
Towards More Efficient Loop Checks

Roland N. Bol
Centre for Mathematics and Computer Science
P.O.Box 4079, 1009 AB Amsterdam, The Netherlands.
Phone: (+ 31) - 20 - 592 4080. E-mail: bol@cwi.nl.

Abstract
Loop checking is a mechanism for pruning infinite SLD-derivations. Most loop
checks essentially compare the goals in a derivation: a derivation is pruned if
'sufficiently similar' goals are detected. In theory a goal is usually compared with
every previous goal in the derivation, but in practice such loop checks are too
expensive.

Here we investigate how to alter such loop checks to obtain less expensive ones
(notably such that the number of comparisons performed is linear in the number of
goals generated) while retaining the soundness and completeness results of the
original loop check. To this end we modify Van Gelder's [5] 'tortoise-and-hare'
technique and study in detail the number of comparisons performed by a loop check
whose checkpoints are placed in accordance with the triangular numbers.

This research was partly supported by Esprit BRA-project 3020 Integration.

1. Introduction

Most loop checking mechanisms for logic programming proposed in the literature
([1], (2), la in [3], (4), [5], (6), [9], [10), [11] and 'redundancy' in (13]) are based
on comparing goals. In theory, a goal is usually compared with every previous goal
in the derivation. For such loop checks, the number of comparisons performed is
quadratic in the number of goals generated. An interpreter equipped with such a loop
check would not be very useful in practice: the longer a derivation gets, the more time
is spent on loop checking instead of generating new goals. For a practical loop
check, the number of comparisons should be at most linear in the number of goals
generated.

We discuss in this paper two methods for adapting existing loop checks to meet
this requirement. Both methods describe which carefully selected pairs of goals are to
be compared, using the comparison criterion of the original loop check. For the new
loop checks thus obtained we investigate the soundness and completeness (as defined
in [2], see also section 2.2) and the number of comparisons performed (relative to the
number of goals generated).

The first method, originally proposed by Van Gelder (5], is called the 'tortoise
and-hare technique'. It is discussed in section 3. Roughly speaking, this method
compares every newly generated goal in a derivation with only one previous goal,
namely the goal that is currently 'halfway' in the derivation. In this way the number
of comparisons performed is equal to the number of goals generated. Unfortunately,
a loop check thus obtained is generally incomplete.

466

Then two other closely related techniques are introduced. In both methods an
(infinite) number of 'checkpoints' is selected; then every goal that is at such a
checkpoint (on account of its level in the Sill-derivation or -tree) is compared with

- every previous goal ('single selected' loop checks), or
- the previous goals at checkpoints ('double selected' loop checks).

The use of single selected loop checks is already suggested in [4]. In section 4 the
soundness and (for most cases) completeness of selected loop checks are proved,
independently of the selection.

The 'density' of the selection determines the efficiency of a selected loop check.
(The original loop check can be described as the selected loop check for which every
goal is selected as a checkpoint, which is the most dense selection possible.) A
'linear' loop check is obtained if the increasing number of comparisons at the
checkpoints is compensated by a decreasing density of the occurrence of checkpoints
among other goals: the funher the derivation is developed, the more comparisons are
performed at a checkpoint, but the less checkpoints occur.

In [4], Covington argues informally that a single selected loop check with a
selection of the form {n,n2,n3, ... } (for some constant n > 1) is linear. In section 5
we prove in detail that for a double selected loop check this effect is obtained with the

selection {ti(i+l) Ii e IN} (the initial goal is defined to be at level 0). So for single

and double selected loop checks, an appropriate selection renders the number of
comparisons performed linear in the number of goals generated.

2. Preliminaries

In this section we recall the basic notions concerning loop checking, as presented in
[2]. Throughout this paper we assume familiarity with the concepts and notations of
logic programming as described in [7]. For two substitutions a and 't, we write a S 't
when O" is more general than 't and for two expressions E and F, we write E S F if F
is an instance of E. An SLD-derivation step from a goal G, using a clause C and an
mgu 0, to a goal His denoted as G =>c,a H. By an Sill-derivation we mean an Sill
derivation in the sense of [7] or an initial fragment (subderivation) of it.

