
CHAPTER 10

Logic Programming

Krzysztof R. APT
Centre for Mathematics and Computer Science, P.O. Box 4079, 1009 AB Amsterdam, Netherlands,

and

Department of Computer Sciences, University of Texas at Austin, Austin: TX 78712-1I88, USA

Contents
1. Introduction
2. Syntax and proof theory.
3. Semantics
4. Computability .
5. Negative information
6. General goals .
7. Stratified programs
8. Related topics

Appendix.
Note
Acknowledgment
References

HANDBOOK OF THEORETICAL COMPUTER SCIENCE
Edited by J. van Leeuwen
© Elsevier Science Publishers B.V., 1990

495
496
511
523
531
547
555
566
569
570
570
571

LOGIC PROGRAMMING 495

1. Introduction

1.1. Background

Some formalisms gain a sudden success and it is not always immediately clear why.
Consider the case of logic programming. It was introduced in an article of Kowalski
[53] in 1974 and for a long time-in the case of computer science-not much happened.
But, sixteen years later, already the Journal of Logic Programming and Annual
Conferences on the subject exist and a few hundred of articles on it have been published.

Its success can be attributed to at least two circumstances. First of all, logic
programming is closely related to PRO LOG. In fact, logic programming constitutes its
theoretical framework. This close connection led to the adoption oflogic programming
as the basis for the influential Japanese Fifth Generation Project. Secondly, in the early
eighties a flurry of research on alternative programming styles started and suddenly it
turned out that some candidates already existed and even for a considerable time. This
led to a renewed interest in logic programming and its extensions.

The power of logic programming stems from two reasons. First, it is an extremely
simple formalism. So simple, that some, when confronted with it for the first time, say
"Is that all?". Next, it relies on mathematical logic which developed its own methods
and techniques and which provides a rigorous mathematical framework. (It should be
stated however, that the main basis of logic programming is automatic theorem
proving which was developed in a large part by computer scientists.)

The aim of this chapter is to provide a self-contained introduction to the theory of
logic programming. In the presentation we try to shed light on the causal dependence
between various concepts and notions. Throughout the chapter we attempt to adhere
to the notation of Lloyd [64], the book which obviously influenced our presentation.
This will hopefully further contribute to the standardization of the notation and
terminology in the domain.

1.2. Plan of this paper

We now provide a short description of the content of the chapter. It is hoped that this
will facilitate its reading and will allow a better understanding of the structure of its
subject.

The aim of Section 2 is to introduce in the fastest possible way the notion of
SLD-resolution central to the subject of logic programming.

In Section 3 a semantics is introduced with the purpose of establishing soundness of
SLD-resolution and several forms of its completeness. Most of these results are
collected in the Success Theorem 3.25.

In Section 4 the computability by means of logic programs is investigated. It is
among others shown that all recursive functions are computed by logic programs.

SLD-resolution allows us to derive only positive statements. Section 5 deals with the
other side of the coin-the derivability of the negative statements. After rejecting the
Closed World Assumption rule as ineffective, the full effect is directed at an analysis of
a stronger but effective rule-the Negation as Failure rule and its relation to the

496 K.R. APT

construction called completion of a program. The final outcome is the Finite Failure
Theorem 5.32 dual to the Success Theorem.

After this extensive analysis of how to deal with positive and with negative
statements, the mixed statements (so-called general goals) are investigated in Section 6.
While the resulting form of resolution (called here SLDNF- -resolution) is sound, the
completeness can be obtained only after imposing a number of restrictions, both on the
logic programs and the general goals. Finally, in Section 7 we investigate a subclass of
general programs, called stratified programs, concentrating on their semantics.

The chapter concludes by a short discussion of related topics which are divided into
six sections: general programs, alternative approaches, deductive databases, PRO LOG,
integration of logic and functional programming, and applications in artificial
intelligence.

Finally, in the Appendix a short history of the subject is traced.

2. Syntax and proof theory

2.1. First-order languages

Logic programs are simply sets of certain formulas of a first-order language. So to
define them, we recall first what a first-order language is, a notion essentially due to G.
Frege. By necessity our treatment is reduced to a list of definitions. A reader wishing
a more motivated introduction should consult one or more standard books on the
subject. Personally, we recommend [70, 92].

A first-order language consists of an alphabet and all formulas defined over it. An
alphabet consists of the following classes of symbols:
• variables denoted by x, y, z, v u, ... ,
• constants denoted by a, b c, d, . .. ,
•function symbols denoted by f, g, ., ... ,
• relation symbols denoted by p, q, r, ... ,
• propositional constants, which are true and false,
• connectives, which are -, (negation), v (disjunction), /\ (conjunction), ~ (implica-

tion) and +-+ (equivalence),
• quantifiers, which are 3 (there exists) and V (for all),
• parentheses, which are (and) and the comma, that is: ,.
Thus the sets of connectives, quantifiers and parentheses are fixed. We assume also that
the set of variables is infinite and fixed. Those classes of symbols are called logical
symbols. The other classes of symbols, that is, constants, relation symbols (or just
relations) and function symbols (or just functions), may vary and in particular may be
empty. They are called nonlogical symbols. Each first-order language is thus determined
by its nonlogical symbols.

Each function and relation symbol has a fixed arity, that is, the number of arguments.
We assume that functions have a positive arity-the role ofO-ary functions is played by
the constants. In contrast, 0-ary relations are admitted. They are called propositional
symbols, or simply propositions. Note that each alphabet is uniquely determined by its
constants, functions and relations.

LOGIC PROGRAMMING 497

We now define by induction two classes of strings of symbols over a given alphabet.
First we define the class of terms as follows:
• a variable is a term,
• a constant is a term,
• if f is an n-ary function and t i. ... , tn are terms then f(t i. ... , tn) is a term.
Terms are denoted by s, t, u. Finally, we define the class of formulas as follows:
• if p is an n-ary relation and ti. ... , t" are terms then p(t 1 , ••• , tn) is a formula (called

a atomic formula, or just an atom),
• true and false are formulas,
• if F and G are formulas then so are -.F, (F /\ G), (F /\ G), (F-+ G) and (F +-+ G),
• if Fis a formula and x is a variable then 3xF and VxF are formulas.
Sometimes we shall write (G+-F) instead of (F-+ G). Some well known binary functions
(like +) or relations (like =) are usually written in an infix notation i.e. between the
arguments. Atomic formulas are denoted by A, Band formulas in general by F, G. If Fis
a quantifier-free formula with variables x 1, .•. , Xn, we write 3F for 3x 1 ... 3x"F and VF
for Vx 1 •.. Vx"F. Formulas of the form VF are called universal formulas. A term or
formula with no variables is called ground.

Given two strings of symbols e1 and e2 from the alphabet, we write e1 = e2 when e1

and e2 are identical. Usually these strings will be terms or formulas.
The definition of formulas is rigorous at the expense of excessive use of parentheses.

One way to eliminate most of them is by introducing a binding order among the
connectives and quantifiers. We thus assume that -,, 3 and V bind stronger than
v which in turn binds stronger than /\ which binds stronger than -+ and +-+. Also, we
assume that v, /\, -+ and +-+ associate to the right and omit the outer parentheses.
Thus, thanks to the binding order, we can rewrite the formula

VyVx((p(x) /\ -.r(y))-+(-,q(x) v (A v B)))

as

'v'y'v'x(p(x) /\ -,r(y)-+ -,q(x) v (A v B))

which, thanks to the convention of the association to the right, further simplifies to

Vy'v'x(p(x) /\ -,r(y)-+ -.q(x) v A v B).

Thus completes the definition of a first-order language.

2.2. Logic programs

To bar an easy access to newcomers every scientific domain has introduced its own
terminology and notation. Logic programming is no exception in this matter but it
borrowed most of its terminology from automatic theorem proving. Thus an atom or
its negation is called a literal. A positive literal is just an atom while a negative literal is
the negation of an atom. Note that true and false are not atoms.

In turn, a formula of the form

V(L1 v ··· v Lm)

where L1 , •.• , Lm are literals, is called a clause. From now on clauses will be always

498 K.R. APT

written in a special form called-yes, you guessed it-a clausal form. The above formula
in a clausal form is written as

Ai, ... , Ak +--Bi •... , Bn

where Ai •... , Ak is the list of all positive literals among Li, ... , Lm, called conclusions
and Bi, ... , Bn is the list of remaining literals stripped of the negation symbol, called
premises. Informally, it is to be understood as (Ai or ... or Ak) if (Bi and ... and Bn)·
Thus for example the formula

Vx'v'y(p(x)v -,A v -,q(y)v B)

looks in clausal form as

p(x), B+-A, q(y).

If a clause has only one conclusion (k = 1), then it is called a program clause or
a de.finite clause. Its conclusion is then usually called a head and the list of its premises
a body. When the set of premises of a program clause is empty (n = 0), then we talk of
a unit clause. They have the form A +--. When the set of conclusions is empty (k = 0), then
we talk of a goal or a negative clause. They have the form +-Bi •... , Bn. Finally, when
both the set of premises and conclusions is empty then we talk of the empty clause and
denote it by o. It is interpreted as a contradiction.

To understand this interpretation, we are in fact brought to the question of meaning
of a formula Liv ... v Lm when m=O, i.e. of the empty disjunction. Now, the empty
disjunction is considered as always false because it asks for an existence of a true
disjunct when none of them exists. In contrast, the empty conjunction is considered as
always true because it asks for truth of all conjuncts, which holds when none of them
exists.

Now, we can define a logic program (or just a program)--it is a finite nonempty set of
program clauses.

Logic programs form a subclass of general logic programs. To define the general
programs we first introduce the concept of a general clause. It is a construct of the form

where A 1 , •.• , Ak are positive literals and Li, ... , Ln are (not necessarily positive)
literals. When there is only one conclusion (k = 1), we talk of a general program clause,
and when the set of conclusions is empty (k = 0) we talk of a general goal.

A general clause Ai •... , Ak +--Li, ... , Ln represents the formula

'v'(A 1 v ... v Ak v -,Liv ... v -,Ln)·

Now, a general logic program (or just a general program) is a finite nonempty set of
general program clauses. Note that true and false are not used to define (general)
programs. These formulas will be however needed later, in Subsection 5.5.

With each (general) program P we can uniquely associate a first-order language LP
whose constants, functions and relations are those occurring in P. All considerations
concerning a (general) program Prefer to the language Lr In particular, in statements
like "Let P be a program and Na goal", N is always assumed to be a goal from LP.

LOGIC PROGRAMMING 499

There are two ways of interpreting a clause A~ B 1, •.• , B •. One is: to solve A solve
Bi, .. .,B •. The other is: A is true if B1,. • .,B. are true. The first interpretation is
usually called procedural interpretation whereas the second is called declarative
interpretation. It is this first interpretation which distinguishes logic programming
from first-order logic. We shall discuss this double interpretation in more detail at the
end of Section 3.

2.3. Substitutions

Consider now a fixed first-order language. In logic programming variables are
assigned values by means of a special type of substitutions, called "most general
unifiers". Formally, a substitution is a finite mapping from variables to terms, and is
written as

(}= {xdti. ... , x./t.}.

Informally, it is to be read: "the variables x 1 , •.. , x. become (or are bound to) t 1 , ... , t.,
respectively".

The notation implies that the variables x 1, •.. , x., are different. We also assume that,
for i = 1, ... , n, x; ¥= t;. A pair x;/t; is called a binding. If all t 1, ••. , t. are ground then (}is
called ground. If(} is a 1-1 and onto mapping from its domain to itself, then 8 is called
a renaming. In other words,(} is a renaming if it is a permutation of the variables from its
domain.

Substitutions operate on expressions. By an expression we mean a term, a sequence
of literals or a clause and denote it by E. For an expression E and a substitution(}, E(}
stands for the result of applying e to E which is obtained by simultaneously replacing
each occurrence in E of a variable from the domain of(} by the corresponding term. The
resulting expression E(} is called an instance of E. An instance is called ground if it
contains no variables.

If (} is a renaming then E8 is called a variant of E. Thus, for example, x < y' + z'
is a variant of x < y + z, since x < y' + z' = (x < y + z){y/y', z/z' ,y' /y, z' /y}, whereas
x<y' +x is not.

The following lemma, whose proof we omit, clarifies the concept of a variant and
implies that "being a variant of" is a symmetric relation.

2.1. LEMMA. For all expressions E and F

E is a variant of F if! E is an instance of F
and F is an instance of E.

Given a program P we denote by ground (P) the set of all ground instances of clauses
in P. Note that this set can be infinite. Given an atom A we denote by [A] the set of all its
ground instances.

Substitutions can be composed. Given substitutions (}= {xift,,. .. , x./t.} and
1/ ={yd s1 , ... , Yml sm} their composition 811 is defined by removing from the set

{xift117, ... , x./t.11, yiJsi. · · ·, Ym/sm}

500 K.R. APT

those pairs x;/til'/ for which X; = t;I'/, as well as those pairs y;/s; for which Yi E { x 1, ... , x.}.
Thus, for example, when 8= {x/3, y/ f(x, l)} and 11 = {x/4} then (}17 = { x/3, y/ f(4, 1)}.

This definition implies the following simple result

2.2. LEMMA. For all substitutions e, 17 and y and an expression E,

(il (Ee)ri = E(err},
{ii) (811)r = e(riy).

This lemma shows that when writing a sequence of substitutions, also in the context
of an expression, the parentheses can be omitted. By convention, substitution binds
stronger than any connective or quantifier.

We say that a substitution 0 is more general than a substitution 1J if for some

substitution y we have 11=8y.

2.4. Unifiers

Finally, we introduce the notion of unification. Consider two atoms A and B. If for

a substitution ewe have Ae =BO, then e is called a unifier of A and Band we then say
that A and Bare unifiable. A unifier e of A and Bis called a most general unifier (or mgu
in short) if it is more general than any other unifier of A and B. It is an important fact
that if two atoms are unifiable then they have a most general unifier. In fact, we have the
following theorem due to Robinson [84].

2.3. THEOREM (Unification Theorem). There exists an algorithm (called a unification

algorithm) which for any two atoms produces their most general unifier if they are
unifiable and otherwise reports nonexistence of a unifier.

PROOF. We follow here the presentation of Lassez, Maher and Marriott [62]. We
present an algorithm based upon Herbrand's original algorithm [45, p. 148] which
deals with solutions of finite sets of term equations. This algorithm was first presented
in [71].

Two atoms can unify only if they have the same relation symbol. With two atoms
p(s 1 , •.. , sn) and p(t 1' ... , t.) to be unified we associate a set of equations

{s 1 =t 1 , .•. ,s.=t.}.

A substitution 0 such that s1 0=t 1 8, ... ,s.8=.t.e is called a unifier of the set of
equations {s 1 = t 1 , ..• , s. = t.}. Thus the set of equations {s 1 = t 1 , ... , s. = t.} has the
same unifiers as the atoms p(s 1 , ... , s.) and p(t 1 , ... , t.). Two sets of equations are called
equivalent if they have the same unifiers.

A (possibly empty) set of equations is called solved if it is of the form { x 1 = u1 , ... , x. =

u.} where x;'s are distinct variables and none of them occurs in a term uj.

A solved set of equations {x 1 =u1' .. .,x.=u.} determines the substitution
{ x du 1, ... , x./u.}. This substitution is a unifier of this set of equations and clearly it is
its mgu, that is, it is more general than any other unifier of this set of equations.

Thus to find an mgu of two atoms it suffices to transform the associated set of

LOGIC PROGRAMMING 501

equations into an equivalent one which is solved. The following algorithm does it if this
is possible and otherwise halts with failure.

UNIFICATION ALGORITHM. Nondeterministically choose from the set of equations an
equation of a form below and perform the associated action.

(1) f(s 1 , ... ,sn)=f(t 1 , ... ,tn): replace by the equations s1 =t 1 , •.. ,sn=tn;
(2) f (s 1 , ... , sn) = g(t 1 , .•. , tm) where f-;f= g: halt with failure;
(3) x = x: delete the equation;
(4) t=x where t is not a variable: replace by the equation x=t;
(5) x = t where x -;/= t and x has another occurrence in the set of equations: if x appears

in t then halt with failure, otherwise perform the substitution { x/t} in every other equation

The algorithm terminates when no step can be performed or when failure arises. To
keep the formulation of the algorithm concise we identified here constants with 0-ary
functions. Thus step (1) includes the case c = c for every constant c which leads to
deletion of such an equation. Also step (2) includes the case of two constants.

First, observe that for each variable x step (5) can be performed at most once, so this
step can be performed only a finite number of times. Subsequent applications (if any) of
steps (1) and (4) strictly diminish the total number of occurrences of function symbols
on the left-hand side of the equations. This number is not affected by the application of
step (3). Moreover, in the absence of step (1), step (3) can be performed only finitely
many times. This implies termination.

Next, observe that applications of steps (1), (3) and (4) replace a set of equations by an
equivalent one. The same holds in the case of a successful application of step (5)
because, for any substitution 8, x& = t8 implies that the substitutions () and { x/t }8 are
identical.

Next, observe that if the algorithm successfully terminates, then by virtue of steps (1),
(2) and (4) the left-hand sides of the final equations are variables. Moreover, by virtue of
step (5) these variables are distinct and none of them occurs on the right-hand side of an
~quation. So if the algorithm successfully terminates, it produces a solved set of
equations equivalent with the original one.

Finally, observe that ifthe algorithm halts with failure then the set of equations at the
failure step does not have a unifier.

This establishes correctness of the algorithm and concludes the proof of the
theorem. D

To illustrate the operation of the above unification algorithm consider the following
example.

2.4. EXAMPLE. Consider the following set of equations

{f(x) = f(f(z)), g(a, y) = g(a, x)}.

Choosing the first equation, step (1) applies and produces the new equation set

{x=f(z), g(a,y)=g(a,x)}.

502 K.R. APT

Choosing the second equation, step (1) applies again and yields

{x= f(z), a=a, y=x}.

Now by applying step (1) again we get

{x= f(z), y=x}.

The only step which can now be applied is step (5). We get

{x=f(z), y=f(z)}.
Now no step can be applied and the algorithm successfully terminates.

Call a substitution e idempotent if 88 =e. Call a unifier of 8 of two a toms A and
B relevant if all variables which appear either in the domain of e or in the terms from the
range of e also appear in A or B. In Section 2.7 we shall rely on the following
observation.

2.5. COROLLARY. If two atoms are unifiable then they have an mgu which is idempotent
and relevant.

PROOF. The unifier produced by the procedure used in the proof of Theorem 2.3 is of
the form {xi/u1 , ... , xn/u.} where none of the variables X; occurs in a term uj, so it is
idempotent. Moreover, in the unification algorithm no variables from outside the
unified atoms are introduced. Thus the produced mgu is relevant. D

One can prove that idempotent mgu's are relevant but we shall not need this
observation in future.

Given a substitution 8 denote its domain by dom(O) and the set of variables which
appear in a term from the range of e by r(B). Given an expression E, denote by var(E) the
set of variables which appear in it. The following observation will be needed in
Subsection 2.7.

2.6. LEMMA. Let E be an expression and e an idempotent substitution. Then

var(E8) n dom(8) = 0.

PROOF. It is easy to see that for any substitution e
var(E8) n dom(8) s::r(O). (2.1)

But for an idempotent substitution 0 also

dom(8) n r(8) = 0. (2.2)

(2.1) and (2.2) imply the claim. D

2.5. Computation process-the SLD-resolution

Logic programs compute through a combination of two mechanisms-replacement
and unification. This form of computing boils down to a specific form of theorem

LOGIC PROGRAMMING 503

proving, called SLD-resolution. To better understand this computation process, let us
concentrate first on the issue of a replacement in the absence of variables.

Consider for a moment a logic program P in which all clauses are ground. Let
N =~Ai. ... , An (n~ 1) be a ground negative clause and suppose that for some i,
l~i~n and k~O, C=A;~B1 , ... ,Bk is a clause from P. Then

is the result of replacing A; in N by B 1 , ... , Bk and is called a resolvent of N and C. Ai is
called the selected atom of N.

Iterating this replacement process we obtain a sequence of resolvents which is called
a derivation. A derivation can be finite or infinite. !fits last clause is empty then we speak
of a refutation of the original negative clause N. We can then say that, from the
assumption that in presence of the program P the clause N =~A 1, •.• , Ak holds, we
derived the contradiction, namely the empty clause. This can be viewed as a proof of the
negation of N from P.

Assuming for a moment from the reader knowledge of the semantics for first-order
logic (which is explained in Subsection 3.1) we note that N stands for --,A 1 v · · · v --,Ak>
so its negation stands for --,(--,A 1 v · ·· v --,Ak) which is semantically equivalent to
A1 " ... "Ak. Thus a refutation of N can be viewed as a proof of A 1 " ... "Ak.

If we reverse the arrows in clauses, we can view a program with all clauses ground as
a context-free grammar with erasing rules (i.e., rules producing the empty string) and
with no start or terminal symbols. Then a refutation of a goal can be viewed as
a derivation of the empty string from the word represented by the goal.

An important aspect of logic programs is that they can be used not only to refute but
also to compute-through a repeated use of unification which produces assignments of
values to variables. We now explain this process by extending the previous situation to
the case of logic programs and negative clauses which can contain variables.

Let P be a logic program and N =~A i. .•. , An be a negative clause. We first redefine
the concept of a resolvent. Suppose that C =A~ Bi. .. . , Bk is a clause from P. If for
some i, 1 ~i~n. Ai and A unify with an mgu B, then we call

N' = ~(A 1 , ... , A;- 1 , Bi. ... , Bk> A;+ i. ... , A.)B

a resolvent of N and C with the mgu B. Thus a resolvent is obtained by performing the
following four steps:

(a) select an atom A;,
(b) try to unify A and A;,
(c) if (b) succeeds then perform the replacement of A; by Bi. ... , Bk in N,
(d) apply to the resulting clause the mgu (} obtained in (b).
As before, iterating this process of computing a resolvent we obtain a sequence of

resolvents called a derivation. But now because of the presence of variables we have to
be careful.

By an SLD-derivation (we explain the abbreviation SLD in a moment) of Pu{N} we
mean a maximal sequence N 0 , N 1,. •. of negative clauses where N =No, together with
a sequence C0 , C 1, ••• of variants of clauses from P and a sequence B0 , Bi. ... of
substitutions such that, for all i = 0, 1, ... ,

(i) N;+ 1 is a resolvent of N; and C; with the mgu O;,

504 K.R. APT

(ii) C; does not have a variable in common with N 0 , C0 , .•• , C;- 1 •

The clauses C 0 , C 1 , •.• are called the input clauses of the derivation. When one of the
resolvents N; is empty then it is the last negative clause of the derivation. Such
a derivation is then called an SLD-refutation. An SLD-derivation is called failed if it is
finite and it is not a refutation.

A new element in this definition is the use of variants that satisfy (ii) instead of the
original clauses. This condition is called standardization apart. Its relevance will be
extensively discussed in Section 2.7. The idea is that we do not wish to make the result of
the derivation dependent on the choice of variable names. Note for example that p(x)
and p(f(y)) unify by means of the mgu binding x to f(y). Thus the goal +-p(x) can be
refuted from the program {p(/(x))+- }.

The existence of an SLD-refutation of Pu { N} for N =+-A 1, •.• , Ak can be viewed as
a contradiction. We can then conclude that we proved the negation of N. But N stands
for Vx 1 ... Vx.(--,A 1 v ··· v --,Ak), where xi. ... , x. are all variables appearing in N, so
its negation stands for --,Vx 1 ... Vx,(--,A 1 v ··· v --,Ak) which is semantically equi
valent (see Subsection 3.1) to 3x1 ... 3x,(A1 A··· A Ak). Now, an important point is
that the sequence of substitutions 80 , Bi. ... , em performed during the process of the
refutation actually provides the bindings for the variables x 1, ••• , x •. Thus the existence
of an SLD-refutation for Pu{N} can be viewed as a proof of the formula
(A 1 A··· A Ad80 ••• Bm· We justify this statement in Subsection 3.2.

