
Exploring Trade-O�s between Target Coverage, Healthy Tissue
Sparing, and the Placement of Catheters in HDR Brachytherapy
for Prostate Cancer using a Novel Multi-Objective Model-Based

Mixed-Integer Evolutionary Algorithm
Krzysztof L. Sadowski

Utrecht University

Utrecht, �e Netherlands

k.l.sadowski@uu.nl

Marjolein C. van der Meer

Academic Medical Center

Amsterdam, �e Netherlands

marjolein.vandermeer@amc.uva.nl

Ngoc Hoang Luong

Centrum Wiskunde & Informatica

Amsterdam, �e Netherlands

n.h.luong@cwi.nl

Tanja Alderliesten

Academic Medical Center

Amsterdam, �e Netherlands

t.alderliesten@amc.uva.nl

Dirk �ierens

Utrecht University

Utrecht, �e Netherlands

d.thierens@uu.nl

Rob van der Laarse

Academic Medical Center

Amsterdam, �e Netherlands

rob.vanderlaarse@gmail.com

Yury Niatsetski

Elekta

Veenendaal, �e Netherlands

yury.niatsetski@elekta.com

Arjan Bel

Academic Medical Center

Amsterdam, �e Netherlands

a.bel@amc.uva.nl

Peter A.N. Bosman

Centrum Wiskunde & Informatica

Amsterdam, �e Netherlands

peter.bosman@cwi.nl

ABSTRACT

Brachytherapy is a form of radiotherapy whereby a radiation source

is guided near tumors, using devices such as catheter implants. In

the present clinical work�ow, catheters are �rst placed inside or

close to the tumor based on clinical expertise. Subsequently, so�-

ware is used to design a plan for the delivery of radiation. Treat-

ment planning is essentially a multi-objective optimization problem,

where con�icting objectives represent radiation delivered to tumor

cells and healthy cells. However, current clinical so�ware collapses

this information into a single-objective, constrained optimization

problem. Moreover, catheter positioning is typically not included.

As a consequence, it is hard to obtain insight into the true nature of

the trade-o�s between key planning objectives and the placement

of catheters. Such insights are however crucial in understanding

how be�er treatment plans may be constructed. To obtain such

insights, we interface with real-world clinical so�ware and derive

potential catheter positions for real-world patients. Selecting and

con�guring catheters requires mixed-integer optimization. For

this reason, we extend the recently-proposed Genetic Algorithm

for Model-Based mixed-Integer opTimization (GAMBIT) to tackle

multi-objective optimization problems. Our results indicate that

clinically acceptable plans of high quality may be achievable with

less catheters than typically used in current clinical practice.
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1 INTRODUCTION

Prostate cancer is the most common type of cancer among men in

the Netherlands, a diagnosis that over 10, 000 men are confronted

with each year, and leading to about 2, 500 deaths per year [11].

Radiotherapy is a commonly applied cancer treatment in which

ionizing radiation is used to target tumor cells. An important form

of radiotherapy for prostate cancer is brachytherapy (BT), where

the tumor is irradiated from inside the body by guiding a radiation

source close to or inside the tumor. In this paper, we focus on the

case whereby catheters are placed in the prostate, for the radiation

source to be moved through. Each catheter contains a number of

di�erent positions, called dwell positions, where the source can

dwell for prescribed amounts of time, called dwell times. If the

source dwells at a given dwell position, that position is called active;
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otherwise, it is called inactive. By varying the dwell times, di�erent

treatment plans are possible.

In determining a treatment plan, there are multiple aspects of

importance. Firstly, as many tumor cells as possible should ob-

tain a su�ciently high dose in order to maximize the probability

of damaging or killing cancer cells. Secondly, the dose to nearby

organs cannot be too high, to minimize the probability of compli-

cations. Most current clinical so�ware for determining a treatment

plan is based on single-objective optimization and manual tun-

ing. However, because of the con�icting nature of these objectives,

multi-objective optimization would be a more natural approach

since trade-o�s can be shown between the di�erent objectives of

interest, providing insight into how much may be gained in one ob-

jective at what cost to another. �is way, a well-informed decision

may be taken on what is the best treatment plan for the patient at

hand.

