
Algorithmica
DOI 10.1007/s00453-017-0351-z

The A Priori Traveling Repairman Problem

Martijn van Ee1 · René Sitters1,2

Received: 21 January 2016 / Accepted: 22 July 2017
© The Author(s) 2017. This article is an open access publication

Abstract The field of a priori optimization is an interesting subfield of stochastic
combinatorial optimization that is well suited for routing problems. In this setting,
there is a probability distribution over active sets, vertices that have to be visited. For
a fixed tour, the solution on an active set is obtained by restricting the solution on the
active set. In the well-studied a priori traveling salesman problem, the goal is to find
a tour that minimizes the expected length. In the a priori traveling repairman problem
(TRP), the goal is to find a tour that minimizes the expected sum of latencies. In this
paper, we study the uniform model, where a vertex is in the active set with probability
p independently of the other vertices, and give the first constant-factor approximation
for a priori TRP.

Keywords A priori optimization · Approximation algorithms · Traveling repairman
problem

1 Introduction

In the last few decades, a lot of research has been done in stochastic combinatorial
optimization. This field is concerned with classical combinatorial optimization prob-
lems, like the shortest path problem and the minimum Steiner Tree problem, but with
additional uncertainty in the instance. For example, there are situations where the
problem instance changes on a daily basis. Instead of reoptimizing every instance,
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because it might be impossible or undesirable, one can alternatively choose to pick
one solution that will be good on average. This is the setting of a priori optimization.
In this paper, we consider the a priori traveling repairman problem (TRP). This is a
routing problem, where there is a probability distribution over subsets of the vertices
that have to be visited. A preliminary version of this paper was published in [20].

In a priori routing, we are given a complete weighted graph G = (V, E) and a
probability distribution on subsets of V . Depending on the model, this distribution is
given either explicitly or by a sampling oracle. It is assumed that the instances are
metric. In the first stage, a tour τ on V has to be constructed. In the second stage, an
active set A ⊆ V is revealed, which is the set of vertices to be visited. The second-
stage tour τA is obtained by shortcutting the first-stage tour over the active set. For
each active set, the first-stage tour has a second-stage objective value. The goal is to
find a first-stage tour that minimizes the expected cost of the second stage tour. When
it is clear form the context, we may refer to this expected second-stage cost simply as
the expected cost of the solution.

In the literature, several models for the probability distribution over the active
sets are used. In the black-box model [14], there is no knowledge on the probability
distribution. The only instrument available is a sampling oracle, which gives a sample
from the distribution on request. In the scenario model [11], the instance contains an
explicit list with active sets and their corresponding probabilities. In the independent
decision model [15], each vertex has its own probability of being active, independent
of the other vertices. The special case where all probabilities are equal, i.e. pi = p for
all i , is called the uniform model.

In the a priori traveling salesman problem (TSP), the goal is to minimize the
expected length of the tour. The problem was introduced in the PhD-theses of Jaillet
[12] and Bertsimas [2]. An approximation algorithm was achieved by Schalekamp
and Shmoys [14], who showed that there is a O(log n)-approximation algorithm in
the black-box model. Later, Gorodezky et al. [10] showed that this bound is tight.
Constant-factor approximations were achieved for the first time by Shmoys and Talwar
[15], who showed that there exists a randomized 4-approximation and a deterministic
8-approximation in the independent decision model. The deterministic approxima-
tion guarantee was later improved to 6.5 by van Zuylen [19]. It is easy to show that
the randomized 4-approximation can be improved to a factor α + 2 by replacing the
double-tree subroutine in the algorithm of Shmoys and Talwar by an α-approximation
algorithm for TSP. Hence, using Christofides’ algorithm [5] gives a randomized 3.5-
approximation. Note that the authors of [7] independently obtained a constant-factor
approximation for a priori TSP in the independent decision model.

This paper is concerned with the a priori traveling repairman problem. In the
deterministic traveling repairman problem or minimum latency problem, we have a
complete graph G = (V, E), a metric cost function c over the edges and a root vertex
r . We want to find a tour τ starting at the root which minimizes the sum of latencies.
Here, the latency of a vertex v is defined as the length of the path from r to v along τ .
The problem is known to beNP-hard in general [13] and it is evenNP-hard onweighted
trees [16]. The best known approximation guarantees are 3.59 for general metrics [4]
and a polynomial time approximation scheme for the Euclidean plane and weighted
trees [17]. The a priori traveling repairman problem is defined similarly to the a priori

123



Algorithmica

traveling salesman problem. The goal is to find a first-stage tour which minimizes the
expected second-stage sum of latencies. Here, the second-stage sum of latencies for
active set A is obtained by shortcutting the first-stage tour over A and summing up the
latencies in the second-stage tour. In this paper, we establish a constant-factor approx-
imation for the a priori traveling repairman problem in the uniform model. To achieve
this result, we consider the a priori k-TSP, the prize-collecting tour single-sink rent-
or-buy problem, and the a priori prize-collecting traveling salesman problem. These
problems will be defined in their corresponding sections.

In the next section, the basic ideas for our algorithm for the a priori traveling
repairman will be discussed. After that, it will be shown how the a priori k-TSP can
be used to obtain a constant-factor approximation for a priori TRP on trees. In Sect. 5,
we will discuss how to get a constant-factor approximation for the a priori TRP on
general metrics. In order to get there, we investigate the tour single-sink rent-or-buy
problem and its prize-collecting version. Finally, we end with some remarks on open
problems.

