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L Introduction
The work surveyed in this paper is joint work with B,P, Sommeijer and W. Couzy from the Centre for

Mathernatics and Computer Science in Amsterdam. Full detsils may be found in the references [7]-[11],
Our starting point is the conventional s-stage RK method for the injtial-value problem
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The general structure of the Runge-Kutta-type methods considered in this paper 18 a direct
generalization of this conventional method. We introduce k-dimensional block vectors Yy, the
components of which are nurnerical approximations to the exact solution values:

Yoet 1= nls Y2, o » YolOTs

where y,; denotes & numerical approximation to the exact solution value Y(t+cjh). We shall assume that
cx=1, while the other values of ¢; are allowed to be any real number. Thus, the last component of the
block vector Yp4 alwa:;iﬁ_ov:d‘cs' an approximation o y(ta+1). The vector ¢:=(c;) will be called the

block point vector. For s ODEs, we now define the s-stage block RK (BRK, ) method

[
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where the matrices A, Ay, Bg and Bj respectively are r-by-k, r-by-r, k-by-k and k-by-r matrices, ex
denotes the kth unit vector, and where we use the convention that for any given vector v=(v;), f(v)
denotes the vector with entries f(vj). The method (1.3) can be considered as the block analogue of
(1.2), It is straightforwardly extended to systems of ODEs and therefore also to nonautonomous
equations, In order to start the method, one needs the initial vector Yo, which requires as many starting
values as there are distinct values ¢; (=1,....k). If c=e, e being the vector with unit entries, then only
one starting value is needed. In fact, in this case, the BRK method reduces to & one-step RK method
providing k approximations to y(tn+1). We define the order of BRK methods by the order of ya41.

The method is expliciz if the matrices Ay vanish for ji, diagonally-implicit if the matrices Ay vanish for
j>i and if the matrices Aj; are diagonal, and implicit otherwise. In this survey, we restrict our
considerations to explicit and diagonally implicit methods. For such methods, the r components of the
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block vectors Y@ can be computed in parallel. Hence, if r processors are available, then the required
computational time per integration step is at most the time needed for computing s block components
sequentially. We define the optimal number of processors as the number of processors for which the
number of (sequential) block component evaluations per step is minimal, In this connection, we remark
that often less than r processors are needed for implementing the BRK method.

In the explicit and diagonally-implicit case, the representation (1.3) is very convenient for implementing
the method on a computer, because the acmal code is a direct translation of the scheme (1.3) and the
instructions for the computer in order to exploit the built-in parallelism of the method are obvious.
Conversely, by representing a given method in BRK format, it is readily seen whether the method is
suitable for use on a parallel computer or not.

Below we present examples of methods from the literature which have been constructed for use on
parallel computers. We shall use the BRK notation defined above and we give the order p and the
number of processors needed for implementation.

Method of Miranker and Liniger {16]. Explicit, two-processor method which seers to be the first
method constructed for parallel solution of initial-value problems:

1000
0100
0010
0001
(1.4) S0 T o o 5 , e=(1,0,2, 1)T, p=4, k=r=4, s=l,
00010 O O 0
0001 |-13 43 83 -5
0001 [1/24 -5/24 924 19724

Method of Worland {21]. Explicit two-processor method based on the PECE mode of a predictor of
Shampine & Watts [19] and the Clippinger-Dimsdale comrector [3}:

1000
010 0
00 1 0
00 0 1
001000 0 o
000 1/00 0 o
01313 13 |0 14 -1/3 1312

15 R B IB)0%0 3 T . e= (-1/2,0,1/2,1)T, pekerad, s=2.
010J00 0 0 000 0
000 1|00 0 000 0
000 1/0 0 0 524 00 1B-124
000 1|00 0 16 0023 16
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Muitti-block method of Chu and Hamilton [2]. Explicit two-processor method based on the PECE mode
of a PC pair using full block methods:

10
01
5411 2
2827 6 9
1.6) . c=(1f2, DT, p=4, ker=s=2.
0 1 [-1/48 1348 13/48 -1/48
01]0 Y6 23 Vs

:33!1{!( method not derived from PC pairs [7]. Explicit two-processor method requiring two starting

