
Science of Computer Programming 16 (199 l) 19-48
Elsevier

An exercise in transformational
programming: Backtracking and
Branch-and-Bound

Maarten M. Fokkinga
CWI, P.O. Box 4097, 1009 AB Amsterdam, Netherlands

Communicated by J. Darlington
Received May 1988
Revised September 1990

Abstrac/

19

Fokkinga, M.M., An exercise in transformational programming: Backtracking and Branch-and
Bound, Science of Computer Programming 16 (1991) 19-48.

We present a formal derivation of program schemes that are usually called Backtracking programs
and Branch-and-Bound programs. The derivation consists of a series of transformation steps,
specifically algebraic ma11ipula1ions, on the initial specification until the desired programs are
obtained. The well-known notions of linear recursion and tail recursion are extended, for structures,
to elementwise linear recursion and elementwise tail recursion; and a transformation between them
is derived too.

1. Introduction

Methodologies for the construction of correct programs have attracted wide
interest in the past, and in the present. Well known is the assertion method of Floyd
for the verification of programs, and the axiomatic basis for computer programming
that Hoare [13] founded on this idea. Subsequently, Dijkstra [9, 10] refined the
method to a calculus for the construction of so-called totally correct programs. The
influence of the work of these three persons is apparent in almost every textbook
on programming.

More recently, quite another method for the construction of correct programs
has attracted attention: the method of transformational programming; see e.g.
Feather [11] and Partsch [18] and the references cited. Basically, one starts with
an obviously correct program, or rather specification, for it doesn't need to be
effectively computable; and then one applies a series of transformation steps that
preserve the correctness but, hopefully, improve the efficiency. In order that the
method is practically feasible, it is necessary that the program notation is suitable

0167-6423/91/$03.50 CC'! 1991-Elsevier Science Publishers B.V.

20 M.M. Fokkinga

for algebraic manipulation; that is, it must be easy to decompose a program into
its (semantically meaningful) constituent parts and to recombine them into an
operationally slightly different but semantically equivalent form, very much like the
"transformations" of a 2 - b 2 into (a + b)(a - b) and of sin(x + y) into sin x cos y +
cos x sin y. (Notice that here the "transformations" are just algebraic identities; the
same will be true of the kind of transformations that we shall explore in this paper.)
A second necessary property of the program notation is its brevity and terseness,
for otherwise it would be practically infeasible to rewrite and transform a program
in a series of steps until a satisfactory version has been obtained. Imagine, for
instance, how one should do elementary high-school algebra with a fully parenthe
sized prefix notation, dealing with equations like:

minus(exp(a, 2), exp(b, 2)) = mult(plus(a, b), minus(a, b))

For the transformational approach to succeed it is really necessary that several
programs of high algorithmic content can be placed in a single line and related by
the equals sign, say.

A framework for algorithmic programming that meets the above requirements,
and many more, has been developed by Meertens in the paper "Algorithmics:
towards programming as a mathematical activity" [16]. It is a mathematically
rigorous approach to programming that is highly algebraic in nature. Meertens calls
it "algorithmics" and we shall refer to his paper as "the Algorithmics paper". We
set out to derive in the framework of Algorithmics (the well-known!) programs for
Backtracking and Branch-and-Bound (see the explanation below). Apart from the
insight in Backtracking and Branch-and-Bound that the reader may get from our
high-level, algorithmic discussion and derivation, we also attempt to satisfy Meer
tens' request for "the discovery and the formulation of 'algebraic' versions of
high-level programming paradigms and strategies" [16].

2. Informal discussion of Backtracking and Branch-and-Bound

"Backtracking" is a problem solving method according to which one systematically
searches for one or all solutions to a problem by repeatedly trying to extend an
approximate solution in all possible ways. Whenever it turns out that such a solution
fails, one "backtracks" to the last point of choice where there are still alternatives
available. For most problems it is of the utmost importance to spot early on that
an approximate solution cannot be extended to a full solution, so that a huge amount
of failing trials can be saved. This is called "cutting down the search space". It may
diminish the running time of the algorithm by several orders of magnitude.

Now suppose that it is required to find not just any one or all solutions, but an
optimal one. In this case one can apply the same method, but every time a solution
is encountered the search space can be reduced even further: from then onwards
one need not try to extend approximate solutions if it is sure that their extensions

Exercise in transformational programming 21

cannot be as good as the currently optimal one. In this case we speak of"Branch-and
Bound".

The above description of Backtracking and Branch-and-Bound is rather
operational. It is indeed a description of the sequence of computation steps evoked
by the program text, or taken by a human problem solver. It is not at all necessary
that the program text itself clearly shows the "backtracking" steps and the "bound
ing" of the search space. On the contrary, the program text need only show that
the required result is delivered; the way in which the result is computed is a property
of the particular evaluation method.

Backtracking and Branch-and-Bound are thoroughly discussed in the literature;
see e.g. Wirth [21, 22], Alagic and Arbib [1], and many other textbooks on program
ming. Many of these also provide some sort of correctness argument in the form
of assertions or just informal explanation. On close inspection most of them seem
incomplete: either the assertions are too weak to carry the proof through, or the
implication between assertions (and the invariance of loop assertions) is not proved
with mathematical rigour. Even our own previous attempt [12] is not satisfactory
in this respect. It also appears that the method of invariant assertions leads to some
overspecification: in order to show that the whole search space, i.e., all possibilities,
has been investigated some total ordering is imposed on the search space (often
some lexicographic order) and it is shown that the search space is traversed along
this order. In the transformational approach such an ordering is not needed at all:
the very first program, or rather specification, clearly expresses that no possibility
is by passed.

We shall illustrate our high-level, algorithmic discussion of Backtracking and
Branch-and-Bound by the following simple, but typical, examples: the Problem of
an Optimal Selection and a simplification of it, the Problem of a Legal Selection.

The Problem of a Legal Selection (PLS). There is given a collection of N objects,
say object 1, 2, ... , N Each object x has its own weight w(x) and value v(x). The
task is to find a selection of the objects, i.e., a subset of {l, ... , N}, whose aggregate
weight does not exceed a given limit W. (Slightly more general, the task may be to
find all such selections.)

The Problem of an Optimal Selection (POS). With the same assumptions as in PLS,
the task is to find a selection of the objects whose weight does not exceed the given
limit W and, in addition, whose aggregate value is maximal.

Wirth [22] also discusses POS and we shall arrive at essentially the same algorithm.

3. Preliminaries

In this section we explain the notation and we recall the well-known transformation
of linear to iterative recursion.

22 M.M. Fokkinga

3.1. About the notation

We use the notation suggested in the Algorithmics paper. In order to be self
contained we list here briefly the conventions, operations, and algebraic laws that

we need in the sequel. Some names and symbols have been taken from Bird [4].
The reader is recommended to consult the Algorithmics paper for a thorough
motivation and discussion of these topics.