In this paper, it is assumed that the edge costs are non-negative integers satisfying
the triangle inequality. In the following, we denote an active set of vertices by A. When
the set is drawn from a probability distribution, we denote the expectation with respect
to this distribution as EA[·].

2 Preliminaries

In the decision version of the a priori traveling repairman problem in the independent
decision model, we are given a weighted graph G with n vertices and root vertex r ,
probabilities pi for i = 1, . . . , n and a number k. Vertex i is active with probability
pi . Further, assume that the edge weights are rationals and that the smallest weight
is equal to 1. The question is whether there exists a tour, starting at the root, that
has an expected sum of latencies of at most k. The next theorem shows that this
decision version is contained in NP. Since it generalizes TRP, the decision problem is
NP-complete.

Theorem 1 The decision version of a priori TRP in the independent decision model
is in NP.

Proof Given a tour τ , w.l.o.g. τ = (1, 2, . . . , n), the contribution of edge (i, j) with
i < j is equal to

ci j pi p j

j−1∏

k=i+1

(1 − pk)

n∑

k=0

P(Succ( j) = k)(k + 1), (1)

where P(Succ( j) = k) is the probability that exactly k vertices after j on τ are active.
If we can compute these probabilities in polynomial time, then we can compute (1)
in polynomial time for every edge and sum over all edges. To compute the previously
mentioned probability for a given j , we define sets St = [t] \ [ j] for j ≤ t ≤ n. Let
P(St , k) be the probability that there are exactly k active vertices in set St . In the end,
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Fig. 1 Instance of a priori TRP in the scenario model. The optimal tour passes the point at v1 twice before
visiting it

we want to know P(Sn, k) = P(Succ( j) = k) for all 0 ≤ k ≤ |Sn|. Initially, we have
the following probabilities.

P(S j , 0) = 1, P(S j , 1) = 0,

P(St ,−1) = 0, t = j, . . . , n.

We can now recursively find all probabilities by using that the following relation holds
for t = j + 1, . . . , n and for k = 0, . . . , |St |.

P(St , k) = ptP(St−1, k − 1) + (1 − pt )P(St−1, k).

Note that the procedure above runs in polynomial time. The theorem follows. ��
The decision version of a priori TRP is also in NP in the scenario model. Since the

input contains an explicit list of the scenarios, the second-stage latencies can simply
be computed for each scenario.

There are some intriguing difficulties with a priori TRP. Finding an approximation
algorithm for this problem turns out to be much harder than for a priori TSP. It is
easy to adjust the proof in [10] to show a �(log n) lower bound on the approximation
guarantee in the black-box model. Getting positive results is even non-trivial if all
vertices are on a line. In the deterministic setting, TRP on the line can be solved
using dynamic programming [1]. This result relies on the fact that vertices will always
be visited when the tour comes across them. In the a priori setting, this is not true.
Consider the example from the scenario model shown in Fig. 1.

Example 1 There is a point at v1 at distance 1 from the root which is always active.
Further, there are 100 points at v2 at distance 10 from the rootwhich are simultaneously
active with probability 0.01, and there are 10 points at v3 at distance 2 on the other
side of the root which are simultaneously active with probability 0.1. Note that this
gives four possible scenarios. It is easy to compute that the optimal a priori tour is
(v2, v3, v1), meaning that we pass by the point at v1 twice before visiting it. The
intuition behind this is that we do not want to visit v1 before v3, but we do want to
visit v2 before v3. Hence, skipping may be optimal in the scenario model. However,
we conjecture that in the independent model skipping is never optimal. If this is true,
then dynamic programming may be used to solve this problem.

For general metric spaces, the independent decision model is non-trivial. The intu-
itive approach of using the probabilities as weights, i.e. wi = pi , and solving the
weighted version of TRP turns out to give arbitrary bad solutions, as shown in Exam-
ple 2.
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Example 2 Consider a star graph with k + 1 leafs. Replace the last leaf with a clique
containing � vertices, with all edge weights equal to zero. Assign a weight of � to the
edge going to leaf k + 1, and assign weight 1 to the remaining edges. Each vertex is
active with probability p = 1/�.

Now, if we take the probabilities as weights, we see that every solution (visiting all
vertices of leaf k + 1 at the same time) for the created weighted-TSP instance has the
same value. However, in the a priori setting, it is optimal to visit leaf k + 1 as last.
Moreover, by choosing k properly and � big, we can show that the ratio between the
solution starting with leaf k + 1 and the optimal solution is arbitrarily large.

On the other hand, the problem remains easy on star graphs. It can be shown by an
interchange argument that the vertices have to be visited in non-increasing order of
E[Ni ]/E[Li ]. Here, E[Ni ] is the expected number of clients at vertex i and E[Li ] is
the expected length to vertex i , i.e. the length of the edge times the probability that at
least one of the clients at the endpoint has to be visited. Even for slightly more general
graphs, such as spiders of depth two, the complexity is still open.