2.1 Loop checks
The purpose of a loop check is to prune every infinite Sill-tree to a finite subtree of
it containing the root. We define a loop check as a set of Sill-derivations: the
derivations that are pruned exactly at their last node. Such a set of Sill-derivations L
can be extended in a canonical way to a function fL from SLD-trees to SLD-trees by
pruning in an SLD-tree the nodes in { G I the Sill-derivation from the root to G is in
L }. We shall usually make this conversion implicitly.

DEFINITION 2.1.

Let L be a set of SLD-derivations.
RemSub(l) = {De LI L does not contain a proper subderivation ofD }.
Lis subderivationfree if L = RemSub(L). D

467

In order to render the intuitive meaning of a loop check L: 'every derivation D e
Lis pruned exactly at its last node', we need that Lis subderivation free. Note that
RemSub(RernSub(L)) = RernSub(L).

In the following definition, by a variant of a derivation D we mean a derivation
D' in which in every derivation step, atoms in the same positions are selected and the
same program clauses are used. D' may differ from D in the renaming that is applied
to these program clauses for reasons of standardizing apart and in the mgu used.
Thus (see [8]) variants differ only in the choice of the names of the variables.

DEFINITION 2.2.

A simple loop check is a computable set L of finite SLD-derivations such that L is
closed under variants and subderivation free. 0

In [2], loop checks are treated in a more general way. There non-simple loop
checks occur: their behaviour may depend on the program the interpreter is
confronted with. For the topics addressed in this paper, the distinction between
simple and non-simple loop checks does not play a role. For simplicity in the
presentation, we shall only consider simple loop checks, but usually omit the
qualification 'simple'.

DEFINITION 2.3.

Let L be a loop check. An Sill-derivation D of Pu{ G} is pruned by L if L contains
a subderivation D' of D. O

2.2 Soundness and completeness
The most important property is definitely that using a loop check does not result in a
loss of success. Even stronger, because we use here a PROLOG-like interpreter
augmented with a loop check as the only inference mechanism, we may not want to
lose any individual solution. That is, if the original tree contains a successful branch
(giving some computed answer), then we require that the pruned tree contains a
successful branch giving a more general answer.

Finally, we would like to retain only shorter derivations and prune the longer
ones that give the same result. This leads to the following definitions, where for a
derivation D, IDI stands for its length, i.e. the number of goals in it.

DEFINITION 2.4 (Soundness).
i) A loop check Lis weakly sound if for every program P and goal G, and SLD-tree

T of Pu{G}: if T contains a successful branch, then fL(T) contains a successful
branch.

ii) A loop check Lis sound if for every program P and goal G, and Sill-tree T of
Pu{G}: if T contains a successful branch with a computed answer substitution <J,

then fL(T) contains a successful branch with a computed answer substitution <J'

such that Go' ~ Ga.

468

iii) A loop check Lis shortening if for every program P and goal G, and SLD-tree T
of Pu{G}: if T contains a successful branch D with a computed answer
substitution cr, then either fL(T) contains D or fL(T) contains a successful branch
D' with a computed answer substitution cr' such that Ocr' $ Gcr and ID'I < IDI. D

The following lemma is an immediate consequence of these definitions.

LEMMA 2.5. let l be a loop check.
i) If l is shortening, then l is sound.

ii) If L is sound, then Lis weakly sound. D

The purpose of a loop check is to reduce the search space for top-down
interpreters. Although impossible in general, we would like to end up with a finite
search space. This is the case if every infinite derivation is pruned.

DEFINITION 2.6 (Completeness).
A loop check Lis complete w.r.t. a selection rule Rfor a class of programs<%, if for
every program P e tJ and goal G in Lp, every infinite Sill-derivation of Pu{ G} via
R is pruned by L. D

In general, comparing loop checks is difficult. The following relation comparing
loop checks is not very general: most loop check will be incomparable with respect to
it. Nevertheless it turns out to be very useful.

DEFINITION 2.7.
Let L1 and Lz be loop checks. L1 is stronger than Lz if every SLD-derivation
Oz E Lz contains a subderivation D1 e L1. D

In other words, L1 is stronger than Lz if every Sill-derivation that is pruned by
L2 is also pruned by Li. Note that the definition implies that every loop check is
stronger than itself. The following theorem enal;Jles us to obtain soundness and
completeness results for loop checks which are related by the 'stronger than' relation,
by proving soundness and completeness for only one of them.

THEOREM 2.8 (Relative Strength).
Let l1 and L2 be loop checks, and let L1 be stronger than L2.
i) If L1 is weakly sound, then L2 is weakly sound.
ii) If L1 is sound, then L2 is sound.
iii) If L1 is shortening, then L2 is shortening.
iv) If L2 is complete then L1 is complete.

