+ w(n); 
if p(n) then c; 
wgt := wgt - w(n ); 
x.a[n] :=false; c 

end; 

and everything else (namely x, p(), p( n) and print) is the same as for the coroutine 
implementation. 

6.3. Implementation of ( 17) 

The elementwise iterative definition oft;, allows for a straightforward implementa
tion. In the absence of further knowledge or assumptions about the};,, we still use 
the coroutine implementation for these. Note however that very often the iteration 
"for each return off( n) do" can be formulated as a proper iteration in which x is 
assigned successively each element of fn' x. 

x,p(),p(n:int),f(n:int) :- as in Section 6.1 
proc t'(n:int) = 

{stores each element of t'rv' x in succession in var x; 

or rather, prints the elements of p<l t 'rv' x in succession} 
if n = N 
then {ready; or rather:} if p() then print 
else for each return off( n + 1) do 

if p(n + 1) then t'(n + l); 

x := xO; t'(O) 
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Specifically for PLS, each fn: x consists of two elements so that "for each return of 
f( n + 1) do" can be unfolded in place, giving: 

proc t'(n: int) 
if n= N 
then print 
else begin x.a[n]:= true; wgt:= wgt+w(n); 

if p(n+l) then t'(n+l); 
wgt := wgt-w(n); 
x.a[n]:=false; t'(n+l) 

end; 

6.4. Implementation of (22) 

The implementation of 

( ffi + m); x I ++ . . . ++ Xn = (- . . ( m ffi x I) EB . . . ) EB Xn 

suggests itself: an iteration of EB over x1 , ••• , Xn with one global variable var m in 
which EB finds its left argument stored, and consequently should leave its result. We 
choose op(n) as the Pascal-like name of operation EBn· 

x,p(),f'(n) :- as before 
fct p(n: int, rn: elt): boo[ = {yields Pn,m: x}; 
proc op(n: int) = 

{yields the result of CEBn -f m); x in var m} 

if n = N 

then if p() and p(N, m) then m := m j x else m := m 

else if p(n, m) 

then for each return of f'(n + 1) do op(n + 1) 
else m := m; 

x := xO; m :=some (fictitious) value such that (mi) p<J; sN = p<J: sN; 

op(O); write(m) 

Specifically for POS we instantiate the above to: 

var x, m : record a: array [1. .N] of boo/; 
wgt: real 

end; 
fctpl(n:int):bool = x.wgt~ W; 

fctp2(n:int, m: ... ) = x.wgt + I~n+I w(i);;;.m.wgt; 
proc op(n: int) = 

if n = N 

then if {p2(N, m) and} m.wgt~x.wgt 
then m := x else skip 

else if p2 ( n, m) then 
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begin x.a[n+l]:== true; x.wgt:==x.wgt+w(n+l); 

if p 1 ( n + l) then op ( n + l); 
x. wgt := x. wgt- w(n + 1); 

x.a[n +I]:== false; op(n + 1) 
end; 

skip {i.e., x :== xO}; m. wgt := O; 
op(O); write(m.a[l. .N]) 

7. Concluding remarks 
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By means of the examples of Backtracking and Branch-and-Bound, we have 
shown how program derivations may proceed in an algebraic way. It was quite 
essential, from a practical point of view, that the program texts didn't grow too 
long. Moreover, and at least as importantly, it turned out that the concepts formalized 
by the squiggles /, *, <J, f, ++ were rightly chosen in the sense that they appear to 
be generally applicable and have easy-to-apply laws. A derivation of the programs 
of Section 6 would have been impossible if a Pascal-like notation was used from 
the very beginning. 

Since the writing of this paper (beginning of 1988) much work has been done in 
order to make the Algorithmics style of programming a worthwhile alternative to 
various, more traditional styles of programming. Bird [5] has developed a series of 
high-level theorems that may be successfully applied in the derivation of algorithms 
on lists and even arrays. Malcolm [14, 15] has given a categorical foundation, and 
he has shown that for any data type definition ("initial/final algebra") some laws 
come for free; in particular the (reduce/map/filter promotion) and the (Ireduce
reduce/map/filter fusion) Jaws of Section 3.1. Thus, there is a general pattern in 
most of the laws that makes them easy to remember (and to discover!). Meertens 
[ 17] shows that for "homomorphisms" (and even "paramorphisms") on such data 
types a lot of identities that used to be proved by induction (as in this paper) can 
also be justified by more "calculational" steps. Apart from this kind of foundational 
work, a lot of specialized theories are being developed, each for a particular data 
type or problem type; see in particular Bird [ 4-6]. 

In view of the above achievements the question suggests itself whether there is 
some more basic theory from which one can obtain our theorems by a few simple 
calculation steps. 