3 Algorithm

Before presenting our algorithm, we are going to rewrite the objective function and
state a basic lemma that we will need in the analysis. Any tour should start in the given
root r . For a given tour and active set A, we denote �A

i as the latency of vertex i ∈ A in
the tour shortcutted over A. If vertex i is not in A, then we define �A

i = 0. Each vertex
i has probability pi of being active. If Ci is the expected latency of vertex i given that
i is active, the law of total probability gives that our objective becomes minimizing

EA

[
∑

i

�A
i

]
=

∑

i

piEA

[
�A

i |i is active
]

=
∑

i

pi Ci . (2)

Let d(r, i) be the minimum cost of traveling from the root to vertex i . Note that Ci is
the expected latency of vertex i , given that it is active. Hence, we obtain the following
lemma.

Lemma 1 For any tour and vertex i , we have Ci ≥ d(r, i).

Our algorithm is based on algorithms for the deterministic TRP [3,4,8]. However,
the a priori setting makes the problem a lot harder to solve. As explained above, even
the problem on the line is non-trivial in the a priori setting and is not known to be
solvable in polynomial time. Our algorithmmakes use of an (α, β)-TSP-approximator
in the a priori setting, which is similar to the one introduced in [3]. Suppose we have
an instance of a priori TSP and a number L . The goal is to find a tour of expected
length at most L which minimizes the number of unvisited vertices. An (α, β)-TSP-
approximator in the a priori setting will find a tour of expected length at most βL
with a number of unvisited vertices at most α times the optimal number of unvisited
vertices. More formally, it is defined as follows.
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Definition 1 An (α, β)-TSP-approximator in the a priori setting will find, for any
given L , a tour that visits at least (1− αε)n vertices and is of expected length at most
βL if there exists a tour that visits (1 − ε)n vertices and is of expected length L .

The algorithm works as follows. Let L0 = 2 (twice the minimum edge length) and
c > 1 be a parameter to be determined later and define Li = L0ci . Now for each
length Li , we obtain a tour T (Li ) by applying the (α, β)-TSP-approximator in the a
priori setting. These tours will then be concatenated, i.e. we first traverse tour T (L0),
then we traverse tour T (L1) and so on until all vertices are visited, where we shortcut
already visited vertices. We output the resulting tour.

Theorem 2 Given an (α, β)-TSP-approximator in the a priori setting, our algorithm
with c = 2 is a (8�α	β + 1)-approximation for the a priori traveling repairman
problem in the uniform model, i.e. pi = p for all i ∈ V .

Proof Assume that α is an integer, otherwise use its ceiling as upper bound. Partition
the vertices of the algorithm’s tour in blocks of size at most α. If we renumber the
vertices in the tour such that the we have (1, 2, . . . , n), we define the block Bx to be
the subset containing the vertices n − α(x + 1) + 1, n − α(x + 1) + 2, . . . , n − αx
for x = 0, 1, . . . ,

⌈ n
α

⌉ − 1. Let C∗
n−x denote the expected latency of vertex n − x ,

the (n − x)th vertex on the optimal a priori TRP-tour, given that it is active. Now let
Si be the set of vertices with a conditional expected latency from Li−1 until Li in the
optimal tour. Suppose that the (n − x)th vertex visited by the optimal tour is in Si , i.e.
Li−1 ≤ C∗

n−x < Li . We know that there exists a tour visiting at least n − x vertices
with expected length at most 2C∗

n−x ≤ 2Li = Li+1, so the (α, β)-TSP-approximator
(with respect to Li+1) finds a tour visiting at least n −αx vertices of expected length at
most βLi+1. This implies that each vertex v ∈ Bx is visited in T0 ∪· · ·∪ T (Li+1). We
can bound the conditional expected latency, denoted asCAlg

v , in the following way. Let
v be visited for the first time in T (Li+1). Now, construct a new tour by removing vertex
v from tour T (Li+1) and visit it after the vertices of T (Li+1). Denote the expected
latency of v in the new tour by C ′

v and note that we have CAlg
v ≤ C ′

v . Finally note that
the expected latency in the new tour is bounded by β(L0 + · · · + Li+1) + d(r, v). If
we sum over all vertices in Bx , we get

∑

v∈Bx

CAlg
v ≤ α(β(L0 + L1 + · · · + Li+1)) +

∑

v∈Bx

d(r, v)

≤ 2αβLi+1 +
∑

v∈Bx

d(r, v)

= 8αβLi−1 +
∑

v∈Bx

d(r, v)

≤ 8αβC∗
n−x +

∑

v∈Bx

d(r, v).
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If we multiply by p and sum over all blocks, we can bound the objective (2) as follows

� n
α 	−1∑

x=0

∑

v∈Bx

pCAlg
v ≤ 8αβ

� n
α 	−1∑

x=0

pC∗
n−x +

∑

v

pd(r, v)

≤ 8αβ
∑

v

pC∗
v +

∑

v

pd(r, v)

≤ (8αβ + 1)Opt.

��
Note that uniformity is essential in the last step, since we are comparing different
tours vertex by vertex. This approximation guarantee might be improved by choosing
another value of c, but it turns out that c = 2 is optimal for our analysis. We can
improve the approximation factor by randomizing the starting length. Set L0 = 2cU ,
where U is a random variable uniformly distributed on [0, 1], and optimize over c.