The restriction of 80 ••• em to the variables of N is called a computed answer
substitution for Pu{N}. According to the definition of SLD-derivation, the following
two choices are made in each step of constructing a new resolvent:
• choice of the selected atom,
• choice of the input clause whose conclusion unifies with the selected atom.

Now, the first choice is in general dependent on the whole "history" of the derivation
up to the current resolvent. Such a history consists of a sequence N 0 , Ni. ... , N k- i of
goals with selected atoms, a goal Nk> a sequence C0 , C1 , ... , Ck- l of input clauses and
a sequence 80 , Bi. ... , Bk-l of substitutions such that, for all i = 0, ... , k-1, N;+ 1 is
a resolvent of N; and C; with mgu 8; where the selected atom of N; is used in step (a)
above. Let now HIS stand for the set of all such histories in which the last goal N k is
nonempty.

By a selection rule R we now mean a function which, when applied to an element of
HIS with the last goal Nk= +-A 1, ..• , Ai. yields an atom Ai, 1 ~j~ l. Such a general
definition allows us to select different atoms in resolvents that occur more than once in
the derivation or, in general, in identical resolvents with different histories.

Given a selection rule R, we say that an SLD-derivation of Pu{N} is via R if all
choices of the selected atoms in the derivation are performed according to R. That is, for
each nonempty goal M of this SLD-derivation with a history H, R(H) is the selected
atom of M.

Now, SLD stands for Selection rule-driven Linear resolution for Definite clauses.

2.6. An example

To the reader overwhelmed with such a long sequence of definitions we offer an

LOGIC PROGRAMMING 505

example which hopefully clarifies the introduced concepts. We analyze in it the
consequences of the choices in (a) and (b).

Consider a simplified version of the 8-puzzle. Assume a 3 x 3 grid filled with eight
moveable tiles. Our goal is to rearrange the tiles so that the blank one is in the middle.
We number the fields consecutively as follows:

1 2 3

4 5 6

7 8 9

and represent each legal move as a movement of the "blank" to an adjacent square.
First, we define the relation adjacent by providing an exhaustive listing of adjacent

squares in ascending order:

adjacent(l, 2)+-, adjacent(2, 3)+-, ... , adjacent(8, 9)+-, (horizontal adjacency),

adjacent(l, 4)+-, adjacent(4, 7)+-, ... , adjacent(6, 9)+- (vertical adjacency)

and using a rule

adjacent(x, y)+-adjacent(y, x) (symmetry). (a)

In total, twenty-four pairs are adjacent. (A more succinct representation would be
possible if addition and subtraction functions are available.) Then we define an initial
configuration by assuming that the blank is initially, say, on square 1. Thus we have

configuration(l, nil)+-,

where the second argument-here nil-denotes the sequence of squares visited.
Finally, we define a legal move by the rule

configuration(x, y. Q+-adjacent(x, y), configuration(y, I) (b)

where y. / is a list with heady and tail l written in the usual infix notation.
As a goal we choose the negative clause

+-configuration(5, 0
stating that no sequence of visited squares leads to a situation where square 5 is blank.
The following represents an SLD-refutation of the goal of length 7.

+-configuration(5, /)
+-adjacent(5, y), configuration(y, l i)

+-adjacent(y, 5), configuration(y, /i)

+-configuration(4, 11)

+-adjacent(4, y2), configuration(Y2, 12)

(b) {I/Ii}, {x/5, l/y.li}

(a) {x/x" y/yi}, {xi/5, yi/y}
adjacent(4, 5)+-, {y/4}

(b) {x/x2, Y/Ji, l/12 }, {x2/4,
liJJi.l2}

(a) {x/x3, Y/YJ}, {x3/4, J3/J2}

+-adjacent(y2, 4), configuration(y2, 12) adjacent(l, 4)+-, {y2 /1}

+-configuration(l, 12) configuration(l, nil)+-, {12/nil}

D

506 K.R. APT

Selected atoms are put in bold. We thus always select the leftmost atom. On the right
the input clauses and the mgu's are given. Note that at various places variants of the
clauses (a) and (b) are used. The sequence of mgu's performed binds the variable I to
4.1.nil through the consecutive substitutions {l/y. Ii}, {y/4}, {li/y2 • Ii}, {y2 /1 }, {12 /nil}.

This provides the sequence of squares leading to the final configuration. Thus the
refutation of the initial goal is constructive in the sense that it provides the value of I for
which the formula ~ configuration (5, I) does not hold.

Another choice of input clauses can lead to an infinite SLD-derivation. For example,
here is a derivation in which we repeatedly use rule (a):

~configuration(5, I) (b) {I/Ii}, {x/5, l/y.li}
~adjacent(5,y), configuration(y, 11) (a) {x/x1 , y/yi}, {xi/5, yify}

~adjacent(y, 5), configuration(y, Ii) (a) {x/x2 , YIY2 }, {x2/y, Y2/5}
~adjacent(5,y), configuration(y, Ii)

Also, another choice of a selection rule can lead to an infinite SLD-derivation. For
example, a repeated choice of the rightmost atom and rule (b) leads to an infinite
derivation with the goals continuously increasing its length by 1.

2. 7. Properties of SLD-derivations

In the next sections we shall need the following two lemmas concerning SLD
derivations. Both of them rely on the condition of standardizing apart introduced in
Subsection 2.5.

2.7. LEMMA. Let N0 , Ni. ... be an SLD-derivation with a sequence C0 , Ci. ... of input
clauses and a sequence 80 , 81 , .•. of mgu's. Suppose that all O;'s are idempotent and
relevant. Then, for all m~O and n>m,

(1) var(Nn)ndom(Om)=0,
(2) var(Nn().)ndom((}m)=0.

PROOF. (1) We prove by induction on i that, for all i>O,

var(N m+dndom((),.) = 0. (2.3)

Nm+ 1 is of the form E(}m• so for i = 1 (2.3) is the consequence of Lemma 2.6. Suppose
now that (2.3) holds for some i > 0. Since each (} i is relevant, by the form of Ni+ 1 ,

for allj~O.

var(Ni+ 1) ~ var(,Ni)uvar(Cj).

Since (}m is relevant,

dom(Om)~ var(N ,.)uvar(Cm),

so using (2.4) m times

dom(O,.) ~ var(N 0)uvar(C0)u · · ·uvar(Cm)·

(2.4)

(2.5)

(2.6)

Now

LOGIC PROGRAMMING

var(Nm+i+ i)ndom(Om)

£ (var(N m+ ;)ndom(Om))u(var(Cm+ dndom(Om))

£ var(Cm+ ;)n(var(N 0)uvar(C0)u · · ·uvar(Cm))

£0

507

(by (2.4) with j = m + i)
(by (2.3) and (2.6))

(by standardizing apart).

This proves the induction step and concludes the proof of (1).
(2) It suffices to note that, by assumption on the O;'s

var(N n(}n) £ var(N n)uvar(Cn)

and use (1), (2.6) and standardizing apart. O

We now show that up to renaming the computed answer substitution of an
SLD-derivation does not depend on the choice of variables in the input clauses. To this
end we prove a slightly stronger result first, which uses the notion of a resultant of
an SLD-derivation.

Given a goal N =+-Ai. ... , Ak we denote by N- the formula A1 " ... /I. Ak. Then
o- is the empty conjunction which we identify with true. Given an SLD-derivation
No.Ni. ... with a sequenceof mgu's 00 , 01, ... of length ~ i, by a resultant (of level i)
we mean the formula

Thus the resultant of level 0 is the formula N0 -"No.

2.8. LEMMA (Variant Lemma) (Lloyd and Shepherdson [66]). Let N0 ,Ni, ... and
N'o, N'i. ... be two SLD-derivations of Pu{ N} where N = N 0 and N = N0, with the
input clauses C0 , Ci. ... and C'o, C'i. ... respectively. Suppose that each c; is a variant
of Ci and that in each N; atoms in the same positions as in N; are selected. Also, suppose
that all mgu's used in the two SLD-derivations are relevant. Then the resultants of these
two SLD-derivations are their respective variants.

PROOF. We prove the claim by induction on the level i of resultants. For i=O there
is nothing to prove. Assume the claim holds for some i~O. Let 00 , Oi. ... be the mgu's
of the first SLD-derivation and 00, 0'1, ..• the mgu's of the second SLD-derivation.
By the induction hypothesis

Res= Ni -"N 0 Bo ... 0;-1

is a variant of

Res'= Nt -+ N'oO'o ... o; _ 1•

Thus, for a renaming(} with dom(0)£var(Res'),

Res:=Res'O. (2.7)

508 K.R. APT

By assumption C; is a variant of c;. Thus for a renaming YJ with dom(Y/)£ var(Ci)

(2.8)

Given two substitutions a and~ with disjoint domains, we denote by O'U~ their union
which is defined in the obvious way. Put now y=(8u17)(};. We prove the following four
facts:

(1) y is we II de.fined.
(2) For some u, y=B;O'.
(3) N;+ 1 =Ni+ 1 er.
(4) N 0 8o ... 8;:=N080 ... e;a.
Re (1): We only need to show that the domains of 8 and YJ are disjoint. We first

show that

var(Res')nvar(Ci)= 0. (2.9)

By the assumption, 80, ... , e;_ 1 are relevant, so by the same argument as the one used
in the previous lemma, but now applied to the ranges of 8} instead of their domains, we
get, for j = 0, ... , i - 1,

r(Bj) £(N0)uvar(C0)u · .. uvar(C;_ i).

Also, as in the proof of the previous lemma

Now

var(Ni) £ var(N'o)uvar(C'o)u · · ·uvar(c;_ i),

var(Res')= var(Ni)uvar(N'oB'o ... e;_ 1)

£ var(Ni)uvar(N0)ur(80)u ... ur(e;_ i)

£var(N0)uvar(C'o)u ... var(Ci-il (by (2.10) and (2.11)

(2.10)

(2.11)

so (2.9) follows from the standardizing apart. Now note that dom(8) £ var(Res') and
dom(YJ) £ var(Ci), so by (2.9) the domains of(} and YJ are indeed disjoint.

Re (2): Let B' be an atom from c;. Then var(B')£var(Ci), so by (2.9)

var(B')ndom(8)=0, (2.12)

since dom(8)£var(Res'). Similarly, also by (2.9), for an atom A' from Ni,

var(A')ndom(11)=0. (2.13)

Thus by (2.12), for an atom B' from c;,
B'(8u17): B'ri

and by (2.13), for an atom A' from N;,

A'(8uri)=A'8.

Let

C;=B0 +-B 1 , •.• ,Bk>

Ci=B'o+-B'1 , ••• , B;.,

N;= +-Ai. ... , Am,

Ni= +-A't> ... , A~.

(2.14)

(2.15)

LOGIC PROGRAMMING

By (2.7) and (2.14), for j=O, ... , k,

Bi=.Bj(fJu17)

and by (2.8) and (2.15), for j = 1, ... , m,

Ai=.Aj(8u17).

509

(2.16)

(2.17)

Let now Al be the selected atom of Ni. Then A1 is the selected atom of N; and

Now

Aly= A;(llu17)8;

=.A10;

=.B0 ll;

=B'o(llu17)8;

=B'oy,

(by (2.17))

(by (2.18))

(by (2.16))

(2.18)

soy is a unifier of Al and B0. Now, since ll; is an mgu of Al and B'o, for some <J, y = llj<J.
Re (3): We have

N;+ 1 = +-(A1, ... , A1- i. Bi. ... , Bk, A1+ 1, ... , Am)O;

= +-(A 11 •... , Al-1. B'1, ... 'B;., Al+ l• .•• , A;,,)(8u17)8;
(by (2.16) and (2.17))

= +-(A'1 , •.. , Al-i. B'i. ... , B;., Al+i. ... , A;,,)y

= +-(A'1,. . ., Al-i.B'i. ... , B;., Al+i. ... , A;,,)Oi<J (by fact (2))

=Ni+1<l

Re (4): We have dom(17)~var(Ci), so by (2.9)

var(N'o O'o ... Oi- 1) ("\ dom(rt) = 0.
Now

N 0 ll0 ••• O;::N'oO'o ... e;_ 1 £lO;

= N'o O'o ... lli-1 (llu17)8;

=N'oll'o ... lli-11'

= N'oO'o . .. lli-1 lli<J

(by (2.7))

(by (2.19))

(by the form of y).

(2.19)

Now, putting facts (3) and (4) together we see that the resultant oflevel i + 1 of the first
SLD-derivation is an instance of the resultant oflevel i + 1 of the second SLD-deriva
tion. By symmetry the resultant of level i + 1 of the second SLD-derivation is an
instance of the resultant of level i + 1 of the first SLD-derivation. By Lemma 2.1 these
resultants are the variants of each other. D

2.9. COROLLARY (Variant Corollary). Let IP and 'f' be two SLD-derivations of Pu{N}
satisfying the conditions of Lemma 2.8. Suppose that <P is an SLD-refutation with a

510 K.R. APT

computed answer substitution 8. Then IJ' is an SLD-refutation with a computed answer
substitution I'/ such that Ne is a variant of N11.

PROOF. It suffices to consider resultants of level k of tf> and 'P, where k is the length of
the SLD-refutation 'P, and apply the previous lemma. O

The above corollary shows that the existence of an SLD-refutation does not depend
on the choice of variables in the input clauses.

To be able to use the results of this section we shall assume from now on that all mgu's
used in all SLD-derivations are idempotent and relevant.

2.8. Refutation procedures-SLD-trees

When searching for a refutation of a goal, SLD-derivations are constructed with the
aim of generating the empty clause. The totality of these derivations form a search
space. One way of organizing this search space is by dividing SLD-derivations into
categories according to the selection rule used. This brings us to the concept of an
SLD-tree.

Let P be a program, Na goal and Ra selection rule. The SLD-tree for Pu{N} via
R groups all SLD-derivations of Pu{N} via R. Formally the SLD-tree for Pu{N} via
R is a tree such that
• its branches are SLD-derivations of Pu { N} via R,
• every node N' has exactly one descendant for every clause C of P such that the

selected atom A of N' unifies with the head of a variant C' of C. This descendant is
a resolvent of N' and C' with A being the selected atom of N'.

We call an SLD-tree successful if it contains the empty clause.
The SLD-trees for Pu{N} can differ in size and form.

2.10. EXAMPLE. (Apt and van Emden [4]). Let P be the following program:

1. path(x, z)+--arc(x, y),path(y, z),
2. path(x, x)+--,
3. arc(b, c)+--.

A possible interpretation of P is as follows: arc(x, y) holds if there is an arc from x to
y and path(x, y) holds if there is a path from x toy. Figures 1 and 2 show two SLD-trees
for Pu{ +--path(x, c)}. The selected atoms are put in bold, used clauses and performed
substitutions are indicated. The input clauses at the level i are obtained from the
original clauses by adding the subscript "i" to all variables which were used earlier in
the derivation. In this way the standardizing apart condition is satisfied. Note that the
first tree is finite while the second one is infinite. Both trees contain the empty clause.

2.9. Bibliographic remarks

The concepts of unification, resolution and standardization apart were introduced in
[84]. Efficient unification algorithms were proposed by Paterson and Wegman [79],

LOGIC PROGRAMMING

~ path(x,c)

~ arc(x,y), path(y,c)

3 { X/b, y/C}

~ path(c,c)

~arc(c,y 2), path(y2 ,c)

(no descendant)

Fig. I.

511

D

and Martelli and Montanari [71]. See also the survey on unification by Siekmann [93].
SLD-resolution is a special case of SL-resolution of Kowalski and Kuehner [57]

and was proposed as a basis for programming in Kowalski [53]. The name was first
used in [4] where also the notions of a success set and SLD-trees were formally
introduced. SLD-trees were informally used in [21] where they were called evaluation
trees.

The selection rule was originally required to be a function defined on sequences
of atoms. Our formulation follows the suggestion of Shepherdson [88, p. 62]. The
proof of Lemma 2.8 differs from the original proof. Corollary 2.9 was independently
established in [52].

3. Semantics

3.1. Semantics for first-order logic

To understand the meaning of a logic program, or a first-order formula in general,
we now provide the definition of semantics due to A. Tarski. Again, our treatment
is very brief. More extensive discussion of this fundamental issue can be found e.g.

512

(infinite subtree)

K.R. APT

3 (y/b}

l f- arc(x,b)

(no descenaant)

Fig. 2.

f- path(x,c)

D

r arc(x,c)

3 {x/b}

D

in [70], [92]. We begin by defining an interpretation. An interpretation I for a first
order language L consists of
e a nonempty set D, called the domain of I,
o an assignment for each constant c in L of an element c1 of D,
o an assignment for each n-ary function f in L of a mapping f 1 from D" to D,
e an assignment for each n-ary relation r in L of an n-ary predicate r 1 on D, i.e. a subset

of D".
Our aim is now to define when a formula of Lis true in an interpretation for L. To this
purpose we first relate terms to elements of the domain of an interpretation. We do this
by making use of the notion of a state (or a variable assignment). A state (over I) is simply
a function assigning to each variable an element from D.

Given now a state u, we extend its domain to all terms, that is, we assign to a term tan
element u(t) from D proceeding by induction as follows:
• for a constant c we define u(c) as c1 (thus u(c) does not depend on u),
• iff(t1> ... , t.) is a term then we define u(f(t 1, •.. , t.)) as j 1(u(ti), ... , u(t.)), the result

LOGIC PROGRAMMING 513

of applying the mapping fr to the sequence of values associated with the terms
ti, ... ,tn.

Observe that for a ground term t, a(t) has the same value for all a.
We can now define a semantics of a formula. Given a formula F we define inductively

its truth in a state a over I, written as II=" F, as follows:
e if p(ti, ... , t.) is an atomic formula then

that is, if the sequence of values associated with terms t 1 , ••• , t. belongs to the
predicate P1,

• II=" true, not II=" false,
• if F and G are formulas then

11=" -,F iff not II=" F,

11=,, F v G iff Il= 11 F or II=,, G,

11=,, VxF iff Il=a(x/dl F for all dE D.

Here a[x/d], for a state a, an element d of D and a variable x, stands for the state which
differs from a only on the variable x to which it assigns the element d.

This allows us already to define truth of clauses. The truth of other formulas is
defined by expressing the remaining connectives and the quantifier :3 in terms of -,,
v and V:

FAG as -,(-,F v -,G),

F-+G as -,Fv G,

F~G as (F-+G) /\. (G-+F) (and then using the above two definitions),

:3xF as -,Vx-,F.

Finally, we say that the formula Fis true in the interpretation I, and write JI= F, when
for all states a, 11=11 F. Note that D as the empty disjunction is false in every
interpretation 1.

Let now S be a set of formulas. We say that an interpretation I is a model for S
if every formula from S is true in I. When S has a model, we say that it is satisfiable
or consistent. Otherwise, we say that it is unsatisfiable or inconsistent. When every
interpretation is a model for S, we say that S is valid.

Given another set of formulas S' we say that S semantically implies S' or S' is a
semantic consequence of S, if every model of S is also a model of S'. We write then
SI= S' and omit the { and } brackets if any of these sets has exactly one element. S

and S' are semantically equivalent if both Sl=S' and S'l=S hold.
Several simple facts about semantic consequence and semantic equivalence can be

proved and will be used in the sequel. Already in Subsection 2.5 we used the fact that the
following formulas are valid:

-,Vx 1 ... Vx5F~:3x 1 ... :3x5 -,F,

-,(A 1 v ··· v A.)<--+ -,A 1 /\.···A -,An,

-,-,F~F.

514 K.R. APT

3.2. Soundness of the SLD-resolution

Recall that, for a goal N = +-A 1' ... , Ak> N- stands for the formula A 1 /\ • • • /\ Ak.
Then o- is the empty conjunction, so it is valid. The following lemma is immediate.

3.1. LEMMA. If Mis a resolvent of Nanda clause C with an mgu e then Cf=M- ~N-e.

As a consequence we obtain the following theorem due to Clark [22] justifying
the statement made in Subsection 2.5.

3.2. THEOREM (soundness of SLD-resolution). Let P be a program and
N =+-Ai. ... , Aka goal. Suppose that there exists an SLD-refutation of Pu{N} with
the sequence of substitutions 00 , ••• , e •. Then (A 1 A··· A Ak)Oo ... e. is a semantic
consequence of P.

PROOF. Let No ' N n+ 1' with N 0 = N and N n+ 1 = o, be the SLD-refutation in
question and let C0 , •.• , c. be its input clauses. Applying Lemma 3.1 n + 1 times we get

Pf= o-~N-00 ..• (}.

which implies the claim. O

3.3. COROLLARY. If there exists an SLD-refutation of Pu{N} then Pu{N} is incon
sistent.

Another straightforward consequence of Lemma 3.1, which will not be used in the
sequel, is that all resultants of an SLD-refutation of Pu{ N} are semantic consequences
of P.

3.4. EXAMPLE. Reconsider now the program P studied in the example in Subsection 2.6
with the goal +- configuration(5, l). Since we exhibited there an SLD-refutation of
Pu{+- configuration(5, l)}, we conclude by the above corollary that Pu{ +-configura
tion(5, l)} is inconsistent, that is, Pf= 31 configuration(5, l). More specifically, by the
Soundness Theorem we have Pf=configuration(5, 1)()0 ••• (} 7 where 00 , ••• , 87 is the
sequence of performed substitutions. As we saw before, this sequence binds l to 4.1.nil,
so we have PF= configuration(5, 4.1.nil).

A natural question arises whether a converse of the above corollary or of the
Soundness Theorem can be proved, that is, whether certain form of completeness of
SLD-resolution can be shown. To handle this question we introduce a special class of
models of logic programs, called Herbrand models.

3.3. Herbrand models

Let L be a first-order language whose set of constants is not empty. By the H erbrand
universe UL for L we mean the set of all ground terms of L. By the H erbrand base B L for

LOGIC PROGRAMMING 515

L we mean the set of all ground atoms of L. If Lis the first-order language associated
with a program P (that is, Lis Lp) then we denote UL and BL by the UP and Bp,
respectively. Now, by a H erbrand interpretation for L we mean an interpretation for
L such that

(a) its domain is the Herbrand universe UL•
(b) each constant in Lis assigned to itself,
(c) if f is an n-ary function in L then it is assigned to the mapping from (V d to

UL defined by assigning the ground term f(t i. ... , tn) to the sequence t i. ... , tn
of ground terms,

(d) if r is an n-ary relation in L then it is assigned to a set of n-tuples of ground terms.
Thus each Herbrand interpretation for Lis uniquely determined by a subset I of the

Herbrand base BL which fixes the assignment of predicates to relation symbols of L by
assigning the set {(ti. ... , tn): r(ti, ... , tn)EI} to the n-ary relation symbol r. In other
words, we can identify Herbrand interpretations for L with (possibly empty) subsets of
the Herbrand base BL. This is what we shall do in the sequel.

To avoid some uninteresting complications we assume from now on that whenever
a program P has variables then it also as some constants. This guarantees that its
Herbrand base and the set ground (P) are not empty. The case of programs containing
variables but no constants is hardly of interest.

With this restriction another uninteresting complication arises when a program uses
only propositional symbols. Then its Herbrand universe is empty. To handle this case
one can simply drop the condition that a domain of an interpretation is nonempty
when L is constant-free and function-free.

By a Herbrand model for a set S of sentences we mean a Herbrand interpretation
which is a model for S. The following simple lemma shows why Herbrand models
naturally arise when studying logic programs.

3.5. LEMMA. Let S be a set of universal formulas. If S has a model then it has a Her brand
model.

PROOF. For an interpretation I let I H = {A: A is a ground atom and /f= A} denote the
corresponding Herbrand interpretation. A simple induction on the length of the
formulas shows that I and IH satisfy the same quantifier-free ground formulas. From
this the lemma follows. O

3.6. COROLLARY. Let P be a program and Na negative clause. If Pu{N} is consistent
then it has a Herbrand model.

We conclude this section by introducing two often recurring qualifications. A
Herbrand model of a set of formulas S is the least model of S if it is included in every
other Herbrand model of S and it is a minimal model of S if no proper subset of it is
a Herbrand model of S. The least model is minimal but the converse is not always
true (take for example S={A v B} with A,B ground atoms).