PROOF. Straightforward.

2.3. Loop checks comparing goals

D

After these basic definitions, three groups of simple loop checks are presented in [2]:
equality checks, subsumption checks and context checks; a summary of this

469

presentation is given in the Appendix. These loop checks are all based on the
comparison of goals: a derivation is pruned as soon as a goal occurs in it that 'is
sufficiently similar' to a previous goal.

Obviously the exact criterion for 'being sufficiently similar' is the essence of a
loop check. This criterion, in addition to the two goals that are compared, may use
some further information about the derivation D, such as the mgu's used, the initial
goal (for the resultant-based checks) and the ancestry relation among atoms (for the
context checks). However, when too much extra information is used, one may doubt
if the loop check really 'compares goals'. It is difficult, if at all possible, to give a
precise limit on the amount and the nature of 'other information' that may be used by
the criterion. Therefore we refrain from giving a fully exact definition, relying instead
on the intuition of the reader.

DEFINITION 2.9.

A full-comparison loop check is a loop check of the form
L(q>) = RemSub({DID= (Go =>c1,a1 G1 => ... => Gic-1 =>ck.Ok G0

and ::3 i < k such that q>(Gi,Gt,D) }),
where q>(Gi,Gt.D) 'essentially compares the goals Gi and Gk':
q>(Gi.GJc,D) =true if and only if Gi and Gt 'are sufficiently similar'.
The relation q> is called the loop checking criterion ofL(q>). 0

The condition that q> 'essentially compares goals' implies for example that the
effort of computing <p(Gi.Gt,D) is independent of !DI. Therefore the number of <p
computations (comparisons) performed by a loop check is a good measure of the
overhead caused by the loop check, as was tacitly assumed in the introduction.

LEMMA 2.10 ([4]). On a finite SW-derivation D, a full-comparison loop check

performs tlDl(IDl-1) comparisons.

PROOF. Obvious. 0

3. The tortoise-and-hare technique

A first attempt to reduce the number of comparisons performed by a loop check is
presented in [5]. There every goal Gt is compared with exactly one previous goal,
namely the goal Gia2 (G(k-1)12 ifk is odd) 'halfway' the derivation. The name of the
method originates from the technique used to keep track of the goals Gt and Giu2 in
the derivation: a fast (every derivation step) moving pointer (the hare) points at the
'current' goal Gt. a slow (every other step) moving pointer (the tortoise) points at the
goal Gietz 'halfway'. We now formalize this technique.

DEFINITION 3.1 (Tortoise-and-hare technique).
Let q> be a loop checking criterion. The tortoise-and-hare loop check of q> is the loop
check Vh(cp) = RernSub({ DID= (Go=>c1,a1 G1 => ... =>Gk-1 =>ck.ekGk) and
(k = 2i or k = 2i+l) and cp(Gi,CJt,D) and k > 0 }). D

470

The following theorem is an immediate consequence of our previous results.

THEOREM 3.2 (Soundness). Let <p be a loop checking criterion. If L(<P) is weakly
sound (sound,shortening) then Uh(<p) is weakly sound (sound,shortening).

PROOF. This follows from the Relative Strength Theorem 2.8, as L(<p) is obviously

stronger than Vh(cp). 0

Van Gelder justifies the use of the tortoise-and-hare technique by the observation

that due to the use of the leftmost selection rule and the fixed order of clauses in

PROLOG every loop must have a fixed length, say l (assuming no side-effects

occur). As the distance between the tortoise and the hare continuously increases by l,
the loop is detected (after the tortoise enters the looping part of the derivation) as

soon as the distance between the tortoise and the hare is a multiple of l.
In (5] a looping derivation is not pruned automatically: it is suggested that

control should be returned to the user, once a loop is detected. (Which makes sense

there: the initial loop checking criterion that is proposed in [5], and to which the

tortoise-and-hare technique is added, is not even weakly sound, so it is up to the user
to determine whether the derivation is really in a loop.) In our setting, a pruned goal

is handled as a failed one, giving rise to backtracking. As is implicit in Definition 3.1

(and explicitly mentioned in [5]), during backtracking the tortoise and hare motions

are simply 'undone'.
This entails however that the fixed order of clauses in PROLOG cannot be

relevant for a demonstration of the completeness of the method: no distinction is

made between the application of a clause as a first attempt to solve a goal, or its
application as a later attempt after backtracking from previous (failed) attempts.
Indeed the tortoise-and-hare technique does not preserve completeness, as the

following counterexample shows.