Theorem 3 Given an (α, β)-TSP-approximator in the a priori setting, our algorithm
with L0 = 2cU and c = e is a (2e�α	β + 1)-approximation for the a priori traveling
repairman problem in the uniform model, where U is a random variable uniformly
distributed on [0, 1].
Proof Partition the vertices of the resulting tour in blocks of size at most α and
renumber vertices as inTheorem2. Suppose thatC∗

n−x = qc�, whereq < c. Ifq < cU ,
then there exists a path from the root with expected length at most cU c� visiting at
least n − x vertices. This means that T (L�) contains at least n − αx vertices and is
of length at most 2βcU c�. So, for v ∈ Bx , we have CAlg

v ≤ β
∑�

i=0 L0ci + d(r, v) ≤
βL0c�( c

c−1 ) + d(r, v). In the other case, we have q < c ≤ cU c, so there exists a path
from the root with expected length at most cU c�+1. This means that T (L�+1) contains
at least n − αx vertices and is of length at most 2βcU c�+1. So, for v ∈ Bx , we have
CAlg

v ≤ β
∑�+1

i=1 L0ci + d(r, v) ≤ βL0c�+1( c
c−1 ) + d(r, v). In the first case, we have

logc q ≤ U ≤ 1 and we have 0 ≤ U ≤ logc q in the second case. Taking expectations
over U gives

CAlg
v ≤

∫ 1

logc q

(
βL0c�

(
c

c − 1

)
+ d(r, v)

)
dU

+
∫ logc q

0

(
βL0c�+1

(
c

c − 1

)
+ d(r, v)

)
dU

=2cβ

ln c
C∗

n−x + d(r, v)

If we multiply by p and sum over all vertices in Bx and over all Bx , we get a bound
of 2c

ln c αβ + 1. Optimizing over c gives c = e and a bound of 2eαβ + 1. ��
The algorithm can be derandomized by trying multiple values for U . This will give

an approximation guarantee that is arbitrary close to 2eαβ + 1 by using techniques
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from [8]. Note that if α = 1, the approximator corresponds to a β-approximation for a
priori k-TSP, the problem of finding a tour on k vertices of minimum expected length.
This yields the following corollary.

Corollary 1 If there is a γ -approximation for the a priori k-TSP, then there is a
(2eγ + 1)-approximation for the a priori traveling repairman problem in the uniform
model.

4 Tree Metrics

To obtain an approximation guarantee for the a priori TRP on trees, we use Corollary 1.
Note that finding a k-tour in a tree is similar to finding a k-tree in a tree. So, in this case
we can solve the a priori k-MST problem, in which we have to find a tree spanning
k vertices such that the expected cost of the tree is minimized. Here, shortcutting the
tree is done by removing inactive vertices provided that the tree on the active vertices
remains connected.

Theorem 4 The a priori k-TSP in the uniform model on tree metrics can be solved to
optimality in polynomial time.

Proof First, we turn the tree into a binary tree with the original vertices at the leaves by
adding vertices with probability zero and edges with cost zero. Next, we use dynamic
programming to solve the a priori k-MST problem. Define the function t (v, y) to be
the minimal expected cost of a subtree rooted at v containing y leaves. For all leaves
v, we have t (v, 0) = t (v, 1) = 0. For a certain state (v, y), the best tree follows from
a combination of z vertices from the left subtree and y − z vertices from the right
subtree. For a given combination, the expected cost is equal to the sum of the expected
cost of the subtrees plus, for each subtree, the cost of the edge connecting v with the
subtree times the probability that at least one of the vertices in the subtree is active. If
we denote �(v) and q(v) for the left and right child of v respectively and c(v,w) as
the cost of the edge between v and w, we get the following recursive formula:

t (v, y) = min
z=0,...,y

{
t (�(v), z) + (1 − (1 − p)z)c(v, �(v))

+ t (q(v), y − z) + (1 − (1 − p)y−z)c(v, q(v))
}
.

The optimal tree containing k vertices is the solution corresponding to t (r, k), where
r is the root of the tree. Note that the dynamic program needs O(nk2) time, so a priori
k-MST (and hence k-TSP) on trees can be solved in polynomial time. ��
Corollary 2 There is a 2e+1 ≈ 6.44-approximation for the a priori traveling repair-
man problem in the uniform model on trees.

It is not clear how to generalize this result to the non-uniform case. The difficulty is
that the probability that at least one vertex in the subtree is active can take exponentially
many different values. On the other hand, it is easy to extend the DP above to the case
where it is almost uniform in the sense that there is a constant number of different
probabilities pi .

123



Algorithmica

5 General Metrics

For general metrics, we show how to obtain an (α, β)-TSP-approximator with some
constant α and β. It turns out that finding such an approximator boils down to finding
an approximation algorithm for certain variations of the tour single-sink rent-or-buy
problem (tour SRoB).

In the single-sink rent-or-buy problem (SRoB) [18], we are given a graph G =
(V, E) with a metric cost function ce on the edges. There is a client at every vertex
j ∈ V with demand d j . We have to open a facility at some of the vertices and connect
the clients to the facilities. We denote ci j as the cost of the shortest path between i
and j in G. Connecting facility i with client j costs d j ci j and buying edge e costs
Mce, where M ≥ 1. We need to buy edges such that the open facilities are joined by
a Steiner tree, where the open facilities are the terminals. The goal is to minimize the
sum of connection cost and Steiner cost.