The overall aim of the notational conventions is to make an algebraic manipulation
of programs possible and easy, the ideal being that one calculates with programs

(terms) without a necessity to interprete them. To this end one should allow syntactic
ambiguity whenever it does not result in semantic ambiguity, for in this way many

trivial transformation steps become superfluous. Imagine for instance what would

happen if all parentheses were required in x + y + · · · + z even when + is associative.
The notation below is designed such that reasoning on the function level becomes
as easy as reasoning on the point level, cf. "the message" of Backus [2].

Functions and operations

There are binary operations and functions; all functions have a single argument.

There is no loss of generality here, because arguments may be structured or tuples,
and a function or operation result may itself be a function. The argument of a
function and the right argument of an operation must be chosen as large as possible.
Function composition (associative!) is the most frequently occurring operation, and
is therefore written by juxtaposition, in this paper: a wide space. Meertens [16]
proposes to denote application by juxtaposition too, since the resulting syntactic
ambiguity is (mostly) not semantically ambiguous: one would have f(g x) = (f g) x =
f g x. However, to ease the interpretation of the formulas we will indicate application
explicitly by a tiny semicolon, with the convention that its left argument (the function

expression) must be chosen as large as possible. (Meertens uses the semicolon
merely as a closing parenthesis for which the opening parenthesis must be placed

as far as possible to the left.) Thus

fgh:x+y = "(fgh) applied to (x+y)"

A binary operation with only one argument (in this paper: the left argument)
provided is considered to be a function of its missing argument; it is called a section.

We shall always enclose a section in parentheses, except for the special operations

discussed below. Thus (x+) (yx): z = x+(yxz).
We use symbols like EB and ® as variables ranging over binary operations, in the

same way as f and g are used as variables ranging over functions.

Structures
We use four kinds of structured data, namely trees, lists, bags and sets; these are

generically called structures. The type of a structure is denoted a*, where a is the
type of the values (elements) contained in the structure; specifically we sometimes
write -tree -list -bag or -set instead of *. Operation A: a---? a* (written Ax or x)

, ' '

Exercise in tran4ormational programming 23

forms a singleton structure containing only x. Operation tt: a* x a*~ a* com
poses two structures of the same kind; in particular, for lists tt is the append (or
concatenation) operation and for sets tt is the union u. The difference between
the four kinds of structures and between the four tt operations is algebraically
expressed by the laws that hold for tt: for trees ++ satisfies no laws, for lists ++ is
associative, for bags++ is associative and commutative, and for sets++ is associative,
commutative and idempotent (or absorptive):

associative (x++y)++z = x++(yttz)

commutative x ++ y yttx

idempotent x++x = x

The constant 0: a* denotes the empty structure; this is formalized by the law

0++x = x = x++0

Thus any tree is a list as well, any list is a bag as well, and any bag is a set as well.
This hierarchy of structures is sometimes called the Boom hierarchy, after Boom [7].

Special operations
We need four operations that act on functions and operations rather than on

"elements": reduce or insert (/), map (*), filter (<l) and left-reduce or left-insert
(-f). The first three are special only in that we write them as postfix operations,
hence having the highest priority (exactly like primes). Thus

®/ f* p<l = (EB/) (/*) (p<J) and EB/* = (EB/)*

In other words, one may consider /, *, <l as normal binary operations for which
the sections (®/), (/*), and (p<l) are written without parentheses. The four
operations are completely characterized by means of the laws below. (Actually, a
theory is being developed in which one can derive these laws from the data type
definition for the structures; see e.g., Malcolm [15]. It is outside the scope of this
paper to do so here.) In the accompanying examples we assume that++ is associative
so that we need not give the parentheses.

map f *' x is the result of applying f to every element of x. Example:

The laws are:

(map.O) f *' 0

(map.I) f*' x
(map.2) f*;x++y = <f*;x)++(J*'Y)

24 M.M. Fokkinga

reduce fB/; x is the result of inserting EB at every construction node of x. Example:

fB/; x1++· · ·++xn = X1EB· · ·®xn

Operation EB should satisfy at least the same laws as++ does; otherwise there would
arise inconsistencies from the laws below, since they allow us to prove (by induction)
that EB satisfies the laws of++, cf. Lemma (4). In the same way, fB/; 0 has to be the
unit of®; if operation fB has no unit, then we adjoin a fictitious value w to the
domain of fB and define w EB x = w = x fB w for all x (like the introduction of oo
as the unit of the "minimum" operation). The laws are:

(reduce.O) ®/; 0 = the (possibly fictitious) unit of fB

(reduce.I) EB/:x = x

(reduce.2) ®/:x++y = (ffJ/;x)fB(EB/;y)

filter p<J; x is the result of filtering out those elements of x for which predicate p
doesn't hold. Example:

odd <J: 7 ++ 2 ++ 6 ++ 5 ++ 4 = 7 tt 5
The laws are:

(filter.O) p<J; 0

(filter. I) p<J; x
0

x if P' x else 0

(filter.2) p<J: x ++ y = (p<J; x) tt (p<J: y)

left-reduce (EB f e): x is the result of a left to right traversal over x, taking EB at every
construction node and starting with initial left argument e. Example:

(fBf e):.X1++· · ·ttxn = (· · · (efBx1)Etl· · ·)fBxn

The laws are:

(lreduce.O) (®f e): 0 = e

(lreduce.l) (®f e); x eEtlx

(lreduce.2) (®fe);xtty = (Etlf((Etlfe):x)):y

Here again operation EB must be as rich (with respect to commutativity and idem
potency) as tt in order to avoid inconsistencies.

Thus, for s : a-bag, p a predicate on a, and f: a-> r\I, we have

+/ f* p<J; s = I f(x)
xin.,lp(x)

Similarly, for s: a*, p: a-> IB, f: a-> {3-set (mapping each element onto a set), if tt
is set-union (i.e., ++ is associative, commutative and idempotent), then

tt/ f* p<J; s = LJ{f(x)\xinsAp(x)}

Exercise in transformational programming 25

In the sequel the term tt/ f* p<l will occur over and over again. The new notation
is better suited for algebraic calculation than the conventional set-theoretic notation,
since there are no bound variables and each "semantic action" is denoted by a
distinct syntactic operation for which algebraic laws have been stated above.

Definitions
In order to distinguish between equalities and definitions, we use the symbol :=

for the latter and = for the former. By definition, the left-hand side and right-hand
side of a definition are equal, so that := may always be replaced by =. Conversely
this is not true; e.g., for any object x we have x = x, but the definition x := x
will in general not define that object called x.

Some more laws
Here we list some laws that we need in the sequel and have already been given

in the Algorithmics paper and also by Bird [4]. The promotion and distribution
laws may be proved by structural induction; the other ones are immediate by the
laws above.

(filter promotion) p<l tt/ = tt/ p<l*

(map promotion) f* ++/ = ++/ f **

(reduce promotion) ffi/ tt/ 09/ ffi/*

in particular

(map distribution)

tt/ tt/ tt/ ++/*
f* g* = (f g)*

++/ A id of type a~ a

++/ Cl* id of type a*~ a*
f* A = A f

p<l q<l = (pflq)<l

(eEB) EB/ = (EB-fe) forassociativeffi

The derivation of the Branch-and-Bound algorithm in Section 5 triggers the formula
tion of some specific laws. However, they may be generalized and then turn out to
be of a very general nature, comparable to the laws given above. Here we formulate
them in the form of a lemma.

