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Abstract We present a methodology for generating probabilistic predictions for the Disturbance Storm
Time (Dst) geomagnetic activity index. We focus on the One Step Ahead prediction task and use the OMNI
hourly resolution data to build our models. Our proposed methodology is based on the technique of
Gaussian Process Regression. Within this framework we develop two models; Gaussian Process Autoregressive
(GP-AR) and Gaussian Process Autoregressive with eXogenous inputs (GP-ARX). We also propose a criterion to
aid model selection with respect to the order of autoregressive inputs. Finally, we test the performance of
the GP-AR and GP-ARX models on a set of 63 geomagnetic storms between 1998 and 2006 and illustrate
sample predictions with error bars for some of these events.

1. Introduction

The magnetosphere’s dynamics and its associated solar wind driver form a complex dynamical system. It is
therefore instructive and greatly simplifying to use representative indices to quantify the state of geomagnetic
activity.

Geomagnetic indices come in various forms; they may take continuous or discrete values and may be defined
with varying time resolutions. Their values are often calculated by averaging or combining a number of read-
ings taken by instruments, usually magnetometers, around the Earth. Each geomagnetic index is a proxy for
a particular kind of phenomenon. Some popular indices are the Kp, Dst, and the AE index.

1. Kp: The Kp index is a discrete valued global geomagnetic activity index and is based on 3 h measurements
of the K indices [Bartels and Veldkamp, 1949]. The K index itself is a 3 h long quasi-logarithmic local index of
the geomagnetic activity, relative to a calm day curve for the given location.

2. AE: The Auroral Electrojet Index, AE, is designed to provide a global, quantitative measure of auroral zone
magnetic activity produced by enhanced Ionospheric currents flowing below and within the auroral oval
[Davis and Sugiura, 1966]. It is a continuous index which is calculated every hour.

3. Dst: A continuous hourly index which gives a measure of the weakening or strengthening of the Earth’s
equatorial magnetic field due to particle injection in the magnetosphere. Particle injection has a number of
sources such as weakening or strengthening of the ring currents and the geomagnetic storms [Dessler and
Parker, 1959], near-Earth cross-tail current [Ganushkina et al., 2004, 2010], partial ring current [Liemohn et al.,
2001], substorm current wedge [Munsami, 2000], and magnetopause current.

For the present study, we focus on prediction of the hourly Dst index which is a straightforward indicator of
geomagnetic storms. More specifically, we focus on the one step ahead (OSA) (in this case 1 h ahead) prediction
of Dst because it is the simplest model toward building long-term predictions of geomagnetic response of
the Earth to changing space weather conditions.

The Dst OSA prediction problem has been the subject of several modeling efforts in the literature. One of the
earliest models has been presented by Burton et al. [1975] who calculated Dst(t) as the solution of an ordinary
differential equation (ODE) which expressed the rate of change of Dst(t) as a combination of two terms: decay
and injection dDst(t)

dt
=Q(t) − Dst(t)

𝜏
, where Q(t) relates to the particle injection from the plasma sheet into the

inner magnetosphere.
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The Burton et al. [1975] model has proven to be very influential particularly due to its simplicity. Many sub-
sequent works have modified the proposed ODE by proposing alternative expressions for the injection term
Q(t) [see Wang et al., 2003; O’Brien and McPherron, 2000]. More recently, Ballatore and Gonzalez [2014] have
tried to generate empirical estimates for the injection and decay terms in Burton’s equation.

Another important empirical model used to predict Dst is the Nonlinear Autoregressive Moving Average with
eXogenous inputs (NARMAX) methodology developed in Billings et al. [1989], Balikhin et al. [2001], Zhu et al.
[2006, 2007], and Boynton et al. [2011a, 2011b, 2013]. The NARMAX methodology builds models by con-
structing polynomial expansions of inputs and determines the best combinations of monomials to include in
the refined model by using a criterion called the error reduction ratio (ERR). The parameters of the so-called
NARMAX OLS-ERR model are calculated by solving the ordinary least squares (OLS) problem arising from a
quadratic objective function. It must be noted that the NARMAX methodology is not limited to polynomial
functions, rather any set of basis function expansions can be used with it, such as radial basis functions and
wavelets [Wei et al., 2006, 2004]. The reader may refer to Billings [2013] for a detailed exposition of the NARMAX
methodology.

Yet another family of forecasting methods is based on Artificial Neural Networks that have been a popular
choice for building predictive models. Researchers have employed both the standard feed forward and the
more specialized recurrent architectures. Lundstedt et al. [2002] proposed an Elman recurrent network archi-
tecture called Lund Dst, which used the solar wind velocity, interplanetary magnetic field (IMF), and historical
Dst data as inputs. Wing et al. [2005] used recurrent neural networks to predict Kp. Bala et al. [2009] origi-
nally proposed a feed-forward network for predicting the Kp index which used the Boyle coupling function
[Boyle et al., 1997]. The same architecture is adapted for prediction of Dst in Bala et al. [2009], popularly known
as the Rice Dst model. Pallocchia et al. [2006] proposed a neural network model called EDDA to predict Dst
using only the IMF data.