COUNTEREXAMPLE 3.3.
Let P = { p +- p; p +- q ; q +- p ; q +- q }. Let <p be a loop checking criterion such

that <p(p,p,D) ""<p(q,q,D) =true and <p(p,q,D) = <p(q,p,D) =false for every derivation

D (as one would expect). Let T be the SLD-tree of Pu{ t-p} pruned by Uh(<p).
CLAIM. T contains one infinite branch, so Lth(cp) is incomplete for P.
PROOF. Let G be a goal in T that is not pruned. We prove that G has two immediate

descendants, of which only one is pruned. Regardless of G being +-p or +-q, G has

two descendants G1 = +-p and G2 = +-q, which are both compared with the same

'halfway' goal H. If H = +-p, then G1 is pruned but G2 is not; if H = +-q, then G2
is pruned but G1 is not. o

4. Selected loop checks

An easy generalization of Counterexample 3.3 shows that a loop check cannot be

complete if there exists a maximum N such that every goal is compared with at most

N other goals (at least not if N is smaller than the number of ground atoms in the

471

language). Therefore we adopt a different strategy here: an infinite selection S of
natural numbers is made, and a pair of goals (Gi,~) is compared if and only if
- i < k and k e S (single selected loop checks), respectively
- i < k and i,k e S (double selected loop checks).

DEFINITION 4.1 (Selected Loop Checks).
Let cp be a loop checking criterion and Jet S be an infinite subset of IN.

The single selected loop check of cp and S is the loop check
L1(cp,S) = RemSub({ DID= (Go=>c1,e1 G1 => ... =>~-1 =>ck.ek~

and :J i < k such that cp(Gi,~,D), and k e S }).
The double selected loop check of cp and S is the loop check

L2(cp,S) = RemSub({ D ID= (Go =>c1,e1 G1 => ... => ~-1 =>ck.ek ~
and :J i < k such that cp(Gi,~,D), and i,k e S }).

Sis called the selection ofL1(cp,S) or L2(cp,S). O

Clearly, the number of comparisons performed by a selected loop check depends
on the selection S. For S = IN, we obtain the full-comparison loop checks again, for
which the number of comparisons is quadratic in the number of goals generated. In
section 5, the efficiency of double selected loop checks with S = {fi(i+ 1) I i e IN} is

studied in detail. In the rest of this section, we do not consider any specific selection,
but rather study the soundness and completeness of selected loop checks in general.

The following lemma enables the use of the Relative Strength Theorem 2.8.

LEMMA 4.2. Let <p be a loop checking criterion and let S J and S2 be selections.
Then, i) Ll(i:p.S1) is stronger than L2(<p,S1) and
if S1 ;;;J S2 then ii) L1(<p,S1) is stronger than L1 (<p,S2) and

iii) L2(<p,SJ) is stronger than L2(<p,S2).
PROOF. Obvious. 0

In particular, the full-comparison loop check L(cp) = Ll(cp,IN) = L2(cp,IN) is

stronger than any selected loop check using the criterion cp. This enables us to derive
the soundness of a selected loop check from the soundness of the corresponding full
comparison loop check.

THEOREM 4.3 (Soundness of Selection). Let <p be a loop checking criterion.
If L(rp) is weakly sound (sound, shortening) then for every selection S:
L1 (<p,S) and L2(<p,S) are weakly sound (sound, shortening).

PROOF. By Lemma 4.2 and the Relative Strength Theorem 2.8. D

Combining this theorem with the soundness results for the simple loop checks
presented in [2] (see the Appendix) yields the following results.

472

COROLLARY 4.4. For every selection used,
i) the (single and double) selected equality, subsumption and context checks

based on goals are weakly sound and
ii) the (single and double) selected equality, subsumption and context checks

based on resultants are shortening.
PROOF. By Theorem 4.3 and Theorem 7.1. D

Unfortunately, an equally general completeness result cannot be obtained using
Lemma 4.2. Instead, generalizing the completeness results from the simple loop
checks of [2] to the corresponding selected loop checks requires a detailed analysis of
the completeness proofs in (2). (However, by Lemma 4.2 it suffices to consider only
double selected loop checks.)