516 K.R. APT

3.4. The immediate consequence operator

To study Herbrand models of programs, following [31], we introduce the immediate
consequence operator TP mapping Herbrand interpretations to Herbrand interpreta
tions. For a program P and a Herbrand interpretation J, we put

AeTp(I) iff for some atoms B1 , ••• ,Bn

A+-B1 , ••• , Bn is a ground(P)

and If= B1 /\ • ·• /\ Bn.

Alternatively, for a ground atom A,

Ae Tp(I) iff for some substitution (}

and a clause B+-Bi. ... , Bn of P

we have A= B(J and Jf=(B1 /\ · ·· /\ Bn)(J.

In particular, if A+- is in P, then every ground instance A(} of A is in Tp(J) for every J.
The following simple observation from [31] relates Herbrand models of P with the
operator Tp.

3.7. LEMMA. For a program P and a Herbrand interpretation I, I is a model of P ijf
Tp(l)£1.

PROOF. First note that I is a model of P iffit is a model of ground(P). Now the latter is
true iff, for every clause A+- B 1, ••• , Bn in ground(P), II= B 1 A • • • /\ Bn implies JI= A, i.e.
Ael. But this is true iff Tp(J)£J. D

When T(l) s;;; I holds, I is called a pre-fixpoint of T. Thus to study Herbrand models of
a program Pit suffices to study the pre-fixpoints of its immediate consequence operator
Tp. This brings us to a study of operators and their pre-fixpoints in a general setting.

3.5. Operators and their fixpoints

Consider now an arbitrary, but fixed, complete lattice (for the definition see e.g. [10])
with the order relation s;;;, the least upper bound operator u and the greatest lower
bound operator(). To keep in mind the subsequent applications to logic programs and
their interpretations we denote the least element by 0, the largest element by B, and the
elements of the lattice by J, J, M. Given a set A= {In: n=O, 1, ... } of elements, we denote
LJA and nA by U:'=oln and n:=oln respectively. Sometimes we rather write Un<aJn
and nn<o,ln.

Consider an operator Ton the lattice. Tis called monotonic if, for all J, J, I £J implies
T(l) £ T(J). T is called finitary if, for every infinite sequence I 0 £I 1 £ ... ,

r(9o 1")£ nQo T(l.)

holds. If T is both monotonic and finitary then it is called continuous. A more often

LOGIC PROGRAMMING 517

used, equivalent definition of continuity is: T is continuous if, for every infinite
sequence I 0 s; I 1 s; ... , it holds that

As already mentioned in the previous section, any I such that T(l) r;; I is called
a pre-.fixpoint of T. If T(J) =I then I is called a fix point of T and if T(J) 2 I then I
is called a post-fixpoint of T.

We have the following classical theorem.

3.8. THEOREM (Fix point Theorem) (Knaster and Tarski [97]). A monotonic operator T
has a least fixpoint lfp(T) which is also its least pre-fixpoint.

We now define powers of a monotonic operator T. We put

TjO(J)=l, Tj(n + 1)(/) = T(Tjn(J)), Tjw(J)= U Tjn(J)
n<w

and abbreviate Tjcx(0) to Tjcx. Powers of a monotonic operator generalize in
a straightforward way to transfinite powers Tjcx(l) where a is an arbitrary ordinal. We
shall not need them in the sequel.

The following well-known fact holds.

3.9. LEMMA. If T is continuous then Tj w is its least pre-fix point and its least fixpoint.

In the next section we apply these observations to the study of Herbrand models.
In Sections 4 and 5 we shall also use largest fixpoints and downward powers of

monotonic operators. We put for a monotonic operator T

TlO(J)=l, T l(n + l)(J) = T(T ln(J)), Tlw(J)= U Tln(J).
n<w

Downward powers generalize in a straightforward way to transfinite downward powers
Tla(l) where a is an arbitrary ordinal. We abbreviate Tla(B) to Tla.

Note that

Tjn(J)s; Tj(n+ l)(J)

does not necessarily hold, but by monotonicity for all n;;:: 0

Tjns; Tj(n+ 1)

does hold. Analogous statement holds for the downward powers.
The dual theorem to the Fixpoint Theorem 3.8 is the following.

3.1 O. THEOREM. A monotonic operator T has a greatest fixpoint gfp(T) which is also its
greatest post-fixpoint.

A monotonic operator T is called downward continuous if, for every infinite sequence

518 K.R. APT

10 2.1 1 2 ···, it h-Olds that

r(O/·)= .Oo T(1.).

We have the following well-known lemma.

3.11. LEMMA. Let T be a monotonic operator. Then for every IX we have T !1X2.gfp(T).
Moreover, for some IX, T !1X=gfp(T).1f T is downward continuous then this ordinal is~-

We denote the smallest ordinal IX for which nlX=gfp(T) by llT!ll and call it the
downward closure ordinal of T or the closure ordinal of T !.

3.6. Least Herbrand models

Let us first investigate the properties of the immediate consequence operator. Note
that Herbrand interpretations of L with the usual set-theoretic operations from
a complete lattice so when studying this operator we can apply the results of the
previous section.

3.12. LEMMA. Let P be a program. Then
(i) TP is .finitary,

(ii) TP is monotonic.

PROOF. (i) Consider an infinite sequence 10 £1 1 £ · · · of Herb rand interpretations and
suppose that AeTp(LJ:'=o1.). Then, for some atoms Bi. ... Bk, the clause
A-Bi. ... , Bk is in ground(P), and moreover U:'=o1.f=B1 A··· A Bk. But the latter
implies that for some 1., namely the one containing all B1, ... , Bk> 1.f==B1 A··· A Bk.
So A e Tp(I.).

(ii) Immediate by definition. D

As an immediate consequence of the above lemma we have the following theorem.

3.13. THEOREM (Characterization Theorem) (Van Emden and Kowalski [31]). Let P
be a program. Then P has a Herbrand model Mp which satisfies the following properties:

(i) Mp is the least Herbrand model of P.
(ii) M p is the least pre-fix point of Tp.

(iii) MP is the least .fixpoint of Tp.
(iv) Mp=Tpfm.

PROOF. It suffices to apply Lemma 3.7, Theorem 3.8 and Lemma 3.9. O

By the success set of a program P we denote the set of all ground atoms A such that
Pu {-A} has an SLD-refutation.

3.14. COROLLARY. The success set of a program P is contained in its least Herbrand
model.

LOGIC PROGRAMMING 519

PROOF. By Corollary 3.3 and the above theorem. D

3.7. Completeness of the SLD-resolution

We can now return to the problem of completeness. We first prove the converse of
Corollary 3.3 that is, the following result due to HILL [46]. The proof is due to APT and
VAN EMDEN [4].

3.15. THEOREM (completeness of SLD-resolution). Let P be a program and Na goal.
Suppose Pu{N} is inconsistent. Then there exists an SLD-refutation of Pu{N}.

First we need the following lemma.

3.16. LEMMA. (Substitution Lemma). Let p be a program, Na goal and ea substitution.
Suppose that there exists an SLD-refutation of Pu{NO}. Then there exists an
SLD-refutation of Pu{N}.

PROOF. We proceed by induction on the length n of the SLD-refutation of Pu{ NB}. By
the Variant Corollary 2.9 we can assume that e does not act on any of the variables
appearing in the input clauses of this refutation. Let N = +-A 1 , •.• , Ak.

If n = 1 then k = 1 and A 1 e unifies with a head of a unit input clause. So A 1 unifies with
the head of the same clause. This settles the claim.

If n > 1 then consider the first input clause B0 +-B 1,. . ., Bm of the refutation. For an
mgu 11 we have AiB1p: B0 11 where A;B is the selected atom of NB. Thus, by the
assumption on B, A;B11 = B0 B11, so A; and B0 unify. For some mgu ~and a substitution
y we have 811 = (y.

By the assumption on Pu{NB} and 8 there exists an SLD-refutation of

Pu{ +-(A 18, ... , A;- 1 8, B18, ... , Bm8, A;+ 1 B, ... , Ak8)11}

of length n - 1. By the induction hypothesis there exists an SLD-refutation of

Pu{ +-(Al> ... , A;-J, Bi, ... , Bm, A;+ i, ... , Ak)(}.

Consider now an SLD-derivation of Pu { N} in which the first selected atom is A; and
the first input clause is B0 +-Bi, .. ., Bm with the mgu ~. Its first resolvent is
+-(A 1 ,. .. , A_ 1 , B 1,. .. , Bm, A;+ i, ... , Ad(which, by the above, settles the claim. D

We now establish the converse of Corollary 3.14.

3.17. LEMMA. The least H erbrand model of a program P is contained in the success set of
P.

PROOF. We make use of the continuity of the immediate consequence operator TP
which provides an internal structure to Mp. Suppose AEMp. By the Characterization
Theorem 3.13(iv) for some k >0, AE Tp jk. We now prove by induction on k that there
exists an SLD-refutation of Pu{ +-A}. Fork= 1 the claim is obvious.

520 K.R. APT

If k > 1, then for some ground atoms B 1 , ... B. the clause A+--B 1 , ..• , B. is in
ground(?) and { B 1 , .•• , Bn} s Tr i(k- 1). By the induction hypothesis, for i = 1, ... , n

there exists an SLD-refutation of Pu{ +-B;}. But all Bi are ground so there exists an

SLD-refutation of Pu{ +-Bi. ... , B.}.
Consider now an SLD-derivation of Pu{ +-A} with the first input clause being the

one of which A+- B 1 , ... , Bn is a ground instance. Its first resolvent is a negative clause

of which +-- B 1 , ... , B. is a ground instance. The claim now follows by Lemma 3.16. O

We are now in position to prove the Completeness Theorem.

PROOF OF THEOREM 3.15. Suppose that N =+-A i. ... , A •. M P is not a model of Pu { N},
so N is not true in M P· Thus, for some substitution 8, {A 1 8, . .. ' A. 8} s M P· By Lemma

3.17, for i = 1, ... , n there exists an SLD-refutation of Pu{ +-Ai8}. But all A;f) are

ground so there exists an SLD-refutation of Pu { N 8} and the claim now follows by

Lemma 3.16. D

3.8. Correct answer substitutions

The Completeness Theorem can be generalized in various ways. We provide here

two such generalizations.
First we introduce the following notion. Let P be a program and N = .-A1 , ... , An

a goal. We say that 8 is a correct answer substitution for Pu{N} if() acts only on

variables appearing in N and Pp(A 1 11···11 An)8 holds.
Note that if 8 is a correct answer substitution for Pu { N} then, for all y, Pu { N 8y} is

inconsistent. Consequently, Pu{ N} is inconsistent as it is equivalent to a weaker

statement that, for some y, Pu{ Ny} is inconsistent.
The following theorem is a kind of converse of the Soundness Theorem 3.2.

3.18. THEOREM (Clark [22]). Consider a program Panda goal N. For every correct
answer substitution 8 for Pu { N} there exists a computed answer substitution a for
Pu{N} such that Na is more general than N8.

We present here the proof due to Lloyd [64]. First we need the following

strengthening of the Substitution Lemma.

3.19. LEMMA (Lifting Lemma). Let p be a program, N a goal and 8 a substitution.
Suppose that there exists an SLD-refutation of Pu{ N8} with the sequence of mgu's
Bo, ... , e •. Then there exists an SLD-refutation of Pu{ N} with the sequence of mgu's
80, ... 'e~ such that eo ... ()~ is more general than 880 ... en.

PROOF. By a straightforward refinement of the proof of the Substitution Lemma
3.16. D

3.20. LEMMA. Let P be a program and N a goal. Suppose that e is a correct answer
substitution for Pu{N}. Then the empty substitution is a computed answer substitution
for Pu{N8}.

LOGIC PROGRAMMING 521

PROOF. Let xi. ... , x. be the variables of NB. Enrich the language of P by adding new
constants ai, ... ,a. and let y be the substitution {xifai. ... ,x./a.}. Pu{N8y} is
inconsistent, so by the Completeness Theorem 3.15 there exists an SLD-refutation of
Pu{N8y}. By the Variant Corollary 2.9 we can assume that the variables xi. ... , x. do
not appear in the input clauses used in this refutation. But Nf)y is ground, so the
answer substitution computed by this refutation is the empty substitution. By textually
replacing in this refutation ai by X;, for i = 1, ... , n we obtain an SLD-refutation of
Pu{N8} with the empty substitution as the computed answer substitution. D

We are now ready to prove the desired theorem.

PROOF OF THEOREM 3.18. By the above lemma there exists an SLD-refutation of
Pu{NO} with the empty substitution as the computed answer substitution. Let
80 , ••. , e. be its sequence of mgu's. By the Lifting Lemma 3.19 there exists an
SLD-refutation of Pu{N} with a computed answer substitution u and a sequence of
mgu's 80, . .. , e~ such that 80 ... e~ is more general than 880 •.• e •.

Then N80 ... f}~ is more general than N880 .•. e •. But the former goal equals Nu
whereas the latter equals NO. D

3.9. Strong completeness of the SLD-resolution

Another way to generalize the Completeness Theorem is by taking selection rules
into account. We follow here the presentation of Apt and van Ernden [4].

3.21. THEOREM (strong completeness of SLD-resolution) (Hill [46]). Let P be a
program and Na goal. Suppose that Pu{N} is inconsistent. Then every SLD-tree with
N as root is successful.

This theorem states that if Pu { N} is inconsistent then there exists an SLD-refutation
of Pu{N} via every selection rule.

To prove it we first introduce the following notion. Given a program P we call a goal
N k-refutable, where k ~ 1, if in every SLD-tree with N as root there exists the empty
clause with a path length from the root of at most k.

Another straightforward refinement of the proof of Substitution Lemma yields the
following.

3.22. LEMMA. Let P be a program, N a goal and (} a substitution. Suppose that N(} is
k-refutable. Then N is k-refutable.

The next two lemmas generalize corresponding facts about refuted goals.

3.23. LEMMA. Let P be a program and let F 1, ..• , F. be sequences of atoms. Assume that
F 1 , .•. , F. have no variables in common. If each +--Fi is k;-refutable for i = 1, ... , n then
+-F 1 ... , F. is {k 1 + ... + k.)-refutable.

PROOF. By straightforward induction on k1 + · ·· + k.. D

522 K.R. APT

3.24. LEMMA. If A is in the least Herbrand model of P, then, for some k, +-A is
k-refutab/e.

PROOF. By repeating the argument from the proof of Lemma 3.17 using the above

lemma with each Fi being a single ground atom. D

We can now prove the strong completeness of SLD-resolution.

PROOF OF THEOREM 3.21. By repeating the argument from the proof of the Complete
ness Theorem 3.15 using Lemmas 3.24, 3.23 and 3.22. D

Summarizing the results obtained in Sections 3.4, 3.6, 3. 7 and the present one, we

obtain the following characterizations of the success set.

3.25. THEOREM (Success Theorem). Consider a program Panda ground atom A. Then
the following are equivalent:

(a) A is in the success set of P.
(b) AE Tp jw.
(c) Every SLD-tree with +-A as root is successful.
(d) PpA.

PROOF. First note that, by Corollary 3.6 and the Characterization Theorem 3.13(i),
Pp A iff AE M P· The rest follows by the Characterization Theorem 3.13(iv), Corollary
3.14, Lemma 3.17 and Lemma 3.24. D

The Strong Completeness Theorem shows that when searching for a refutation of
a goal any SLD-tree is a complete search space. Of course whether a refutation will be

actually found in a successful SLD-tree depends on the tree search algorithm used.
Note that in fact we have proved more.

3.26. THEOREM. Let P be a program and Na good. If Pu{N} is inconsistent then, for
some k, N is k-refutab/e.

PROOF. By inspection of the proof of the Strong Completeness Theorem 3.21. D

This indicates that given a program P when searching for a refutation of a goal Nit is
enough to explore any SLD-tree until a certain depth depending only on N. However,

this depth as a function of the goal N is in general not computable. This is an immediate
consequence of the results proved in Section 4.

3.10. Procedural versus declarative interpretation

In the last two sections we studied two ways of interpretating the logic programs.
They are sometimes referred to as a procedural and declarative interpretation.

Procedural interpretation explains how the programs compute, i.e. what is the

LOGIC PROGRAMMING 523

computational mechanism which underlies the program execution. In the framework
of programming languages semantics, it is sometimes referred to as the operational
semantics.

On the other hand, declarative interpretation provides the meaning of a program,
i.e., it attempts to answer the question what semantically follows from the program
without analyzing the underlying computational mechanism. In such a way declarative
interpretation provides a specification for any underlying computational mechanism,
i.e. it explains what should be computed by the program. In the framework of
programming language semantics, it corresponds with the denotational semantics.

To summarize the above we can say that procedural interpretation is concerned with
the method whereas declarative interpretation is concerned with the meaning. Any form
of a completeness theorem can be viewed as a proof of a match between these two
interpretations. In practice of course this match can be destroyed when, as explained at
the end of the previous subsection, the computational mechanism is supplemented by
an incomplete (tree) search algorithm.

3.11. Bibliographic remarks

The name immediate consequence operator was introduced in [22]. Gallier [39]
presents a different proof of the completeness of the SLD-resolution based on the use of
Gentzen systems and indicates how to extend it to obtain a proof of the strong
completeness of the SLD-resolution. The strongest completeness result is that of Clark
[22], which combines the claims of Theorems 3.18 and 3.21. Lloyd [64] provides
a rigorous proof of this theorem.

4. Computability

4.1. Computability versus definability

Once we have defined how logic programs compute and analyzed the relation
between the proof-theoretic and semantic aspects, let us reflect on the question what
objects logic programs compute. We show here that logic programs are computational
ly complete in the sense that they have the same computational power as recursive
functions.

Assume that the language L has at least one constant, so that the Herbrand universe
UL is not empty. Moreover, assume that Lhas infinitely many relation symbols in every
arity. We say that a program P computes a predicate R £ V'l using a relation r if, for all
ti, ... ,t.eUL,

(ti. ... , t.) e R iff there exists an SLD-refutation of Pu{ +-r(ti. ... , t.)}.

A semantic counterpart of this definition is obtained by saying that a program
P defines a predicate R£V'l using a relation r if, for all tti ... ,t.eUL,

(t i. ... , t,,) ER iff PI= r(t i. ... , t,,).

Both definitions presuppose that Lp£Land U Lp =UL· We have the following result.

524 K.R. APT

4.1. THEOREM. Let P be a program, Ra predicate and r a relation. Then the following are

equivalent:
(a) P computes R using r.
(b) P defines R using r.
(c) Forallti.···,tnEUL

(ti. ... , t.)ER if! r(t 1 , ••• , tn)EMp.

!'ROOF. By the Success l heorem 3.25 and the Characterization Theorem 3.13. D

Thus the question which predicates are computed by logic programs reduces to the

question which predicates are defined over their least Herbrand models.

This question has various answers depending on the form of L. We study here the

case when L has finitely many but at least one constant and finitely many but at least

one function symbol. Then the Herbrand universe UL is infinite. The assumption that

the set of constants and the set of functions are finite allows us to reverse the question

and analyze for a given program P which predicates it computes over its Herbrand

universe U Lp· The assumption that in each arity the set of relations is infinite allows us

to construct new clauses without syntactic constraints.

4.2. Enumerability of UL

We call a binary predicate Ron UL an enumeration of UL if R defines the successor

function on UL· In other words, R is an enumeration of UL if we have UL= {f'R(u):n <
w} where u is some fixed ground term and fR is a one-one function on UL defined
by fR(x) = y ilf (x, y)E R.

As a first step towards a characterization of predicates computable by logic

programs we prove the following result due to Andreka and Nemeti [!]. Our
presentation is based on [12].

4.2. THEOREM (Enumeration Theorem). There exists a program successor which
computes an enumeration of UL using a binary relation succ.

PROOF. The construction of the program successor is rather tedious. First we define
the enumeration enum of UL which will be computed.

We start by defining inductively the notion of height of a ground term. We put

height(a)= 0 for each constant a,

height(f(t 1 , •.. , t.)) = max(height(t i), ... , height(t.)) + l.

Next, we define a well-ordering on all ground terms. To this purpose we first order all

constants and all function symbols in some way. We extend this ordering inductively to
all ground terms of height ~ n (n > 0) by putting

f (s 1' ... , sk) < g(t 1o ... , tm)

iff (height(f (si, ... , sk)), f, s 1, ... sd-< (height(g(t i, ... t m}), g, t 1> ••• , tm).

LOGIC PROGRAMMING 525

Here -< is a lexicographic ordering obtained from the ordering of natural numbers,
ordering of function symbols and the already defined ordering < on ground terms of
height < n. This extension is compatible with the fragment of < defined so far. By
induction, < is defined on all ground terms.

From the following three observations and the assumption about the number of
constants and function symbols it follows that < is a well-ordering of type w:

(a) If height(s) < height(t) then s < t.
(b) Ifheight(f(si. ... , sd)=height(g(t 1 , ... , tm)) and f is smaller than gin the chosen

ordering then f(s1, ... ,sd<g(ti. ... , tm)·
(c) If height(f (s i. ... , S;, si +i. ... , sd) = height(f (si. ... , si, t; + 1 , ..• , td) and S; + 1 <

ti+ 1 then f(s 1, ... , S;,Si+ 1, ... ,sd<f(s1 , ... , si, ti+ 1 , ••• , td.
We now define enum to be the graph of the <-successor function. Note that
(d) if t is the <-maximal term of height n then its <-successor is the <-minimal term

of height n + 1;
(e) otherwise, the <-successor oft= f(t 1 , ..• , tn) is obtained by first locating the

rightmost term ti whose (already defined) <-successor r; has height smaller than the
height of t. Then f (t 1 , .. ., ti- i. r;, a, ... , a, t~) is the <-successor of t, where a is the
<-least constant and t~ is the <-least terms such that height(f(t 1, ... , ti_ 1, tj, a, ... ,
a, s)) = height(t).

To compute the relation enum we systematically translate its definition into clauses.
We proceed by the following steps.

(1) For counting purposes we identify a subset NL of UL with the set of natural
numbers N. Let fo be the smallest function in the chosen ordering. We put

NL={fi: ne N}
~ ../'-..

where 0 =a and, for each n, n + 1 = f 0 (a, .. . , a, fi).
The following program Nat computes NL using a relation nat:

nat(a)+-,

nat(f0 (a, ... , a, x))+-nat(x).

In turn, the program SL obtained by adding to Nat the clause

si(x, f 0 (a, ... , a, x))+-nat(x)

computes the successor relation on NL using a relation sL.
(2) Using the programs Nat and SL the definition of the height function can now be

translated into a program height with a binary relation h such that

height f= h(t, k) iff t is a ground term of height n, where k = fi.

(3) Note that fi is the <-minimal term of height n. Thus adding a clause
min(x,x)+-nat(x) we get a program minimum such that

minimumf=min(t, k) iff t is the <-minimal term of height n, where k=fi.

Let now b be the <-largest constant and f 1 the largest function in the chosen
ordering. Note that the <-maximal term of height 0 is b, of height 1 f 1 (b, ... , b), etc.

526 K.R. APT

Thus adding clauses

max(b,a)*-,

max(f1 (x, ... , x), y')*-max(x, y), sL(y, y')

we get a program maximum such that

maximum~max(t, k)
iff t is the <-maximal term of height n, where k=fi.

(4) Using the above auxiliary definitions, the program successor can now be

constructed by translating the statements (d) and (e) into clauses. The details are

straightforward though lengthy and we omit them. D

4.3. Recursive functions

To characterize the predicates computable by logic programs we need to recall the

basic concepts of the recursion theory as developed by S.C. Kleene. We follow here

[92].
For brevity denote the sequence a 1 , ... , a" by ii.. Let, for i = 1, ... , n, the projection

function Pi be defined by

Pi(ii.) =a;.

For a given predicate R ~ N", KR stands for its characteristic function defined by

K _ {0 iff ii E R,
R(a)= 1 iff a~ R.