G
100
00 1
01laa
wn . a=43%~N1312, c¢=(0, 1, 1)T, p=3, k=r=3, s=1.
) o o0 o
oo1] o BZ:'IS 0
001 |-F+e 32 1

DIRK method of Iserles and Ngrsett [13]. L-stable, diagonally-implicit two-processor method:

112 0
1 0 23
1} =52 52 12 O
11-5343 023

(1.8)

, c=¢e, p=4, k=1, r=s=?,
1] -1 32 132

2. Construction of high-order methods

The order of the above-mentioned methods do not exceed p=4. In this section we outline the
construction of higher-order methods. We distinguish methods requn:g only one starting value RK
wethods) and methods requiring several starting values (multistep methods).

2.1. RK methods

Let Oy be the i-by-j null matrix, let A be a given r-by-r matrix, let B and D be r-by-r diagonal matrices,
let b be a given vector of dimension r, and let 0 and e respectively denote the null and umt vector whose
dimension should be clear from the context in which it is used. Setting k=s, we define the matrices
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Ajp=(0 .. 0e)i=1,..,5 Bp=(0 .. Oe); O =0
By:=(b...0000)T, By:=(0b0...00)T, Bg:=(0...000D)T,
and we consider BRK methods generated by the Butcher-type array

(2.1a)

A1 ] B
A2l C D
A3 O AD D
A4l O O AD D
Al O . . . 0 ADD
(2.1b) , C=e,
Bol By . . . By Bgy B

with yn41 defined by (1.3). Evidently, this tableau generates a particular family of DIRK methods
providing k approximations to the true solution y(tay1). If B=D=0, then (2.1) reduces to an explicit RK
(ERK) method. It is readily verified that (2.1) originates from iterating the r-stege RK method

(22) Y =ype+hAN(Y), yns1 =y +hbTHY).

(for details of the iteration process we refer to [8] and [10]), The method (2.2) will be called the
generating corrector formula. Usually, this corrector formula is an implicit RK method, but the
considerations below also apply to the case where (2.2) is an ERK method,

In the following subsections, we construct matrices A, B, C and D and a vector b such that the
components yp i of Yn+1 provided by the BRK method (2.1) have orders p-s4, i=1,...s. Thus, we
shnllpgonshuct a pth-order DIRK method with embedded formulas of orders P-1, ..., p-s+1. We start
with explicit methods, i.e., B=D=0,

2.1.1. ERK methods

We summarize the results we obtained for parallel ERK methods (cf. [8]). For that purpose, we need
the notion of the number of sequential stages (or, as it was termed by Iserles and Nersett [13], the
number of effective stages).

Definition 2.1. An ERK method is said to require s sequential stages if the computation time required for
evaluating all right-hand sides in one step is s times the computation time required by one right-hand
side evaluation, assuming that sufficiently many processors are available, 9

Thus, if B=D=0, then (2.1) is an ERK method requiring s sequential stages. In the paper of Iserles and
Nprsett, the following theorem was proved:

Theorem 2.1. ERK methods of order p necessarily require at least p sequential stages. o

This assertion led Nersett and Simonsen [17] to pose the problem whether it is always possible to find
ERK methods of order p using not more than p sequential stages, assuming that sufficiendy many
processors are available, Such methods were called optimal in [17].

Definition 2.2. An ERK method is called optimal if its number of sequential stages equals its order.
For ps4, the above problem can (of course) be answered positively and for p=5 Nersett and Simonsen
menton & 6-stage, Sth-order method of Butcher possessing § sequential stages. For higher-order ERK
methods, the following theorem (8] sotves the problem posed by Ngrsett and Simonsen;

Theorem 2.2, If B=D=0, C=A, and if the corrector formula (2.2) is of order s, then the method defined
by (2.1) is optimal and the components ¥n,i Of Yy have orders i, i=1,....5. 0
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For any even p there exist RK methods of order p requiring p/2 stages (Gauss-Legendre methods) and
for any odd p there exist RK methods of order p requiring (p+1)/2 stages (Radau methods). Using these
methods as generating corrector formula (2.2), we have in (2.1) r=[{p+1)/2], where [.] denotes the
integer part function, and we are led to the corollary:

Corollary 2.1. There exist optimal ERK methods of any order p requiring [(p+1)/2] processars. o