Taking also the placement and number of catheters into account

in the multi-objective optimization perspective is a natural �t, be-

cause the exact location of catheters governs much of what may

be achieved in terms of plan quality. Moreover, to minimize the

possibility of complications, one should use as few catheters as

possible [6, 8, 14]. Currently, the placement of catheters is done

mostly based on medical expertise. At the hospital involved in this

study there are typically 16 − 18 catheters used. Many placements

are possible and for each placement many treatment plans are pos-

sible, comprising a vast search space. Even though expertise and

literature exists on how to place catheters, there is li�le information

on the real-world trade-o�s of catheter placements. Our goal is to

take a �rst step in this direction, obtaining such insights, learning

about the complexity of the multi-objective optimization problem,

and start to work toward algorithms that may really be used for

patient-speci�c optimization in clinical practice. �e novelty in our

approach is bringing together several aspects that were not con-

sidered altogether before. Multi-objective approaches to treatment

planning have been proposed, including catheter placement via the

weighted-sum method in combination with single-objective opti-

mization, but did not optimize directly on the evaluation criteria of

a clinical evaluation protocol [9]. Related work that does optimize

on these criteria exists, but is single-objective and does not consider

catheter placement [5]. In contrast, we consider the use of real-

world clinical so�ware and patients combined with multi-objective

optimization directly on criteria as considered in clinical evaluation

protocols.

From an algorithmic perspective, Evolutionary Algorithms (EAs)

are among the state-of-the-art when it comes to solving multi-

objective optimization problems [4]. For this reason, we are inter-

ested in using an EA to solve this problem. �e problem includes

both discrete (which catheters) and continuous (dwell times) vari-

ables. Many state-of-the-art (multi-objective) EAs focus on either

discrete or continuous domains exclusively. Optimization where

discrete and continuous variables are present simultaneously is

explored relatively less and is referred to as mixed-integer optimiza-

tion. A recently introduced Genetic Algorithm for Model-Based

mixed-Integer opTimization (GAMBIT) has shown to be an e�ective

approach to single-objective optimization in the mixed-integer do-

main [12], especially in the case of black-box optimization, meaning

that no internal structure of the problem is assumed to be known

in advance. �is makes GAMBIT �exible and easily adaptable for

our multi-objective approach of BT pre-planning optimization.

Figure 1: Graphical representation of a patient’s anatomy

and implanted catheters.

2 BT TREATMENT PLANNING

2.1 Clinical practice

In BT for prostate cancer, the treatment targets are the prostate and

the seminal vesicles (see Fig. 1). �e Organs At Risk (OARs), which

should be radiated as li�le as possible, are the nearby organs, i.e.,

bladder, rectum, and urethra. Guided by live ultrasound images, a

typical High-Dose-Rate (HDR) prostate BT treatment starts with

implanting a number of catheters into the prostate through the

patient’s perineum skin (between scrotum and anus). �e suitable

number of catheters and their proper positions depend on the size of

the prostate and its geometry in relation to other nearby organs (e.g.,

bladder and rectum). �e inserted catheters need to be �rmly �xed

to prevent displacements. �e patient is subsequently transferred to

the imaging room, where computed tomography (CT) or Magnetic

Resonance Imaging (MRI) scans of the pelvic cavity are acquired.

�ese scans are then used to �nalize the treatment plan.

First, the catheters, the targets, and OARs are delineated on the

CT/MRI scans in planning so�ware. �e doctors then specify which

dwell positions in each catheter should be activated. For a given

dwell time of a source at a dwell position, more radiation dose

is delivered to nearby tissues than to faraway tissues. �erefore,

to increase the probability of fully treating the target and sparing

healthy tissues at the same time, dwell positions inside the target

volumes are activated while the ones far away from the targets (e.g.,

at distances larger than 5mm) or too close to OARs are normally

not considered. A trivial treatment plan, in which dwell times take

on very large values, can kill all tumor cells but also causes necrosis

(i.e., non-physiological cell death) to healthy tissues. On the other

hand, another trivial treatment plan, where all dwell times are zero,

can e�ectively spare healthy tissues from radiation risks but such a

plan equals no treatment at all.

A speci�c se�ing of dwell times delivers a certain radiation

dose distribution to the tissues surrounding the catheters. �e

dose distribution needs to be assessed by doctors to determine
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if such a se�ing can be clinically acceptable. A radiation dose

is prescribed for the entire prostate, termed the prescribed dose.
Tumor cells, which are more susceptible to radiation than healthy

cells, should receive at least the prescribed dose to be e�ectively

killed. Also, while healthy cells could recover from being radiated

at the prescribed dose level, they should not be radiated too much;

otherwise, healthy cells would be killed as well. However, it is

impossible to compute the exact amount of radiation received by

every cell since the number of cells is prohibitively numerous. Dose

distributions, therefore, are o�en approximated by only computing

the radiation dose at a certain number of so-called dose calculation
points. Of key interest is how large the cumulative volume of an

organ covered by a certain dose is. Such information, termed Dose-

Volume-Histogram (DVH) indices, can be represented as V o
x : the

volume (expressed either relatively or absolutely) of organ o that
received at least radiation dose level x . For example, international

GEC/ESTRO recommendations [7] state that treatment plans should

result in V
prostate
100

≥ 95%, i.e., the prostate volume that receives at

least 100% of the prescribed dose should be ≥ 95% of the total

prostate volume. To prevent necrosis, it is required that V
prostate
200

≤
20%, i.e., the prostate volume covered by 200% of the prescribed

dose should ≤ 20% of the total prostate volume. V
prostate
100

, therefore,

is a target coverage index while V
prostate
200

is an organ sparing index.