In the tour SRoB, G is a complete graph. Here, edges have to be bought such that
the open facilities are joined by a tour. Note that ci j = ce if e = (i, j).

The next two variants are used to get the desired approximation results for a priori
TRP. In the prize-collecting tour SRoB, it is not needed to connect every client, but if
client i is not connected, then we have to pay penalty πi . The goal is to minimize the
sum of connection cost, tour cost and penalty cost.

In the k-client tour SRoB, it also not needed to connect every client. One has to
connect at least k vertices at minimum total cost. Approximating the latter problem is
done by using the following definition.

Definition 2 An (α, β)-tour SRoB-approximator will find, for any given L , a tour
SRoB-solution containing at least (1−αε)n vertices of cost at most βL if there exists
a tour SRoB-solution containing (1 − ε)n vertices of cost L .

In this section, we start with showing that there is a 5-approximation for tour-
SRoB. We then use this result to show that there is 5.52-approximation for the
prize-collecting tour SRoB. In Sect. 5.2, we first show that if we have an (α, β)-
tour SRoB-approximator, we get an (α, 3β)-TSP-approximator. Finally, we show
that the 5.52-approximation for prize-collecting tour SRoB can be used to obtain an
(11.04, 11.04)-tour SRoB-approximation which together with the former statement
results in an (11.04, 33.12)-TSP-approximator. Hence, by Theorem 3 this results in a
O(1)-approximation for a priori TRP in the uniform model on general metrics.

5.1 Prize-Collecting Tour SRoB

The prize-collecting tour SRoB has, to the best of our knowledge, not been considered
explicitly in the literature.We can obtain a randomized 3-approximation for tour SRoB
by adjusting the analysis for tour connected facility location (a generalization of tour
SRoB) by Eisenbrand et al. [6]. This can be derandomized by adapting the analysis of
van Zuylen [19] to obtain a deterministic 3-approximation. However, it is not clear how
to extend these results to prize-collecting SRoB. Therefore, wewill use the primal-dual
algorithm for SRoB by Swamy and Kumar [18] instead.
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5.1.1 Tour SRoB

First, consider SRoB. We assume that a facility is opened at root vertex r . In the ILP-
formulation below, we define xi j to be 1 if i is on the tree and j is connected to i . We
define ze to be 1 if we use edge e in the tree. Without loss of generality, we assume
that we have unit demand. The reader is referred to [18] for further details.

(P) min
∑

i

∑

j

ci j xi j + M
∑

e

ceze

s.t.
∑

i

xi j ≥ 1 ∀ j ∈ V

∑

i∈S

xi j ≤
∑

e∈δ(S)

ze ∀S ⊆ V \ {r}, j ∈ V

xi j , ze ∈ {0, 1} ∀i, j ∈ V, e ∈ E .

Relaxing the integrality constraints gives the following dual problem.

(D) max
∑

j

α j

s.t. α j ≤ ci j +
∑

S⊆V :i∈S,r /∈S

θS, j ∀i ∈ V \ {r}, j ∈ V

α j ≤ ci j ∀ j ∈ V
∑

j

∑

S⊆V :e∈δ(S),r /∈S

θS, j ≤ Mce ∀e ∈ E

α j , θS, j ≥ 0 ∀ j ∈ V, S ⊆ V \ {r}.

In any solution for the tour SRoB, each vertex j is connected to some vertex i on the
tour (possibly i = j). In that case, any cut separating i from r must contain at least two
edges. Hence, an LP-relaxation for tour SRoB is obtained by relaxing the integrality
constraints in (P) and by putting a factor 2 in front of xi j in the second constraint. We
obtain the following LP-relaxation and its dual.

(P′) min
∑

i

∑

j

ci j xi j + M
∑

e

ceze

s.t.
∑

i

xi j ≥ 1 ∀ j ∈ V

2
∑

i∈S

xi j ≤
∑

e∈δ(S)

ze ∀S ⊆ V \ {r}, j ∈ V

xi j , ze ≥ 0 ∀i, j ∈ V, e ∈ E .
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(D′) max
∑

j

α j

s.t. α j ≤ ci j + 2
∑

S⊆V :i∈S,r /∈S

θS, j ∀i ∈ V \ {r}, j ∈ V

α j ≤ ci j ∀ j ∈ V∑

j

∑

S⊆V :e∈δ(S),r /∈S

θS, j ≤ Mce ∀e ∈ E

α j , θS, j ≥ 0 ∀ j ∈ V, S ⊆ V \ {r}.
We can now use the primal-dual algorithm for SRoB to obtain an approximation
algorithm for tour SRoB. Given an instance of tour SRoB, we divide all edge costs by
2, i.e. c′

e = ce/2 and c′
i j = ci j/2. To keep the remaining restrictions of the dual and

the Steiner costs the same, we also set M ′ = 2M . Secondly, we use the primal-dual
algorithm of Swamy and Kumar [18] on the new instance to obtain a solution for
SRoB. Finally, we double the tree and shortcut the resulting Eulerian tour. Note that
this algorithm and its analysis are similar to the work of Goemans and Williamson
[9], who showed how to obtain a 2-approximation for the prize-collecting TSP using
a 2-approximation for the prize-collecting Steiner tree problem. Further note that this
ratio is worse than the ratio that can be obtained from [6]. However, that result is based
on a sampling approach which we do not know how to extend to the prize-collecting
version of the problem.