In order 1o demonstrate that the use of parallel computers may save cor:g)uting time, we compare the
;garallel. iterated' RK (PIRK) methods of this section with the so-called 8(7) method of Prince and
crmand [18]. According to [6] this method is nowadays geacrally considered as one of the most
efficient methods with automatic stepsize control for TOL valnes approximately in the range 107 to
0-13, We compare the DOPRIS code, as given by Hairer, Ngrsett and Wanner (6], with the PIRK
method based on the Ganss-Legendre correctors of orders § and 10. To let the comparison of the
DOPRI8 code and the PIRK s not be influenced by & different stepsize SITategy, we ﬂni the
PIRK codeswixhthcsamcmmgy.mesccodesmmpecﬁvdyden by PIRKS and PIRK10.

As test problem we take the equation of motion (cf. Problem BS from {12:
¥1' = y2y3, y1{0) =0,
@3)  y2'=-yiys, y20)=1, 0St<T.
¥3'=-Slyiys,  ya0)=1,
In Table 2.1, we have listed the values AWN, where A denotes the number of correct decimnal dilgitsanhe
endpoint (i.e., we write the maximum narm of the error at t=T in the form 10-4) and where
the total number of sequential right-hand side evaluations performed during the integration process. For

tolerances TOL running from 10-5 up to 10-12 we list the values of N which were foond for a number of
values of A,

Table 2.1. Values of N for Problem B from [12] at T=20.

Method A=6 A=7 A=8 A=9 A=10 A=11 A=12

DOPRI8 415 576 728 898 1133 1422 1817
PIRKS 294 381 534 728 961 1172 1746
PIRK10 252 297 357 426 580 730 920

2.1.2. DIRK methods

Our main results for parallel DIRK methods of the form (2.1) with D#O obtained in [10] are
summarized below.

Since the bulk of the computational effort required by these methods goes into the solution of the s-1
systems of equations, we define:

Definition 2.3. A DIRK method is said to require s sequential stages if the computation time required for
solving all systems of equations in one step is s times the computation time required by solving one
System of equations, assuming that sufficiently many processors are available.

Thus, if both B and D do not vanish, then (2.1) is a DIRK method requiring s sequential stages. I B=0

and D#O, then s-1 sequential stages are required. The following thcorem determines the order of the
approximations yp, it K

Theorem 2.3. If the corrector formula (2.2) is of order p*, then the components Yn,i of Yn4y defined by
the method (2.1) have orders Pisi=1, ..., s which are given by:
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TypeIA.l: B=0,C=A-D => pi=min{p*i}

Type B.1: B=D,C=A-D => pi=min{p*,i}

Type IB.2: B=D=diag (Ae), C=A-D => pi=min {p*,i+1)
Type IC.1: B=O => pj=min{p*,i-1}, i22
Type IC.2: B=0, D=diag (Ae-Ce)) => pj=min }p"‘,i)

Type IC.3: B=0,D=diag (Ae-Ce)), DAe=AZe => pi=min{p*i+1).0

Since yn+1:=Yn s, it follows from this theorem that Type IC.3 methods are the most efficient ones
because order p* requires only p*-1 ential stages. Unfortunately, in general Type IC.3 methods are
not A~stable, The following corollary of Theorem 2.3 can be proved[10]:

Corollary 2.2. The order of A-stable Type IC methods cannot exceed their number of sequential stages
plus 1, unless bTD-1{I-AD-113+2Ce=0. 0

Thus, in order to construct a DIRK method of Type IC of order 4, at least 3 sequental stages are
required, whereas the L-stable, fourth-order DIRK method (1.8) of Iserles and Ngrsett ires only 2
sequential stages. On the other hand, (2.1) also generates formulas of orders 3, 2 and 1. However,
more important is the possibility to generate embedded methods of orders higher than p=4 possessing
quit favourable stability properties. First we consider the case where D has constant diagonal elements,
This case allows a theoretical analysis. Analogous to an analysis by Wolfbrandt [20) of SDIRK methods
(that is, RK methods with constant diagonal in the Butcher tableau), staring that for 1<p<6 and p=8 the
stability function of SDIRK methods of order p and m p stages is L-stable, and for p=7 and
9<p<15 it does not (see [1, p. 248] for a summary of Wol t's result), we arrive at the theorem:

Theorem 2.4. Let the corrector formula (2.2) be of order p*=s, then there exist values of d such that the
Type IB.1 methods are L-stable for 1<s<6 and s=8. 0

‘Within the class of methods with D=dl, it is possible to construct (at the cost of an additional sequential
stage) still higher-order L-stable approximations. This can be achieved by choosing the corrector
formula (2.2) such that b=ATe, (so-called sriffly accurate cormrector formula) and we have to define yn41
by Yne1:=(e) T Y®), Let us call these methods & Type Il method. First we state the analogue of Theorem
2.3 for Type Il methods:

Theorem 2.5. If the corrector formula (2.2) is of order p* and satisfies b=ATey, then the order of Yniis
given by Theorem 2.3 and yn..1:=(e) TY(8) is also stiffly accurate with order p given by:

Type IA.1: B=O, C=A-D => p=min {p*;s-1}
Type IIB.1: B=D, C=A-D => p=min {p*s-1)
Type [IB.2;: B=D=diag (Ae), C=A-D => p=min (p*,s)

Type IC.1: B=0O => p=min (p*,s-2}

IC.2: B=0, D=diag (Ae-Ce; => p=min {p*,s-1}
%pc?encs: B=0, D=dia§ (Ae—Cegg, DAe=A% => §=min{g*.s). D

The main stability results obtained for the Type II methods are given by

Theorem 2.6. If the corrector formula (2.2) is stiffly accurate (b=ATe) and has order p*=s-1, then there
exist values of d such that :

@) Type[JA.1 methods arc L-stable for 1<s<7 and s=9,
(b) Type IIB.1 methods are L-stable for 15s<9 and s=11. 0

We illustrate the performance of the methods by integrating a test problem proposed by Kaps {19811

aa) Fre-erlit 2y Puyi-y+ ) nO =pO =1, 05151,

with exact solution yj=exp(-2t) and yp=exp(-t) for all values of the parameter &. We tested several
correctors and all of methods which are L-stable. In Table 2.2 the values of A are listed (cf. Table
2.1). Notice that the Type II methods require a stiffly accurate corrector (such as the Radan IT formulas)
and that L-stable, seventh-order methods are only possible within the family of Type IIB methods. In
all experiments we observe the phenomenon of order reduction (if p is the order of the method, then, on
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balving the step size, the value of A should increase by .3p if no order reduction is exhibited). Roughly
speaking, we ses a reduction by one order.

Table 2.2. Values of A for problem (2.4) at t=1 with £=10-2.

Type  Comector Order h=1/4 h=1/8 h=1/16 h=1/32 h=1/64 Seq. Stages Proc.
IB. RadwllA 339 47 54 58 64 m 2
GaussLegendte & 3.0 37 44 52 60 Mmoo 2
Explicit RK 4 31 38 45 53 g1 4h 4
Radsu ITA 5 35 43 s2 62 714 5h 3
Gauss-Legendre 6 3.2 4.1 5.0 6.2 7.5 6/ 3
IA1 RadaIA 3 36 43 49 58 sa 3w 2
Radw IA 5 38 45 53 g3 1% 5m 3

IIB.1 RadaIA 3 42 Tag 52 sy Tén m 2
Radan A 5 62 56 61 69 80 6h 3
Rada A 7 43 52 62 77 94 8h 4

We also considered Type I methods with matrix D possessing distinct diagonal entries. From Theorem
2.5 and by means of computer calculations found:

Corollary 2.3, Let the corrector formula (2.2) be defined by the r-stage Radan A formula, and let
8=2r-1, then the Type 0C.3 methods have order p=2r-1, they wc&uu'e p-1 sequential stages, and they are
Alop)-stable where 03 = /2, o5 = n/2 - 3103, Q7= ®/2-4102 g

Thus, by using distinct diagonal values we can save a sequential stage.

We conclude this section with a comparison of the various DIRK methods available in the literature and
those di in this paper. The methods designed for paralle] computation are indicated by PDIRK.
Effectively, all methods in this survey are SDIRK methods, The order range of the formulas
are listed in the column headed with peyp.