(1) Lemma.

(!reduce-join fusion)

(!reduce-map fusion)

(!reduce-filter fusion)

(ffif e) ++/ = (@f e)

where e@x = (EBf e); x

(ffife) f* = (@fe)

where e@x = effi(f x)

(ffife)p<l = (@fe)

where e@x = e09x if p: x else e

26 M. M. Fokkinga

Proof. By induction on the structure of the argument. For (!reduce-join fusion):

Basis 1.

(EBf e) ++/: 0

Basis 2.

(EBf e) ++/: x (EBfe):x e@x

Induction step.

(EBf e) ++/: s ++ t

law (reduce.2) in which EB := ++

(EBfe): (++/:s)++(++/:t)

law (lreduce.2)

(EBf((EBfe) ++/: s)) ++/: t

induction hypothesis

(®f ((@f e): s)): t

law (lreduce.2)

(@f e): s ++ t.

The other parts are proved similarly. 0

(®fe):x

Here follow two corollaries. Neither of these corollaries is used in the sequel;

however, Corollary (3) is a simplified form of Theorem (21) in Section 5. In that

theorem the predicates PN, ... , p0 "change dynamically, during the computation".

(2) Corollary.

(EBfe) ++/ f* p<J = (@f e)

where e ® x := (EB f e) f x if p: x else e.

(3) Corollary.

(EBf e) ++/ fN* PN-1<J · · · tt/ f1* Po<J (®of e)

where

(for n=N-1, .. .,0).

Exercise in transformational programming

Proof. By induction on N - n it is easy to prove that

(EBf e) -tt/ fN* PN-1<J

(@,,fe) -tt/ f,,* p,,_,<J

using Corollary (2). D

Here are two other useful lemmas.

-tt/ f1* Po<J

-tt/ f,* Po<J

27

(4) Lemma. Let EB be associative, commutative, and idempotent, and let m be ins. Then

EB/; s = (mEB) EB/ ; s

Proof. Let ® be any operation and consider ®/' s. Let -tt be the construction
operation of s. Then, within the argument of ®/, operation -tt may be considered
to be as rich as ® with respect to associativity, commutativity and idempotency.
More precisely,

®associative =? ®/; x-tt(y-ttz) = ®/; (x-tty)++z

®commutative =? ®/' x-tt y ®/; y ++ x

® idempotent =? ®/; x -tt x

This is easily proved; e.g., for commutativity we argue

®/; x-tt y

(®/; x)®(®/; y)

commutativity of®

(®/; y)®(®/; x)

®/; y-tt x.

Hence, for associative, commutative and idempotent EB we have, when m is in s,

EB/; s = EB/' m -tt s = (mEB) EB/' s. D

The next lemma is formulated for a specific operation t. We suppose that the
domain of j is linearly ordered, say by ~; then x j y is the maximum (with respect
to~) of x and y. (One might generalize the lemma by just looking at what properties
are used, but we refrain from doing so here.)

(5) Lemma. Let s be an arbitrary structure, linearly ordered by ~' and let m be
arbitrary (not necessarily ins). Then

(mt) f /; s = (mt) 1'/ (m~)<J; s

Proof. By induction on the structure of s.
Case s = 0. Trivial.
Cases= x. Immediate from the meaning of j and (m,,;:;)<J.

C<:HC s = r.,..... t. For define p := m ~ l. Then

(mn

m~i; rJt t;

. commutativity, and idempotence of r

induction hypothesis twice

p< I)

r r n / p< tl

(m; i i' r,. (Ill

1.mn t/ s

rhis completes the- proof. n

3 . .?. Li11ear and iterative recursion

in Section 4.1 we- shall introduce the notions of "elementwise linear recursive"
and "dementwise iteratiw" and the transformation between them. These concepts
are analogous to the well-known notions of .. linear recursion" and "iteration" and
the corresponding transformation. As an aid to the reader we recall these well-known
concepts here. formulated in the current notation.

Consider/;, (11 = 0, I, ... I defined by

j;, -- some given value

};, .- h,, _t;, .. 1 for11>0

This definition has a lini:ar recursive form (meaning that there is only one occurrence
off in the right-hand side). For example, for the factorial function};, = n ! we have
f;, == O! = I and h., x == n x x. A definition in iteratire form (or tail recursit1e form) of
g" such that f.., =g., .t:i. may be derived by aiming at

(*l g,,·f;,=f ...

In other words, g" captures the future '"extension" of/;, to .t:v. For n == N we find
from the aim (* l that f.., = g-, 'f..,; hence we may define

g.., :o= id

Now we proceed by induction; for n < N we try to establish (*) from right to left:

f-,

induction hypothesis

g,,' l . .r;, ' l
definition of J;,, 1

Exercise in transformational programming 29

which we want to be equal to g,,; / 11 • Hence we may define

and by construction the aim (*) has been achieved. All of the above may be clarified
further by noticing that JN= hN hN-i · · · h1 ; / 0 (by repeatedly unfolding the
definition of fn), f,, = hn · · · h1 ' / 0 and therefore, immediately, g11 = hN · · · h11 +i •

For the factorial example we find

x

g,,;x

Nx· · ·x(n+l)xx

Notice also that g,, has one parameter more than f 11 • This parameter is sometimes
called the accumulating parameter, and the transformation of the linear recursive
definition to the iterative definition may be called parameter accumulation: the final
result f N is accumulated in this parameter.

The importance of the iterative definition is two-fold. First, it allows us to express
precisely "what is to be computed further to obtain f N when given some ! 11 ". This
is a concept that might be useful in an algorithmic analysis; we shall make heavy
use of it in the sequel. Secondly, the iterative definition allows for a more efficient
implementation, in particular with respect to the storage space. For example, the
canonical imperative implementations of linear recursive and iterative definitions
read:

fctf(n:int) = ifn=Othen/Oelseh(n,f(n-1))

fct f(N: int) = begin var x :=JO, n := O;

end

4. Backtracking

while n < N do n, x := n + 1, h (n + 1, x);

f:=x

In this section we discuss Backtracking at a high level of abstraction. We present
a definition (or specification) of the problem in Section 4.1, and derive well-known
algorithms in Section 4.2. (In Section 6 the algorithms are implemented in a
Pascal-like language.)

4.1. Definition and initial exploration

By definition we say that the following kind of problems may be called Backtrack
ing problems: the task is to yield any or all of p<:J; sN where sN is inductively defined

30 M.M. fl1kkinga

by

s0 .- some given structure

(6) Sn .- tt/ In*; Sn-I for n > 0

Here, j,, is a function that constructs substructures of sn out of elements of sn-I,

and p is some given predicate called the legality constraint. Thus we have the typing:

s11 : a*, In: a--> a* and P: a--> IEB, for some a. Mostly a is /3-bag or {3-set, and then

in imperative implementations the members of sn are represented by an array of {3.