We define the class of (total) recursive functions over N inductively by putting
(Rl) the functions Pi, +, x and K< are recursive;
(R2) if g, h 1 , .•. , hk are recursive functions and f is defined by

f(ii) = g(h1 (ii), ... ' hk(ii.))

then f is recursive;
(R3) let g be a recursive function such that

Vii3b g(ii, b)=O;

then the function f defined by

f(ii.)=µb. g(ii, b)=O

is recursive, where µb. R stands for the least b such that R holds.

A predicate over N is recursive if its characteristic function is recursive. A predicate
R is recursively enumerable (r.e.) if for some recursive predicate S

ii ER iff 3b(ii, b)E S.

A predicate R is r.e. complete if for every recursively enumerable predicate S there is

LOGIC PROGRAMMING

some recursive function f such that

ii ES iff f(ii) ER.

527

R.e. complete predicates are not recursive. It is a well-known fact that there exists
a recursively enumerable predicate which is r.e. complete.

In the sequel we shall use various well-known simple results from the theory of
recursive functions. We also rely on some standard techniques like coding. This allows
us to investigate the complexity of subsets of the Herbrand base Bi as its elements
can be coded by natural numbers.

We have the following simple result.

4.3. THEOREM. For every program P, Mp is recursively enumerable.

PROOF. By the Characterization Theorem 3.13 (iv) we have A E Mp iff, for some k>O,
relation p and t i, ... , t. E Up, A= p(t i. ... , t.) and p(t i. ... , t.) E Tp j k. The result now
follows by the standard techniques of the recursion theory because the predicate
{(k,A): Ae Tpjk} is, after appropriate coding, recursive. D

4.4 Computability of recursive Junctions

The Herbrand universe UL does not coincide with natural numbers but thanks to
the Enumeration Theorem 4.2 we can make such an identification. This allows us to
transfer the notions of the recursion theory from N to UL·

We now prove the following theorem.

4.4 THEOREM (Computability Theorem) (Andreka and Nemeti [1]). For every recursive
function J there is a program P which computes the graph off using a relation p 1 .

PROOF. We assume that each program given here incorporates the program successor
which uses different relations than those used here. We proceed by induction on the
construction of recursive functions.

Re (Rl): We can define + in terms of the successor by simply rewriting two
well-known axioms of Peano arithmetic as clauses:

P+(x, 0, x)+-,

P+ (x, y, z)+-succ(y', y), succ(z', z), P+(x, y', z').

Other functions admit equally straightforward presentations.
Re (R2): Suppose by induction that there exist programs P0 , ..• , Pk computing the

graphs of functions g, h1 , .•. , hk using the relations p9,Ph,, ... , Phk correspondingly.
We can assume that P0 , ••• , Pk have no relations in common, apart from those
occurring in successor. Then the program P0 u···uPk augmented by the clause

p 1 (xi. ... , Xz, X1+ d+-Ph, (x1, ... , Xz, yi), ... , Phk(xi. ... , Xi. Yk), P9(Yi. · · ·, Yk• X1+ d
computes the graph of the function f defined as in (R2).

528 K.R. APT

Re (R3): Let f and g be recursive functions as given in (R3). By induction there
exists a program P9 which computes the graph of g using a relation p9 • The program
P 1 is obtained by adding to P 9 the following clauses with a new relation r:

p1(xi. ... ,xk,xk+i)+-p9(x 1, ... ,xk+ 1,6), r(xi. ... , xk+ i),

r(x i. ... , xk> 6)+-,

r(xi. ... , xk,y)+-succ(y', y), r(xi. ... , Xt, y'), p9(X1, .. . , xk, y', z), p«6, z).

The intended meaning of r(x 1, ..• , xk+ i) is 'v'y(y<xk+ 1 -+g(xi. ... , xk, y)>O). Note that
under this interpretation r(x1, ... ,xk,y) holds and r(xi, ... ,xk,n+l) iff
r(xt>····xk,n)f\g(xt>···•xk,n)>O and this is exactly what the last two clauses
express. O

4.5. COROLLARY. A predicate R on UL is recursively enumerable iff some program
P computes it using a relation r.

PROOF. (=>)Suppose that for some recursive predicate S, ii ER iff 3b (ii, b)eS. Let Ps be
the program computing the characteristic function Ks of S using a relation Ps· Then the
program Ps augmented by the clause

PR(xt> ... , xk)+-p8(x 1 , ••• , xk, y, 6)

computes the predicate R using relation PR·
(=>)By Theorems 4.1 and 4.3. O

This allows us to prove the converse of the Computability Theorem.

4.6. COROLLARY. Suppose that a program P computes the graph of a total function using
some relation. Then this function is recursive.

PROOF. A total function is recursive iff its graph is recursively enumerable. O

Also, we can obtain the following characterization of the recursion-theoretic
complexity of M v·

4.7. COROLLARY. For some program P, Mp is r.e. complete. A fortiori, Mp is not
recursive.

PROOF. Let R be a recursively enumerable, r.e. complete predicate on UL· By Corollary
4.5 and Theorem 4.1 we have, for all a, a E R iff r(a) E M p, where P is a program which
computes R using a relation r. This shows that Mp is r.e. complete, as well. O

We conclude this section by mentioning the following strengthening of the
Computability Theorem 4.4, which we shall use in the next subsection. Following [12]
we call a program P determinate if Tp jw = Tptw.

LOGIC PROGRAMMING 529

4.8. THEOREM (Blair [12]). For every recursivefunctionf there is a determinate program
P which computes the graph off using a relation p f·

The proof is based on a detailed analysis of the programs constructed in the proof of
the Computability Theorem 4.4 and we omit it.

4.5. Closure ordinals of Tpl

In this subsection we study the downward closure ordinals of the operators TP for
programs P.

We noted in subsection 3.6 that for a program P the operator Tp is continuous.
However, TP does not need to be downward continuous. To see, this consider the
following program P:

p(f (x))+- p(x),

q(a)+- p(x).

Then for n ~ 1 we have Tpln = { q(a)}u(p(fk(a)): k ~ n}, so Tp!w= {q(a)}. It follows that
Tp!(w + 1) = f'), hence II Tp! II =w + 1 and TP is not downward continuous. Note that,
by Lemma 3.11, gfp(Tp)= Tp!(w+ 1)= 0. This asymmetry is one of the most curious
phenomena in the theory of logic programming.

To characterize the downward closure ordinals of the operators Tp we first introduce
some definitions. We shall consider well-founded (partial) orderings on natural
numbers. For a well-founded ordering R we write a <Rb instead of(a, b) ER and denote
by dom(R) its domain. With each well-founded ordering R we can associate in
a standard way an ordinal II R II by means of a transfinite induction:

llall={~up(llhll+l:b<Ra)
11R11 =sup(II a II: a E dom(R)).

if a is a <R-minimal element of dom(R),

otherwise,

An ordinal a is called recursive if a= II R II for some well-founded ordering R which is
a recursive predicate. The least nonrecursive ordinal is denoted by wik (w 1 of Church
and Kleene).

The following theorem characterizes the ordinals II Tp!ll.

4.9. THEOREM (Blair[11]). (i) For every a~ wik there exists a program P such that
II Tp! 11 =a.

(ii) For every program P, II Tp! II ~Wlk·

PROOF. (i) It is clear how to construct for any natural number n ~O a program P such
that II Tp! II= n. Suppose now that w~a <wik. For some /3 we have a=w+ /3. Assume
from now on that L has exactly one, unary function symbol f and exactly one constant
a. Then UL coincides with the set of natural numbers. Let R be a recursive well-founded
ordering such that II R II= f3. Given a relation q we denote by [q] the set of all ground
atoms of the form q(t 1, ... , tnl·

530 K.R. APT

Let P 1 be the program P from the beginning of this subsection augmented by the
clause

q(y)+-p(x).

Then Tp,!w=[q] and Tp 1 !rx=O for ix>w.
By Theorem 4.8 there exists a determinate program P2 which computes R using

some relation r. We can assume that P 1 and P 2 are disjoint. Then, for any rx;;::: co,

Tp2 !ixn[r]=R., where R,={r(s,t): (s,t)eR}.

Let P 3 be the program

q(x)+-r(y, x), q(y)

and finally let P=P1 uP2 uP3 . Then

Tp!wn([q]u[r])= [q]uR,.
Thus

Tp!(w + l)n([q]u[r])= {q(s): se dom(R), II s II;;:;: 1 }uR,

and more generally, for every y,

Tp!(w+y)n([q]u[r])={q(s):sedom(R), llsll ;;:;:y}uR,.

Thus, for y</3,
Tp!(w+y)~ Tp!(w+y+ 1).

Also

so
T P!(w + /3)n([q] u [r]) = R,,

Tp!(w+p)= Tp 2 !(w+ /3)= Tp,!W

and consequently

Tp!(ix+ l)= Tp!IX,

i.e. II Tp! II =ix.
The proof that for some program Pin fact II TP! II =wik and the proof of (ii) rely on

advanced results from recursion theory and are beyond the scope of this paper. D

4.6. Bibliographic remarks

There is considerable confusion concerning the actual formulation and origin of the
results of the first part of this section. The statement that logic programming has a full
power of recursion theory is usually attributed to Tarnlund [98] who showed that
Turing machines can be simulated using logic programs. However, in his proof
additional function symbols are used and the paper of Andreka and Nemeti [1]
actually appeared earlier as a technical report.

A syntactically stronger form of the Computability Theorem 4.4 in the case when
L has exactly one, unary function symbol and exactly one constant was proved in [86].
For such L the Computability Theorem 4.4 is implicitly contained in [94]. Related

LOGIC PROGRAMMING 531

results were proved in [47, 56, 89, 95]. The last paper discusses all these results in detail.
Borger [141 discusses connections between logic programming and computational
complexity of various classes of formulas. Fitting [37] studies in detail computability
by means of logic programs on domains other than the Herbrand base, in particular
integers, words and trees.

That Tp does not need to be downward continuous was originally observed by
Andreka and Nemeti, and Clark. The class of determinate programs is extensively
studied in [5], where they are called functional programs.

5. Negative information

5 .1. N onmonotonic reasoning

SLD-resolution is an example of a sound method ofreasoning because only true facts
can be deduced using it. More precisely, we call here a reasoning method" f-" sound if,
for all variable-free formulas <p, P f- <p implies P F= <p, where P f- <p denotes that <p can
be proved from a program P. And we call "f-" weakly sound if Pf- <p implies consistency
of Pu{ <p }. Now, putting (see subsection 2.5) Phw 3x1 •.. 3x. (A 1 /\ · · · /\ Ak) iff there
exists an SLD-refutation of Pu{ <--A 1 , ... , Ad, we see that "hLD" is sound by virtue
of the Soundness Theorem 3.2.

We call a reasoning method "f-" effective if for any program P the set { <p: P f- <p} is
recursively enumerable. Now, "f-sw" is easily seen to be effective by using the standard
techniques of recursion theory. Effectiveness is a desirable property as it amounts to
saying that it is decidable whether an object is a proof of a formula. Ineffective
reasoning methods cannot be implemented.

SLD-resotution is also an example of a monotonic method of reasoning. We call here
a reasoning method "f-" monotonic if, for any two programs P and P',

P f- <p implies PuP' f- <p.

Otherwise, "f-" is called nonmonotonic. Clearly, if there exists an SLD-refutation of
Pu{N} then there also exists an SLD-refutation of PuP'ufN}.

However, SLD-resolution is a very restricted form of reasoning, because only
positive facts can be deduced using it. This restriction cannot be overcome if soundness
or monotonicity is to be maintained. More precisely, the following simple yet crucial
observation holds.

5.1. LEMMA. Let "f-'-'" be a reasoning method such that P f-'-'--. A for some negative
ground literal -.A. Then "f-'-'" is not sound. Moreover, if "f-'-'" is weakly sound then it
is not monotonic.

PROOF. Note that the Herbrand base is a model of P but not a model of -.A. Thus "f-'-'"
is not sound. Suppose it is monotonic. Then we get Pu {A} f-'-' -.A. But Pu {A} u { -.A}
is inconsistent, so "f-'-'" is not weakly sound. D

532 K.R. APT

However, in some applications it is natural to require that also negative information

can be deduced.

5.2. EXAMPLE Consider

P = { element(.fire)+-, element(air)+-, element(water)+-,
element(earth)+-, stuff(mud)+-}.

Then we naturally expect that -.element(mud), -.stuff (.fire) and similarly with other

elements.

By Lemma 5.1 any such extension of SLD-resolution leads to a nonmonotonic
reasoning.

5.2. Closed world assumption

One natural possibility is to consider here the following rule (or rather metaruie):

A cannot be proved from P

-.A

where A is a ground atom. This rule is usually called the closed world assumption
(CW A). It was first considered in [83]. The notion of provability referred to in the

hypothesis is that in first-order logic. For our purposes it is sufficient to know that it is

equivalent here to provability by means of the SLD-resolution.
Given now a program P, consider the set

CWA(P) = {-.A: A is a ground atom for which there does not exist an
SLD-refutation of Pu{+-A}}.

We have the following lemma.

5.3. LEMMA. -.A E CWA(P) iff A E Bp-M P·

PROOF. We have -.A E CW A(P) iff A is not in the success set of P. The claim now

follows by Corollary 3.14 and Lemma 3.17. D

As an immediate consequence we get this theorem.

5.4. THEOREM (Reiter [83]). For any program P, PuCWA(P) is consistent.

Thus closed world assumption viewed as a reasoning method is weakly sound.
Unfortunately, it is not an effective reasoning method. Namely, we have the following
theorem.

5.5. THEOREM. Assume that L is as in Section 4. Then for some program P the set
CW A(P) is not recursively enumerable.

PROOF. By Corollary 4.7 there exists a program P such that Mp is a recursively

LOGIC PROGRAMMING 533

enumerable but not recursive subset of UL· Then, by well-known theorem, Bp - M p,
the complement of Mp, is not recursively enumerable. This concludes the proof in
view of Lemma 5.3. O

5.3. Negation as failure rule

A way out of this dilemma is to adopt some more restrictive forms of unprovability.
A natural possibility is to consider -,A proved when an attempt to prove A using
SLD-resolution fails finitely. This leads to the following definitions.

An SLD-tree is finitely failed if it is finite and contains no empty clause. Thus all
branches of a finitely failed SLD-tree are failed SLD-derivations. Given a program P,
its finite failure set is the set of all ground atoms A such that there exists a finitely failed
SLD-tree with +-A as root.

We now replace CW A by the following rule:

A is in the finite failure set of P
-,A

introduced in [21] and called the negation as failure rule. (A more appropriate name
would be negation as a finite failure rule.)

First of all it is useful to note that the negation as failure rule viewed as a reasoning
method is weakly sound. Indeed, if A is in the finite failure set of P then by the strong
completeness of SLD-resolution (Theorem 3.21)-,A is in CW A(P), so it suffices to
apply Theorem 5.4. Thus by Lemma 5.1 negation as failure is a nonmonotonic form of
reasoning. It is also an effective form of reasoning because it is decidable whether
a finite tree is a finitely failed SLD-tree.

Finally, observe that using the negation as failure rule we can trivially deduce
-,element(mud) and -,stuff (fire) from the program P given in Example 5.2.

5.4. Characterizations of finite failure

We now provide two characterizations of finite failure, due to Apt and van Emden
[4], and Lassez and Maher [61]. We follow here the presentation of [64].

First we introduce the concept of a fair SLD-derivation due to Lassez and Maher
[61]. An SLD-derivation is called fair if it is either finite or every atom appearing in it is
eventually selected. (An atom at the moment of selection will be actually an
instance of the original version.) For example, the second derivation given in
Subsection 2.6 is not fair as the atom configuration(y, Ii) is never selected in it. An
SLD-tree is fair if each of its branches is a fair SLD-derivation. A selection rule R
is fair if all SLD-derivations via R are fair. Thus an SLD-tree is fair if it is via a fair
selection rule.

5.6. THEOREM. Consider a program P and a ground atom A. Then the following are
equivalent:

(a) A is in the finite failure set of P.
(b) A~ Tplw.
(c) Every fair SLD-tree with +-A as root is finitely failed.

534 K.R. APT

To prove that (a) implies (b) we need two simple lemmas which are counterparts
of Lemmas 3.22 and 3.23.

5. 7. LEMMA. Consider a program P, a negative clause N and a substitution e. If Pu { N}
has a .finitely failed SLD-tree of depth ~k, then so has Pu{NO}.

PROOF. By a straightforward induction on k. O

5.8. LEMMA. Consider a program P and sequences of atoms F 1 , ••. , Fn. Assume that
F 1'···· Fn have no variables in common. If Pu{ +-Fi. ... , Fn} has a .finitely failed SLD-tree
of depth ~k then so has Pu{+-Fi} for some ie{l, ... ,n}.

PROOF. By a simple induction on k using an analogous argument as that in the proof of
Lemma 3.23. O

PROOF OF THEOREM 5.6. (a)=>(b): We prove a stronger claim, namely the following
lemma.

5.9. LEMMA. Suppose Pu{ +-A} has a finitely failed SLD-tree of depth ~k. Then
A~ Tp!k.

PROOF. We proceed by induction on k. The claim clearly holds when k = 1. Assume it
holds for k-1 and suppose by contradiction that A e Tp!k. Then, for some clause
B+-B 1, ... , Bn inP,A::B8 and {B 1 8, ... , Bn8} s;; TpHk- l)forsome substitution 8. Thus,
for some mguy, Ay::By and 8=ya for some a. Hence +-(BI> ... ,Bn)Y is the root of
a finitely failed SLD-tree of depth ~k-1. By Lemma 5.7 so is +-(Bi, ... , Bn)B. Now
using Lemma 5.8 with each Fi being a single ground atom we get that, for some
i, 1 ~ i ~ n, the goal +-Bj8 is also the root of a finitely failed SLD-tree of depth ~k- 1. By
the induction hypothesis Bi8 ~ TpHk-1) which gives the contradiction. O

To prove that Theorem 5.6(b) implies (c) we need the following lemma.

5.10. LEMMA. Consider a program Panda goal +-A 1, ... , Am. Suppose there is an infinite
fair SLD-derivation N 0 , N 1 , •.• with N 0 = +-A 1, ••• , Am and the sequence of substitutions
80 , 81 , •••• Then for every k~O there exists an n~O such that

m

U [Ai Bo ... e.] s;; Tp!k.
i= 1

PROOF. We proceed by induction on k. The claim is clearly true if k=O. Suppose it
holds for k-1. Fix ie {l, ... , m}. By fairness, for some p~O, the atom Aje0 ... eP_ 1 is
selected in the goal Np· By the induction hypothesis for some s ~ 0

q

U [Biep ... ep+s] s;; TpHk-1)
j=l

LOGIC PROGRAMMING 535

holds where Np+ 1 is +--Bi.· .. , Bq. But

[A;90 ... 9p+s] s;;; Tp(0
1

[BiOP ... Op+s])

so

[A;Oo ... Op+s] £ Tplk

by the monotonicity of Tp. Thus for each iE {1, .. ., m} there exists an n;~O such that
[A;90 ••• 9"'] £ Tplk. Put now n=max(n1,. • ., nm). D

PROOF OF THEOREM 5.6 (continued). (b)~(c): Suppose that A~ Tplw. Consider a fair
SLD-tree with +-A as root. By Lemma 5.10 all of its branches are finite. But this tree
does not contain the empty clause. Otherwise, by the Success Theorem 3.25,we would
have A E Tplw £ Tplw. Thus it is a finitely failed SLD-tree.

(c)~(a): Obvious, as for every goal N there is a fair SLD-tree with N as root. D

Equivalence between (a) and (b) is due to Apt and van Emden [4], and between (a)
and (c) due to Lassez and Maher [61]. The first equivalence can be seen as a theorem
dual to the equivalence between (a) and (b) in the Success Theorem 3.25. The second
equivalence can be seen as a counterpart of the equivalence between (a) and (c) in the
Success Theorem 3.25 where duality is achieved by restricting the attention to fair
SLD-trees.

5.5. Completion of a program

Another way of inferring negative information from a logic program is that of using the
concept of a completion of a program due to Clark [21].

A program can be seen as a collection of statements of the form "if ... then ... ". This
does not allow us to conclude negative facts because only positive conclusions are
admitted. But treating the clauses as statements of the form "... iff ... " we obtain
a stronger interpretation which allows us to draw negative conclusions. In doing so we
should exercise some care. For example we wish to interpret the program {A+-- B, A +-C}
as A-BvC and not as (A-B)A(A-C).

First, assume that"=" is a new binary relation symbol not appearing in P. We write
s # t as an abbreviation for -i(s = t). We perform successively the following steps, where
Xi. .. ., Xn, ... are new variables.

Step 1: Remove terms. Transform each clause p(t1 ,. . ., tn)+-B1 ,. . ., Bm of Pinto

p(X1,. . .,Xn)+--(X1 =ti)A ... A(Xn=tn)AB1 /\ "' ABm·

Step 2: Introduce existential quantifiers. Transform each formula p(x1,. • ., Xn)+--F
obtained in the previous step into

p(xi, .. . , Xn)+--3y1 ... 3ydF,

where Yi,. .. , yd are the variables of the original clause.

536 K.R. APT

Step 3: Group similar formulas. Let

p(x i. ... , Xn)+- F 1'

p(xi.···, Xn)+-Fk

be all formulas obtained in the previous step with a relation p on the left-hand side.

Replace them by one formula

p(X1, ... , Xn)+-f1 V ··· V Fk.

If F 1 v ·· · v Fk is empty, replace it by true.
Step 4: Handle "undefined" relation symbols. For each n-ary relation symbol q not

appearing in a head of a clause in P add a formula

q(x1, ... , Xn)+-false.

Step 5: Introduce universal quantifiers. Replace each formula p(x1 , ... , x")+-F by

Vx 1 · .. Vxn(P(X1 , ... , Xn)+-F).

Step 6: Introduce equivalence. In each formula replace"+-" by "+4".

We call the intermediate form of P obtained after Step 5 the IF-definition associated
with P and denote it by I F(P). We call the final form the IF F-definition associated with
P and denote it by IF F(P). By ONLY-IF(P) we denote the set of formulas obtained from
IF(P) by replacing everywhere "+-" by "-i-".

5.11. EXAMPLE. (i) Reconsider the program P from Example 5.2. Then

IFF(P)= {Vx(element(x)-x= fire v x=air v x=water v x=earth),

Vx(stuff(x)+-+x =mud)}.

Note that both IFF(P) 'f= -,stuff(fire) and IFF(P) 'f= -,element(mud) provided we
interpret "=" as identity.

(ii) Consider the program

Then

P ={link(a, b)+-, link(b, c) +-,
connected(u, v)+-link(u, v),
connected(u, v)+-link(u, z), connected(z, v) }.

IFF(P) = {Vx'v'y(link(x, y)+-+(x =a/\ y = b) v (x= b /\ y = c)),

Vx'v'y(connected(x, y)+-+:lu3v((x = u) /\ (y = v) /\ link(u, v))

v :Ju3v3z((x= u) /\ (y = v) /\ link(u, z) /\ connected(z, v))) }.

It is easy to see that both IF F(P) 'f= connected(a, c) and IF F(P) 'f= -,connected(a, a),
provided we interpret "=" as identity.

We thus see that negative information can be inferred using the IF F-definition

LOGIC PROGRAMMING 537

provided we interpret the relation symbol "=" properly. The problem of the proper
interpretation of "=" is more subtle than it appears. As a first step we extend the
interpretation of a first-order language so that "=" is interpreted as identity.

Let I be an interpretation of the first-order language associated with P. We put for
any two terms t 1 and t 2 and a state a over I

I f=,,t 1 =t2 iff a(t 1) and a(t2) are the same elements of the domain of/.

However, this does not yet solve the problem because, even though mud and earth or
a and b are different constants, they still can become equal under some interpretation.
To exclude such situations we add to the IF F-definitions the following free equality
axioms which enforce proper interpretation of "= ".

(1) /(xi.···,xn)=f(y1,···•Yn)~x1=Yt/\· .. /\Xn=Yn for each n-ary function f,
(2) f(x i. ... , Xn) # g(y1 , ... , Ym) for each n-ary function f and m-ary function g such

that f #g,
(3) x # t for each variable x and term t such that x =/= t and x occurs in t.