For the equality checks and subsumption checks, this generalization is
straightforward. By definition, a loop check is complete if every 'possible' infinite
derivation (given an initial goal and a program satisfying the restrictions) contains
two goals that 'are sufficiently similar' for the loop check. However, in the relevant
proofs in [2] (notably Theorem 4.18, Lemma 5.15 and Theorem 5.20) a stronger
result is proven: every infinite sequence of unrelated goals contains two 'similar'

goals. Although in [2] this sequence is always taken {Gi Ii e IN}, the sequence {Gi I

i e S} can be used for any selection S. Hence the completeness results for equality
and subsumption checks (see Theorem 7.3) generalize immediately to selected
equality and subsumption checks. The classes of programs mentioned below are
defined in the Appendix, in Definition 7 .2.

COROLLARY 4.5.
i) All (single and double) selected equality checks are complete w.r.t. the

leftmost selection rule for function-free restricted programs.
ii) All (single and double) selected subsumption checks are complete w.r.t. the

leftmost selection rule for function-free restricted programs.
iii) All (single and double) selected subsumption checks are complete for

function-free nvi programs.
iv) All (single and double) selected subsumption checks are complete for

function-free svo programs.
PROOF. By the arguments given above. o

For the context checks, the generalization of the completeness results is less
straightforward, but still possible.

THEOREM 4.6. All (single and double) selected context checks are complete for
function-free nvi programs and for function-free svo programs.

PROOF. Let S be a selection. In the completeness proofs for the full-comparison

context checks (Theorem 6.14 and 6.16 in the revised version of (2]), an infinite

sequence of goals Gmo,Gmp· .. (0 ~ mo < rn1 < ...) is constructed in which 'similar'

473

goals are shown to occur. The selection M = (mo < m1 < ...) can be adapted to the
selection S =(so< s1 < ...): we define the new selection T =(to< t1 < ...) by:
- to = so,

-ti=min{se S[:lme Msuchthatti-1Sm<s}fori>O.
As in the sequence Gm0,Gml'··· , in the goals of the sequence G10,Gtl'···

atoms Ao,Ai, ... occur such that Ai+! is the result (directly or indirectly) of resolving
Ai. The 'interleaving' with the selection Mis needed to ensure that Ai+l is not just an
instantiated version of Ai, but indeed the result of at least one resolution step
performed on Ai. (This follows from the observation that Ai is the selected atom in
Gmi; so in Theorem 6.14 exactly one resolution step occurs between Ai and Ai+1.)

In the rest of the proof of Theorem 6.14 (and 6.16), the sequence M can be
replaced by T without any difficulty. Therefore the double selected CVR check using
the selection T is complete for function-free nvi programs and for function-free svo
programs. By Lemma 4.2 (T k: S) and the Relative Strength Theorem 2.8, the same
holds for all (single and double) selected context checks using the selection S. D

Surprisingly, selected context checks are not necessarily complete w.r.t. the
leftmost selection rule for function-free restricted programs, as the following
counterexample shows.

COUNTEREXAMPLE 4. 7.
Let P = { A(y) +-- B(x),A(x),

B(l) +-- }
and let G = +-B(xo),A(xo).
Consider the following derivation D of Pu{G} via the leftmost selection rule:

+-B(xo),A(xo)
I B(l)+-
t {xofl}

+-A(l)

i

A(y1)+-B(x1),A(x1)
{yi/1}

A(y2)+-B(x2),A(x2)
{Y2/l}

+-B(x2),A(x2)

D is not pruned by the single selected context

checks using the selection S = {2i I i e 11\1}.

First compare G2j = +-B(xj),A(xj) with
+-A(l). But A(xj) is not an instance of A(l).
Then compare it with G2i = +-B(xi),A(xi)
(i < j). B(xj) is not the result of resolving

B(xi), so we are forced to take A= A(xi)
and 't = {xilxj,Xj/Xi}.Then 82i+l = {xi/1}
and A(xj) is indeed the result of resolving

A(l) = A(xi)82i+I in G2i+l· But 't and
02i+l · .. Sij should agree on Xj, which they
do not. D

Concluding, in most cases a selected loop check can be used instead of the
corresponding full-comparison loop check, without losing its benefits such as

474

soundness and completeness. In the next section we take a more constructive attitude
towards selected loop checks and we investigate how much is gained by using them.