For the example problem PLS we have

sn = all selections (subsets) of { 1, ... , n} : N-set-set

so that we may define

So := 0 : N-set-set

f;,; x := x tt A(x tt n) : N-set---> N-set-set

p := (W~) +/ w* :N-set-->IB

We shall explain the adjective "backtracking" at the end of Section 4.2.

Before attacking the problem of finding an efficient way to compute any or all

of p<J; sN, we play somewhat with definition (6) and derive alternative but semanti

cally equivalent (i.e., equal) formulations. The reader may notice that the following

manipulations would have been practically impossible had we chosen Pascal as the

program notation.
First, we repeatedly unfold the definition of s.,:

tt/ IN*; SN I

tt/ .IN* tt/ .IN- I*' SN-2

(7) tt/ IN* · · · tt/ / 1*; s0

Next, we apply map promotion (f,,* tt/ tt/ f,,**) repeatedly, and obtain

by equation (7)

tt/ fN* ++/ JN I* · · · ++/ /1*' 5o

by (map promotion) on the sub term f N* ++/

tt/ ++/ fN** f~- I* · · · tt/ f1*; So

Exercise in tran~f(1rmational programming 31

Here a superscript n means n-fold repetition (n occurrences after each other). By
repeatedly applying map distribution U* g* = (f g)*)we find from equation (8)

(9) SN = (tt/)N (· · · U~* f~-1)* · · · J~)*' So

Consider once more equation (7):

Theparttt/ fn* · · · ++/ f1*' soclearlyequalss,,.Letusgive++/ fN* · · · tt/ fn+i*
the name r,,; so r11 maps s11 onto sN and has type a*..;. a*:

(11) r,, = tt/ fN* """ tt/ !11+1*

It is easy to give an inductive, even iterative, definition of r". However, in the
following section it turns out to be more helpful to have a name for the contribution
to sN of each element of s" separately. That is, we are looking for t11 : a..;. a* that
satisfy

(12) SN = tt/ ln*' Sn.

In words, for x from s,,, t,,' x is the contribution of x to sN. Now we derive an
explicit definition for t11 from the desired equation (12). First, for n = N we desire
sN = ++/ tN *' sN so that we may define tN :=A. Next, proceeding by induction
and therefore assuming that sN = tt/ t,,+ 1*' s,,+ 1, we aim at t,, such that
++/ ln*' S11 =SN:

induction hypothesis

definition of s,, + 1

(map promotion)

++/ tt/ l,,+1** .f.1+1*' Sn

(reduce promotion)

(map distribution)

which we want to be equal to++/ ! 11 *' sn. So we may define

32 M.M. Fokkinga

and aim (12) has been achieved. Together:

(13) t,, '.= tt/ t,,+1* fn+l·

We conclude this exploration by an important observation. In analogy with the

notions of linear recursion and iteration (or tail recursion), we call definitions of

the form (6) elementwise linear recursive and those of the form (13) elementwise
iterative (or elementwise tail recursive). The derivation above of the elementwise

iterative definition (13) from the original elementwise linear recursive definition (6)

is exactly analogous to the transformation of linear recursion into iteration; see

Section 3.

The importance of the elementwise iterative definition is two-fold, as explained

in Section 3 for iterative definitions in general. Firstly, ln is the precise formulation

of "the contribution to sN for x drawn from sn"; we'll need this concept in the

algorithmic analysis below. Secondly, the direct imperative implementations based

on the tn are simpler and more efficient than those based on the s,, ; see Section 6.

4.2. Improving the efficiency of the algorithm

The specification of the task, namely to yield any or all of p<J; sN with sN defined

by (6), happens to be executable. Without further knowledge about the f,, and in

particular p we cannot give a more efficient program. But note that a direct execution

will in many cases take too much time due to exponential growth of the sizes of

structures s,,. For example, for PLS structure s,, has r elements. Even if only one

element of p<J: sN is requested, and in principle only a small portion of the 2N

elements needs to be inspected in search for one that satisfies p, this will take too

much computational time.

One way to reduce the computational time is to reduce the structures sn without

omitting elements that would eventually contribute something to sN and would pass

the filter p<J. In other words, one should try to promote (parts of) the filter p<J as

far as possible into the generation of the structures s,,. Darlington [8] has coined

the name filter promotion for this technique (see also Bird [3]), and Wirth [21, 22]

calls it pruning the search space and preselection. For example, for PLS each element

of sn gives rise to 2 N-n elements in sN, so that omitting it may save quite a lot.

More precisely, one should find predicates p,, that are a necessary condition on

elements x of s,, in order that their contribution t,,: x to sN may satisfy p, i.e.,

0 = p<J tt/ t,,* (1p,,)<J: s,,

where 1 is the negation operation. For then we have

p<J; SN

p<Jtt/ f~* · · · tt/ f.,* · · · tt/ f1*' So

proved in detail in the appendix, Theorem (27)

(14) p<J PN<J tt/ fN* · · · p,,<J tt/ fr,* · · · P1<J ++/ f1*' so.

Exercise in transformational programming

Now notice that

Pn<l ++/ fn*

filter promotion

++/ Pn<l* fn*

map distribution

so that by defining/~:= Pn<l fn we find from (14)

(15) p<J; SN = p<J ++/ f~* ''. ++/ f;*; So.

33

Equation (15) has the same form as equation (7), so that we immediately know an
elementwise linear recursive and an elementwise iterative algorithm for computing
p<:J; sN; cf. (6) and (13):

sb .- Po<l' So

(16)

p<J; SN = p<J; S~
and

t',. .-

(17) t~ := ++/ 1~+1* f~+l = ++/ 1~+1* Pn+l<J fn+I

We observe that a further, sometimes important but far less drastic, efficiency
improvement is possible. For Pn was supposed to be a condition on elements of
Sn = ++/ fn*; sn- 1, but it is actually used in a filter on ++/ fn*' s~- 1 and by
construction we know that elements of s~_ 1 already satisfy p,,_ 1 • Therefore, the
actual test may sometimes be simplified to, say, qn; formally q,, should satisfy

p,,<l ++/ fn*; s,,_, = q,,<l ++/ f,,* Pn-l<J; Sn-l ·

For our PLS example we have the following. Clearly, a selection out of n objects
that already exceeds the limit weight cannot become legal by putting more objects
into it. So p,, is the predicate that, exactly like p, says whether the aggregate weight
does not exceed the limit. Further, q,, need only check whether the newly added
object, if any, does not raise the aggregate weight too much. So for PLS we find
qn = p,,. (For the well-known Eight Queens Problem, Pn is the legality constraint
that no queen is attacked by any other, whereas q,, only says whether the newly
added queen does not attack the others. Here we find p,,=>q,, but q,, ;C p,,.)