Here, similarly as in the proof of the Unification Theorem 2.3, we identify constants
with 0-ary functions. Thus (1) includes c=c for every constant c as a special case, and (2)
includes c # d for all pairs of distinct constants as a special case.

The resulting interpretation of "=" turns out to be sufficient for our purposes.
Observe the striking similarity between the free equality axioms and steps (1), (2) and (5)
of the unification algorithm used in the proof of the Unification Theorem 2.3. We shall
exploit it in Subsection 5.7.

Given now a program P we denote by comp(P) the set of formulas IF F(P) augmented
by the free equality axioms. comp(P) is called the completion of P.

5.6. Models of completions

In order to assess the proof-theoretic power of completions, we study their models
first. However, in contrast to the case of models of logic programs it is not sufficient to
restrict attention here to Herbrand models. This is the content of a proposition we
prove at the end of this subsection.

Therefore we shall consider here arbitrary models, but we shall study them by means
of a natural generalization of the immediate consequence operator Tp. First, following
Jatfar, Lassez and Lloyd [48], we introduce the concept of a pre-interpretation for
a first-order language L. Its definition is identical to that of an interpretation given in
Subsection 3.1 with the exception that the clause explaining the meaning of relations is
dropped. We then say that an interpretation I is based on J if I is obtained from J by
assigning to each n-ary relation r of Lan n-ary predicate r1 on the domain of J, that is,
by fixing the meaning of the relations of L. Thus each interpretation based on J can be
uniquely identified with a set of generalized atoms, i.e. objects of the form r(ai. ... , an)
where r is an n-ary relation of Land a 1 , .•• , an are elements of the domain of J. That is
what we shall do in the sequel.

We now generalize the operator Tp so that it acts on interpretations based on a given
pre-interpretation. To this purpose we first introduce the following useful notation: Fix

538 K.R. APT

an interpretation /. Let A= p(t 1, ... , t") be an atom and let a be a state over J. Then we
denote by Acr the generalized atom p(cr(t 1), ... , cr(t.)).

Let now J be a pre-interpretation and let I be an interpretation based on J. For
a program P and a generalized atom D, we put

DET~(J) iff for some state a over 1 and a clause B+--B 1 , ••• ,B. of P

we have D =Ba and J I= a B 1 A · · · A B •.

Thus T~ maps interpretations based on J to interpretations based on J. The operator
T~ enjoys several properties similar to those of Tp. We list them in the following
lemma omitting the proofs analogous to those of Lemma 3.7 and Lemma 3.12.

5.12. LEMMA. Let P be a program and J a pre-interpretation. Then
(i) T~ is .finitary.

(ii) T~ is monotonic.
(iii) For an interpretation I based on J, 1 is a model of P if! T~(l) s /.

We now wish to prove a similar characterization for models of completions. To this
purpose we first note the following.

5.13. LEMMA. For a program P, P and IF(P) are semantically equivalent.

PROOF. In Steps 1, 2, 3, 5 each formula is replaced by a semantically equivalent one. In
turn, in Step 4 valid formulas are introduced. O

5.14. COROLLARY. For a program Panda pre-interpretation J, an interpretation I based
on J is a model of IF(P) iff T~(/)sl.

We also have the following theorem.

5.15. THEOREM. For a program Panda pre-interpretation J, an interpretation I based on
J is a model of ONLY-IF(P) if.! T~(l)2I.

To prove it, we first need the following lemma.

5.16. LEMMA. Let I be an interpretation based on a pre-interpretation J and Pa program.
Let Vx 1 ... Vx.(p(x 1 ,. . ., x.)-+ F) be a formula in ON LY-IF(P). Then for every state a over
I

PROOF. If p does not appear in a head of a clause in P then both sides of the claimed

LOGIC PROGRAMMING

equivalence are necessarily false. Otherwise

p(x i. ... , Xn)a E T~(J)

539

iff for some stater over I and some clause p(t 1 , •.. , t.) +- B1 , ••• , Bm of P
lf=,B1 A .. · A Bm and a(x;) = r(t;) for i = 1, ... , n

iff Jf= .. 3Yi ... 3yd((X1 =ti)A ... /\ (x.=t.) /\ B1 /\ ... /\ Bm)
for some clause p(ti. ... , tn)+-B i. ... , Bm of P with y 1 , ... , yd
being all its variables

iff Jf= .. F. D

PROOF OF THEOREM 5.15. We have

J 1s a model of ONIX-IF(P)

iff for every formula Vx 1 ..• Vx.(p(xi. ... , x.)--+F) in ONLY-IF(P)
and every state a over I p(x 1 ,. • ., x.)ael implies lf= .. F

iff (by Lemma 5.16) for every relation p of P and state a over I
p(x 1 , •.• , x.)a EI implies p(x 1, .•. , x.)a E T~(J)

iff T~(J)2I. D

Combining Corollary 5.14 and Theorem 5.15 we get the following characterization
of the models of IF F(P).

5.17. THEOREM. Let P be a program and Ja pre-interpretation. Then an interpretation
I based on J is a model of IFF(P) if! T~(J)=I.

PROOF. IFF(P) is semantically equivalent to the set IF(P)uONLY-IF(P) of formulas.

D

Restricting attention to Herbrand interpretations we can now draw some consequen
ces about the completion of P.

5.18. THEOREM. (Apt and Van Emden [4]). Let P be a program.
(i) A Herbrand interpretation I is a model of comp(P) if! Tp(J)=I.

(ii) comp(P) has a Herbrand model.
(iii) For any ground atom A, comp(P)u{A} has a Herbrand model if! Aegfp(Tp).

PROOF. (i) Every Herbrand interpretation is a model of the free equality axioms.
(ii) By (i) and the Characterization Theorem 3.13.

(iii) By (i), Lemma 3.12(ii) and Theorem 3.10. D

Moreover, we have the following observation which brings us to the end of this
section.

5.19. THEOREM. There is a program Panda ground atom A such that comp(P)u{A}
has a model but it has no H erbrand model.

540 K.R. APT

PROOF. Take the program P considered at the beginning of Subsection 4.5. As

gfp(Tr)=0, by Theorem 5.18(iii), comp(P)v{q(a)} has no Herbrand model. However,
comp(P)v { q(a)} is consistent. Indeed, take as a domain of the interpretation a disjoint

union Z'u N of the set of integers and the set of natural numbers. Interpret the constant

a as zero in the set N and fas a successor function, both on the set "lL and the set N.
Finally, interpret pas true for all elements of 7l_ and q true only for the zero of N. The

resulting interpretation is a model of comp(P)v{ q(a) }. O

In Subsection 5.10 we provide a characterization of the finite failure which provides

a more direct proof of the above theorem.

5.7. Soundness of the negation as failure rule

Recall that completion of a program was introduced in order to infer negative

information from a program. We now relate it to the previously studied way of
deducing negative information-that by means of the negation as failure rule. To this

purpose we first investigate models of the free equality axioms (Subsection 5.5). Assume

a program P and denote these axioms by Eq. As Eq does not refer to relations, it makes

sense to say that a pre-interpretation J is a model of Eq. Similarly, it is meaningful to

talk about states over a pre-interpretation. For each ground term t denote its value in

the domain of J by tJ. We write Jl=O's=t when o-(s) equals o-(t).

5.20. LEMMA. Let J be a pre-interpretation which is a model of Eq. Then the domain
of J contains an isomorphic copy of Up·

PROOF. It suffices to show that, for all ground terms s, t, s1 = t1 implies s = t. We proceed
by induction on the structure of ground terms.

If s1 = t1 then, by axioms (1) and (2), s and t are either the same constants or are

respectively of the form f(s 1 ,. .. , sn) and f (t i.· .. , tn). The claim now follows by axiom (1)

and the induction hypothesis. D

In the sequel we shall identify this isomorphic copy with Up· Given a pre-interpreta

tion J let BJ stand for the set of all its generalized atoms. If J is a model of Eq then, by the

above lemma, BJ contains an isomorphic copy of the Herbrand base BP. We identify
this copy with BP.

The following lemma clarifies the relation between the unification and free equality
axioms.

5.21. LEMMA (Clark [21]). (a) If the set {si.=t1,. .. , sn=t.} has a unifier then for
some of its mgu { x i/u 1,. . ., xdud

Eq I= s 1 = t 1 /\ ... /\ Sn= tn-+ x I = u 1 /\ ... /\ xk = Uk.

(b) If the set { s 1 = t 1 ,. • ., sn = tn} has no unifier then

Eq I= s 1 = t 1 /\ · .. /\ Sn= tn-> false.

PROOF. Modify the Unification Algorithm given m the proof of the Unification

LOGIC PROGRAMMING 541

Theorem 2.3 as follows. First display each set {s 1 =t 1 , ... ,sn=t.} of equations as
a formula s1 =t1 /\ · ·· /\ sn = tn. Then interpret the replacement and deletion steps as
operations on these formulas. Interpret the halt with failure action as a replacement of
the formula by false.

Observe that if t/; is obtained from <p by applying one of the steps of the algorithm
then Eqf= q>--+tjJ. Indeed, for any x and t, <p 0 Ax=tA<p 1 --+(<p0 Acpi){x/t} is a valid
formula. Other cases are immediate.

The lemma now follows from the correctness of the unification algorithm. D

Given a pre-interpretation Janda state CJ over J, call a substitution 8 invariant over
a state CJ if, for all x, CJ(x) = CJ(x8).

5.22. COROLLARY. Let J be a pre-interpretation which is a model of Eq. Jf for some state
CJ over J

Jf=.,s1 =t1 /\ ... /\Sn=tn,

then, for some mgu (J of {s1 = ti, ... , Sn= tn} invariant over a,

Call now an interpretation I based on J good if, for all conjunctions of atoms F,
I f=., F for some state CJ implies I f= F8 for some substitution e. Obviously not all
interpretations are good. But those of interest to us are. First we need the following
two lemmas.

5.23. LEMMA. Let J be a pre-interpretation which is a model of Eq. Let I be based on J.
Suppose that I is good. Then T~(l) is good, as well.

PROOF. Consider a sequence A 1 , ... , Ak of atoms. The operator T~ does not depend on
the choice of the names of variables in P. Thus we can assume that each of the variables
of P appears in at most one clause of P and none of them appears in Ai, ... , Ak· Suppose
now that T~(I) f=., A1 /\ • •· /\ Ak for some state CJ. By the definition of T~, for each
i=l, ... ,k, there exists a clause B;.,_Bil>· .. ,B~, in Panda stater; such that
If= .. Bi1 /\ · •• /\ B~, and A;a=B;r;. Define now a stater by

Then

r(x)= {
r;(x)

CJ(x)

i; 1 •...• k
j= l, ... ,mi

and, for each i = 1, ... , k,

A;r=B;r.

if x appears in Bi.,_Bi1 ,. • ., B~.,

otherwise.

(5.1)

(5.2)

By Corollary 5.22 and (5.2) there exists a substitution e invariant over r such that, for
each i= 1, ... , k,

(5.3)

542 K.R. APT

By the definition of invariance and (5.1)

/f=t /\ BW
i= l,. .. ,k
j= l, ... ,mi

But I is good, so for some substitution y

l f=, /\ B}8y.
i = l. ... ,k

j;:::.1, ... ,mi

We can assume that y is such that each B~ey ground.
Thus by the definition of T~, for each i = 1, ... , k, BJ}y E T~(l), i.e. by (5.3)

T~(l) f= (A 1 A···/\ Ad8y. This concludes the proof. D

5.24. LEMMA. Let J be a pre-interpretation which is a model of Eq. Let l be based on J.
Suppose that I is good. Then BPn T~(l) = TP(Bpnl).

PROOF. Suppose A E B Pn T~(I). Then, for some state rJ over l, A= BrJ and I F=" A 1 /\ · · ·

A An where B+-A 1 , •. . , An is a clause from P. Thus rJ when restricted to the variables of

Bis a ground substitution, say 17. We thus have IF= .,(A 1 /\ · · · A An)'1. But I is good, so

for some substitution e, If= (A 1 A··· A An)178. Thus Bpnl f= (A 1 A··· A An)118. More

over A= B178, so A E Tp(Bpnl).
If now A E TP(Bpnl) then a fortiori A E Bpn T~(Bpnl), so by the monotonicity of

T~ we have AEBpnT~(l). D

This lemma states that all ground atoms inferred from l by means of T~ can already

be inferred by means of TP, provided I is good.

This brings us to the following important consequences of Lemmas 5.23 and 5.24

which will be also used in Section 6.

5.25. COROLLARY. Let J be a pre-interpretation which is a model of Eq.

(i) For every n ~ 0, THn is good.
(ii) For every n ~O, BPn T~ln = TPln.

(iii) B Pn r; lw = TP lw.

PROOF. We have T~lO=BJ. But BpSBJ. so for all conjunctions of atoms F and all

substitutions e, BJ F= Fe. Thus THO is good and, by induction using Lemma 5.23, for

every n ~ 0, THn is good.

(ii) We proceed by induction on n. For n = 0 it is a consequence of the fact that

BPsB1 . Suppose this claim holds for some n~O. Then

BPnT;l(n+ l)=BpnT;(T~ln)

= Tp(Bpn T~ln) (by (i) and Lemma 5.24)

= TP(Tpln) (by induction hypothesis)

=Tpl(n+ 1).

This implies the claim for n + 1.
(iii) Immediate, by (ii). D

LOGIC PROGRAMMING 543

Finally, we prove the following lemma which will also be needed in Section 6.

5.26. LEMMA. Let P be a program and I a model of comp(P). Then BpnI s; Tplw.

PROOF. I is based on some pre-interpretation J. I is a model of IF F(P), so, by Theorem
5.17, T~(I) =I. Thus, by Lemma 3.11, Is; T~lw. J is a model of Eq, so by Corollary
5.25(iii) and the above inclusion, the claim follows. O

We can now relate the completion of a program and negation as failure rule.

5.27. THEOREM (soundness of the negation as failure rule) (Clark [21]). Let P be a
program. If A is in the finite failure set of P then comp(P) f= -.A.

PROOF. Let I be a model of comp(P) and suppose that A is in the finite failure set of P.
Then, by Theorem 5.6, A~ TPlw, so by Lemma 5.26 A fj BPnI, i.e. If= -.A. D

5.8. Completeness of the negation as failure rule

We now prove the converse of the above theorem. We follow here essentially the
presentation of Lloyd [64] based on a proof due to Wolfram, Maher and Lassez [102].
We first show how to construct models of the free equality axioms.

Let CC be a set of substitutions. We call~ directed if

8,YJE'6' => there exists a }'E~such that (}~y and IJ~Y·

Here (} ~ y means that (} is more general than y. Suppose now that CC is a set of
substitutions. For two terms s, t, put

s "'<t· t itf for some (} E ~ s(} = t8.

5.28. LEMMA. Suppose that CC is a directed set of substitutions. Then -,. is an equivalence
relation which is a congruence w.r.t. all function symbols. Moreover, the pre
interpretation induced by "''C is a model of Eq.

PROOF. The relation -,. is always reflexive and symmetric. By directedness of~ it is
also transitive.

Let [s] stand for the equivalence class of terms w.r.t. "'<t· Let f be an n-ary function
symbol. lf[s 1] =[t 1],. . ., [s.] =[t.] for some terms s1 , t 1 ,. . ., s., t., then, bydirectedness
of ~ for some (} E ~

s1 8=t 1 8,. . ., s.B=t.8.

Hence f(s 1 ,. . ., s.)8=f(t 1 ,. • ., t.)8, i.e. [f(s1,. . ., s.)J = [f(t1,. . ., t.)].
Thus the equivalence relation induced by "''tl is indeed a congruence. This means that

"''c induces a pre-interpretation of L. That this interpretation is indeed a model of Eq is
easy to see, as nonunifiable terms have necessarily different equivalence classes w.r.t.
"''{!· D

544 K.R. APT

The essence of the proof of the completeness theorem lies in the following lemma.

5.29. LEMMA. Consider a program P and a goal N. Suppose there is a nonfailed fair
SLD-derivation with N as the initial goal. Then comp(P)u{ -,N} is consistent.

PROOF. Let <P=N0 ,N1, ••• with N 0 =N and with the sequence of substitutions
80 ,(Ji.··· be the SLD-derivation in question and let N =..-.Ai, ... , A •. Then
-,N = 3(A 1 "···"A.). We use this derivation to construct a model of
comp(P)u{3(A 1 A···AA.)}. Let <t'={80 .•. 8i: i;;i:O}. Note that <t' is directed. By the
last lemma the pre-interpretation J induced by "''ii is a model of Eq. Let [s] denote
the equivalence class under "''ii of a term s.

We now construct an interpretation I based on J by putting

I= {p([t1], •.. , [tnJ): p(ti, ... , tn) appears in a goal from <P}.

We first show that I~ T!(I), i.e. that I is a model of ON LY-IF(P).
Suppose that p(ti, ... , tn) appears in a goal N; of <P. Since <P is nonfailed and fair, there

existsj~i such that p(s1 , ••• ,sn)=p(t1>····t•)Oi···ei_ 1 is the selected atom in Ni.
In subsection 2.7 we assumed that each mgu 81 is idempotent and relevant. Thus by

Lemma 2.7 for any I, m such that m >I, 81 does not act on the variables from Nm or
Nm(Jm· Fix k, 1 ~k~n. Thus, since tk appears in N;,

tk81=tk for l<i,

and, since tkOi·· .ei appears in Ni(Ji

Thus

rkei·· .OA = tkei ... ej for l<j.

= tkOi ... Oi

:: tk(JO···(Jj·

Hence for all k, 1 ~k~n

[tk] = [tk(Ji···(Jj] (by (5.6))

(by idempotence of Oi)

(by (5.4) applied i times)

= [skOi]. (by definition of sk)

(5.4)

(5.5)

(5.6)

But by the definition of I we have p([s1 Oi], .. . , [s.Oi]) E T~(J), so p([t 1], .. ., [tn]) E T~(J),
as desired.

Now by Theorem 3.10 and Theorem 5.17 I can be extended to a model of comp(P). By
the construction, I is a model of 3(A 1 /\···"A,), and a fortiori so is its extension. D

We are now in position to prove the desired theorem. It is formulated in a slightly
more general form which will be needed in Section 6.

5.30. THEOREM (completeness of the negation as failure rule) (Jaffar, Lassez and Lloyd
[48]). Let P be a program. If, for a goal N, comp(P)f= N, then Pu{N} has a finitely
failed SLD-tree.

LOGIC PROGRAMMING 545

PROOF. Assume there is a nonfailed fair SLD-derivation with N as the initial goal. By
the last lemma, comp(P)u{ --,N} is consistent. Thus by contraposition, comp(P) f= N
implies that every fair SLD-tree with N as root is finitely failed. Thus Pu{N} has
a finitely failed SLD-tree. D

It is perhaps useful to indicate here that, using Lemma 5.29, an alternative proof of
the implication (b)=>(c) in Theorem 5.6 can be given without the use of Lemma 5.10.
Indeed, assume there is a nonfailed fair SLD-derivation with +-A as the initial goal.
Then by Lemma 5.29 comp(P)u{A} has a model. By Lemma 5.26 this implies that
A E Tplw. Thus, by contraposition, Ar/= Tptw implies that every fair SLD-tree with +-A
as root is finitely failed.

5.9. Equality axioms versus identity

Clark's [21] original definition of free equality additionally included the following
usual equality axioms:

(1) x=x,
(2) x i =Yi /\ · · · /\ Xn = Yn ~ f (x i, ... , Xn) = f (Yi. ... , Yn) for each function symbol f,
(3) X1=Y1/\···/\Xn=Yn~(p(x1, ... ,xn)~p(y 1 , .. .,yn)) for each relation symbol p

including =.

Denote these axioms by EQ. We did not use EQ at the expense of interpreting
equality as identity. Fortunately, both approaches are equivalent as the following
well-known theorem (see e.g., [72, p. 80]) shows.

5.31. THEOREM. Let S be a set of formulas in a first-order language L including =. Then
for every formula <p

SF= cp iff SuEQ F=+ <p,

where f=+ stands for validity w.r.t. interpretations of L which interpret = in an arbitrary
fashion.

PROOF. (=>):An interpretation of= in a model ofEQ is an equivalence relation which
is a congruence w.r.t. all function and relation symbols. This implies that every model of
EQ is equivalent to (i.e., satisfies the same formulas of) a model in which equality is
interpreted as identity. This model has as the domain the equivalence classes of the
interpretation of = with the function and relation symbols interpreted in it in a natural
way. The proof of the equivalence proceeds by straightforward induction on the
structure of the formulas.

(<=): When = is interpreted as identity, all axioms of EQ became valid. D

5.10. Summary

Summarizing the results obtained in Subsections 5.4, 5.7 and 5.8 we obtain the
following characterizations of the finite failure.

5.32. THEOREM (Finite Failure Theorem). Consider a program Panda ground atom A.

546 K.R. APT

Then the following are equivalent:
(a) A is in the finite failure set of P.
(b) Ar/: TP!w.
(c) Every fair SLD-tree with ~A as root is finitely failed.
(d) comp(P) I= -,A.

These results show that the negation as failure rule is a proof-theoretic concept with
very natural mathematical properties. Comparing the above theorem with the Success
Theorem 3.25, we see a natural duality between the notions of success and finite failure.
However, this duality is not complete. By the Characterization Theorem 3.13 and the
Success Theorem 3.25, A is in the success set of P iff A E lfp(Tp). On the other hand, the
"dual" statement: A is in the finite failure of P iff A!/: gfp(Tp) does not hold because, as
noted in Section 4.5, for certain programs P we have gfp(Tp) ¥ TP!w.

For any such program P and a ground atom A E TP!w-gfp(Tp) by the above
theorem and Theorem 5.18(iii), comp(P)u {A} has a model but it has no Herbrand
model. This yields a more direct proof of Theorem 5.19.

Clause (d) of the Finite Failure Theorem suggests another possibility of inferring
negation. Consider the following rule implicitly studied in [4].

A is false in all Herbrand models of comp(P)

-,A

Call this rule the H erbrand rule. Then the results of this section can be summarized by
Fig. 3 from [64, p. 86] assessing the content of Lemma 5.3, Theorem 5. l8(iii) and
Theorem 5.6.

-.A inferred under negation as failure rule

-.A inferred under
Herbrand rule

Fig. 3.

" -.A inferred under CW A

LOGIC PROGRAMMING 547

5.11. Bibliographic remarks

Theorem 5.17 is a straightforward generalization due to Jaffar, Lassez and Lloyd
[48] ofa special case (Theorem 5.18(a)) proved in [4]. The notion of a finite failure set
was introduced in [4].

Lemma 5.20 appears as an exercise in [64, p. 88]. Proofs of Lemma 5.21 and Theorem
5.26 seem to be new. Lemma 5.21 was generalized by Kunen [59] who proved that that
Eq is a complete axiomatization for the fragment L(=) of L containing = as the only
relation symbol.

Jaffar and Stuckey [49] proved that every program is semantically equivalent to
a program P for which gfp(Tp) = Tp!w. Maher [69] provided a partial characterization
of programs P for which gfp(Tp)= Tp!w.

6. General goals

6.1. SLDN p- -resolution

When trying to extend the results of Sections 3 and 5 to general programs, we
encounter several difficulties. In this paper we examine only a very mild extension of the
previous framework, namely the use oflogic programs together with general goals. This
provides some insight into the nature of the new problems.

We have to explain first how general goals are to be refuted.For this purpose we need
only to clarify how negative literals are to be resolved. It is natural to use for this
purpose the negation as failure rule studied in the previous section. Strictly speaking
this rule was defined only for ground atoms, but it can be extended in an obvious way to
the nonground case.

This leads us to an extension of the SLD-resolution called SLDNF- -resolution
(SLD-resolution with negation as failure rule) introduced in [21]. We added the
superscript " - " to indicate that it is used here only with nongeneral programs.
Formally, we first introduce the notion of a resolvent of a general goal. Let P be
a program and G= +-Li.···· L. a general goal. We distinguish two cases. Fix i, 1 ~i~n.