Apart from the NARMAX and neural network approaches, fuzzy methods have also been applied for Dst
prediction; Sharifie et al. [2006] and Sharifi et al. [2006] outline the application of Local Neurofuzzy models for
1 h and 2 h predictions of Dst, respectively. Local neuro-fuzzy models reduce the input space into a number
of regions each with its own expert predictor. The combined model predicts Dst for a new point as a linear
combinations of the predictions from each expert weighted by a fuzzy score signifying the importance of each
model for the provided input. For improving predictive performance of 2 h Dst forecasts in Sharifi et al. [2006],
the authors use singular spectrum analysis (SSA). Singular spectrum analysis consists of extracting orthogonal
components from a lagged time series; it is equivalent to principal component analysis which is quite exten-
sively used in the machine learning community. Loskutov et al. [2001a, 2001b] provide a good background to
the theory and application of SSA to geomagnetic time series.

Although much research has been done on prediction of the Dst index, much less has been done on proba-
bilistic forecasting of Dst. One such work described in McPherron et al. [2013] involves identification of high
speed solar wind streams using the WSA model [see Wang and Sheeley, 1990], using predictions of high speed
streams to construct ensembles of Dst trajectories which yield the quartiles of Dst time series.

A simple way to construct error bars on the predictions of forecasting models is by using the so-called past
cast performance, i.e., by calculating the standard deviations of the predictions generated by the model on
a hold out data set. One limitation of such an approach is that the variance of the model predictions is com-
puted once and for all. It does not adapt according to the inputs provided to the model. This may lead to
overestimation or underestimation of the uncertainty around a given prediction, depending on the prevelant
geomagnetic conditions and the data set used to calculate the past cast model performance.

In this work we propose a technique for probabilistic forecasting of Dst, which yields a predictive distribution
as a closed form expression. Our models take as input past values of Dst, solar wind speed, and the z compo-
nent of the Interplanetary Magnetic Field (IMF) and output a Gaussian distribution with a specific mean and
variance as the OSA prediction of the Dst.

We use the Gaussian Process Regression methodology to construct autoregressive models for Dst and show
how to perform exact inference in this framework. We further outline a methodology to perform model
selection with respect to its free parameters and time histories.

The remainder of this paper is organized as follows: section 2 gives the reader an overview of the history
of Gaussian Process models as well as how they are formulated and how to perform inference with them.
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Sections 3 and 4 describe the Gaussian Process Autoregressive (GP-AR) and Gaussian Process Autoregressive
With eXogenous Inputs (GP-ARX) models for OSA prediction of Dst and how to choose their free parameters
for better performance.

2. Methodology: Gaussian Process

Gaussian Processes first appeared in machine learning research in Neal [1996], as the limiting case of Bayesian
inference performed on neural networks with infinitely many neurons in the hidden layers. Although their
inception in the machine learning community is recent, their origins can be traced back to the geostatis-
tics research community where they are known as Kriging methods [Krige, 1951]. In pure mathematics area
Gaussian Processes have been studied extensively and their existence was first proven by Kolmogorov’s exten-
sion theorem [Tao, 2011]. The reader is referred to Rasmussen and Williams [2005] for an in-depth treatment
of Gaussian Processes in machine learning.

Let us assume that we want to model a process in which a scalar quantity y is specified as y = f (x) + 𝜖 where
f (.) ∶ Rd →R is an unknown scalar function of a multidimensional input vector x ∈ Rd , d is the dimensionality
of the input space, and 𝜖∼ (0, 𝜎2) is zero mean Gaussian noise with variance 𝜎2.

A set of labeled data points (xi, yi); i=1…N can be conveniently expressed by a N × d data matrix X and a
N × 1 response vector y, as shown in equations (1) and (2).

X =

⎛⎜⎜⎜⎜⎝
xT

1
xT

2
⋮

xT
N

⎞⎟⎟⎟⎟⎠N×d

(1)

y =

⎛⎜⎜⎜⎜⎝
y1

y2

⋮
yN

⎞⎟⎟⎟⎟⎠N×1

(2)

Our task is to infer the values of the unknown function f (.) based on the inputs X and the noisy observa-
tions y. We now assume that the joint distribution of f (xi), i = 1…N is a multivariate Gaussian as shown in
equations (3)–(5).

f =

⎛⎜⎜⎜⎜⎝
f (x1)
f (x2)
⋮

f (xN)

⎞⎟⎟⎟⎟⎠
(3)

f|x1,… , xN ∼  (𝝁,𝚲) (4)

p(f | x1,… , xN) =
1

(2𝜋)n∕2det(𝚲)1∕2
exp

(
−1

2
(f − 𝝁)T𝚲−1(f − 𝝁)

)
(5)

Here f is a N × 1 vector consisting of the values f (xi), i=1…N. In equation (4), f|x1,… , xN denotes the condi-
tional distribution of f with respect to the input data (i.e., X) and  (𝝁,𝚲) represents a multivariate Gaussian
distribution with mean vector 𝝁 and covariance matrix 𝚲. The probability density function of this distribution
p(f | x1,… , xN) is therefore given by equation (5).