Once one has succeeded in performing a filter promotion along the lines just
sketched, one may try to do so a second time, with predicates p~ say, and find

34 M.M. Fokkinga

definitions analogous to (6), (16) and (13), (17) for s~, t~ and f~. It turns out that

J~ := p~<J J~ = p~<J Pn<J f., = (p~ A Pn)<J Jn

and therefore we conclude that repeated filter promotions may be done at once,
taking p~ A Pn as the filter on sn. (Here, p A q is a notation of the predicate r defined
by '' x := (p; x) 11 (q; x).) This observation might be formulated as an Algorithmics
theorem.

We conclude the discussion by a remark on the mechanical evaluation of "pro
grams" (16) and (17), or, completely unfolded, (15). First of all notice that they
just express, mathematically, the result to be computed. There are many ways to
evaluate the expressions and thus compute the result. One of them is the full
computation of sb, followed by the full computation of s;, and so on. Another
method is as follows. The evaluator tries to output the requested result and therefore
computes sN only as far as is needed-and this in turn may trigger the computation
of sN-i (only as far as is needed to proceed with the main computation), and so
on. This method of evaluation is called lazy or demand driven evaluation and is
more or less the same as normal order reduction in the Lambda Calculus. Under
lazy evaluation the computations according to (16), (17) and (15) behave as a
backtracking process. In effect, the process repeatedly extends (by fn) an already
found partial solution (elements of s~_ 1) and checks whether the extensions pass
the filter Pn· This is done in a depth-first way, so that upon a failure of an extension
to pass the filter, the process "backtracks" to the last passed point where further
alternatives are still available.

5. Branch-and-Bound

In the previous section we discussed the problem of delivering any or all of
p<J; sN. Now we consider the task of computing the optimal element of p<J; sN. To
this end we assume that there exists a linear order :,;;;; on the element of sN and that
1' / p<J; sN is requested; operation 1' is defined by

x j y = the maximum of x and y with respect to :,;;;;

Without further knowledge we cannot, of course, give a more efficient algorithm
than the specification 1' / p<J; sN itself. So let us assume that we know something
more. First of all, as in the previous section there may exist predicates Pn that are
a necessary condition for elements of sn in order that their contribution to sN may
satisfy p. Then we can apply the technique of filter promotion or preselection. The
improved algorithm, however, has still exactly the same structure as the original
one: the functions fn are simply replaced by f~ = Pn<J f,,. We shall not deal with
this aspect any further. Secondly, there may exist predicates Pn,m that are a necessary
condition on elements of sn in order that their contribution to sN may dominate
m; here m is some element that plays the role of "the currently found maximum
of sN" and informally Pn.m says whether an element of sn "looks promising" with

Exercise in transformational programming 35

respect to m. It is this knowledge that we are going to exploit in the sequel.
At first sight it seems that we still can apply the technique of filter promotion.

For, when given m in p<l sN, we have

ii p<J; SN

Lemma (4)

(mi) ii p<J; SN

= Lemma (5) in which s .- p<J; sN

(mi) ii (m,,;;:)<J p<J: sN

"filter promotion" as in Section 4

(mi) ii (m~)<J p<l PN,m<l ++I fN* · · · P1,m<l f1* Po.m<J; So.

However, the problem is that we want the argument m in Pn,m to change dynamically
as the computation proceeds: it should be updated as soon as a new currently
maximal element is found. Had we had dynamically assignable variables at our
disposal, we could have written:

var m :=some (fictitious) element of p<J; sN ;
fct test(x) :=if m ~ x then m := x; true else false fi;

result-is (mi) ii test<l p<l PN,m<l ++I fN* · · · P1,m<l ++I /1* Po.m<J; So.

Under lazy evaluation of the result-is expression, this program specifies the desired
computation. Our aim, now, is to express and formally derive in a functional,
algorithmic setting what is intended by the above imperative program.

The assumed property of Pn,m is formalized as:

(18) 0 = (m,,;;:)<J p<J ++I ln* (1Pn,m)<J; Sn

where 1 is the negation operation. As in the previous section, and in detail shown
in Lemma (26) in Appendix A, we find

(19) (m~)<J ++I ln*' S = (m~)<J ++I ln* Pn,m<J; S for Sc:; Sn

where x c:; y means that x is a (possibly noncontiguous) substructure (i.e. subset,
sub bag, subsequence) of y. As a preparatory step we derive from this, for x c:; s":

(mi) ii p<l fn; X

Lemma (5) at the left part

(mi) ii (m~)<l p<l ++I ln*; X

equation (19) together with the Jaw p<J q<J

(mi) ii (m~)<l p<J ++I fn* Pn.m<J; X

= Lemma (5)

(mi) i I p<J ++I In* Pn,m<J; X

(20) (mi) i I p<l tn' x if Pn,m' X else m

q<J p<J

36 M.M. Fokkinga

This equation will allow us to skip elements x of s,. that do not look promising with
respect to m. We call these elements bad.

Now we tackle the problem of deriving an efficient algorithm for the computation

oft I p<J; sN, i.e., (mt) i I p<J; sN where m is some element of p<J; sN, or, slightly
more generally, where m is some (fictitious) element satisfying

(mi) f/ p<J: SN == i/ p<J; SN

The key to the solution is to sequentialize the computation so as to be able to control
future computations by "'the currently found maximum m' of sN"· The sequentializ

ation of (m tl i /is (if m); see Section 3. Here follow the initial steps of a derivation
of the desired algorithm. These steps motivate the formulation and proof of Theorem
(21) below.

requested value

(mi) [/ p<J: SN

(i fr m) p<J: SN

(f fr m) p<J tt/ fN*; SN-I

At this point we wish to promote ([fm) to sN-i in order to skip bad elements of
sN-i and not subject them to p<J tt/ fN*· The promotion laws for f in Section 3
were "invented" for this very purpose here. Applying Lemma (1) we get:

(ffif m); SN-t

with m'EBx :== ([f m') p<J fN; x

aiming at the use of (20), rewrite the rhs of:== of the previous line,
using (ei) i/ == ([fe) and tN_,==fN

(ffif m); SN-I

with m'EBx (m'i) f/ p<J (N-1; X

equation (20), noting that x r:; sN-I

(m'i) i/ p<J tN-1; x if PN-I,m'; x else m'

([fm') p<JfN; x if PN-t,m'; xelsem'

and we see that bad elements of sN-i are skipped; the search space is bounded
more and more during the search (EB f m). Of course, we wish to do the same with

Exercise in transformational programming

bad elements of sN _ 2 and therefore we continue the derivation:

(ffif m) tt/ J~- 1 *' sN-l with EB as before

fusion of (EB-f m) with tt/ fN-i* using Lemma (1)

(@f m); SN-2

with m'®x .- (EB-f m') fN-i: x

slight generalization of the derivation so far

equation (20), noting that .Xc:;:; sN-2

(m'j) ii p<J tN-1' x if PN-l,m'' x else m'

(EB-f m') fN-i' x if PN-2,m'' x else rn'

37

and it should be clear that we can continue in this way. We shall now do it all at
once: we generalize operations EB, ®,. . . to an inductively defined sequence
ffi N, EB N __ 1 , EB N _ 2 , ••• and formulate (the required slight generalization of) the trans
formation in a theorem.