Method p Stages Seq. st. Processors Stability

¥
g

SDIRK p=3 1 1 1 A-stable Nprsett [1974]

SDIRK p=4 ’;1 gl 1 A-stable Qouzic)l; [197]6]. Alexander [1977]
SDIRK p=3 p p 1 S-stable <p  Cash {1979}. Cash & Liem {1980
SDIRK p=4 p+l  p+l 1 S-stable <p Cash [1979], Cash & Liem [1980]
PDIRK p=4 p P2 2 L-stable p-1  Iserles & Narsett [1988]

PDIRX 6 ps 1 L-suble Type OA.1, D=dl

PDIRK gs E, 5 152] L-stable Z,‘? Type A1, D=dl

PDIRK p<8 lgs p+l 1 L-stable <p 0B.1, D=dI

PDIRK p=10(p+1)s p+1 1 L-stable <p %2 IB.1, D=dI

PDIRK p=3 ps 1 )-stable IIB.2, a=8747

PDIRK p=5 Es £ 1 II:Ea -stable ?;; E; llB%: 0=89.12

PDIRK p=3 (p-1)s p-1 1 A-stable p-1 ype HC 3

PDIRK p=5 (p-1s  p-1 +1 Aéa;«mbk [2p-1] Type OC.3, a=89.997

PDIRK p=7 (p-l)s p-1 +1 A(o)-stable [2p-1] Type IIC.3, =89.959
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2.2. Multistep methods
‘We consider the special two-stage method

110 0O
Y, AY; +hBf(Y,,) + hCf(Yq41)
evemases Q3 QL = + + .
; ¢ n+l n -1

where A, B and C are arbitrary k-by-k matrices (bere, r<k). Unlike the RK methods of the preceding
scctions, not just one component of Yy, plays a role in this scheme, and therofore it belongs to the class
of multistep methods.

The order condtions for methods of the above special two-stage form are extremely simple:

Theorem 2.7. Let the error vectors C; be defined by
Cji=Alc-e) +j[B(c - effl +Cd-l]-ci, j=0,1,...
Then order p is obteined if the error vectors C; vanish for j=0,1, .., p.0

In this theorem powers of vectors are meant to be componentwise powers. The above order conditions
are sufficient conditions but often they are not all necessary (for a discussion cf, [91). The block point
vector ¢ giays an important role in the order conditions and by using this vector, we can achieve higher
order or better stability than is possible within the class of block methods where the abscissas ta+cjh are
equally spaced.

In the following subsections we shall give examples of, respectively, explicit, diagonall -implicit, and
fully implicit methods. Based on these methods, and by means of predictor-corrector (PC) iteration, we
can construct high-order explicit and diagonally-implicit BRK methods (see Section 2.2.4).

2.2.1. Explicit BRK methods
Explicit methods arise for C=O reducing the method to one-stage form:

1o
A’B'

This method needs k starting values and on k-processor computers it requires one sequential righthand
side evaluation per step. Therefore, jts computational complexity is comparable with that of explicit k-
step linear multistep (LM) methods. For example, for k=2 we can construct the one-parameter family of
third-order BRK methods (examples of higher-order methods up to order 7 can be found in [9])

1 0 i
0 1
2.5 ce=(, DT, c=1, p=3, k=2, s=1,
(3¢ 1-3¢ c? c

(1-c) (I-e)® (e (o2
53¢ -c3+3c24 2¢ (2-0)2
TeF TOoF | {of (of

For c<1-+/3 and ¢21+V3 this method is zero-stable and can be used as a method in its own right. For
c=11V6, this method has zero parasitic roots if h=0. Alternatively, the parameter ¢ may be used for
maximizing stability intervals (c£.[11]).
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2.2.2. Diagonally-implicit BRK methods

Such methods arise when we set C=diag(d). As before, this method needs k starting values and on k-
processor computers it requires the solution of one sequential, implicit relation per step. Therefore, its
computational complexity is comparable with that of implicit k-xw;;hI;M methods. In this case, we can
construct for k=2 a three-parameter family of third-order methods.