Theorem 5 The approach above gives a 5-approximation for the tour SRoB. More-
over, the value is at most 5 times the optimal value of its LP-relaxation.

Proof The primal-dual algorithm of Swamy and Kumar gives two feasible solutions,
namely (α1, θ1) and (α2, θ2). Then, (2α1, θ1) and (2α2, θ2) are feasible solutions for
D′. By duality, we have 2

∑
j α1

j ≤ Opt and 2
∑

j α2
j ≤ Opt, whereOpt is the optimal

value for tour SRoB. Given the solution of SRoB with connection costs C ′ and Steiner
cost S, the cost of the solution for tour SRoB produced by the algorithm is at most
C + 2S = 2(C ′ + S). By Swamy and Kumar, we get C ′ + S ≤ 3

∑
j α1

j + 2
∑

j α2
j .

Combining these two equations, we get that the solution of our algorithm has cost at
most

C + 2S = 2(C ′ + S) ≤ 2

⎛

⎝3
∑

j

α1
j + 2

∑

j

α2
j

⎞

⎠ ≤ 3Opt + 2Opt ≤ 5Opt.

Note that the solution of our algorithm contains a tour on the open facilities and it is
therefore a feasible solution for tour SRoB. ��

5.1.2 The Prize-Collecting Version

In this version, it is not needed to connect all vertices. However, a penaltyπi is incurred
when vertex i is not connected. For the LP-relaxation of the prize-collecting tour SRoB
problem, we add the variable s j , which is set to 1 if client j is not connected. In an
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integral solution, the first constraint corresponds to a client being either connected
with an open facility or not connected at all.

(P′′) min
∑

i

∑

j

ci j xi j + M
∑

e

ceze +
∑

j

π j s j

s.t. s j +
∑

i

xi j ≥ 1 ∀ j ∈ V

2
∑

i∈S

xi j ≤
∑

e∈δ(S)

ze ∀S ⊆ V \ {r}, j ∈ V

xi j , ze, s j ≥ 0 ∀i, j ∈ V, e ∈ E .

Using the ellipsoid method, the LP-relaxation can be solved in polynomial time. Note
that the separation problem can be solved by using a min-cut algorithm. The algorithm
for the prize-collecting version works as follows (see [21], Sect. 4.4). Let (x∗, z∗, s∗)
be an optimal solution for (P′′). If s∗

j ≥ δ, then we set ŝ j = 1, else we set ŝ j = 0,
where 0 ≤ δ ≤ 1 is determined later, and let T = { j : ŝ j = 0}. The vertices in V \ T
will not be visited. Next, we obtain a solution of tour SRoB on T by applying the
algorithm from Theorem 5. This results in a feasible solution for prize-collecting tour
SRoB on V . Partition the optimal LP-value in the connection plus tour cost CLP and
penalty cost ΠLP.

Lemma 2 The algorithm above finds a solution for the prize-collecting tour SRoB
such that the resulting tour and connection cost is bounded by 5/(1 − δ)CLP and the
resulting penalty cost is bounded by (1/δ)ΠLP.

Proof By rounding the solution, we lose at most a factor 1/δ on the penalty cost.
This means that the penalty cost is at most a factor 1/δ times the penalty cost of the
LP-relaxation. By Theorem 5, the connection and tour cost for tour SRoB on T can
be bounded by 5 times the optimal solution of its LP-relaxation. We obtain a feasible
solution for this LP-relaxation by deleting the s j ’s from the LP-relaxation of prize-
collecting tour SRoB andmultiply all other variables by a factor 1/(1−δ). Combining
the two statements, we obtain that the connection and tour cost can be bounded by
5/(1 − δ) times the connection and tour cost of the optimal LP-solution. ��

If we choose δ uniformly at random on [0, θ ], with 0 < θ ≤ 1 to be specified later
(see [21], Sect. 5.7), we obtain the following result.

Lemma 3 Randomization of the algorithm above gives a solution for the prize-
collecting tour SRoB such that the resulting tour plus connection cost is in expectation
bounded by (5 ln (1/(1 − θ)) /θ)CLP and the resulting penalty cost is in expectation
bounded by (1/θ)ΠLP.

Proof The tour and connection costs are deterministically bounded by 5/(1− δ)CLP.
If we take the expected value with respect to δ, we get that the tour and connection
costs are bounded by E (5/(1 − δ)) CLP in expectation. Computing this expectation
gives:
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E

(
5

1 − δ

)
=

∫ θ

0

5

1 − x

1

θ
dx = − 5

θ
ln (1 − x)

∣∣∣∣
θ

0
= 5

θ
ln

(
1

1 − θ

)
.

If s∗
j < θ , then s∗

j gets rounded to 1 (i.e. j will not be visited) with probability s∗
j /θ .

If s∗
j ≥ θ , then s∗

j gets rounded to 1 with probability 1, but here we have s∗
j /θ ≥ 1.