From equation (5), one can observe that in order to uniquely define the distribution of the process, it is
required to specify 𝝁 and 𝚲. For this probability density to be valid, there are further requirements imposed
on 𝚲:

1. Symmetry: 𝚲ij =𝚲ji ∀i, j ∈ 1,… ,N
2. Positive semidefiniteness: zT𝚲z ≥ 0 ∀z ∈ RN
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Inspecting the individual elements of 𝝁 and 𝚲, we realize that they take the following form.

𝜇i = E
[

f
(

xi

)]
∶= m

(
xi

)
(6)

Λij = E
[(

f
(

xi

)
− 𝜇i

) (
f
(

xj

)
− 𝜇j

)]
∶= K

(
xi, xj

)
(7)

Here E denotes the expectation (average). The elements of 𝝁 and 𝚲 are expressed as functions m(xi) and
K
(

xi, xj

)
of the inputs xi, xj . Specifying the functions m(x) and K(x, x′) completely specifies each element of

𝝁 and 𝚲 and subsequently the finite dimensional distribution of f|x1,… , xN. In most practical applications of
Gaussian Processes the mean function is often defined as m(x) = 0, which is not unreasonable if the data are
standardized to have zero mean. Gaussian Processes are represented in machine learning literature using the
following notation:

f (x) ∼ (m(x), K(x, x′)) (8)

2.1. Inference and Predictions
Our aim is to infer the function f (x) from the noisy training data and generate predictions f

(
x∗

i

)
for a set of

test points x∗
i ∶ ∀i ∈ 1,… ,M. We define X∗ as the test data matrix whose rows are formed by x∗

i as shown in
equation (9).

X∗ =

⎛⎜⎜⎜⎜⎝
(x∗

1)
T

(x∗
2)

T

⋮
(x∗

M)
T

⎞⎟⎟⎟⎟⎠M×d

(9)

Using the multivariate Gaussian distribution in equation (5) we can construct the joint distribution of f (x) over

the training and test points. The vector of training and test outputs
(

y
f∗

)
is of dimension (N + M) × 1 and is

constructed by appending the test set predictions f∗ to the observed noisy measurements y.

f∗ =

⎛⎜⎜⎜⎜⎝
f (x∗

1)
f (x∗

2)
⋮

f (x∗
M)

⎞⎟⎟⎟⎟⎠M×1

(10)

(
y
f∗

) | X,X∗ ∼ 

(
0,
[

K + 𝜎2I K∗
KT
∗ K∗∗

])
(11)

Since we have noisy measurements of f over the training data, we add the noise variance 𝜎2 to the variance of
f as shown in (11). The block matrix components of the (N+M)×(N+M) covariance matrix have the following
structure.

1. I: The N × N identity matrix.
2. K =

[
K
(

xi, xj

)]
, i, j ∈ 1,… ,N: Kernel matrix constructed from all couples obtained from the training data.

3. K∗ =
[

K
(

xi, x∗
j

)]
, i ∈ 1,… ,N; j ∈ 1,… ,M: Cross kernel matrix constructed from all couples between

training and test data points.

4. K∗∗ =
[

K
(

x∗
i , x∗

j

)]
, i, j ∈ 1,… ,M: Kernel matrix constructed from all couples obtained from the test data.

With the multivariate normal distribution defined in equation (11), probabilistic predictions f∗ can be gener-

ated by constructing the conditional distribution f∗|X, y,X∗. Since the original distribution of
(

y
f∗

) | X,X∗ is

a multivariate Gaussian, conditioning on a subset of elements y yields another Gaussian distribution whose
mean and covariance can be calculated exactly, as in equation (12) [see Rasmussen and Williams, 2005].

f∗|X, y,X∗ ∼ 
(

f̄∗,Σ∗
)
, (12)
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Table 1. Popular Kernel Functions Used in GPR Models

Name Expression Hyperparameters

Radial basis function (RBF) 1
2

exp
(
−||x − y||2∕l2

)
l ∈ R

Polynomial (x⊺y + b)d b ∈ R, d ∈ N

Laplacian exp(−||x − y||1∕𝜃) 𝜃 ∈ R+

Student’s t 1∕
(

1 + ||x − y||d
2

)
d ∈ R+

Maximum likelihood perceptron sin−1
(

wx⊺y+b√
wx⊺x+b+1

√
wy⊺y+b+1

)
w, b ∈ R+

where
f̄∗ = KT

∗
[
K + 𝜎2I

]−1
y (13)

Σ∗ = K∗∗ − KT
∗
(

K + 𝜎2I
)−1

K∗ (14)

The practical implementation of Gaussian Process models requires the inversion of the training data kernel
matrix

[
K + 𝜎2I

]−1
to calculate the parameters of the predictive distribution f∗|X, y,X∗. The computational

complexity of this inference is dominated by the linear problem in equation (13), which can be solved via
Cholesky decomposition, with a time complexity of O(N3), where N is the number of data points.