5. Triangular loop checks: a case study

This section presents a detailed study of double selected loop checks with the

selection S = {fi(i+l) Ii e IN}. Numbers of the form ti(i+l) are usually called

triangular numbers, therefore we call such loop checks triangular loop checks. In this
section the loop checking criterion is not relevant, as we focus solely on the number
of comparisons performed.

THEOREM 5.1. Let D be a finite SLD-derivation. The number of comparisons
performed on D by a triangular loop check is less than/D/.

PROOF. LetD = (Oo:::>c1,e1 01 :::> ... :::>Ok-1 =>ck,ekGk). For every triangular

number n = fi(i+l) (0 ~ n ~ k), the goal Gn is compared to i previous goals. We

may assume that k is a triangular number, say k = tW+l). The number of

comparisons performed on Dis then f. i = hU+l) = k < k + 1 = IDJ. D
i=O

The following arrangement of goals may help the intuition:

Go : G1 G2 G4 G7
G3 Gs Gg

06 09
010

Every column contains one 'triangular' goal G (a
goal with a triangular number as its index; this index
is exact! y the level of the goal). The number of goals
in the column of G equals the number of columns
preceding it (for G 'cj; Go), which in turn equals the
number of comparisons performed at G.

So the presence of er,, Gg, G9 and G10 'justifies' the four comparisons
performed at G10. This arrangement of goals also explains the word 'triangular'.

When SW-trees are considered, the situation gets more complicated: two goals
G10 and 010' may have common ancestors 07, Og and G9; these five goals cannot
completely justify the eight comparisons performed at G10 and 010'. We now show
that for SLD-trees with a constant (average) branching factor and containing a
'reasonable' number of goals (say~ 1010), the number of comparisons performed is
less than five times the number of goals generated.

THEOREM 5.2. Let T consist of the levels O, ... ,k of an SW-tree, have a constant
average branching factor band contain n 5 JOlO goals. Then a triangular loop
check performs less than 5 ·n comparisons on T.

PROOF. We may assume that b > 1 (for b = 1 (orb< 1), see Theorem 5.1) and that

the depth of Tisa triangular number, say k = }W+l). Then for O s m s k, the

number of

- goals at level m

- goals in T

- comparisons at level m = ri(i+ 1)

- comparisons in T

We consider two cases.

CASE 1: bi-1 :5 5.

475

is bm,
. k . bk+l_1
1s .I b1 = J;::l= n :5 1010,

!=0
is i·bm,

is ti·bliZ·i(i+ll.
i=l

In this case the number of goals at level ti(i+l) (1 :5 i :5 j) can be at most 5 times

the number of goals at level ri(i-1)+ 1. Therefore the goals between level ri(i-1)+1

and level Ii(i+ 1) justify at least one fifth of the comparisons at level Ii(i + 1).

Formally, fi·bli2·i(i+l) = fbi-l.j-bliZ·i(i-1)+1 :5 bi-1. ±i·bli2·i(i-l)+l :5
i=l i=l i=l

:5 5· I. Ibli2·i(i-I)+l :5 5· f I.bli2·i(i-l)+r = 5· Ibl <Sn. The final equation is
i=l r=l i=l r=l l=l

justified by the observation that every level-number l (I :5 l :5 k) can be written as
l = t+r, where t = ti(i-1) is the largest triangular number smaller than land 1 :5 r :5 i.

CASE 2: bi-1 > 5.

In this case the total number of comparisons can be estimated at~ times the number

of comparisons at the last level, since the number of comparisons at level rjG+l) is

j·bli2·j(J+I) > bi·U-1)·b112-j(j-1) > 5 times the number of comparisons at level t
jQ-1) (which is in turn> 5 times the number of comparisons at level tU-l)U-2); now

I I 5 wehave1+ 5+ 25 + ... = 4).
Th fi the number of comparisons in T _ 5 ·j:r _ 5·j·bk·(b-l)

ere ore the number of goals in T - ·n - 4·(bk+l-1)
5j(b-l) · l k l 1 . bk+LJ ~.(NotethatbJ· >5impliesb + > 125» l.)Finallyk=2jU+l)andjj:l

:5 1010 implies j :5-± +-}-~+2·blog(1QlO(b-1)). A numeric analysis I of the function

S(~bl) <-±+~ -:1+2·blog(1010(b-1))) shows that its maximum.is almost 5 ("" 4.95

for b = 3.21). D

1 Performed using the 'Maple' package, developed by the Symbolic Computation Group of
the University of Waterloo, Ontario, Canada.