Define operations EBn as follows:

rn ix if (p APN,m): x else m

rnEBnx .- (EBn+ 1 fm)J;,+ 1 ' ifpn,m:xelsem (forn=N-1, ... ,0).

(21) Theorem. For all n and alls with 0 ~ n ~ N and s c:;:; Sn:

(mi) i/ p<J ttl tn*' s = (EB,, f m): s.

Proof. By induction on N - n.
Basis. For s s sN:

(mi) ii p<J ttl (N*' S

(mi) ii p<J: s

(i-fm)p<J:s

(!reduce-filter fusion), i.e., Lemma (1)

(EBf m): s

with m'EBx m' ix if p: x else m'

38 M.M. Fokkinga

(m'j) i/ p<J; x
equation (20), noting that x c:;; s <;; sN

(m'j) i/ p<J; x if PN,m'; x else m'

m' j x if (p /\ PN,m'); x else m'

m'EBNx

Induction step (from n to n - l). For s <;; Sn-1:

(mj) j/ p<l ++/ tn-1*; S

(mj) j/ p<l ++/ fn* ++/ fn*; S

induction hypothesis for n

(EBn f m) ++/ fn*; s

(!reduce join, !reduce-map fusion), i.e., Lemma (1)

(®f m); s

with m'®x := CEBn f m') fn; X

(EBn-1 f m); s

induction hypothesis

(m'j) i/ p<J ++/ ln* fn; X

(m'j) i/ p<l tn-1; X

equation (20), noting that x c:;; s <;; Sn-i

(m'j) i/ p<l ln- 1 ; x if Pn-l,m';xelsem'

back again

(EBnf m') fn; x if Pn-i,m·;x else m'

This completes the proof. D

As an immediate corollary we have that, when m is the smallest with respect to
~ or when m is in p<J; sN,

(22) p<J; SN = (mj) ii p<J; SN = (EBof m); So

Algorithm (EB0 f m) describes precisely the desired computation: each operation
EBn carries in its left argument the current maximum and skips those elements (i.e.,
does not subject them to further computation) that do not look promising with
respect to the current maximum.

Exercise in transformational programming 39

6. Imperative implementations

In this section we give some imperative implementations of the algorithms derived
in the previous two sections. It turns out that the elementwise iterative version has
a conventional implementation, whereas the elementwise linear recursive version
looks unconventional. We also provide assertions needed for the correctness proofs,
and it appears that the invariance of the assertions can be verified by precisely the
derivations of the previous sections.

For reasons of time efficiency we want to describe the computation that corre
sponds to the demand driven (or lazy) evaluation. Also, for reasons of storage
efficiency (and again to simulate the demand driven evaluation as far as possible),
we shall use one global variable x in which the elements of sn are built in succession
(so actually we assume that each s,, is a list, bag or set, and not a tree); the structures
s., are not stored in any other way.

We consider programs (16), (17) and (22). In the imperative programs
f(n), p(n), s'(n) correspond to f,,, Pn and s~ from the algorithmic expressions. For
simplicity we assume that p 0<J; s0 == x0 (a singleton).

6.1. Implementation of (16)

Coroutines make an imperative description of demand driven evaluation easy. A
coroutine differs from a subroutine only in that it may "return" several times during
the execution of its body; whenever it is re-invoked it continues the execution at
the last point of return. The notation below is ad-hoe but self explanatory.

var x;

fct p(): boo! == {yields p; x};
fctp(n:int):bool == {yieldsp";x};
coroutine j(n: int) ==

{returns each element off,,; x in succession in var x};
coroutine s' (n : int) =

{returns each element of s~ in succession in var x}
if n =O
then begin x := xO; return end
else for each return of s'(n -1) do

for each return off(n) do
if p (n) then return;

for each return of s'(N) do if p() then print

(or: for the first return of s'(N) do if p() then print)

Thus an expression like++/ f *; s is transcribed as

for each return of s do

for each return of j do ...

40 M.M. Fokkinga

where s and j are coroutines implementing s and f
For the PLS example we may choose to represent elements x from sn by an array

a such that a[i] = (i belongs to x), together with a variable wgt that equals the

aggregate weight of x. For the representation of elements from s,, only a [1], ... , a[n]

and wgt are significant; a[n + l], ... , a [N] are meaningless. (Hence, in the context

of n = 0 the initialization x := xO is implemented by skip.) The problem dependent

definitions now read as follows.

var x: record a : array [1 .. N] of boo!;

wgt: real

end;

fct p() :- superfluous, or identically true;

fct p(n:int):bool = (x.wgt~ W);

coroutine f(n: int) =

begin x.a[n]:= true; wgt:= wgt+ w(n); return;

wgt:=wgt-w(n);

x.a[n]:=false; return

end;

proc print= write(x.a[l. .N]).

6.2. Another implementation of (16)

Coroutines are not readily available. Therefore we present here an implementation

not using them. At first sight this seems very problematic, for the imperative program

should describe that the computation corresponding to tt/ f:,* is to be performed

for each result (element) of s;, .1 • The results of s;,_ 1 , however, are stored one after

the other in var x. Nevertheless this can be done satisfactorily. The idea is to pass

tt/ J> as a "continuation parameter" to the procedure that implements s~_ 1 •

Whenever this procedure is about to yield a result (one element of s~- 1), it should

now invoke the continuation parameter. To explain this more precisely, we express

this transformation first in the algorithmic notation.

From equation (10), sN = r~; s~, we see that the continuation of s~ in the

computation of sN is r;,. (The primes intend to indicate that the p,, are taken into

account; cf. (16) versus (6), and (17) versus (13).) We wish to define some s;~ that,

given r;, as continuation parameter, produces sN. So we aim at

From this aim one derives quite easily the definition

s ;; ; c - c; s0 = c; X0

s~;c s~ 1 ;(ctt/J>l

p<J; SN = p<J s'{v' r~ = p<J s~' id s'{v' p<J.

Exercise in transformational programming 41

(The very last equation is justified by an inductive proof off s;;' c = s~' (f c)
for all f and c.) Similarly we assume that also c ++/ f;,* can be turned inside-out:
that is there exists some f~ for which f;:' c = c tt/ f>. The imperative
implementation now suggests itself:

var x;

proc /"(n : int; proc c)
{yields in succession in var x each element of (f;;' c): x };

proc s"(n:int; proc c) =
{yields in succession in var x each element of s~' c}
if n = 0 then x := xO; c else s" (n - 1, proc: f" (n, c));

s"(N, proc: if p() then print)

Specifically for PLS the problem dependent definitions read:

procf"(n:int; proc c) =

begin x.a[n] :=true; wgt := wgt+ w(n);
if p(n) then c;
wgt := wgt - w(n);
x.a[n] :=false; c

end;

and everything else (namely x, p(), p(n) and print) is the same as for the coroutine
implementation.