The distribution of f∗|X, y,X∗ is known in Bayesian analysis as the Posterior Predictive Distribution. This illus-
trates a key difference between Gaussian Processes and other regression models such as Neural Networks,
Linear Models, and Support Vector Machines: a Gaussian Process model does not generate point predictions for
new data but outputs a predictive distribution for the quantity sought, thus allowing to construct error bars
on the predictions. This property of Bayesian models such as Gaussian Processes makes them very appealing
for Space Weather forecasting applications.

The central design issue in applying Gaussian Process models is the choice of the function K(x, x′). The same
constraints that apply to𝚲 also apply to the function K . In machine learning, these symmetric positive definite
functions of two variables are known as kernels. Kernel-based methods are applied extensively in data analysis,
i.e., regression, clustering, classification, and density estimation [see Scholkopf and Smola, 2001; Hofmann
et al., 2008].

2.2. Kernel Functions
For the success of a Gaussian Process model an appropriate choice of kernel function is paramount. The sym-
metry and positive semidefiniteness of Gaussian Process kernels implies that they represent inner products
between some basis function representation of the data. The interested reader is suggested to refer to Berlinet
and Thomas-Agnan [2004], Scholkopf and Smola [2001], and Hofmann et al. [2008] for a thorough treatment of
kernel functions and the rich theory behind them. Some common kernel functions used in machine learning
are listed in Table 1.

The quantities l in the radial basis function, and b and d in the polynomial kernel are known as hyperpa-
rameters. Hyperparameters give flexibility to a particular kernel structure, for example, d = 1, 2, 3,… in the
polynomial kernel represents linear, quadratic, cubic, and higher-order polynomials, respectively. The process
of assigning values to the hyperparameters is crucial in the model building process and is known as model
selection.

2.3. Model Selection
Given a GP model with a kernel function K𝜃 , the problem of model selection consists of finding appropriate
values for the kernel hyperparameters 𝜃 =

(
𝜃1, 𝜃2,… , 𝜃i

)
. In order to assign a value to 𝜃, we must define an

objective function which represents our confidence that the GP model built from a particular value of 𝜃 is
the best performing model. Since GP models encode assumptions about the probability distribution of the
output data y given inputs X, it is natural to use the negative log likelihood of the training data as a model
selection criterion.

Q(𝜃) = −log(p(y|X, K𝜃))

= −1
2

y⊺ (K𝜃 + 𝜎2I
)−1

y − 1
2
|K𝜃 + 𝜎2I| − N

2
log(2𝜋)

K𝜃 =
[

K𝜃

(
xi, xj

)]
N×N
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The model selection problem can now be expressed as the minimization problem shown below.

𝜃∗ = arg min
𝜃

Q(𝜃)

The objective function Q(𝜃) in the general case can have multiple local minima, and evaluating the value of
Q(.) at any given 𝜃 requires inversion of the matrix K𝜃+𝜎2I which has a time complexity O(N3) as noted above.
In the interest of saving computational cost, one cannot use exhaustive search through the domain of the
hyperparameters to inform our choice for 𝜃. Some of the techniques used for model selection in the context
of GPR include the following:

1. Grid Search: Construct a grid of values for 𝜃 as the Cartesian product of one-dimensional grids for each 𝜃i ,
evaluate Q(.) at each such grid point, and choose the configuration which yields minimum value of Q(.).

2. Coupled Simulated Annealing: Introduced in Xavier-De-Souza et al. [2010], it follows the same procedure as
grid search, but after evaluation of the objective Q(.) on the grid, each grid point is iteratively mutated in a
random walk fashion. This mutation is accepted or rejected according to the new value of Q(.) as well as its
value on the other grid points. This procedure is iterated until some stop criterion is reached.

3. Maximum Likelihood: This technique as outlined in Rasmussen and Williams [2005] is a form of gradient
descent. It involves starting with an initial guess for 𝜃 and iteratively improving it by calculating the gradient
of Q(.) with respect to 𝜃. Although this method seems intuitive, it introduces an extra computational cost
of calculating the gradient of Q(𝜃) with respect to each 𝜃i in every iteration and applying this method can
sometimes lead to overfitting of the GPR model to the training data [Rasmussen and Williams, 2005].