476

Finally we consider SLD-trees which do not have a constant average branching
factor, but exhibit a kind of 'worst case' behaviour. In these trees only the parents of

the 'triangular' goals have more than one descendant. More formally, if bk is the
number of descendants of a goal at level k (k ~ 0), then

{
b if k = tj(j+l)-1 o > 0)

bk=
1 otherwise,

for some constant branching factor b.

THEOREM 5.3. Let T consist of the levels 0, .. .,k of a 'worst case' SW-tree with
branching factor b, and contain n goals. Then a triangular loop check performs
less than b·n comparisons on T. Moreover, if n ~ 1010, then a triangular loop
check performs less than 6 ·n comparisons on T.

k
PROOF. Let k = tW+l). The number of goals at level k is then Obk =bi. Hence the

i=O

number of comparisons performed at level k is j·bi. Each of the levels tj(j-1)+1, ... ,

}W+l)-1 consists of bi-I goals, giving (j-l)·bi-1 goals together. So for the j·bj

comparisons at level k, there are (j-1)-bH+bj 'justifying' goals, giving . jl·bb
J- +

comparisons per goal. It is easy to show that b > 1 implies (j~;p;~b < j-\"~6' so the

overall ratio in T is less than ~l·b comparisons per goal. First notice that b > 1
f-T-i-0

implies _j:Q__l·b < b, which proves the first claim. f-1+0
Now n ~ 1010 implies bi < 1010, so j < btog(lQIO). A numeric analysis of the

bJog(l QIO)-b
function biog(iolO)-l+b shows that its maximum is almost 6 (= 5.76 for b = 21),

which proves the second claim. 0

6. Conclusions

The obvious conclusion is that the number of comparisons performed by a triangular
loop check is (almost) linear in the number of goals generated. For any realistic
number of generated goals n, the number of comparisons performed is at most 6·n.
So triangular loop checks satisfy the requirement stated in the introduction.

Moreover, unlike the tortoise-and-hare technique, which was motivated by the same
requirement, the 'triangular' technique retains the completeness of the corresponding
full-comparison loop checks (with the exception of Counterexample 4.7). The only
minor disadvantage of the 'triangular' technique might be that the comparisons are

not distributed smoothly over the goals, which makes the timing of the interpreter
less predictable.

Other selections give rise to other efficiency results: a more sparse selection
yields a more efficient loop check, relative to the number of goals generated.

However, using a sparse selection is not necessarily the best thing to do: loops are
detected later, so the overall effort of generating goals and loop checking may well

477

become larger than with a less sparse selection loop check. A further analysis which
selection might be most favorable (or even an investigation of the circumstances on
which this depends) is beyond the scope of this paper.

7. Appendix

Here we recall the three groups of simple loop checks that are introduced in [2],
together with their respective soundness and completeness results.

7.1 Definitions and soundness results
First we present the weakly sound loop checks of each group.

The first group consists of the equality checks. Their loop checking criterion has
the form 'for some substitution 't: Gic = Git' (or in words: 'Gic is an instance of Gj').
Small variations on this criterion give rise to various loop checks within this group.
These variations are notably the two interpretations of'=' that are considered (goals
can be treated as lists or as multisets) and the possible addition of the requirement 't
is a renaming' (in other words: 'Gic is a variant of Gj'). Such variations can also be
made within the other groups of loop checks, but as it appears that these variations
have not much effect on soundness and completeness, we shall not mention them any
more.

The second group consists of the subsumption checks. Their loop checking
criterion has the form 'for some substitution t: Gic ~ Gi't' (or in words: 'Gic is
subsumed by an instance of Gj'). Although the replacement of= by ~ seems to be
yet another small variation, it appears that subsumption checks are really more
powerful than equality checks.

The third group consists of the context checks, introduced by Besnard [l]. Their
loop checking condition is more complicated: 'For some atom A in Gh A9i+1···9j is
selected in Gj to be resolved. As the (direct or indirect) result of resolving A9i+l · .. ej.
an instance At of A occurs in Gic (0 S i S j < k). Finally, for every variable x that
occurs both inside and outside of A in Gi, x9i+l ·· .9Jc = xt.'