6.3. Implementation of (17)

The elementwise iterative definition oft;, allows for a straightforward implementa
tion. In the absence of further knowledge or assumptions about the};,, we still use
the coroutine implementation for these. Note however that very often the iteration
"for each return off(n) do" can be formulated as a proper iteration in which x is
assigned successively each element of fn' x.

x,p(),p(n:int),f(n:int) :- as in Section 6.1
proc t'(n:int) =

{stores each element of t'rv' x in succession in var x;

or rather, prints the elements of p<l t 'rv' x in succession}
if n = N
then {ready; or rather:} if p() then print
else for each return off(n + 1) do

if p(n + 1) then t'(n + l);

x := xO; t'(O)

42 M.M. Fokkinga

Specifically for PLS, each fn: x consists of two elements so that "for each return of
f(n + 1) do" can be unfolded in place, giving:

proc t'(n: int)
if n= N
then print
else begin x.a[n]:= true; wgt:= wgt+w(n);

if p(n+l) then t'(n+l);
wgt := wgt-w(n);
x.a[n]:=false; t'(n+l)

end;

6.4. Implementation of (22)

The implementation of

(ffi + m); x I ++ . . . ++ Xn = (- . . (m ffi x I) EB . . .) EB Xn

suggests itself: an iteration of EB over x1 , ••• , Xn with one global variable var m in
which EB finds its left argument stored, and consequently should leave its result. We
choose op(n) as the Pascal-like name of operation EBn·

x,p(),f'(n) :- as before
fct p(n: int, rn: elt): boo[= {yields Pn,m: x};
proc op(n: int) =

{yields the result of CEBn -f m); x in var m}

if n = N

then if p() and p(N, m) then m := m j x else m := m

else if p(n, m)

then for each return of f'(n + 1) do op(n + 1)
else m := m;

x := xO; m :=some (fictitious) value such that (mi) p<J; sN = p<J: sN;

op(O); write(m)

Specifically for POS we instantiate the above to:

var x, m : record a: array [1. .N] of boo/;
wgt: real

end;
fctpl(n:int):bool = x.wgt~ W;

fctp2(n:int, m: ...) = x.wgt + I~n+I w(i);;;.m.wgt;
proc op(n: int) =

if n = N

then if {p2(N, m) and} m.wgt~x.wgt
then m := x else skip

else if p2 (n, m) then

Exercise in tran.~formational programming

begin x.a[n+l]:== true; x.wgt:==x.wgt+w(n+l);

if p 1 (n + l) then op (n + l);
x. wgt := x. wgt- w(n + 1);

x.a[n +I]:== false; op(n + 1)
end;

skip {i.e., x :== xO}; m. wgt := O;
op(O); write(m.a[l. .N])

7. Concluding remarks

43

By means of the examples of Backtracking and Branch-and-Bound, we have
shown how program derivations may proceed in an algebraic way. It was quite
essential, from a practical point of view, that the program texts didn't grow too
long. Moreover, and at least as importantly, it turned out that the concepts formalized
by the squiggles /, *, <J, f, ++ were rightly chosen in the sense that they appear to
be generally applicable and have easy-to-apply laws. A derivation of the programs
of Section 6 would have been impossible if a Pascal-like notation was used from
the very beginning.

Since the writing of this paper (beginning of 1988) much work has been done in
order to make the Algorithmics style of programming a worthwhile alternative to
various, more traditional styles of programming. Bird [5] has developed a series of
high-level theorems that may be successfully applied in the derivation of algorithms
on lists and even arrays. Malcolm [14, 15] has given a categorical foundation, and
he has shown that for any data type definition ("initial/final algebra") some laws
come for free; in particular the (reduce/map/filter promotion) and the (Ireduce
reduce/map/filter fusion) Jaws of Section 3.1. Thus, there is a general pattern in
most of the laws that makes them easy to remember (and to discover!). Meertens
[17] shows that for "homomorphisms" (and even "paramorphisms") on such data
types a lot of identities that used to be proved by induction (as in this paper) can
also be justified by more "calculational" steps. Apart from this kind of foundational
work, a lot of specialized theories are being developed, each for a particular data
type or problem type; see in particular Bird [4-6].

In view of the above achievements the question suggests itself whether there is
some more basic theory from which one can obtain our theorems by a few simple
calculation steps.

Although Backtracking and Branch-and-Bound have been chosen only to conduct
the experiment of an Algorithmics development, it is interesting to compare the
results with other approaches to these problems. We mention some of them. First
of all there are the traditional imperative developments, e.g., by Wirth [22] and
many others. They arrive at programs that we have given in Section 6.3. The
invariance of the assertions that we have given for the programs can be shown

44 M.M. Fokkinga

easily, using the equalities derived in Sections 4 and 5; it even seems inescapable
to use (or re-derive) these equalities. So it appears that these reasonings need to
occur in the traditional program derivations, although in disguised form and some
times imprecise or incomplete. Next we mention Wadler [20]. He shows how to
obtain our ultimate program for Backtracking (not Branch-and-Bound) by a transfor
mation of a program that uses a nondeterministic choice operation which has to
avoid branches of the computation path that end in fail. We have reasoned about
the set of all solutions in a purely mathematical way; no concept of a choice-making
demon has ever been needed. Finally, Smith [19] comes to similar results as ours
by an automatable strategy for designing subspace generators. His "generators"
correspond to the coroutines of Section 6.1; these are characterized by pre- and
post-conditions and have very much the ftavor of imperative style programming
rather than the ftavor of mathematical expressions, like our formulas in Sections 4
and 5.

Appendix A. Some proofs

We shall derive equation (14) of Section 4 formally. We choose to formalize the
assumption "pn is a necessary condition on the elements x of sn in order that their
contribution tn; x to sN may satisfy p" by

Note that if we had chosen the formalization as 0 = p<l ++/ tn * ('Pn)<J; s for all
s, then we would immediately have Lemma (26). We feel, however, that (23) expresses
the assumption most clearly and is much weaker, more general, than the alternative.

First we define a relation i;; between structures (namely 'inclusion' for sets,
'noncontiguous subsequence' for lists).

(24) Definition. The relation i;; is the smallest relation between structures, such that
(1) 0£ 0,
(2) 0s;;.X and xs;;x,
(3) s' ++ t' i;; s ++ t whenever s' <;; s and t' £ t.

(25) Lemma. Relation <;; satisfies the following properties.
(1) s <;; s,
(2) r <;; s <;; t implies r <;; t,
(3) s <;; s ++ t and t i;; s ++ t,
(4) s <;; t £ s implies s = t,
(5) s £ t implies p<'.J; s £ p<J; t,
(6) p<J; s £ s,
(7) s £ t implies ++/ f *; s £ tt/ f *; t.

Exercise in tran.~formational programming 45

Proof. Most proofs are straightforward by induction. By way of illustration we
prove (7) by induction on the inference of s c:;:: t.