3. One Step Ahead Prediction

Below in equations (15)–(17) we outline a Gaussian Process formulation for OSA prediction of Dst. A vector of
features xt−1 is used as input to an unknown function f (xt−1).

The features xt−1 can be any collection of quantities in the hourly resolution OMNI data set. Generally, xt−1 are
time histories of Dst and other important variables such as plasma pressure p(t), solar wind speed V(t), and z
component of the interplanetary magnetic field Bz(t).

Dst(t) = f (xt−1) + 𝜖 (15)

𝜖 ∼ 
(

0, 𝜎2
)

(16)

f (xt) ∼ 
(

m(xt), Kosa

(
xt, xs

))
(17)

We consider two choices for the input features xt−1 leading to two variants of Gaussian Process regression for
Dst time series prediction.

3.1. Gaussian Process Autoregressive
The simplest autoregressive models for OSA prediction of Dst are those that use only the history of Dst to
construct input features for model training. The input features xt−1 at each time step are the history of Dst(t)
until a time lag of p hours.

xt−1 = (Dst(t − 1),… ,Dst(t − p + 1))

3.2. Gaussian Process Autoregressive With eXogenous Inputs)
Autoregressive models can be augmented by including exogenous quantities in the inputs xt−1 at each time
step, in order to improve predictive accuracy. While modeling Dst using the OMNI data, one must choose
which solar wind quantities to include in the exogenous inputs of the predictive model. This choice is not
straightforward and eventually requires a compromise between including important solar wind quantities
and keeping the input space manageable in the interest of simplicity.
3.2.1. Choice of Solar Wind Inputs
Dst gives a measure of ring currents, which are modulated by plasma sheet particle injections into the inner
magnetosphere during substorms. Studies have shown that the substorm occurrence rate increases with solar
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wind velocity (high speed streams) [Kissinger et al., 2011; Newell et al., 2016]. Prolonged southward inter-
planetary magnetic field (IMF) z component (Bz) is needed for substorms to occur [McPherron et al., 1986].
An increase in the solar wind electric field, VswBz , can increase the dawn-dusk electric field in the magnetotail,
which in turn determines the amount of plasma sheet particle that move to the inner magnetosphere [Friedel
et al., 2001].

Apart from V and Bz , other quantities which have been shown to correlate with geomagnetic activity are solar
wind dynamic pressure P, clock angle tan𝜃 = By

Bz
, Akasofu 𝜖 [Pudovkin and Semenov, 1986], and solar wind

magnetosphere coupling functions [Spencer et al., 2011].

Although solar wind magnetospheric coupling functions have been shown to have correlation with geomag-
netic indices, they are expressed in terms of V and Bz , and hence, we do not include them as explicit inputs
to the model. Gaussian Process models derive their strength from automatic feature construction achieved by
the covariance functions (interested readers may refer to chapters 6 and 7 in Rasmussen and Williams [2005]).
As long as coupling functions can be approximated in the eigenspace of the covariance function we need not
make them explicit in the input features.

Therefore, our exogenous parameters consist of solar wind velocity Vsw and IMF Bz . In this model we choose
distinct time lags p, pv , and pb for Dst, V , and Bz respectively.

xt−1 = (Dst(t − 1),… ,Dst(t − p + 1),
Vsw(t − 1),… , Vsw(t − pv + 1),
Bz(t − 1),… , Bz(t − pb + 1))

It is an important question as to how unaccounted inputs such as solar wind dynamic pressure P and clock
angle 𝜃 affect the structure of the GP-ARX model. From a model selection perspective, these unaccounted
inputs should lead to higher values of the noise covariance. In the specific case of solar wind dynamic pressure,
it is calculated as a product of the plasma density and the solar wind speed making it highly correlated with
the solar wind speed, as a result the GP-ARX model can infer a large portion of the information content from
the solar wind speed itself. With respect to the clock angle, it must be noted that coupling functions such as
Akasofu 𝜖 generally contain powers of sin𝜃 bounding the effect of clock angle to an absolute magnitude of
1; hence, we do not expect these unaccounted inputs to greatly improve the predictive capabilities of the
GP-ARX model.

3.3. Choice of Mean Function
Mean functions in GPR models encode trends in the data, they are the baseline predictions the model falls
back to in case the training and test data have little correlation as predicted by the kernel function. If there
is no prior knowledge about the function to be approximated, Rasmussen and Williams [2005] state that it is
perfectly reasonable to choose m(x = 0) as the mean function, as long as the target values are normalized.
In the case of the Dst time series, it is known that the so-called persistence model D̂st(t) =Dst(t − 1) has high
correlation with OSA Dst. Due to its simplicity, we choose the persistence model as the prior mean function in
our OSA Dst models.