So, we can bound the penalty cost by (1/θ)
∑

j s∗
j π j ≤ (1/θ)ΠLP. ��

Note that the algorithm can be derandomized by checking all values s∗
j ∈ [0, θ ]

for δ, since the set of unvisited vertices does not change for values in between two
consecutive values of s∗

j . So, by checking at most n values, we obtain a deterministic

algorithm with the same guarantees. Choosing θ = 1 − e−1/5 gives the following
approximation guarantee.

Theorem 6 There is a 5.52-approximation for the prize-collecting tour SRoB prob-
lem.

5.2 Obtaining an (α, β)-TSP-Approximator

In this subsection, it is shown how to obtain an (α, β)-TSP-approximator using the
results for prize-collecting tour SRoB. We first show how a priori TSP and tour SRoB
are related.

Lemma 4 Any approximation algorithm for the tour SRoB problem can be turned into
an approximation algorithm for the a priori TSP in the independent decision model
with loss of at most a factor 3 in the approximation.

Proof Given an instance of a priori TSP with edge costs ce and probabilities pi , we
define an instance of tour SRoB as follows. The edge costs are c′

e = ce ∀e, M = 1
and the demands are di = 2pi . Given any feasible solution for this instance we get
a feasible solution for a priori TSP of at most the same cost as follows. Let T be the
tour in the SRoB solution. For the a priori tour we take T and double all the edges
from clients to facilities in the SRoB solution. It is easy to see that the expected cost
of the shortcut TSP solution is at most that of the SRoB solution. Let OptTSP and
OptSRoB denote the optimal value of, respectively, the a priori TSP and the tour SRoB
instance. It remains to show thatOptSRoB ≤ 3OptTSP. Select vertex i with probability
pi and take an optimal tour on the set of selected vertices S. Let this be the tour for
the SRoB solution. Connect all other vertices in the cheapest way to S. It follows from
the analysis in [15] that the cost of this SRoB solution is at most 3 times the optimal
cost of the a priori TSP instance, since the construction above is just their algorithm
except for the fact that we take an optimal tour on S. Hence, OptSRoB ≤ 3OptTSP. ��

The theorem above applies as well in the k-client setting, both for regular α-
approximations and for (α, β)-tour SRoB-approximators.

Corollary 3 In the independent decision model, we have that

1. If there is an α-approximation for the k-client tour SRoB problem, then there is a
3α-approximation for the a priori k-TSP.
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2. If there is an (α, β)-tour SRoB-approximator, then there is an (α, 3β)-TSP-
approximator in the a priori setting.

Proof In both cases, we use the same transformation as in the proof of Lemma 4.

1. The proof is working similarly, except that in the last step, we need to sample S
from the vertices on the optimal k-tour, instead of sampling S from all vertices V .
By Lemma 4, we get a 3α-approximation.

2. We sample S from the vertices on the optimal k-tour.Note that the number of visited
vertices in the obtained a priori k-TSP solution is the same as in the optimal a priori
k-TSP solution, so we do not lose anything there. Hence, by Lemma 4, we obtain
an (α, 3β)-TSP-approximator in the a priori setting. ��
Finally, we obtained the next lemma which shows that an (α, β)-tour SRoB-

approximator can be obtained using results from prize-collecting tour SRoB.

Lemma 5 If there is an α-approximation for prize-collecting tour SRoB, then there
is a (2α, 2α)-tour SRoB-approximator.

Proof Assume that there exists a solution T of expected cost at most L which visits at
least (1 − ε)n vertices. We show how to get a tour of expected cost at most 2αL that
visits at least (1 − 2αε)n vertices. As noted in [3], we can perform a binary search
on the optimal value of ε given L , if ε is not specified. Define an instance of prize-
collecting tour SRoB by giving each vertex a penalty π = L/(εn). The optimal value
of this instance is at most that of solution T which is L + εnπ ≤ 2L . Hence, any
α-approximation for the prize-collecting tour SRoB instance should return a solution
that has tour and connection cost at most 2αL and also a penalty cost of at most 2αL .
The latter implies that it leaves at most 2αL/π = 2αεn vertices unvisited. ��

Now, we finally get a constant-factor approximation algorithm for the a priori TRP
in the uniform setting.

Theorem 7 There is an O(1)-approximation for the a priori traveling repairman
problem in the uniform model.

Proof From Theorem 6 we get an α0-approximation for the prize-collecting tour
SRoB, where α0 = 5.52. Combining this with Lemma 5, we obtain an (2α0, 2α0)-
tour SRoB-approximator. Using Corollary 3, we get an (2α0, 6α0)-TSP-approximator.
Plugging this results into the result of Theorem 3, we obtain a (2e�2α0	6α0 + 1)-
approximation for the a priori TRP in the uniform model. ��

6 Open Problems

There are still many open problems in the field of a priori optimization. For the a priori
traveling repairman problemwewere only able to give a constant-factor approximation
in the uniform model and the constant is still large. For the correctness of Theorems 2
and 3 the uniformity of the probabilities is essential. It is not clear how to reduce the
case of independent probabilities to the uniformmodel. Therefore, the problem is wide
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open in the independent decision model with non-uniform probabilities. Also, it is not
known if the uniform problem can be solved efficiently in case all points are on the
line. If any optimal solution has the property that no point is passed without visiting
it, like in the deterministic problem, then the problem may be solved by dynamic
programming. However, a proof of this property is missing and we have shown that
this property does not hold in the scenario setting.