(a) Literal L; is positive. Suppose that C=A+--B1 , •.• , Bk is a clause from P. If L; and
A unify with an mgu (} then

+--(L 1 , ••• , L;- 1, B1 , ••. , Bk, L;+ 1, .•• , L.)(}

is a resolvent of G and C with the mgu e.
(b) Literal L; is negative, say -.A;. Suppose that Pu{ +-A;} has a finitely failed

SLD-tree. Then

is a resolvent of G.
L; is called the selected literal of G.
Now, given a program Panda general goal G, by an SLDNF- -derivation of Pu{ G}

we mean a maximal sequence G0 , Gi. ... of general goals where G0 =G, together with

548 K.R. APT

a sequence C0 , Ci.··· of variants of clauses from P and a sequence B0 , Bi.··· of
substitution such that, for all i = 0, 1, ... ,
• if the selected literal in G; is positive then G; + 1 is a resolvent of G; and C; with the

mgu8;;
• if the selected literal in G; is negative then G;+ 1 is a resolvent of G;, C; is arbitrary and

8; is the empty substitution;
o C; does not have a variable in common with G0 ,C0 , ... ,C;- 1 •

Note that if the selected negative literal -,A in a general goal G is such that Pv {-+-A}
has no finitely failed SLD-tree, then G has no successor in the SLDNF- -derivation.
Also note that a successful resolving of a negative literal introduces no variable
bindings.

The notions of SLD-refutation, computed answer substitution, selection rule and
SLD-trees generalize in an obvious way to the case of SLDNF- -resolution. In
particular we can talk of successful and failed SLDNF- -trees.

6.2. Soundness of the SLDNF- -resolution

In any soundness or completeness theorem we need to compare the existence of
SLDNF- -refutations with some statements referring to semantics of the program
under consideration. However, a direct use of the programs is not sufficient here
because of the negative literals. For example Pu { ~ -,A} is always consistent. What
we need here is an extension of P which implies some negative information. An obvious
candidate is the completion of P, comp(P), which was actually introduced by Clark [21]
to serve as a meaning of general programs when studying SLDNF-resolution.

After these preparations we can formulate the appropriate soundness theorem,
essentially due to Clark [21].

6.1. THEOREM (soundness of SLDNF--resolution). Let P be a program and G =

~ L 1, •.. , Lk a general goal. Suppose that there exists an SLDN F-refutation of P v { G}
with the sequence of substitutions 80 , ... , 8". Then (L1 A · · · A Ld80 ... en is a semantic
consequence of comp(P).

To prove it, we need the following mild generalization of Theorem 5.27, essentially
due to Clark [21].

6.2. LEMMA. Consider a program P and an atom A. Suppose there is a finitely failed
SLD-tree with ~A as root. Then comp(PH= -,A.

PROOF. By Lemma 5. 7 there exists an n0 ~1 such that, for every ground substitution 8,
P v { A8} has a finitely failed SLD-tree of depth ~ n0 . By Lemma 5.9, for every ground
substitution 8, A8 ~ TPLn 0• Suppose now that for some interpretation I based on
a pre-interpretation J, I F comp(P), and moreover, for some state a, I Fu A. By
Theorem 5.17, T~(/) =I. Thus, by Lemma 3.11, I c;:; T~Ln0 . So we have T~Ln0 Fu A. But

LOGIC PROGRAMMING 549

by Corollary 5.25(i), T!lno is good, so for some ground substitution 8, T~ln0 f= AB.
Now by Corollary 5.25(ii), Ae E T~ln0 . This contradicts the former conclusion. D

We can now prove soundness of SLDNF- -resolution.

PROOF OF THEOREM 6.1. Let Ai, ... ,A1 be the sequence of positive literals of G and
-.B1 , ..• , -,Bm the sequence of negative literals of G. If l=O or m=O we disregard the
corresponding step in the considerations below.

With each SLDNF--refutation of Pu { G} we can associate an SLD-refutation of
Pu {+--Ai. ... , A 1} obtained by deleting all resolvents arising from the selection of
negative literals and by deleting all negative literals in the remaining resolvents. By the
soundness of SLD-resolution (Theorem 3.2) and the fact that empty substitutions are
used when resolving negative literals,

P f=(A1 /\ ... /\ A1)80 ... en·

But comp(P) f=IF(P), so by Lemma 5.13

comp(P) F (A 1 /\ ... /\ A1)eo ... en.

Also, by Lemma 6.2, for i= 1, ... , m,

comp(P) F -iB;8o ... ep-1>

where -,B;80 •.. 8r 1 is the selected literal of GP (O~p~n). Thus

comp(P) F (-,B 1 /\ ... /\ -,BmlBo ... en

which concludes the proof. D

6.3. COROLLARY. If there exists an SLDN F- -refutation of Pu { G} then comp(P) u { G}
is inconsistent.

6.3. Floundering

We now consider the problem of completeness of the SLDNF- -resolution.
Unfortunately, even the weakest form of completeness does not hold as the following
example shows.

6.4. EXAMPLE. Consider the following program P:

p(a) +- p(a),

r(b) +-.

Then in every model I of the free equality axioms

I f=(Vx(p(x) +--+ x=a /\ p(a)))-+ -.p(b),

so by the definition of completion comp(P) f= -.p(b), that is, comp(P) u { +- -.p(x)} is

550 K.R. APT

inconsistent. However, Pu { +- p(x)} has no finitely failed SLD-tree, so there is no
SLDNF--refutation of Pu{+-- --,p(x)}.

A natural way out of this dilemma is to impose on SLDNF- -resolution some
restrictions. Clearly, the problem is caused here by the use of nonground negative
literals. Notice for instance that in the above example Pu { +- p(b)} has a finitely failed
SLD-tree, so there exists an SLDNF--refutation of Pu { +- --,p(b)}.

We thus introduce the following restriction. We say that a selection rule is safe if it
only selects negative literals which are ground. From now on we shall use only safe
selection rules. But a safe selection rule is not defined on some sequences ofliterals. This
means that certain general goals have no resolvents under a safe selection rule.

We say that an SLDNF- -derivation of Pu { G} via a safe selection rule flounders ifit
is of the form G0 , ... , Gk with G0 = G, where Gk contains only nonground negative
literals. P v { G} flounders if some SLDNF--derivation of Pu { G} (via a safe selection
rule) flounders.

Obviously, restriction to safe selection rules does not restore completeness of
SLDNF- -resolution-a smaller number of selection rules cannot help. But one would
hope that a restriction to programs P and general goals G such that Pu { G} does not
flounder, does help. Unfortunately, such hopes are vain.

6.5. EXAMPLE. Consider the following program P:

r(a) +-,

r(b) +- r(b),

r(b) +- q(a),

q(a) +- q(a)

and the general goal G = +- r(x), --,q(x). We now claim that
(i) P u { G} does not flounder,

(ii) there is no SLDNF- -refutation of P v { G},
(iii) comp(P) u { G} is inconsistent.

Both (i) and (ii) are easy to check. To prove (iii), take an interpretation I based on
a pre-interpretation J such that If= comp(P). By Theorem 5.17, T;(I) =I. Thus by the
form of P the following three facts hold:

(a) r(a) EI,

(b) q(a) EI--+ r(b) E /,

(c) q(b) <t I.
This means that either I f= r(a) /\ --,q(a) or If= r(b) /\ --,q(b) holds, i.e. I f= 3x(r(x) /\ --,q(x)),
so G is not true in /.

6.4. Restricted completeness of the SLDN p- -resolution

Thus to obtain completeness of SLDNF--resolution, further restrictions are
necessary. To this purpose we first introduce the following notions.

LOGIC PROGRAMMING 551

Given a program P we define its dependency graph Dp by putting for two relations r, q

(r, q) EDP iff there is a clause in P using r in its head and q in its body.

We then say that r refers to q; depends on is the reflexive transitive closure of the relation
refers to. Thus a relation does not need to refer to itself, but by reflexivity every relation
depends on itself.

Now, given a program P and a general goal G, we say that Pu { G} is strict if the
relations occurring in positive literals of G depend on different relations than those on
which relations occurring in negative literals of G depend. Note that this implies that no
relation occurs both in, a positive and negative literal of G.

More precisely, given a program P and a set of relations R first put

DEP(R)={q:some pin R depends on q}.

Then P u { G} is strict if

DEP(G+) nDEP(G-)=0,

where G + (respectively G -) stands for the set of relations occurring in positive (res
pectively negative) literals of G.

Note that for the program P and the general goal G studied in Example 6.5 Pu { G} is
not strict.

We now prove the following result established independently by Cavedon and Lloyd
[19], and by Apt (unpublished).

6.6. THEOREM (restricted completeness of SLDNF- -resolution). Let P be a program
and Ga general goal such that Pu { G} is strict and Pu { G} does not.flounder. Suppose
comp(P)u{G} is inconsistent. Then there exists an SLDNF--refutation of Pu{G}.

In the proof we shall use the following well-known theorem from mathematical logic
due to K. Godel (see e.g. [92]).

6.7. THEOREM (Compactness Theorem). A set of formulas has a model iff every finite
subset of it has a model.

Using the Compactness Theorem we obtain the following lemma which will be
needed in the sequel.

6.8. LEMMA. Let P be a program. There exists a model NP of comp(P) such that
Bp n Np= Tptw.

PROOF. Let {A 1, ... , An} be a finite set of TpLw. By Theorem 5.6, for i = 1, ... , n, A; is not
in the failure set of P. Thus, by Lemma 5.8, P u {<-A 1 , .. ., An} does not have a finitely
failed SLD-tree. Now, by the completeness of the negation as failure rule (Theorem
5.30), there is a model of comp(P) u { A1, .. • , An}· Thus, by the Compactness Theorem
6.7, comp(P) v TpLw has a model, say NP· We have BP n NP 2 TpLw. Moreover, we
have by virtue of Lemma 5.26, BpnN P £ TpLw. D

552 K.R. APT

The model of comp(P) constructed in this lemma is in a sense "big". Note that by
Theorem 5.6 we have

NP f= -,A iff A is in the finite failure set of P.

Thus in a sense NP is "dual" to M P which is a "small" model of comp(P) and for which,
by the Characterization Theorem 3.13 and the Success Theorem 3.25,

M P f= A iff A is in the success set of P.

In the proof of Theorem 6.6 we shall use both types of models. But first we need the
following simple modification of Lemma 3.9.

6.9. LEMMA. Let T be a continuous operator on a complete lattice. Suppose that I c:;;
T(J). Then Ti w(J) is a fix point of T.

PROOF. Let B be the largest element of the original lattice L. The set {J: I £ J £ B}
with the operations s;:;, u and n from L forms a complete lattice with least element I.
By assumption on T and J, T is an operator on this lattice and the claim follows by
Lemma 3.9. D

Before we apply this lemma, we introduce the following notation. Given two
programs P 1 and P 2 , we write Pi< P 2 to denote the fact that relations appearing in the
heads of clauses from P 2 do not appear in Pi· Informally, when P 1 < P 2 , then Pi does
not depend on P2 . More formally, we have the following lemma.

6.10. LEMMA. Let P 1 and P2 be two programs such that P 1 < P2 . Then, for any interpre
tation I based on a pre-interpretation J and n ~ 1,

T~ 1 (T~2 jn(J))= T~ 1 (0).

PROOF. All elements of T~2 i n(J) are of the form r(t 1 , ... , tm)rr where r appears in a head
of a clause from P2 . D

6.11. LEMMA. Let Pi and P2 be two programs such that Pi <P2 . Suppose that I is
a model of comp(P i) based on a pre-interpretation J. Then T~2 i w(J) is a model of
comp(P 1 u P2).

PROOF. By Theorem 5.17 we have l=T~1 (J)sT~,uP2 (/). Moreover, by Lemma
5.12, T~,uPi is continuous. By Lemma 6.9, T~,uP,iw(I) is a fixpoint of T~,uP,, so by
Theorem 5.17, T~, uP, i w(/) is a model of comp(P 1 u P 2).

On the other hand, using Lemma 6.10 and the fact that T~, (0) s;:; I, we get by an
induction on n

Hence

T~, uP2 i w(J) = n, i w(J). D

We can now prove the desired result.

LOGIC PROGRAMMING 553

PROOF OF THEOREM 6.6. Let P + (respectively p-) be the set of clauses of P whose
heads contain a relation belonging to DEP(G+) (respectively DEP(G-)). By the
assumption of strictness, p+ and p- are disjoint. For some set P0 of clauses

P=Po i..:.;p+ \;)P-.

Note that p+uP-<Po. Consider now the interpretation Mp•Up-. Note that
M P' and Np- are disjoint because no relation occurs both in P + and p-. Thus
Mr u N r is a model of comp(P+) u cornp(P-) i.e. a model of comp(P+ up-). This
model is based on some pre-interpretation J. By Lemma 6.11, M = T~0 jw(M p• u Np-)
is a model of cornp(P).

By the assumption, cornp(P) u { G} is inconsistent, so, for some state a,

M FuA 1 /\ ". /\A,/\ -,B1 /\ ". /\ -,Bm

where A1,. .. , A1 is the sequence of positive literals of G and -.Bi, .. .,-,Bm is the
sequence of negative literals of G. If I= 0 or m = 0, we disregard the corresponding step
in the considerations below.

By the definition of p+ and p- and the form of M we have Mp• Fu A1 /\ ··· /\ A1 and
Np- Fer -,B 1 /\ · · · /\. -,Bm. Thus a, when restricted to the variables of A 1 /\ · · · /\ Ai, is
a ground substitution, say e. By Corollary 3.6 and the Characterization Theorem
3.13(i), ()is a correct answer substitution for p+ u {+--A 1,. • .,A1}. Applying now
Theorem 3.18 we obtain a computed answer substitution y for p+ u {+--A 1,. .. ,Ai}

such that (+--A 1 ,. .. , A1)y is more general than (+--A 1 , .. ., A1)(). But (+--A 1 ,. . ., A1)() is
ground, so in fact ')' is more general than e.

Fix some i, 1 ~i~m. By the assumption, Pu {G} does not flounder. Thus if l=O
then B; is ground, so B;a is a ground atom. If I> 0 then B;y is ground, so Bli is
ground and consequently B;a is a ground atom, as well as B;y = B;a. But
NP Fu •B1 /\ .. · /\ -.Bm, so B;a E Bp-N P· By Lemma 6.8 we now have B;a ~ Tplw.
By Theorem 5.6, B;a is in the finite failure set of p-. By the form of p-, B;a is in
the finite failure set of P.

We thus showed that there exists an SLDNF- -refutation of Pu {G}. D

This theorem can be generalized in the same ways as the completeness theorem of
SLD-resolution (Theorem 3.15) was. The proofs of these generalizations are straight
forward modifications of the above proof and use the generalizations of Theorem 3.15
presented in Subsections 3.8 and 3.9.

6.5. Allowedness

Unfortunately, restriction to programs P and general goals G such that Pu { G} does
not flounder is not satisfactory as the following theorem shows.

6.12. THEOREM (undecidability of non-floundering). For some program P it is undecid
able whether for a general goal G, Pu { G} does not .flounder.

PROOF. This is a simple consequence of the computability results established in Section
4.4. Let P be a program and q(x) an atom such that the variable x does not appear in P.
Note that for any ground atom A there exists an SLD-refutation of Pu {+--A} iff
p u {+--A, -.q(x)} flounders. Indeed, in the SLDNF--derivations no new negative

554 K.R. APT

literals are introduced. By Corollary 3.14 and Lemma 3.17 we thus have

A e M P iff Pu {+-A, -,q(x)} flounders.

But by Corollary 4.7 for some program P, (the complement of) Mp is not recursive.
Consequently, it is not decidable whether for such a program P, Pu {- A, -,q(x)} does
not flounder. D

A way to solve this problem is by imposing on Pu { G} some syntactic restrictions
which imply that Pu { G} does not flounder. To this purpose we introduce the
following notion due to Lloyd and Topor (68]. Given a program Panda general goal
G, we call Pu { G} allowed if the following two conditions are satisfied:

(a) every variable of G appears in a positive literal of G,
(b) every variable of a clause in P appears in the body of this clause.

Note that (a) implies that all negative literals of G are ground if G has no positive
literals, and (b) implies that every unit clause in P is ground.

Allowedness is the notion we are looking for as the following theorem shows.

6.13. THEOREM (Lloyd and Topor (68]). Consider a program Panda general goal G
such that P u { G} is allowed. Then

(i) P u { G} does not flounder,
(ii) every computed answer substitution for P u { G} is ground.

PROOF. (i) Condition (b) ensures that every general goal appearing in an SLDNF- -
derivation satisfies condition (a). Thus Pu {G} does not flounder.

(ii) By the fact that every unit clause in P is ground. D

Property (ii) shows the price we have to pay for ensuring property (i).
Combining Theorems 6.6 and 6.13 we obtain the following conclusion.

6.14. COROLLARY. Let P be a program and Ga general goal such that P u { G} is strict
and allowed. Suppose comp(P) u { G} is inconsistent. Then there exists an SLDNF- -
refutation of P u { G}.

Finally, observe that the definition of allowedness can be weakened a bit by requiring
condition (b) to hold only for clauses whose heads contain a relation appearing in
DEP(G+). Indeed, Theorem 6.13 then still holds by virtue of the same argument.

6.6. Bibliographic remarks

Usually, the case of programs and general goals is not considered separately. Con
sequently, soundness of the SLDNF--resolution (Theorem 6.1) is not spelled out
separately. The proof of Lemma 6.2 seems to be new. The problem noted in Example 6.4
was first identified in (21]. Example 6.5 seems to be new. The name floundering was
introduced in (87] but the concept first appeared in (21]. Lemma 6.8 was indepen-

LOGIC PROGRAMMING 555

dently proved in [90]. Theorem 6.12 was independently, but somewhat earlier, proved
in Borger [13].

The notion of strictness was first introduced in [3] for the case of general programs.
The definition adopted here is inspired by Cavedon and Lloyd [19] where a much
stronger version of Theorem 6.6 dealing with general programs is proved. The
definition of allowedness is a special case of the one introduced in Lloyd and Topor
[68] for general programs. Similar, but less general notions were considered in [21,
87, 3].

7. Stratified programs

7.1. Preliminaries

General programs are difficult to anaiyze because of their irregular behaviour. In this
section we study a subclass of general programs obtained by imposing on them some
natural syntactic restrictions. Programs from this subclass enjoy several natural
properties.

First, we generalize in an obvious way some of the concepts to the case of general
programs. To start with, given a general program P we introduce its immediate con
sequence operator Tp by putting for a Herbrand interpretation I

A E Tp(J) iff for some literals Li. ... , L.

A +- L 1, ... , L" is in ground(P)

and I F= L 1 /\ · · · /\ L •.

Next, given a general program P, we define its completion by using the same definition
as the one given in Subsection 5.5 but now applied to general clauses instead of clauses.
As before, comp(P) stands for the completion of P.

Some of the results relating models of P and comp(P) to the operator Tp remain valid
and will be used in the sequel. We have the following lemma.

7.1. LEMMA. Let P be a general program and I a Herbrand interpretation.
(i) I is a model of P iff Tp(l) £:;; I.

(ii) I is a model of comp(P) iff Tp(I)=I.
(iii) Tp is finitary.

PROOF. (i) Analogous to the proof of Lemma 3.7.
(ii) Analogous to the proof of Theorem 5. l 8(i)-all corresponding lemmas remain

valid.
(iii) Analogous to the proof of Lemma 3.12(ii). D

Lemma 7.l(iii) remains valid when TP is considered as an operator on a larger
lattice formed by all subsets of BP', where P £ P', as then, for any J £BP',
Tp(J)= Tp(J n Bp). We shall use this observation in Subsection 7.4.

It is worthwhile to note that several other results do not generalize to the case of

556 K.R. APT

general programs. For example, for the general program P = {A <--- -,B}, the associated
operator Tp is no longer monotonic, as Tp(0)={A} and Tp({B})=0. Thus Lemma
3. l 2(ii) does not generalize.

The same general program has two minimal models-{ A} and { B} but none of them
is the smallest. Thus Theorem 3.13 does not generalize. In turn, completion of the
general program A...- -,A is inconsistent, so Theorem 5.18(ii) does not generalize either.

We thus see that it is not clear what intended meaning should be associated with
a general program. None of the previously available possibilities-the one, semantic,
based on Mp and another, proof-theoretic, based on comp(P), can be considered.

7.2. Stratification

To resolve these difficulties we introduce appropriate syntactic restrictions. Intui
tively, we simply disallow a recursion "through negation". To express this idea more
precisely we use the notion of a dependency graph introduced in Subsection 6.4. Given
a general program P, consider its dependency graph Dp. We call an arc (r, q) from Dp
positive (respectively negative) if there is a general clause in P such that r appears in its
head and q appears in a positive (respectively negative) literal of its body. Thus an arc
may be both positive and negative.

Following [3, 99] we call a general program stratified if its dependency graph does
not contain a cycle with a negative arc. An alternative definition of stratified programs
is the following: Given a general program P and a relation r, by a definition of r
(within P) we mean the set of all general clauses of Pin whose heads r appears. We

call a partition P = P 1 \:J · • · \:J P" a stratification of P if the following two conditions
hold for i= 1, ... , n:

(i) if a relation appears in a positive literal of a general clause from P;, then its
definition is contained within Uj,;;iPj;

(ii) if a relation appears in a negative literal of a general clause from P;, then its
definition is contained within U j <i Pj.

We allow P 1 to be empty. A head of a general clause is viewed here as one of its
positive literals. We call each P; a stratum.

Now, both definitions are equivalent as the following lemma shows.

7.2. LEMMA (Apt, Blair and Walker [3]). A general program P is stratified iff there
exists a stratification of P.

PROOF. If a general program admits some stratifaction then the definition of each
relation symbol is contained in some stratum. Assign to each relation the index of the
stratum within which it is defined. Then if(p, q) is a positive arc in the dependency graph
of P, then the index assigned to q is smaller or equal than that assigned to p, and if
(p, q) is a negative arc, then the index assigned to q is strictly smaller than that assigned
top. Thus there are no cycles in the dependency graph through a negative edge.

For the converse, decompose the dependency graph of P into strongly connected
components each of maximum cardinality, (i.e., such that any two nodes in a com
ponent are connected by a cycle). Then the relation "there is an edge from component
G to component H" is well-founded, since it is finite and contains no cycles. Thus for

LOGIC PROGRAMMING 557

some n the numbers 1, ... , n can be assigned to the components so that if there is an edge
from G to H, then the number assigned to His smaller than that assigned to G. Now, let
Pi be the subset of the general program P consisting of the definitions of all relations
which lie within a component with the number i.

We claim that P=P11.:.J ••• 1.:.J Pn is a stratification of P. Indeed, if q is defined within
some Pi and refers to r, then r lies in the same component or in a component with
a smaller number. In other words, the definition of r is contained in Pi for some j ~i.
And if this reference is negative, then r lies in a component with a smaller number
because, by assumption, there is no cycle through a negative edge. Thus the definition
of r is then contained in Pi for some j <i. 0

This lemma allows us to use both definitions of a stratified general program inter
changably.

7.3. EXAMPLE. (i} Consider the general program

P={p +--, q+- p, r, r +-- -,q}.

Then P is not stratified because the dependency graph of P contains a cycle (q, r), (r, q)
with a negative edge.

(ii) Consider the general program P = {p +--, q +-- p, r +-- -,q}. Then P is stratified by
{p +--} u { q +-- p} u {r +-- -,q}. Also {p +--, q +-- p} u {r +-- -,q} is a stratification of P.

Thus a general program can be stratified in more than one way.

Of course, it also makes sense to talk about stratification of programs (i.e., general
programs "without negation"). By definition, every program is stratified but not every
partition of it is a stratification. The following simple lemma relates the notion of
stratification to the notation introduced in Subsection 6.4.

7.4. LEMMA. A partition P = P 1 l.:.J • • • \.:.IP n of a program P is its stratification if! for every
i=l, ... ,n we have (LJi<iPi)<Pi.