The persistence model can be described as Markovian prediction mechanism, when it is chosen as the prior
mean of the GP-AR and GP-ARX model, it is indeed the case that the prior probability distribution of Dst(t) is
Gaussian with a strong Markovian behavior P(Dst(t)|xt) ∼ (Dst(t − 1),

√
Kosa(xt, xt)), but the posterior pre-

dictive distribution of Dst(t) conditional on the model training data (given in equation (13)) is non-Markovian
due to its dependence on the term denoted by K∗ which contains kernel values computed between the test
data and training data features. Thus, the GP-AR and GP-ARX models when used conditional on training data
are non-Markovian predictive models.

3.4. Choice of Kernel
In this study, we construct Gaussian Process regression models with a combination of the maximum likelihood
perceptron kernel and student’s t kernel as shown in equations (18). The maximum likelihood perceptron kernel
is the Gaussian Process equivalent of a single hidden layer feed-forward neural network model as demon-
strated in Neal [1996].

Kosa(x, y) = Kmlp(x, y) + Kst(x, y) (18)

CHANDORKAR ET AL. GAUSSIAN PROCESS DST MODELS 7
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Table 2. Settings of Model Selection Proceduresa

Procedure Grid Size Step Max Iterations

Grid search 10 0.2 NA

Coupled simulated annealing 4 0.2 30

Maximum likelihood NA 0.2 150
aNA, not applicable/not available.

Kmlp(x, y) = sin−1

(
wx⊺y + b√

wx⊺x + b + 1
√

wy⊺y + b + 1

)
(19)

Kst(x, y) = 1
1 + ||x − y||d

2

(20)

4. Experiments
4.1. Training
We selected OMNI data sections 00:00 3 January to 23:00 23 January 2010 and 20:00 5 August to 22:00 6
August 2011 for training the GP-AR and GP-ARX models. The first training data section consists of ambient
fluctuations of Dst while the second contains a geomagnetic storm.

The computational complexity of calculation of the predictive distribution is O(N3), as discussed in section 2.1.
This can limit the size of the covariance matrix constructed from the training data. Note that this computation
overhead is paid for every unique assignment to the model hyperparameters. However, our chosen training
set has a size of 243 which is still very much below the computational limits of the method and in our case

Table 3. Storm Events Used for Model Selection of GP-AR and GP-ARX

Event Id Start Date Start Hour End Date End Hour Min. Dst

1 1995/03/26 0500 1995/03/26 2300 107

2 1995/04/07 1300 1995/04/09 0900 149

3 1995/09/27 0100 1995/09/28 0400 108

4 1995/10/18 1300 1995/10/19 1400 127

5 1996/10/22 2200 1996/10/23 1100 105

6 1997/04/21 1000 1997/04/22 0900 107

7 1997/05/15 0300 1997/05/16 0000 115

8 1997/10/10 1800 1997/10/11 1900 130

9 1997/11/07 0000 1997/11/07 1800 110

10 1997/11/22 2100 1997/11/24 0400 108

11 2005/06/12 1700 2005/06/13 1900 106

12 2005/08/31 1200 2005/09/01 1200 122

13 2006/12/14 2100 2006/12/16 0300 162

14 2011/09/26 1400 2011/09/27 1200 101

15 2011/10/24 2000 2011/10/25 1400 132

16 2012/03/08 1200 2012/03/10 1600 131

17 2012/04/23 1100 2012/04/24 1300 108

18 2012/07/15 0100 2012/07/16 2300 127

19 2012/09/30 1300 2012/10/01 1800 119

20 2012/10/08 0200 2012/10/09 1700 105

21 2012/11/13 1800 2012/11/14 1800 108

22 2013/03/17 0700 2013/03/18 1000 132

23 2013/05/31 1800 2013/06/01 2000 119

24 2014/02/18 1500 2014/02/19 1600 112
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Table 4. Storm Events Used to Evaluate GP-AR and GP-ARX Models