Although Backtracking and Branch-and-Bound have been chosen only to conduct 
the experiment of an Algorithmics development, it is interesting to compare the 
results with other approaches to these problems. We mention some of them. First 
of all there are the traditional imperative developments, e.g., by Wirth [22] and 
many others. They arrive at programs that we have given in Section 6.3. The 
invariance of the assertions that we have given for the programs can be shown 



44 M.M. Fokkinga 

easily, using the equalities derived in Sections 4 and 5; it even seems inescapable 
to use (or re-derive) these equalities. So it appears that these reasonings need to 
occur in the traditional program derivations, although in disguised form and some
times imprecise or incomplete. Next we mention Wadler [20]. He shows how to 
obtain our ultimate program for Backtracking (not Branch-and-Bound) by a transfor
mation of a program that uses a nondeterministic choice operation which has to 
avoid branches of the computation path that end in fail. We have reasoned about 
the set of all solutions in a purely mathematical way; no concept of a choice-making 
demon has ever been needed. Finally, Smith [19] comes to similar results as ours 
by an automatable strategy for designing subspace generators. His "generators" 
correspond to the coroutines of Section 6.1; these are characterized by pre- and 
post-conditions and have very much the ftavor of imperative style programming 
rather than the ftavor of mathematical expressions, like our formulas in Sections 4 
and 5. 

Appendix A. Some proofs 

We shall derive equation (14) of Section 4 formally. We choose to formalize the 
assumption "pn is a necessary condition on the elements x of sn in order that their 
contribution tn; x to sN may satisfy p" by 

Note that if we had chosen the formalization as 0 = p<l ++/ tn * ( 'Pn )<J; s for all 
s, then we would immediately have Lemma (26). We feel, however, that (23) expresses 
the assumption most clearly and is much weaker, more general, than the alternative. 

First we define a relation i;; between structures (namely 'inclusion' for sets, 
'noncontiguous subsequence' for lists). 

(24) Definition. The relation i;; is the smallest relation between structures, such that 
(1) 0£ 0, 
(2) 0s;;.X and xs;;x, 
(3) s' ++ t' i;; s ++ t whenever s' <;; s and t' £ t. 

(25) Lemma. Relation <;; satisfies the following properties. 
( 1) s <;; s, 
(2) r <;; s <;; t implies r <;; t, 
(3) s <;; s ++ t and t i;; s ++ t, 
( 4) s <;; t £ s implies s = t, 
(5) s £ t implies p<'.J; s £ p<J; t, 
(6) p<J; s £ s, 
(7) s £ t implies ++/ f *; s £ tt/ f *; t. 
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Proof. Most proofs are straightforward by induction. By way of illustration we 
prove (7) by induction on the inference of s c:;:: t. 

Case sc:;:: ton account of (24.1): s =0= t. Trivial. 
Cases c:;:: t on account of (24.2): both for s = 0, t = x and for s = x = t trivial. 
Cases c:;:: ton account of (24.3): s = s1 tt s2 , t = t 1 tt t2 and S; c:;:: f; for i = 1, 2. Now 

ttj j *' s 1 tt s2 

(map.2) and (reduce.2) 

(tt/ f*' s 1) tt (tt/ f*' S2) 

c:;:: induction hypothesis and (24.3) 

(tt/ f*; f1) tt (tt/ f*' f2) 

(map.2) and (reduce.2) 

tt/ f*' f1 tt f2 

This completes the proof. 0 

(26) Lemma. Under the assumption (23 ), for alls c:;:: Sn: 

p<J tt/ t,,*' s = p<J -++/ t,,* p,,<J; s 

Proof. By induction on the structure of s. 
Case s = 0. Trivial. 
Cases= x. Then 

p<J tt/ t,,*' x 
p<J tt/ t,,* (p,, v -ip,,)<J; x 
p<J tt/ t,,*' ((p,,<J' x)-++ (-ip,,<J; x)) 

(p<J tt/ t,,* p,,<J; x)-++ (p<J -++/ t,,* (-ip,,)<J; x) 

assumption (23) 

p<J tt/ f,,* p,,<J; x. 
Cases= r tt t. Now 

left-hand side 

(map.2), (reduce.2) and (filter.2) 

( p<J tt/ t,,*' r) tt (p<J tt/ f,,*' t) 

induction hypothesis, noticing that re;; s,, by (25.3) and (25.2) 

(p<J tt/ t,,* p,,<J' r)-++ (p<J -++/ f,,* p,,<J; t) 

(map.2), (reduce.2) and (filter.2) 

p<J -++/ t,,* p,,<J; rtt t 

right-hand side. 
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This completes the proof. (The reasoning for the case s = x fails for arbitrary s; 
otherwise that reasoning would be an induction-less proof of the lemma.) D 

(27) Theorem. Under assumption (23), equation (14) holds true. 

Proof. Define 

We show by induction on n that 

p<J: sN = p<l tt/ t,,*' s:1 and 

Basis. 

p<J: sN = p<l tt/ to*' s0 ={Lemma (26)} p<l tt/ to*' s[i. 

s[i = Po<l: Sot:; {Lemma (25.6)} Su. 

Induction step. For p<J: sN we argue: 

induction hypothesis 

definition of tn 

(map distribution), (map promotion) 

induction hypothesis gives s~ <:; sn, 
Lemma (25.7) gives++/ f~*' s:1s;++/ /,,*' s,. =sn•1; 
apply Lemma (26) 

definition of s:, + 1 



Exercise in tran~formational programming 

And for s~+ 1 we calculate: 

definition 

<;; Lemma (25.7), induction hypothesis 

<;; Lemma (25.6) 

++/ fn*' Sn 

definition 

Sn+!· 

This completes the proof. 0 
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