Case sc:;:: ton account of (24.1): s =0= t. Trivial.
Cases c:;:: t on account of (24.2): both for s = 0, t = x and for s = x = t trivial.
Cases c:;:: ton account of (24.3): s = s1 tt s2 , t = t 1 tt t2 and S; c:;:: f; for i = 1, 2. Now

ttj j *' s 1 tt s2

(map.2) and (reduce.2)

(tt/ f*' s 1) tt (tt/ f*' S2)

c:;:: induction hypothesis and (24.3)

(tt/ f*; f1) tt (tt/ f*' f2)

(map.2) and (reduce.2)

tt/ f*' f1 tt f2

This completes the proof. 0

(26) Lemma. Under the assumption (23), for alls c:;:: Sn:

p<J tt/ t,,*' s = p<J -++/ t,,* p,,<J; s

Proof. By induction on the structure of s.
Case s = 0. Trivial.
Cases= x. Then

p<J tt/ t,,*' x
p<J tt/ t,,* (p,, v -ip,,)<J; x
p<J tt/ t,,*' ((p,,<J' x)-++ (-ip,,<J; x))

(p<J tt/ t,,* p,,<J; x)-++ (p<J -++/ t,,* (-ip,,)<J; x)

assumption (23)

p<J tt/ f,,* p,,<J; x.
Cases= r tt t. Now

left-hand side

(map.2), (reduce.2) and (filter.2)

(p<J tt/ t,,*' r) tt (p<J tt/ f,,*' t)

induction hypothesis, noticing that re;; s,, by (25.3) and (25.2)

(p<J tt/ t,,* p,,<J' r)-++ (p<J -++/ f,,* p,,<J; t)

(map.2), (reduce.2) and (filter.2)

p<J -++/ t,,* p,,<J; rtt t

right-hand side.

46 M.M. Fokkinga

This completes the proof. (The reasoning for the case s = x fails for arbitrary s;
otherwise that reasoning would be an induction-less proof of the lemma.) D

(27) Theorem. Under assumption (23), equation (14) holds true.

Proof. Define

We show by induction on n that

p<J: sN = p<l tt/ t,,*' s:1 and

Basis.

p<J: sN = p<l tt/ to*' s0 ={Lemma (26)} p<l tt/ to*' s[i.

s[i = Po<l: Sot:; {Lemma (25.6)} Su.

Induction step. For p<J: sN we argue:

induction hypothesis

definition of tn

(map distribution), (map promotion)

induction hypothesis gives s~ <:; sn,
Lemma (25.7) gives++/ f~*' s:1s;++/ /,,*' s,. =sn•1;
apply Lemma (26)

definition of s:, + 1

Exercise in tran~formational programming

And for s~+ 1 we calculate:

definition

<;; Lemma (25.7), induction hypothesis

<;; Lemma (25.6)

++/ fn*' Sn

definition

Sn+!·

This completes the proof. 0

References

47

[1] S. Alagic and M.A. Arbib, The Design of We/I-Structured and Correct Programs, Texts and Mono
graphs in Computer Science (Springer, Berlin, 1978).

[2] J. Backus, Can programming be liberated from the Von Neumann style? A functional style and its
algebra of programs, Comm. ACM 21 (8) (1978) 613-641.

[3] R.S. Bird, The promotion and accumulation strategies in transformational programming, ACM
Trans. Programming Languages Systems 6 (4) I 1984) 487-504; Addendum: ACM Trans. Programming
Languages Systems 7 (3) (1985) 490-492.

[4] R.S. Bird, An introduction to the theory of lists, in: M. Broy, ed., Logic of Programming and Calculi
o.f Discrete Design (Springer, Berlin, 1987) 3-42; also: Tech. Monograph PRG-56, Oxford University,
Computing Laboratory, Programming Research Group (1986).

[S] R.S. Bird, Lecture notes on constructive functional programming, in: M. Broy, ed., Constructive
Methods in Computing Science, International Summer School directed by F.L. Bauer et al., NATO
Advanced Science Institute Series F: Computer and System Sciences (Springer, Berlin, 1989).

[6] R.S. Bird, J. Gibbons and G. Jones, Formal derivation of a pattern matching algorithm, Sci. Comput.
Programming 12 (1989) 93-104.

[7] H.J. Boom, Further thoughts on Abstracto, Working Paper ELC-9, IFIP WG 2.1 (1981).
[8] J. Darlington, A synthesis of several sorting algorithms, Acta Inform. II (1) (1978) l-30.
[9] E.W. Dijkstra, Guarded commands, nondeterminacy and formal derivation of programs, Comm.

ACM 18 (8) (1975) 453-457.
[10] E.W. Dijkstra, A Discipline o.f Programming (Prentice-Hall, Englewood Cliffs, NJ, 1976).
[11] M.S. Feather, A survey and classification of some program transformation approaches and tech

niques, in: LG.LT. Meertens, ed., Program Specification and Transformation (North-Holland,
Amsterdam, 1987) 165-196.

[12] M.M. Fokkinga, Backtracking and branch-and-bound functionally expressed, in: Computing Science
in the Netherlands, SJON Congres 1987 (CW!, Amsterdam, 1987) 207-224; Extended version:
Memorandum INF-86-18, University of Twente, Enschede, Netherlands (1986).

[13] C.A.R. Hoare, An axiomatic basis for computer programming, Comm. ACM 12 (JO) (1969) 567-580
and 583.

[14] G. Malcolm, Homomorphisms and promotability, in: J.L.A. van de Snepscheut, ed., Mathematics
of Program Construction, Lecture Notes in Computer Science 375 (Springer, Berlin, 1989) 335-347.

48 M.M. Fokkinga

[15] G. Malcolm, Algebraic Data Types and Program Transformation, Ph.D. Thesis, Groningen Univer
sity, Netherlands (1990).

[16] L. Meertens, Algorithmics: towards programming as a mathematical activity, in: J.W. de Bakker
and J.C. van Vliet, eds., Proceedings CW/ Symposium on Mathematics and Computer Science
(North-Holland, Amsterdam, 1986) 289-334.

[17] L. Meertens, Paramorphisms, Tech. Rept. CS-R9005, CWI, Amsterdam (1990); also in: Formal
Aspects of Computing (to appear).

[18] H. Partsch, Transformational program development in a particular problem domain, Sci. Comput.
Programming 7 (1986) 99-241.

[19] D.R. Smith, On the design of generate-and-test algorithms: subspace generators, in: L.G.L.T.
Meertens, ed., Program Specification and Transformation (North-Holland, Amsterdam, 1987)
207-220.

[20] P. Wadler, How to replace failure by a list of successes, in: J.P. Jouannaud, ed., Functional
Programming Languages and Computer Architecture (Springer, Berlin, 1985) 113-128.

[21] N. Wirth, Program development by stepwise refinement, Comm. ACM 14 (4) (1971) 221-227.
[22] N. Wirth, Algorithms+ Data Structures= Programs, Prentice-Hall Series in Automatic Computation

(Prentice-Hall, Englewood Cliffs, NJ, 1976).