As a first step towards a better understanding of stratified (general) programs, we
study in more detail their semantics. In view of Lemma 7.1, to study Herbrand models
of a general program P and its completion, it suffices to consider the pre-fixpoints and
fixpoints of its immediate consequence operator Tp. However, as just observed, the
associated immediate consequence operator Tp does not need to be monotonic. This
brings us to the study of nonmonotonic operators and their pre-fixpoints and fix points
in an abstract setting. We follow here the presentation of [3].

7.3. Nonmonotonic operators and their fixpoints

Consider an arbitrary, but fixed, complete lattice and assume the notation used in
Subsection 3.5. All operators are considered on this fixed lattice. ·First we define
cumulative powers of an operator T. We put

TftO(I)=l, Tft(n+ l)(/)= T(Tftn(J)) u Tftn(l),

Tftw(l)= U Tftn(J).
n<CO

558 K.R. APT

Cumulative powers easily relate to the usual powers as clearly for all a~w and I

Tfia(l)=(T u Id)ja(l)

where Id is the identity operator, u stands for a union of two operators and the powers
defined in Subsection 3.5 are now adopted for arbitrary operators.

We have the following lemma.

7.5. LEMMA. If T is finitary then, for all I, Tfiw(l) is a pre-fixpoint of T, i.e.

T(Tfiw(l)) s Tfiw(l).

PROOF. Since T is finitary,
00 00

T(Tfiw(I)) s LJ T(Tfin(I)) s LJ Tfi(n+ 1)(/) £ Tfiw(I). 0
n:O n:O

We say that an operator T is growing if, for all I, J, M,

I s J s Ms Tfiw(l) implies T(J) £ T(M).

Thus growing is a restricted from of monotonicity.
The following lemma holds.

7.6. LEMMA. If T is growing then, for all I, Tfiw(l) £I u T(Tfiw(J)).

PROOF. An easy proof by induction shows that, for all i~O,

00

Tfti(l) s I u LJ T(Tftn(l)).
n:O

We now have
00

Tftw(l)= U Tftn(l)
n:O

00

s/u U T(Tftn(l)) (by(7.l))
n:O

s I u T(Tftw(l)). (by assumption). D

(7.1)

The following corollary generalizes Lemma 6.9 and shows interest in studying
finitary and growing operators.

7.7. COROLLARY. Let T be.finitary and growing. Suppose that Is T(/). Then Tfiw(l) is
a jixpoint of T.
PROOF. Since T is growing,/£ T(l) s T(Tfiw(l)), sol u T(Tfiw(/))= T(Tfiw(l)) and
the claim follows by Lemmas 7.5 and 7.6. D

Next, we study families of operators. Let Ti. ... , Tn be operators. We put

N 0 =l,

LOGIC PROGRAMMING 559

Clearly, N 0 £ N 1 £ · · · £ N n· Of course, all N;'s depend on I and from the context it will
be always clear from which one.

Let Tstand for the union of the operators T1 , ... , Tno i.e. for the operator defined by
n

T(X) = U T;(X).
i= 1

We wish to determine under which conditions N. is a fixpoint of T. To this purpose
we introduce the following concept. We call a sequence of operators T1 , ... , T. local
if, for all J, J,

/<;;;Js;;N. implies Ti(l)=TMnN;) for i=l, ... ,n.

Informally, locality means that each T; is determined by its values on the subsets of Ni.
The following two lemmas show interest in studying local sequences of operators.

7.8. LEMMA. Suppose that the sequence Ti. ... , T. is local and that all Ti's are .finitary.
Then T(N.)£Nn.

PROOF. We have

n

T(N.)= U T;(N.)
i= 1

n

= U T;(Ni) (by locality)
i= 1

(by Lemma 7.5)

=N.. 0

7.9. LEMMA. Suppose that the sequence T1 , ... , T. is local and that all T/s are growing.
Then N.-:;;IuT(Nn).

PROOF. We proceed by induction on n. If n= 1, the lemma reduces to Lemma 7.6.
Assume the lemma holds for n - 1. Then, again by Lemma 7 .6,

Nn s;;N._ 1 uTn(N.)

n-1

£I u U T;(N n- i)u Tn(N .) (by induction hypothesis)
i= 1

n-1

=Ju U T;(Nn)uT(Nn) (by locality)
i= 1

560 K.R. APT

7.10. COROLLARY. Suppose that the sequence Ti. ... , Tn is local and that all T;'s are

finitary and growing. Then Nn=IuT(Nn)·

Thus for a local sequence Ti. ... , T. of finitary and growing operators, N. is
a fix point of T when I= 0.

We now prove that under some assumptions N. is a minimal pre-fixpoint of

T containing /.

7.11. LEMMA. Suppose that the sequence T1 , ... , T. is local and that all T;'s are growing.
Suppose /SJt:;;;N. and T(J)t:;;;J. Then J=N •.

PROOF. We prove by induction on j=O, ... , n that

Njt:;;;J. (7.2)

For j =0 it is part of the assumptions. Assume the claim holds for some j < n. We now
prove by induction on k that

Tj+ I ftk(Nj) s J.

For k=O this is just (7.2). So assume (7.3) holds for some k~O. We then have

Tj+ 1 ft(k + 1)(Nj) s Tj+ i(Tj+ 1 fik(Nj))uJ

(7.3)

s Tj + i(J nN j + i)uJ (by (7.3) and since Tj + 1 is
growing)

= 1}+ 1 (J)uJ (by locality)

s J. (by the assumptions)

Thus, by induction, for all k ~O (7.3) holds, so Nj+ 1 sJ. This proves (7.2) for all
j = 0, ... , n and concludes the proof. D

Finally, we provide an alternative characterization of N;. To make it more readable
we now assume that I= p. Then, by definition, N 0 = p.

Let now T; denote the union of T1, •.• , T;, i.e. T;(X)= T1(X)u···UT;(X).

7.12. LEMMA. Suppose that the sequence T 1 , ••• , T. is local and that all T;'s are finitary
and growing. Let

K1={J: T1(J)=J, T1(JnN 1)sT1(J)},

K1={J: T2(J)=J, T2(JnN2)ST2(J), N1sl},

Kn={J: T.(J)=J, T"(JnN")c:;T.(J), N._ 1 sJ).

Then for i= 1, ... , n, (jK;=N;.

Note that each K; is the collection of all fix points of T; which include N; _ 1 , where
additionally the condition TMnN;)ST;(J) is required.

LOGIC PROGRAMMING 561

PROOF. Fix some i, 1 ~ i ~ n. By Corollary 7.10 used for I= \l) and n = i and the fact that
N;- 1 £N;, we conclude that N; belongs to K;. Thus nK;£N;.

To prove the converse take J EK;. We prove by induction on k that for k?: 0

(7.4)

Fork =0 it holds by the definition of K;. Assume this claim holds for some k ?:0. Then

T;ftk(N;_ i),,;; N;,

so by (7.4) and (7.5) and the fact that T; is growing

T;(T;ftk(N;-d)s T;(JnN;)

£ T;(J)

£ T;(J)

,,;;],

(by definition of K;)

(by definition of K;).

Thus the claim holds for k+l. This implies N;,,;;J, so N;snK;. D

7.4. Semantics of stratified programs

(7.5)

We now apply the results of the previous subsection to provide a semantics for
stratified programs. Throughout this section we consider a general program P stratified
by P =Pi \:J .. · \:J P n· We now define a sequence of Her brand interpretations by putting

Let M P =Mn· Note that M P depends on the stratification and that for programs P, M P

has already a different meaning. We shall show in the next subsection that these
apparent ambiguities in fact do not exist-Mp does not depend on the stratification of
P and consequently, by virtue of the Characterization Theorem 3.13, it coincides for
programs P with the previous meaning.

We first prove that M P is a model of P. To this purpose we need the following
lemmas.

7.13. LEMMA. Consider a stratum P; (1 ~i~n). Tp, considered as an operator on the
complete lattice {I: I£ BP} is growing.

PROOF. Suppose that for some Jc;;Bp, f£J£M£Tp,ftw(J) and let AETp,(J). For
some general clause A <-Li, ... , L" from ground(P;) we have J F= Li /\ · · · /\ Ln. If L; is
positive then also M f=L;. If L; is negative, say -.p(ti. ... , tk), then neither p(t1, ... , tk)E I
nor p appears in a head of a general clause from P; because P; is a stratum. However, for
any Herbrand interpretation N £ Bp and a ground atom r(si, ... , sm), if r(s 1 , ... , sm) E
Tp, ftw(N) then r(s 1 , ••• , sm) EN or r appears in a head of general clause from P;. Thus
p(t 1, ... , tk) $ Tp, ftw(J), so M f=L;, as well. This implies that A E Tp.(M). D

7.14. LEMMA. Consider the strata P 1, ... , P". The sequence of operators Tp,, ... , Tp"
considered on the complete lattice {I: Is BP} is local.

562 K.R. APT

PROOF. Choose some Jt;;Bp and consider the sequence Ni, ... ,Nn of subsets of Bp
defined in the previous subsection. Fix some i, 1 ~ i ~ n. Suppose that
p(t 1 , ... , tk)eN.-N;. Then p appears in a head of a general clause from Ui=i+ 1 Pi,
so by the definition of stratification p does not appear in a general clause from P;.
Thus p(t1,. • ., tk)~BP,· Hence Nnr1Bp,£Ni and consequently,

N nrlBP; = N;r1Bpp

since N;£N •. Suppose now that Ji;;;.Ji;;;.Nn. We have

J r1Bp, =J r1N.r1Bp,

= J r1N;nBp, (by (7.6)).

Thus

Tp,(J) = Tp,(J nBp,) (by definition of Tp,)

= Tp,(J nNir1Bp,) (by (7.7))

= Tp,(J nN;). (by definition of Tp,). D

We can now conclude by the following theorem

(7.6)

(7.7)

7.15. THEOREM (Characterization Theorem) (Apt, Blair and Walker [3]). Let P be a
general program stratified by P = P 1 l:J .. • l:J P •. Then

(i) Mp is a Herbrand model of P.
(ii) Mp is a minimal Herbrand model of P.

(iii) Mp is a Herbrand model of comp(P).

PROOF. (i) By Lemmas 7.l(i), (iii), 7.13 and 7.14 and Corollary 7.10.
(ii) By Lemmas 7. l(i) and 7.11.

(iii) By Lemmas 7.l(ii), (iii), 7.13 and 7.14 and Corollary 7.10. o.

Finally, we provide an alternative characterization of Mp. To prove the desired
theorem we first introduce a notation and prove a lemma.

Given a general program P, let

Negp= {A: for some B+-L1> ... , L.eground(P) and i, 1 ~i ~ n, Li= -.A}.

Thus Negp stands for the set of ground instances of atoms whose negation occurs in
a hypothesis of general clause from P.

7.16. LEMMA. Let P be a general program and l,J Herbrand interpretations. Suppose
that [i;;;.J and lnNegp=JnNegp. Then Tp(l)£Tp(J).

PROOF. Suppose that A E Tp(l). For some general clause A+-L 1 , ••• , Ln from ground(P),
we have 11= L1 A .. · A Ln. If Li is positive then, by assumption, also J F= Li. If L; is
negative, say -,B, then B ~I, so B ~I r1N egp and by assumption B fj; J nN egp. But, by
definition, BeNegp, so B~J, i.e. Jl=L;. This implies that Ae Tp(J). D

LOGIC PROGRAMMING 563

Assume now a given stratification P 1 \:.J • • • \:.J P n of P. To shorten the notation let from
now on P; stand for P1 U···UP;. Then P= Pn. Let M range over the subsets of Bp. Put

M(Pi)= (l{M: Tp1(M)=M},

M(P2)= (l{M: Tp2 (M)=M, MnBp, =M(P1)},

Note that by Theorem 7.l(ii) each M(P;) is the intersection of all Herbrand models of
comp(P;) which on the previous Herbrand base BP,_, agree with the previous model
M(P;_ i). In the definition of M(P;) each Tp, is considered as an operator on the
complete lattice Bp. We now prove the following theorem.

7.17. THEOREM (Apt, Blair and Walker [3]). Mp=M(P).

PROOF. We prove by induction that, for i= 1, ... , n, M;= M(P;). This implies the claim
since Mn=Mp and M(Pn)=M(P). For i= 1 it is a consequence of the Characterization
Theorem 3.13 and the fact that Tp 1(M)£Bp,.

Suppose the claim holds for some i, 1 ~ i < n. Note that by the Characterization
Theorem 7.15(iii) and Lemma 7.l(ii), Tp1+ 1(M;+d= M;+i· Also M;+ 1nBp,=M(P;) by
the induction hypothesis and the definition of stratification. Thus M;+ 1 is an element of
the collection whose intersection is M(P;+i). This proves that M(P;+i)£M;+i·

To establish the converse inclusion, take M from the collection whose intersection is
M(P;+ i). Thus

TP,+,(M)=M (7.8)

and

M(P;)=MnBp,.

Equation (7.9) implies by the induction hypothesis M;=MnBp, so

M;£M.

Moreover, by the definition of stratification, M nN egp, +, £ B p,, so

MnNegp'+' =Negp'+' nBp,.

Now

(by (7.10))

(7.9)

(7.10)

(7.11)

MnM;nNegP,+i =M;nNegp,+,

=M(P;)nNegp,+,

=MnBp,nNegpi+I

=MnNegpi+I

(by the induction hypothesis)

(by (7.9))

(by (7.11)).

Thus by Lemma 7.16

Tp,+ 1 (MnM;)£ TP,+,(M). (7.12)

We can now apply Lemma 7.12 with Ni=Mi and Ti= TPr By (7.8), (7.12) and (7.10)

564 K.R. APT

MEK;+ 1 so nx;+ 1 s;;M and, by Lemma 7.12, M;+ 1 s;;M. By the choice of M,
M; + 1 s;; M(P; + i). This concludes the proof of the induction step. D

7.5. Perfect model semantics

We now prove that the Herbrand model M P does not depend on the stratification of
P. We follow here the approach of Przymusinski [81]. It is conceptually advantageous
to carry out these considerations in a more abstract setting.

Consider a given general program P. Let < be a well-founded ordering on the
Herbrand base BP of P. If A< B then we say that A has a higher priority than B.

Let M, Nr;;,Bp. We call a Herbrand interpretation N preferable to M, and write
N < M, if N #Mand for every BE N-M there exists an A EM -N such that A <B.
We write N ~M if N =Mor N <M. We call a Herbrand model of P perfect if there
are no Herbrand models of P preferable to it. Thus a perfect model of P is a <-minimal
Herbrand model of P.

The intuition behind these definitions is the following. N is preferable to M if it is
obtained from M by possible adding/removing some atoms and an addition of an atom
to N is always compensated by the simultaneous removal from M of an atom of higher
priority. This reflects the fact that we are determined to minimize higher-priority atoms
even at the cost of adding atoms of lower priority. A model is then perfect if this form of
minimization of higher-priority atoms is achieved in it.

The following lemma clarifies the status of perfect models.

7.18. LEMMA. Let P be a general program and let < be a well-founded ordering on Bp.
(i) Every perfect model of P is minimal.
(ii) For no two Herbrand interpretations M, N of P, both M < N and N < M.

PROOF. (i) Immediate, since N s;; M implies N < M.
(ii) Suppose by contradiction that for some Herbrand interpretations M, N of P

both M < N and N < M. Then none of them is a subset of the other. Thus N - M is
nonempty. Let A0 EN - M. N is preferable to M, so for some A 1 EM - N, A 1 < A0 .

But M is preferable to N so, for some A 2 EN -M, A2 <A 1 . Continuing in this way
we obtain an infinite <-descending sequence of ground atoms which contradicts
the assumption that < is a well-founded ordering on Bp. D

One can also prove that the relation "N is preferable to M" is a partial order but we
shall not need this in the sequel.

Subsequent considerations are carried out for a fixed stratified general program
P and a well-founded ordering < on Bp defined by first putting, for two relation
sym bots p, q,

p<q iff there exists a path from q top in Dp with a negative arc,

and then putting, for two atoms A, BE Bp,

A < B iff p < q where p appears in A and q appears in B.

LOGIC PROGRAMMING 565

By the definition of a stratified program, < is a well-founded ordering on Bp. Note that
the orientation of < is different than the one suggested by Dp. If p < q then p is defined
in a strictly lower stratum than q and all ground atoms containing p are of higher
priority than those containing q. Fix from now on a stratification P 1 l:.! • · • 1.:J P n of P.
Note that MpnBp,= M;. For a Herbrand interpretation N of Lp,, denote NnBp, by N;.
Note that N 1 SN 2 <;;···SN".

7.19. LEMMA. Let N be a Herbrand model of P. Then for all i= 1, ... , n we have
Mi~Ni.

PROOF. We proceed by induction on i. Note that N;°F=P;. As P 1 is a program, by the
Characterization Theorem 3.13, M 1 is its smallest model. Thus M 1 sN1' and a fortiori
M 1 ~N1.

Suppose the claim holds for some i ~ 1. Call an element BE M; + 1 regular if B rt N; + 1

implies that, for some AEN;+ 1 -M;+i. A<B. To prove that M;+ 1 ~N;+ 1 we need
to show that all elements of M;+ 1 are regular.

We have M;+ 1 = Uk'=o Tp,+ 1 ftk(M;). We now prove by induction on k that all
elements of TP,+ 1 ftk(M;) are regular. To take care of the case k=O, consider some
BEM;-N;+i· Then BrtN;, so, by the induction hypothesis, for some AEN;-M;,
A<B. Moreover, N;SBp,, so AEBp,. But M;+ 1 nBp,=M;, so ArtM;+i· Thus
AE N;+ 1 - M;+ 1 and consequently Bis regular.

To take care of the induction step, fix k~O and denote Tp,+ 1 ftk(M;) by M. Assume
that all elements of Mare regular and consider some BE TP,+JM)-M. For some
general clause B+-L 1 ,. • ., Ls in ground(P;+ 1), MF= L 1 /\ .. ·/\Ls. Let A 1 ,. .• , A1 be the
positive literals among L 1 , ... , Ls and let -.B 1 , ... , -.Bm be the negative literals among
L 1 , •.. , L •. We have Ai. ... , A1E Mand B1 , ... , Bmrt M. Suppose now Bit N;+ 1· N;+ 1

is a model of Pi+1' so either some AirtN;+ 1 or some BiEN;+i· If some AirtN;+1
then AiEM-N;+i· As Ai is regular, for some AEN;+ 1 -M;+i. A<Ai. By the
definition of <,also A <B. If some BiE N;+ 1 then BjE N;+ 1 - M, so BjE N;+ i -M;.
Moreover, by the definition of stratification BjEBp,. But M;+ 1 nBp,=M;, so
BjrtM;+i· Thus BiEN;+i -M;+i· Moreover, by the definition of< we have Bi<B.

We thus showed that B is regular. By induction on k we now proved that
M;+ 1 ~N;+ 1 . Thus by induction on i, we proved the lemma. O

7.20. LEMMA. Let I, J be H erbrand interpretations for Lp. If for all i = 1, ... , n we
have l;~J;, then I~J.

PROOF. Let BEI-J. For some i, l~i~n, we have BEl;-J. So BEBp,. But
J;=J nBp,, so Bit J;. Since I; ~J;, for some A E J;-1;, A <B. So A E Bp,. But l;=l nBp,,
so A rt!. 0

This brings us to the main result of this subsection.

7.21. THEOREM (Przymusinski [81]). (i) For every Herbrand model N of P, Mp~N.
(ii) M P is the unique perfect model of P.

566 K.R. APT

PROOF. (i) By Lemmata 7.19 and 7.20.
(ii) By (i) and Lemma 7.18(ii), M P is a perfect model of P. By (i) it is also unique. D

Note that (ii) in view of lemma 7.18(i) provides an alternative proof of Theorem
7.15(ii).

7.22. COROLLARY (Apt, Blair and Walker [3]). M P does not depend on the stratification
of P.

PROOF. The proof ofTheorem 7.12(ii) does not depend on the stratification of M P· D

Theorems 7.15 and 7.16 show that M Pisa natural model of a stratified program P.
However, the most convincing evidence that M P is indeed natural, is supplied by
Theorem 7.22. The notion of a perfect model turns out to be the key concept in assessing
the character of M P·

7.6. Bibliographic remarks

Stratified programs form a simple generalization of a class of database queries
introduced in [20]. Similar concepts were also introduced in [7] and, in the context of
deductive databases, in [76].

The proofs of Theorems 7.17 and 7.21 and of Corollary 7.22 differ from the original
ones. The notion of a stratified program was further generalized by Przymusinski [81]
to a locally stratified program. Lifschitz [63] provides a characterization of the model
M P of a stratified program P using the prioritized circumscription. Other connections
between stratification, the model Mp and nonmonotonic reasoning are surveyed in
[82]. Apt and Blair [2] analyze the recursion-theoretic complexity of the model Mp.

8. Related topics

Our presentation of logic programming is obviously incomplete. In this section we
briefly discuss the subjects we omitted and provide a number of pointers to the
literature.

8.1. General programs

SLD-resolution and the negation as failure rule was combined by Clark [21] into
a more powerful computation mechanism called SLD N F-resolution allowing us to
refute general goals from general programs. The reader is referred to [65] for a detailed
account of SLDNF-resolution.

Shepherdson [90] discusses and compares various approaches to the proof theory
and semantics of general programs. The strongest completeness results dealing with the
SLDNF-resolution were proved in [19, 60].

LOGIC PROGRAMMING 567

8.2. Alternative approaches

The approach to logic programming we discussed in this paper is undoubtedly the
most widely accepted. However, various alternatives exist and it is worthwhile to point
them out.

Proof theory
Fitting [36] proposed on alternative computation mechanism based on a tableau

method. Gallier and Raatz [40] introduced a computation mechanism in the form of
an interpreter using graph reduction. Brough and Walker [17] studied interpreters
with various stopping criteria for function-free programs. Apt, Blair and Walker [3]
introduced an interpreter with a loop-checking mechanism and with an ineffective
means of handling negative literals. Przymusinski [81] generalized this interpreter to
an SLS-resolution (Linear resolution with Selection rule for Stratified programs) in
which negative literals are resolved in an ineffective way.

Variants of SLD-resolution, called HLSD-resolution and SLD-AL-resolution were
introduced and studied in [76] and [100] respectively.

Semantics
Mycroft [75] suggested to use 3-valued logic (corresponding to the possibilities:

provable, refuted and undecidable) to capture the meaning of logic programs. This
approach was subsequently studied in detail in [35, 58, 60].

To describe the meaning of general programs Minker [73] proposed the use of
minimal models (leading to the generalized closed world assumption GCW A), Bidoit
and Hull [9] proposed the use of positivistic models and Przymusinski [81] introduced
the concept of a perfect model.

8.3. Deductive databases

Deductive databases form an extension of relational databases in which some of the
relations are implicitly defined. They can be viewed as logic programs where the
explicitly defined relations are those defined only by means of unit clauses, whereas
the implicitly defined relations are those defined by means of non-unit clauses, as
well. Moreover, so-called particularization axioms are needed to define the intended
domain. Additionally, integrity constraints are used to impose a desired meaning on
the relations used.

The main difference between deductive databases and logic programming lies in
their emphasis on different problems. In deductive databases one studies such issues
like query processing (i.e. computation of all answers to a given goal), integrity con
straint checking, handling of updates (i.e. additions and deletions of ground unit
clauses) and processing of negative information.

Recent research concentrates on efficient implementation of recursive queries, i.e.
queries about recursively defined relations (see e.g. the survey of Bancilhon and
Ramakrishnan [6]), reduction of recursive queries to nonrecursive ones (see e.g. [78]),
comparison of expressive power between various query languages (see e.g. [20, 91]),

568 K.R. APT

and handling of negative information both in terms of intended semantics (see e.g. [73,
3, 99, 63, 77, 81]) and in terms of query processing, handling of updates and integrity
constraint checking (see e.g. [44, 29, 67]).

Earlier research in this area is surveyed in [38] while more recent research is dis
cussed in [51, Section 4] and [74].