For all these weakly sound loop checks, a shortening counterpart is obtained by
adding the condition 'Go91 ... 9Jc = Go01 ... 0i't' to the loop checking criterion. For
reasons explained in [2], the loop checks thus obtained are called 'based on
resultants' as opposed to the weakly sound ones, which are 'based on goals'.

Thus the following results were proved in (2].

THEOREM 7.1.
i) The equality, subsumption and context checks based on goals are weakly

sound.
ii) The equality, subsumption and context checks based on resultants are

shortening. D

7.2 Completeness results
Due to the undecidability of the halting problem, a weakly sound loop check cannot
be complete for all programs. In (2] it was shown that a weakly sound simple loop

478

check cannot even be complete for all function-free programs. Therefore three classes
of function-free programs were isolated for which the completeness of (some of) the
loop checks mentioned above could be proved. We now present those classes of
programs and completeness results.

DEFINITION 7.2.

A program P is restricted if for every clause H~A1,. .. ,An in P, the definitions of the
predicates in Ai, ... ,An-1 do not depend on the the predicate ofH in P. (So recursion
is allowed, namely through A0 , but double recursion is not; almost similar to [12].)
A program P is non-variable introducing (nvi) if for every clause H~Ai, ... ,A0 in P,
every variable that occurs in Ai, .. .,An occurs also in H.
A program P has the single variable occurrence property (is svo) if for every clause
H~A1, ... ,A0 in P, no variable occurs more than once in A1,. .. ,A0 • O

THEOREM73.
i) All equality, subsumption and context checks are complete w.r.t. the

leftmost selection rule for function-free restricted programs.
ii) All subsumption and context checks are complete for function-free nvi

programs.
iii) All subsumption and context checks are complete for function-free svo

programs. 0

479

References

[l] Ph. Besnard. 1989. On Infinite Loops in Logic Programming. Internal Report
488, IRISA, Rennes.

[2] R.N. Bo!, K.R. Apt and J.W. Klop. 1989. An Analysis of Loop Checking
Mechanisms for Logic Programs. Technical Report CS-R8942, Centre for
Mathematics and Computer Science, Amsterdam; Technical Report TR-89-32,
University of Texas at Austin. To appear in Theoretical Computer Science.

[3] D.R. Brough and A. Walker. 1984. Some Practical Properties of Logic
Programming Interpreters. In Proceedings of the International Conference on
Fifth Generation Computer Systems (ICOT eds.). pp. 149-156.

[4] M.A. Covington. 1985. Eliminating Unwanted Loops in PROLOG. SIGPLAN
Notices vol. 20, no. 1. pp. 20-26.

[5] A. van Gelder. 1987. Efficient Loop Detection in PROLOG using the Tortoise
and-Hare Technique. In J. Logic Programming 4. pp. 23-31.

[6] D.B. Kemp and R.W. Topor. 1988. Completeness of a Top-Down Query
Evaluation Procedure for Stratified Databases. In Proceedings of the Fifth
International Conference on Logic Programming (R. Kowalski and K. Bowen
eds.), MIT Press, Cambridge Massachusetts. pp. 178-194.

[7] J.W. Lloyd. 1987. Foundations of logic Programming (Second Edition).
Springer-Verlag, Berlin.

[8] J.W. Lloyd and J.C. Shepherdson. 1987. Partial Evaluation in Logic
Programming. Technical Report CS-87-09, Dept. of Computer Science,
University of Bristol.

[9] D. Poole and R. Goebel. 1985. On Eliminating Loops in PROLOG. SIGPLAN
Notices vol. 20, no. 8. pp. 38-40.

[10] D.E. Smith, M.R. Genesereth and M.L. Ginsberg. 1986. Controlling
Recursive Inference. Artificial Intelligence 30. pp. 343-389.

[11] H. Seki and H. Itoh. 1988. A Query Evaluation Method for Stratified
Programs under the Extended CWA. In Proceedings of the Fifth International
Conference on Logic Programming (R. Kowalski and K. Bowen eds.), MIT
Press, Cambridge Massachusetts. pp. 195-211.

(12] 0. Stepankova and P. Stepanek. 1988. A Complete Class of Restricted Logic
Programs. In Logic Colloquium '86 (P.R. Drake and J.K. Truss eds.), North
Holland, Amsterdam. pp. 319-324.

(13] L. Vieille. 1989. Recursive Query Processing: The Power of Logic. In
Theoretical Computer Science 69, No. I. pp. 1-53.