In our analysis we used the theory of (α, β)-TSP-approximators. Better approx-
imations may be obtained by using the a priori k-TSP or k-client tour SRoB. No
constant-factor approximation is known for these problems.

Finally, it is good to note that there is still a lot to do in the scenario model. Both
the a priori TSP and a priori TRP have not been studied in this model. It would be
interesting to see if this extra knowledge, i.e. an explicit list of scenarios, can help us
to obtain stronger approximation results.

Acknowledgements The authors are supported by the NWO Grant 612.001.215.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Afrati, F., Cosmadakis, S., Papadimitriou, C.H., Papageorgiou, G., Papakostantinou, N.: The complex-
ity of the travelling repairman problem. RAIRO Informatique théorique 20(1), 79–87 (1986)

2. Bertsimas,D.: Probabilistic CombinatorialOptimization Problems. PhD thesis,Massachusetts Institute
of Technology (1988)

3. Blum, A., Chalasani, P., Coppersmith, D., Pulleyblank, B., Raghavan, P., Sudan, M.: The minimum
latency problem. In: Proceedings of the 26th Annual ACM Symposium on Theory of Computing, pp.
163–171. ACM (1994)

4. Chaudhuri, K., Godfrey, B., Rao, S., Talwar, K.: Paths, trees, and minimum latency tours. In: Proceed-
ings of the 44th Annual IEEE Symposium on Foundations of Computer Science, pp. 36–45. IEEE
(2003)

5. Christofides, N.: Worst-Case Analysis of a New Heuristic for the Travelling Salesman Problem. Tech-
nical Report, DTIC Document (1976)

6. Eisenbrand, F., Grandoni, F., Rothvoß, T., Schäfer, G.: Connected facility location via random facility
sampling and core detouring. J. Comput. Syst. Sci. 76(8), 709–726 (2010)

7. Garg, N., Gupta, A., Leonardi, S., Sankowski, P.: Stochastic analyses for online combinatorial opti-
mization problems. In: Proceedings of the 19th Symposium on Discrete Algorithms, pp. 942 – 951.
SIAM (2008)

8. Goemans, M.X., Kleinberg, J.: An improved approximation ratio for the minimum latency problem.
Math. Program. 82(1–2), 111–124 (1998)

9. Goemans,M.X.,Williamson,D.P.: A general approximation technique for constrained forest problems.
SIAM J. Comput. 24(2), 296–317 (1995)

10. Gorodezky, I., Kleinberg, R.D., Shmoys, D.B., Spencer, G.: Improved lower bounds for the universal
and a priori TSP. In: Proceedings of the 13th International Workshop on Approximation Algorithms
for Combinatorial Optimization Problems, pp. 178–191. Springer (2010)

11. Gupta, A., Pál, M., Ravi, R., Sinha, A.: Sampling and cost-sharing: approximation algorithms for
stochastic optimization problems. SIAM J. Comput. 40(5), 1361–1401 (2011)

12. Jaillet, P.: Probabilistic Traveling Salesman Problems. PhD Thesis, Massachusetts Institute of Tech-
nology (1985)

13. Sahni, S., Gonzalez, T.: P-complete approximation problems. J. ACM (JACM) 23(3), 555–565 (1976)

123

http://creativecommons.org/licenses/by/4.0/


Algorithmica

14. Schalekamp, F., Shmoys, D.B.: Algorithms for the universal and a priori TSP. Oper. Res. Lett. 36(1),
1–3 (2008)

15. Shmoys, D.B., Talwar, K.: A constant approximation algorithm for the a priori traveling salesman prob-
lem. In: Proceedings of the 13th International Conference on Integer Programming and Combinatorial
Optimization, pp. 331–343. Springer (2008)

16. Sitters, R.: The minimum latency problem is NP-hard for weighted trees. In: Proceedings of the 9th
International Conference on Integer Programming and Combinatorial Optimization, pp. 230–239.
Springer (2002)

17. Sitters, R.: Polynomial time approximation schemes for the traveling repairman and other minimum
latency problems. In: Proceedings of the 25thAnnualACM-SIAMSymposiumonDiscreteAlgorithms,
pp. 604–616. SIAM (2014)

18. Swamy, C., Kumar, A.: Primal-dual algorithms for connected facility location problems. Algorithmica
40(4), 245–269 (2004)

19. van Ee,M., Sitters, R.: Routing under uncertainty: the a priori traveling repairman problem. In: Approx-
imation and Online Algorithms: 12th International Workshop, Revised Selected Papers, pp. 248–259.
Springer (2015)

20. van Zuylen, A.: Deterministic sampling algorithms for network design. Algorithmica 60(1), 110–151
(2011)

21. Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms. Cambridge University
Press, Cambridge (2011)

123


	The A Priori Traveling Repairman Problem
	Abstract
	1 Introduction
	2 Preliminaries
	3 Algorithm
	4 Tree Metrics
	5 General Metrics
	5.1 Prize-Collecting Tour SRoB
	5.1.1 Tour SRoB
	5.1.2 The Prize-Collecting Version

	5.2 Obtaining an (α,β)-TSP-Approximator

	6 Open Problems
	Acknowledgements
	References