8.4. PROLOG

PROLOG stands for programming in logic. It is a programming language conceived
and implemented in the beginning of 1970s by Colmerauer et al. [26]. In its pure form it
can be viewed as logic programming with the "left-first" selection rule and with the
depth-first strategy for searching the empty node in an SLD-tree. Negation is im
plemented by means of the negation as failure rule. For efficiency reasons, an important
test (the check in step (5) of the Unification Algorithm whether x appears in t-so-called
occur check) is usually deleted from the unification algorithm and a special control
facility (called cut) to prune the search tree is introduced. These changes make
PRO LOG different from logic programming and make it difficult to apply to its study
the theoretical results concerning logic programming.

Theoretical study of PROLOG concentrated on efforts to provide a rigorous
semantics of it in terms of interpreters explaining the process ofSLD-tree traversal (see
e.g. [49a]), by means of denotational semantics (see e.g. [34]) or by relating both
approaches (see e.g. [28]).

More practical considerations, apart ofa study of implementations of PRO LOG (see
e.g. [18]), led to an investigation of efficient backtracking mechanisms (see e.g. [27])
and of various additions, like metafacilities (see e.g. [13, 96]), modules (see e.g. [41]),
control mechanisms (see e.g. [76]) and parallelism (see e.g. Concurrent Prolog of
Shapiro [87] and PARLOG of Clark and Gregory [24]).

Good books on PROLOG programming have been written by Bratko [16], and
Sterling and Shapiro [96].

8.5. Integration of logic and functional programming

Logic or PROLOG programs use relational notation. This makes it awkward to
define functions explicitly which have to be rewritten and used as relations. Functional
programming is based on the use of functions as primitive objects and shares with logic
programming several aspects like the use of recursion as the main control structure and
reliance on mathematical logic (especially lambda calculus). Several attempts to
combine advantages of both formalisms in one framework originated with the
LOG LISP language of Robinson and Siebert [85].

Direct definition of functions by means of equations leads to the problem how in the
framework of logic programming equality is to be handled. Solutions to this problem
involve the use of extended unification, where identity is replaced by equality derivable
from axioms defining functions, the use of term rewriting techniques in the form of
a narrowing procedure and the use of some subset of the standard equality axioms EQ
defined in Subsection 5.9 written in a clausal form.

LOGIC PROGRAMMING 569

Recent proposals in this area are collected in de Groot and Lindstrom [43] which is
a standard reference in this domain. See also [8, 41, 32].

8.6. Applications in artificial intelligence

Strictly speaking, logic programming is just a restricted form of automatic theorem
proving. Various proposals of extending it to more powerful fragments of certain logics
can be seen as attempts to increase its expressive and manipulative power while
preserving efficiency. In particular a substantial effort has been made to adapt it to the
needs of artificial intelligence. While research in this area is of a much more practical
character, we can still single out certain investigations of more theoretical nature.

Use oflogic programming as a formalism for knowledge representation and reason
ing was advocated by Kowalski [54]. Analysis and implementation of more powerful
logics and various forms of reasoning in the framework of logic programming was.
undertaken by Farinas del Cerro [33] for modal logic, by Van Emden [30] for
quantitative reasoning and by Poole [80] for hypothetical reasoning.

More practical work in this area deals with natural language processing, the original
application domain of PROLOG (see e.g. the special issue of the Journal of Logic
Programming [50]) and with the use of logic programming and PRO LOG for the
construction of expert system shells (see e.g. [16, 101].)

Appendix

Short history of the subject
The following is a list of papers and events which have shaped our views of this

subject. Obviously, this account of the history of the subject by no means objective (as
none is).
1972: A. Colmerauer and R. Kowalski collaborated to develop from resolution

theorem proving a programming language.
1973: Colmerauer et al. [26] implemented PROLOG.
1974: Kowalski [53] proposed logic (programming) as a programming language and

introduced what is now called SLD-resolution.
1976: Van Emden and Kowalski [31] studied the semantics of logic programs and

introduced the ubiquitous immediate consequence operator Tp.
1978: Reiter [83] proposed in the context of deductive databases the Closed World

Assumption rule as a means of deducing negative information.
1978: Clark [21] introduced the negation as failure rule as an effective means of

deducing negative information for logic programs and proposed the completion
of a program, comp(P), as a description of its meaning.

1979: Kowalski [54] analyzed logic programming as a formalism for knowledge
representation and problem solving.

1979: Kowalski [55] investigated logic programming as a formalism for a systematic
development of algorithms.

1981: Clark and Gregory [23] proposed a parallel version of logic programming
which influenced subsequent language proposals in this area.

1982: Logic programming was chosen as the basis for a new programming language in
the Japanese Fifth Generation computer system project

1982: Apt and Van Eniden [4] characterized the SLD-resolution, negation as failure
rule and completion ofa program by means of the operator Tp and its fixpoints.

1983: In the book [25], edited by K.L Clark and S.-A. Tarnlund, a number of articles
were collected that indicated a wide scope of applications of logic programming
and revealed its manipulative and expressive power.

1983: Jaffar, Lassez and Lloyd [48] proved completeness of the negation as failure rule
with respect to the completion of a program.

1984: Lloyd [64] gathered in his book several results on logic programming in a single,
uniform framework.

1984: A.J. Robinson founded the Journal of Logic Programming.
1986: In the book [43] edited by D. de Groot and G. Lindstrom, several approaches

aiming at an integration of logic and functional programming were presented.
1986: Apt, Blair and Walker [3] and Van Gelder [99] identified stratified programs

as a natural subclass of general logic programs and proposed stratification as
a means of handling negative information.

1986: J. Minker organized the Workshop on Foundations of Deductive Databases
and Logic Programming which brought together researchers working in both
areas.

1985-1989: M. Fitting and K. Kunen developed in [35, 36, 58, 60] a theory of logic
programming based on 3-valued logic.

Note

In this chapter we use the terminology of Lloyd in [64] which differs from that of
Lloyd in [65]. In [65] a program is called a definite program and in turn a general
program is called a normal program. Similar terminology is used there for goals and
general goals.

Acknowledgment

We would like to thank Marc Bezem, Roland Bol, Stephane Grumbach and Jan
Willem Kl op for detailed comments on the first version of this paper. Also, we profited
from discussions with Howard Blair, Lawrence Cavedon, Maarten van Emden, Jean
Gallier, Joxan Jaffar, Jean-Louis Lassez, John Lloyd, Michael Maher, Katuscia
Palamidessi, Teodor Przymusinski, John Shepherdson, Wayne Snyder and Rodney
Topor who commented on the subject of this paper in four languages. Our task was
significantly simplified thanks to John Lloyd who collected in [64] most of the results
presented here in a single framework. Figure 3 was reproduced with his permission.
We would like to thank Eline Meys and Ria Riechelmann-Huis for typing the
continuously growing and changing manuscript.

LOGIC PROGRAMMING 571

References

[1] ANDREKA, H. and I. NEMETI, The generalized completeness of Horn predicate logic as a programming
language, Acta Cybernet. 4 (1978) 3-10.

[2] APT, K.R. and H.A. BLAIR, Arithmetic classification of perfect models of stratified programs, in:
Proc. 5th Internat. Conf on Logic Programming (MIT Press, Cambridge, MA, 1988) 765-779.

(3] APT, K.R., H.A. BLAIR and A. WALKER, Towards a theory of declarative knowledge, in: J. Minker, ed.,
Foundations of Deductive Databases and Logic Programming (Morgan Kaufmann, Los Altos, CA,
1988).

[4] APT, K.R. and M.H. VAN EMDEN, Contributions to the theory of logic programming, J. ACM 29 (3)
(1982) 841-862.

[5] AQUILANO, c., R. BARBUTI, P. BOCCHETTI and M. MARTELLI, Negation as failure: Completeness of the
query evaluation process for Hom clause programs with recursive definitions, J. Automat. Reason.
2 (1986) 155-170.

[6] BANCILHON, F. and R. RAMAKRISHNAN, An amateur's introduction to recursive query processing
strategies, in: Proc. ACM lnternat. Conf. on Management of Data (1986) 16-52.

[7] BARBUTI, R. and M. MARTELLI, Completeness of the SLDNF-resolution for a class of logic programs,
in: Proc. 3rd lnternat. Conf. on Logic Programming, Lecture Notes in Computer Science, Vol. 225
(Springer, Berlin, 1986) 600-614.

[8] BELLIA, M. and G. LEVI, The relation between logic and functional languages, a survey, J. Logic
Programming 3 (1986) 217-236.

[9] BIDOIT, N. and R. HULL, Positivism versus minimalism in deductive databases, in: Proc. 5th ACM
SlGACT-SIGMOD Symp. on Principles of Database Systems (1986) 123-132.

(10] BIRKHOFF, G., Lattice Theory, American Mathematical Society Colloquium Publications, Vol. 25
(1973).

[11] BLAIR, H.A., The recursion-theoretic complexity of predicate logic as a programming language,
Inform. and Control 54 (1-2) (1982) 25-47.

(12] BLAIR, H.A., Decidability in the Herbrand base, Manuscript, presented at the Workshop on
Foundations of Deductive Databases and Logic Programming, Washington, DC, 1986.

(13] BORGER, E., Unsolvable decision problems for PROLOG programs, in: E. Borger, ed., Computation
Theory and Logic, Lecture Notes in Computer Science, Vol. 270 (Springer, Berlin, 1987) 37-48.

(14] BORGER, E., Logic as machine: complexity relations between programs and formulae, in: E. Borger,
ed., Trends in Theoretical Computer Science (Computer Science Press, Rockville, MD, 1988).

[15] BOWEN, K.A. and R.A. KOWALSKI, Amalgamating language and metalanguage in logic programm
ing, in: K.L. Clark and S.-A. Tiirnlung, eds., Logic Programming (Academic Press, New York, 1982).

[16] BRATKO, I., PRO LOG Programming for Artificial Intelligence (Addison Wesley, Reading, MA, 1986).
(17] BROUGH, D. and A. WALKER, Some practical properties oflogic programming interpreters, in: Proc.

Japan FGCS84 Conf. (1984) 149-156.
(18] CAMPBELL, J.A., ed., Implementations of PROLOG (Ellis Horwood, Chichester, UK, 1984).
[19] CAVEDON, L. and J. LLOYD, A completeness theorem for SLDNF-resolution, J. Logic Programming

7(4) (1989) 177-193.
[20] CHANDRA, A.K. and D. HAREL, Horn clause queries and generalizations, J. Logic Programming 2

(1) (1985) 1-15.
[21] CLARK, K.L., Negation as failure, in: H. Gallaire and J. Minker, eds., Logic and Data Bases (Plenum

Press, New York, 1978) 293-322.
[22] CLARK, K.L., Predicate logic as a computational formalism, Research Report DOC 79/59, Dept. of

Computing, Imperial College, London 1979.
[23) CLARK, K.L. and S. GREGORY, A relational language for parallel programming, in: Proc. ACM Conf.

on Functional Programming Languages and Computer Architecture (1981) 171-178.
[24) CLARK, K.L. and S. GREGORY, PARLOG: A parallel logic programming language, ACM Trans. on

Programming Languages and Systems 8 (1) (1986) 1-49.
r25] CLARK, K.L. and S.-A. TA.RNLUND. eds., Loqic Programmin(I (Academic Press, New York, 1982).
[26) COLMERAUER, A., H. KANOUI, P. ROUSSEL and R. PASERO, Un systeme de communication

homme-machine en Francais, Tech. Report. Groupe de Recherche en Intelligence Artificielle, Univ.
d'Aix-Marseille, 1973.

[27] Cox, P.T. and T. PIETRZYKOWSKI, Deduction plans: a basis for intelligent backtracking, in: IEEE
PAM I 3 (1981) 52-65 ..

[28] DEBRAY, S.K. and P. MISHRA, Denotational and operational semantics for PROLOG, J. Logic
Programming 5 (I) (1988) 61-91.

[29] DECKER, H., Integrity enforcement in deductive databases, in: Proc. 1 st lnternat. Conf. on Expert
Database Systems (I 986).

[30] EMOEN, M.H. VAN, Quantitative deduction and its tixpoint theory, J. Logic Programming 3 (1) (1986)
37-53.

[31] EM DEN, M.H. VAN and R.A. KOWALSKI, The semantics of predicate logic as a programming language,
J. ACM 23 (4) (1976) 733-742.

[32] EMDEN, M.H. VAN and K. YUKAWA, Logic programming with equations, J. Logic Programming 4 (4)
(1987) 265-288.

[33] FAR!i'IAS, L., DEL CERRO, MOLOG: A system that extends PROLOG with modal logic, New
Generation Comput. 4 (1) (1986) 35-50.

[34] FITTING, M., A deterministic PROLOG fixpoint semantics, J. Logic Programming 2 (2) (1985)
111-118.

[35] FITTING, M., A Kripke-Kleene semantics for logic programs, J. Logic Programming 2 (4) (1985)
295-312.

[36] FITTING, M., Partial models and logic programming, Theoret. Comput. Sci. 48 (1986) 229-255.
[37] FITTING, M., Computability Theory, Semantics, and Logic Programming (Oxford Univ. Press, New

York, 1987).
[38] GALLAIRE, H., 1. MINKER and J.M. NICOLAS, Logic and databases: a deductive approach, ACM

Comput. Surveys 16 (2) (1984) 153-186.
[39] GALLIER, J., Logic for Computer Science (Harper & Row, New York, 1986).
[40] GALLIER, and S. RAATZ, A graph-based interpreter for general Horn clauses, J. Logic Programming

4 (2) (1987) 119-156.
[41] GALLIER, J. and S. RAATZ, Extending SLD-resolution to equational Horn clauses using £-unification,

J. Logic Programming 6 (!) (1988) 3-44.
[42] GOGUEN, J.A. and J. MESEGUER, Equality, types, modules and (why not?) generics for logic

programming, J. Logic Programming 1 (2) (1984) 179-210.
[43] GROOT, D. DE and G. LINDSTROM, eds., Logic Programming, Functions, Relations and Equations

(Prentice-Hall, Englewood Cliffs, NJ, 1986).
[44] HENSCHEN, L. and H.S. PARK, Compiling the GCWA in indefinite deductive databases, in: J. Minker,

ed., Foundations of Deductive Databases and Logic Programming(Morgan Kaufmann, Los Altos, CA,
1988).

[45] HERBRAND, J. in: W.D. Goldfarb, ed., Logical Writings (Reidel, Dordrecht, 1971).
[46] HILL, R., LUSH-resolution and its completeness, DCL Memo 78, Dept. of Artificial Intelligence,

Univ. of Edinburgh, 1974.
[47] !TAI, and J.A. MAKOWSKY, Unification as a complexity measure for logic programming, J. Logic

Programming 4 (2) (1987) 105-118.
[48] JAFFAR, J., J.-L. LASSEZ and J.W. LLOYD, Completeness of the negation as failure rule, in: Proc.

IJCA/'83 (1983) 500-506.
[49] JAFFAR, J. and P.J. STUCKEY, Canonical logic programs, J. Logic Programming 3 (2) (1986) 143-

155.
[49a] JONES, N.D. and A. MYCROFT, Stepwise development of operational and denotational semantics

for PROLOG, in: Proc. Internat. Symp. on Logic Programming (1984) 289-298.
[50] Journal of Logic Programming 4 (1986) Special Issue on Natural Language and Logic Programming

(MCCORD, M.C., V. DAHL and H. ABRAMSON, guest editors).
[51] KANELLAKIS, P., Elements of relational database theory, in: J. van Leewen, ed., Handbook of

Theoretical Computer Science, Vol. B (North-Holland, Amsterdam, 1990).
[52] KLOP, J.W. and J.J. CH. MEYER, Toegepaste logica: resolutie logica en epistemische logica, Course

Notes, Free University Amsterdam, 1987 in Dutch.
[53] KOWALSKI, R.A., Predicate logic as a programming language, in: Proc. IFIP'74 (North-Holland,

Amsterdam, 1974) 569-574.

LOGIC PROGRAMMING

[54] KOWALSKI, R.A., Logic for Problem Solving (North-Holland, New York, 1979).
[55] KOWALSKI, R.A., Algorithm=logic+control, Comm. ACM 22 (7) (1979) 424-435.

573

[56] KOWALSKI, R.A., The relation between logic programming and logic specification, in: C.A.R. Hoare
and J.C. Shepherdson, eds., Mathematica/ Logic and Programming Languages (Prentice-Hall,
Englewood Cliffs, NJ, 1985) 11-27.

[57] KOWALSKI, R.A. and D. KUEHNER, Linear resolution with selection function, Artificial Intelligence
2 (1971) 227-260.

[58] KUNEN, K., Negation in logic programming, J. Logic Programming 4 (4) (1987) 289-308.
[59] KUNEN, K., Answer sets and negation as failure, in: Proc. 4th Internat. Conf on Logic Programming

(MIT Press, Cambridge, MA, 1987) 219-228.
f 601 KUNEN, K., Signed data dependencies in logic programs, J. Logic Programming 7 (4) (1989) 231-245.
L 61] LASSEZ, J .-L. and M.J. MAHER, Closures and fairness in the semantics of programming logic, Theoret.

Comput. Sci 29 (1984) 167-184.
[62] LASSEZ, J.L., M.J. MAHER and K. MARRIOTT, Unification revisited, in: J. Minker, ed., Foundations of

Deductive Databases and Logic Programming (Morga Kaufmann, Los Altos, CA, 1988).
[63] LIFSCHITZ, V., On the declarative semantics of logic programs with negation, in: J. Minker, ed.,

Foundations of Deductive Databases and Logic Programming (Morgan Kaufmann, Los Altos, CA,
1988).

[64] LLOYD, J.W., Foundations of Logic Programming (Springer, Berlin, 1984).
[65] LLOYD, J.W., Foundations of Logic Programming (Springer, Berlin, 2nd ed., 1987).
[66] LLOYD, J.W. and J.C. SHEPHERDSON, Partial evaluation in logic programming, Tech. Report

CS-87-09, Dept. of Computer Science, Univ. of Bristol, 1987.
[67] LLOYD, J.W., E.A. SONENBERG and R.W. TOPOR, Integrity constraint checking in stratified databases,

J. Logic Programming 4 (4) (1987) 331-345.
[68] LLOYD, J.W. and R. TOPOR, A basis for deductive databases II, J. Logic Programming 3 (!) (1986)

55-67.
[69] MAHER, M., Equivalences of logic programs, in: J. Minker, ed., Foundations of Deductive Databases

and Logic Programming (Morgan Kaufmann, Los Altos, CA, 1988).
[70] MANIN, Y.I., A Course in Mathematical Logic (Springer, New York, 1977).
[71] MARTELLI, A. and U. MONTANARI, An efficient unification algorithm, ACM Trans. on Programming

Languages and Systems 4 (2) (1982) 258-282.
[72] MENDELSON, E., Introduction to Mathematical Logic (Van Nostrand, Princeton, NJ, 2nd ed., 1979).
[73] MINKER, J., On indefinite databases and the closed world assumption, in: D.W. Loveland, ed., Proc.

6th Conf on Automated Deduction Lecture Notes in Computer Science, Vol. 138 (Springer, Berlin,
1982) 292-307.

[74] MINKER, J., Perspectives in deductive databases, J. Logic Programming 5 (1) (1988) 33--60.
[75] MYCROFT, A., Logic programs and many-valued logic, in: Proc. of Symp. on Theoretical Aspects of

Computer Science, Lecture Notes in Computer Science, Vol. 166 (Springer, Berlin, 1984) 274-286.
[76] NAISH, L., Negation and Control in PRO LOG, Lecture Notes in Computer Science, Vol. 238 (Springer,

Berlin, 1986).
[77] NAQVI, S.A., A logic for negation in database systems, in: J. Minker, ed., Foundations of Deductive

Databases and Logic Programming (Morgan Kaufmann, Los Altos, CA, 1988).
(78] NAUGHTON, J.F. and Y. SAGIV, A decidable class of bounded recursions, in: Proc. 6th ACM

SIGACT-SIGMOD Symp. on Principles of Database Systems (1987) 227-237.
[79] PATERSON, M.S. and M.N. WEGMAN, Linear unification, J. Comput. System Sci.16 (2)(1978) 158-167.
[80] PooLE, D.L., Default reasoning and diagnosis on theory formation, Tech. Report 86-08, Dept. of

Computer Science, Univ. of Waterloo, Waterloo, 1986.
[81] PRZYMUSINSKI, T., On the semantics of stratified databases, in: J. Minker, ed., Foundations of

Deductive Databases and Logic Programming (Morgan Kaufmann, Los Altos, CA, 1988).
[82] PRZVMUSINSKI, T., Non-monotonic reasoning vs logic programming: a new perspective, in: Y. Wilks

and D. Partridge, eds. Handbook on the Formal Foundations of A.I. (Cambridge University Press,
Cambridge, in press).

[83] REITER, R., On closed world data bases, in: H. Gallaire and J. Minker, eds., Logic and Data Bases
(Plenum Press, New York, 1978) 55-76.

[84] ROBINSON, J.A., A machine-oriented logic based on the resolution principle, J. ACM 12 (I) (1965)
23-41.

574 K.R. APT

[85] ROBINSON, J.A. and E.E. SIEBERT, LOG LISP: motivation, design and implementation, in: K.L. Clark
and S.-A. Tiirnlund, eds., Logic Programming (Academic Press, New York, 1982) 299-313.

[86] SEBELIK, J. and P. STEPANEK, Hom clause programs for recursive functions, in: K.L. Clark and S.-A.
Tiimlund, eds., Logic Programming (Academic Press, New York, 1982) 324-340.

[87] SHAPIRO, E.Y., A subset of concurrent PROLOG and its interpreter, Tech. Report TR-003, !COT,
Tokyo, 1983.

[88] SHEPHERDSON, J.C., Negation as failure: a comparison of Clark's completed data base and Reiter's
closed world assumption, J. Logic Programming 1 (1) (1984) 51-79.

[89] SHEPHERDSON, J.C., Vndecidability of Horn clause logic and pure PROLOG, Unpublished
manuscript, 1985.

[90] SHEPHERDSON, J.C., Negation in logic programming, in J. 'Minker, ed. Foundations of Deductive
Databases and Logic Programming (Morgan Kaufmann, Los Altos, CA, 1988).

[91] SHMUELI, 0., Decidability and expressiveness aspects of logic queries, in: Proc. 6th ACM
SIGACT-SIGMOD Symp. on Principles of Database Systems (1987) 237-249.

[92] SHOENFIELD, J., Mathematical Logic (Addison-Wesley, Reading, MA, 1967).
[93] SIEKMANN, J.H., Unification theory, J. Symbolic Comput. 7 (1988) 207-274.
[94] SMULL YAN, R.M., Theory of Formal Systems, Annals of Mathematical Studies, Vol. 47 (Princeton

Univ. Press, Princeton, NJ, 1961).
[95] SONENBERG, E.A. and R. TOPOR, Logic programs and computable functions, Tech. Report 87 /5, Dept.

of Computer Science, Vniv. of Melbourne, 1987.
[96] STERLING, L. and E.Y. SHAPIRO, The Art of PROLOG (MIT Press, Cambridge, MA, 1986).
[97] TARSKI, A., A lattice-theoretical fixpoint theorem and its applications, Pacific J. Math. 5 (1955)

285-309.
[98] TARNLUND, S.-A., Hom clause computability, BIT 17 (2) 215-226.
[99] VAN GELDER, A., Negation as failure using tight derivations for general logic programs, in: J. Minker,

ed., Foundations of Deductive Databases and Logic Programming (Morgan Kaufman, Los Altos, CA,
1988).

[100] VIEILLE, L., A database-complete proof procedure based on SLD-resolution, in: Proc. 4th Internat.
Conf on Logic Programming (1987) 74-103.

[IOI] WALKER, A., Syllog: an approach to PROLOG for non-programmers, in: M. van Caneghem and
P.H.D. Warren, eds., Logic Programming and its Applications (Ablex, Norwood, NJ, 1986) 32-49.

[102] WOLFRAM, D., M. MAHER and J.L. LASSEZ, A unified treatment of resolution strategies for logic
programs, in: Proc. 2nd lnternat. Conf on Logic Programming (1984) 263-276.