Event Id Start Date Start Time End Date End Time Min. Dst

1 1998/02/17 1200 1998/02/18 1000 −100

2 1998/03/10 1100 1998/03/11 1800 −116

3 1998/05/04 0200 1998/05/05 0200 −205

4 1998/08/26 1000 1998/08/29 0700 −155

5 1998/09/25 0100 1998/09/26 0000 −207

6 1998/10/19 0500 1998/10/20 0800 −112

7 1998/11/09 0300 1998/11/10 1600 −142

8 1998/11/13 0000 1998/11/15 0400 −131

9 1999/01/13 1600 1999/01/14 2000 −112

10 1999/02/18 0300 1999/02/19 2100 −123

11 1999/09/22 2000 1999/09/23 2300 −173

12 1999/10/22 0000 1999/10/23 1400 −237

13 2000/02/12 0500 2000/02/13 1500 −133

14 2000/04/06 1700 2000/04/08 0900 −288

15 2000/05/24 0100 2000/05/25 2000 −147

16 2000/08/10 2000 2000/08/11 1800 −230

17 2000/08/12 0200 2000/08/13 1700 −235

18 2000/10/13 0200 2000/10/14 2300 −107

19 2000/10/28 2000 2000/10/29 2000 −127

20 2000/11/06 1300 2000/11/07 1800 −159

21 2000/11/28 1800 2000/11/29 2300 −119

22 2001/03/19 1500 2001/03/21 2300 −149

23 2001/03/31 0400 2001/04/01 2100 −387

24 2001/04/11 1600 2001/04/13 0700 −271

25 2001/04/18 0100 2001/04/18 1300 −114

26 2001/04/22 0200 2001/04/23 1500 −102

27 2001/08/17 1600 2001/08/18 1600 −105

28 2001/09/30 2300 2001/10/02 0000 −148

29 2001/10/21 1700 2001/10/24 1100 −187

30 2001/10/28 0300 2001/10/29 2200 −157

31 2002/03/23 1400 2002/03/25 0500 −100

32 2002/04/17 1100 2002/04/19 0200 −127

33 2002/04/19 0900 2002/04/21 0600 −149

34 2002/05/11 1000 2002/05/12 1600 −110

35 2002/05/23 1200 2002/05/24 2300 −109

36 2002/08/01 2300 2002/08/02 0900 −102

37 2002/09/04 0100 2002/09/05 0000 −109

38 2002/09/07 1400 2002/09/08 2000 −181

39 2002/10/01 0600 2002/10/03 0800 −176

40 2002/10/03 1000 2002/10/04 1800 −146

41 2002/11/20 1600 2002/11/22 0600 −128

42 2003/05/29 2000 2003/05/30 1000 −144

43 2003/06/17 1900 2003/06/19 0300 −141

44 2003/07/11 1500 2003/07/12 1600 −105

45 2003/08/17 1800 2003/08/19 1100 −148

46 2003/11/20 1200 2003/11/22 0000 −422

47 2004/01/22 0300 2004/01/24 0000 −149

48 2004/02/11 1000 2004/02/12 0000 −105

49 2004/04/03 1400 2004/04/04 0800 −112
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Table 4. (continued)

Event Id Start Date Start Time End Date End Time Min. Dst

50 2004/07/22 2000 2004/07/23 2000 −101

51 2004/07/24 2100 2004/07/26 1700 −148

52 2004/07/26 2200 2004/07/30 0500 −197

53 2004/08/30 0500 2004/08/31 2100 −126

54 2004/11/07 2100 2004/11/08 2100 −373

55 2004/11/09 1100 2004/11/11 0900 −289

56 2004/11/11 2200 2004/11/13 1300 −109

57 2005/01/21 1800 2005/01/23 0500 −105

58 2005/05/07 2000 2005/05/09 1000 −127

59 2005/05/29 2200 2005/05/31 0800 −138

60 2005/06/12 1700 2005/06/13 1900 −106

61 2005/08/31 1200 2005/09/01 1200 −131

62 2006/04/13 2000 2006/04/14 2300 −111

63 2006/12/14 2100 2006/12/16 0300 −147

solving equation (13) on a laptop computer takes less than a second for the training set considered in our
analysis.

4.2. Selection
In order to find appropriate values of the hyperparameters of the chosen kernel Kosa, we apply grid search,
coupled simulated annealing, and maximum likelihood methods. We fix the parameters d and 𝜎2 of Kst and
model noise to values 0.01 and 0.2, respectively, the remaining parameters w and b are kept free to be
calculated by model selection. Table 2 summarizes the settings used to run each model selection procedure.

Figure 1. Mean Absolute Error on validation set storms versus model order for GP-AR and GP-ARX. Rectangle borders
represent the first and third quartiles, with a horizontal line inside to indicate the median value; outlying points are
shown as dots and whiskers indicate the smallest and largest nonoutliers.
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Figure 2. Coefficient of correlation on validation set storms versus model order for GP-AR and GP-ARX. Rectangle
borders represent the first and third quartiles, with a horizontal line inside to indicate the median value; outlying
points are shown as dots and whiskers indicate the smallest and largest nonoutliers.

Figure 3. Mean Absolute Error on validation set storms versus model order for GP-AR and GP-ARX for CSA, GS, and
ML model selection routines. Rectangle borders represent the first and third quartiles, with a horizontal line inside to
indicate the median value; outlying points are shown as dots and whiskers indicate the smallest and largest nonoutliers.
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Figure 4. Coefficient of correlation on validation set storms versus model order for GP-AR and GP-ARX for CSA, GS, and
ML model selection routines. Rectangle borders represent the first and third quartiles, with a horizontal line inside to
indicate the median value; outlying points are shown as dots and whiskers indicate the smallest and largest nonoutliers.