Jength of the formul: ts
us from presenting them here (see [9]). In this family there are several strongly A-stable memn of
which one of them is given below:
1 0 0o 0
0 1 [
12 12 {-94 -1/4 52 0
1 0 |-74 94 0 52
2.6) y o= (-1,1)T, p=3, k=s=2, A-stable.
1212 |-94 -4 52 0

1 0 |-74 94 0 52

22.3. Fully implicit BRK methods

We constructed fully implicit methods for use in PC-type methods. For k=2, we found the one-
parameter family of fourth-order, zero-stable methods

10 0 0
01 0 0

-c3 c{c™-6eH c{c?-6c+ -c3
01} py Iiti-ci‘ ol ey
01 1-2¢ -6¢24+10c-3 3-2¢  6¢2-14c47
T'ii%-ci&-a T2c(Tcy Ticd—< 1731-05?'2—05
Q@7 vy ¢ =(c, 1}, p=4, k=s=2.
01 (¢ +762 (e iQ
0t - -6c2+10c-3 3-2&: 6c7~14c+7
Ii{i-cﬂ%—ci oy Tdg RIo@<

If c=1-VT/5, then the method becomes fifth-order accurate.

2.24. PC-type methods
Let the predictor be of one of the two forms:
110 0O
DI|E F I1}j]O
2.8) ——}mr, —— with F= 0,
DIE F D|E
and let the corrector be of the form
110 0
AlB C
(29)  —p—,
A|lB C
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then we can construct higher-stage methods by PC iteration. In choosing a PC pair, the block point
wvactors ¢ should be identical. For example, the PC pair {(2.5),(2.7)) generates the 3-stage BRK method

1 ]

D| E O

Al B C O
(2.10) ~- e .

Al B C O

which is fourth-order accurate for all values of ¢ and requires two sequential righthand side evaluations
and two starting valucs. The same ((2.5),(2.7) | pair generates the 4-stage, fifth-order BRK method:

1] 0
D| B O
A|l B C O
Al B O C O
(2.11)  eemedrmmmmmmecmeeeneeeee | o=11/5
Al B O Cc O

which requires 3 sequential righthand side evalnations.

In this way, we can construct high-order methods in a relatively straightforward manner. However, as
for most block methods, the stability of the higher-order methods offers a considerable problem (see,
¢.8., Donelson & Hansen [4]), The highcst order method we constructed so far is an explicit, stabilized,
eighth-order, 3-stage method of the form (2.10) requiring four starting values and with real stability
interval [-0.302, 0]. The matrices A, B, C,D and E in (2.10) are given by:

( 0 1 0 0 00 0 0
0 0 0 1 00 0 0
2.12) A:=| 33731383 3653263 3673827 | (.o 257809 32537337 |
@12 0469210 3046927 O~ 3046210 C=| 00 "Z87 Toueda
4540 331039 o 3379 00 2Lt 14369
30465 30469 30469 30469357 30460
[ 0 0 V] 0
0 0 0 0

. 33.54.73 36.52.7.17.67 355273 3357313 1 T
Bi=| S6® ol e s | ©T (B0 DN
23020 33131709 283231 3261337
3046937 3046957  30469-57 304695

0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
D:=| 59051539 337 2193 | g.=| 223 361 o 2205
24 20 3 32 | 32 8 2
£2 17 6382 2 3 18 118
\343 125 128625 3 49 25 T 125
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2.2.5. Numerical examples . .
In Table 2.2 we compare the BRK methods of the preceding Section 2.2 with methods from the

literature (sce also Table 2.

1). The methods are grouped according to their k-value which mainly

determines the computational complexity.

Table 2.2. Values of A for Problem BS from {12] at T=20.

Sequeatial righthand sides N 120 240 480 960 1920 p K
Two-step Adass. thod 12 19 25 31 37 2 2
e e o PECE 12 20 20 38 47 3 2
D e ook method (1.6) . 3.3 47 60 73 4 2
BRK method 2.5):c=1-‘lg‘ 16 26 35 44 53 3 2
BEE metod &3 25 35 53 70 85 5 2
Four-step Adams-Bashforth m hod 33733 48 60 71 4 4
gﬁ-ﬁm&&?&é&m 35 34 48 62 77 5 4
Miranker-Liniger method (1.4) 31 50 63 72 83 4 4
Shampine-Watis method (1.5) 19 33 46 56 72 4 4
BRK method (2.12) 29 74 98 g 4
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