4.3. Validation
Apart from selecting the kernel parameters, one also needs to choose appropriate values for the autoregres-
sive orders p in the case of GP-AR and p, pv , pb in the case of GP-ARX. For this purpose we use a set of 24 storm
events listed in Table 3, and for every assignment of values to the model order, we perform model selection
with the routines in Table 2 and record the performance on this validation set.

For measuring performance of model instances on the validation set storm events, the following metrics are
calculated.

1. The mean absolute error.

MAE =
n∑

t=1

|||(Dst(t) − D̂st(t))||| ∕n (21)

2. The root-mean-square error.

RMSE =

√√√√ n∑
t=1

(Dst(t) − D̂st(t))2∕n (22)

3. Correlation coefficient between the predicted and actual value of Dst.

CC = Cov(Dst, D̂st)∕
√

Var(Dst)Var(D̂st) (23)

Table 5. Evaluation Results for Models on Storm Events Listed in Table 4

Model Mean Absolute Error Root-Mean-Square Error Coefficient of Correlation

GP-ARX 7.219 11.88 0.972

GP-AR 8.37 14.04 0.963

Persistence 9.182 14.94 0.957
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Figure 5. OSA predictions with ±𝜎 error bars for event: 17 June to 19 June 2003.

In the case of GP-AR we let the model order p vary from 5 to 12 while for GP-ARX we let the total model order
pt = p + pv + pb vary from 3 to 12 and for each pt evaluate every possible combination of p, pv , and pb such
that pt =p + pv + pb and p, pv , pb > 0.

4.4. Evaluation
After selecting the best performing GP-AR and GP-ARX models in the validation phase, we test and compare
the performance of these models with the predictions generated from the persistence model D̂st(t)=Dst(t−1),
on a set of 63 storm events occurring between 1998 and 2006 as given in Table 4, which is the same list of
storm events as used in Ji et al. [2012].

Figure 6. OSA predictions with ±𝜎 error bars for event: 8 March to 10 March 2012.
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Figure 7. OSA predictions with ±𝜎 error bars for event: 20 November to 22 November 2003.

5. Results

Figures 1 and 2 show how the mean absolute error and coefficient of correlation, as calculated on the vali-
dation set storm events of Table 3, vary with increasing model order for GP-AR and GP-ARX. The results are
represented as box and whisker plots, in which a rectangle is drawn to represent the first and third quartiles,
with a horizontal line inside to indicate the median value, outlying points are shown as dots while the whiskers
indicate the smallest and largest nonoutliers. In both cases, the predictive performance first improves and
then stagnates or worsens with increasing model order.

Figures 3 and 4 break down the results for GP-ARX by the model selection routine used. Apart from the general
trend observed in Figures 1 and 2, we also observe that grid search and coupled simulated annealing give
superior performance as compared to gradient-based maximum likelihood.

From the validation results, we choose the model order which yields the best RMSE performance, for GP-AR
it is pt =6 while for GP-ARX it is p=6, pv =1, pb =3.

After choosing the best performing GP-AR and GP-ARX models, we calculate their performance on the test set
of Table 4. The results of these model evaluations are summarized in Table 5; the GP-AR and GP-ARX models
improve upon the performance of the persistence model.

Figures 5–7 show OSA predictions of the GP-ARX model with ±𝜎 error bars for three storm events in the time
period between 1998 and 2003. The GP-ARX model gives accurate predictions along with plausible error bars
around its mean predictions.

6. Conclusions

In this paper, we describe a flexible and expressive methodology for generating probabilistic forecasts of the
Dst index. We proposed two Gaussian Process autoregressive models, GP-ARX and GP-AR, to generate hourly
predictions and their associated error bars. We also describe how to carry out model selection and validation
of GP-AR and GP-ARX models.

Our results can be summarized as follows.

1. Persistence model plays an important role in the model building and evaluation process in the context of
one step ahead prediction of the Dst index. Although it is not a robust predictor for the onset of intense geo-
magnetic storms, the persistence model performs well on classical error metrics such as root-mean-square
error and such. From the considerations above, it is quite evident that classical performance metrics are not
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adequate for model evaluation; nevertheless, in space weather literature, metrics such as RMSE are very
commonly used to compare predictive performance of models. Although not the research focus of this
study, we note that there exists a need for the formulation of more informative performance metrics for
measurement of predictive performance of geomagnetic predictive models.

2. Gaussian Process AR and ARX models give encouraging benefits in OSA prediction. Leveraging the strengths
of the Bayesian approach, they are able to learn robust predictors from data. If one considers the size of the
data used in our study, one can appreciate that the models presented here need relatively small training
and validations sets: the training set contains 243 instances, while the validation set contains 782 instances.

3. Since the GP models generate predictive distributions for test data and not just point predictions, they lend
themselves to the requirements of space weather prediction very well because of the need to generate
error bars on predictions.

4. The Gaussian Process regression framework described in this study can also be extended to multiple hour
ahead prediction of Dst, which is currently a work in progress.
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