Similarly, there exist other sparing DVH indices for other OARs. For

example, it is recommended that V urethra
110

≤ 0.1cc , i.e., the urethra
volume covered by 110% of the prescribed dose should be ≤ 0.1cc .
Finally, because the vesicles may also contain tumor cells, there is

a constraint that V vesicles
80

≥ 95%. A full description of the current

clinical protocol in terms of DVH indices at the hospital involved

in this study is presented in Table 1.

Prostate Bladder Rectum Urethra Vesicles

V100 ≥ 95% V86 ≤ 1cc V78 ≤ 1cc V110 ≤ 0.1cc V80 ≥ 95%

V150 ≤ 50% V74 ≤ 2cc V74 ≤ 2cc

V200 ≤ 20%

Table 1: BT treatment planning in clinical practice at the

involved hospital: DVH index criteria.

�e values of DVH indices in the clinical protocol are consulted

by the doctors when making treatment plans. Planning o�en starts

with an initial plan proposed by BT treatment planning so�ware.

Note that it is di�cult, however, to directly optimize DVH indices

due to their discrete nature. For example, maximizing the V
prostate
100

index equals maximizing the number of dose calculation points

inside the prostate that receives at least the prescribed dose. To

quickly achieve a result, planning so�ware therefore o�en solves

simpli�ed optimization models of the problem with local search

methods. It is thus not guaranteed that a treatment plan proposed

by available so�ware satis�es all DVH index criteria in the protocol

or that the plan is the best possible one for the patient case at

hand. Medical planners then need to manually adjust this proposed

plan. �ey o�en �rst consider the DVH index that is violated the

most compared to the recommended protocol, and try to �nd the

locations of violation, then change the dwell times of nearby dwell

positions to improve the index until satis�ed. �ey then continue

with a di�erent DVH index that is now the most violated. Note that

improving a DVH index might deteriorate other indices, including

ones that have been previously worked on. �e plan is adjusted in

such an iterative manner until the doctors are satis�ed.

How good the DVH indices can be, depends on the quality of the

catheter implant and the geometry of the involved organs. Certain

implants will not allow all DVH indices to satisfy the recommended

protocol. For example, with too few or improperly placed catheters,

it is di�cult to obtain V
prostate
100

≥ 95% while meeting constraints on

indices of OARs. Similarly, if the rectum is too close to the prostate,

V rectum
78

≤ 1cc and V
prostate
100

≥ 95% might not be achievable at the

same time. In such situations, for each speci�c case, the doctors

need to decide which indices are more important to be satis�ed and

which indices can be compromised. Final approved treatment plans,

thus, might (slightly) violate some clinical protocol thresholds.

2.2 Multi-Objective Treatment Planning

BT treatment planning is intrinsically a multi-objective optimiza-

tion problem. �e DVH indices in Table 1 can be categorized into

two groups: treatment target indices (i.e.,V
prostate
100

andV vesicles
80

) and or-

gan sparing indices. Candidate treatment plans that do not achieve

the minimum requirements on the indices in the clinical protocol

are less favorable than candidate plans that satisfy all protocol

thresholds. For a treatment target index, the larger its value is

(above the corresponding threshold), the be�er it is. For an or-

gan sparing index, the lower its value is (below the corresponding

threshold), the be�er it is. Optimizing treatment target indices re-

sults in increasing dwell times to make the target volumes covered

by the treatment dose level as large as possible, where the best value

is 100%. On the other hand, optimizing organ sparing indices results

in decreasing dwell times to make the organ volumes covered by

the radiation risk dose levels as small as possible, where the best

value is 0%/0cc . �e two groups of DVH indices con�ict with each

other such that a utopian treatment plan yielding 100% for all target

coverage indices and 0%/0cc for all organ sparing indices does not

exist. Instead, the optimum of this multi-objective problem is a set

(i.e., Pareto-optimal set) of equally-good alternative plans which are

optimal in the sense that improving one objective deteriorates the

other objective, and vice versa.

�ere are nine di�erent DVH index criteria. We argue, however,

that the clinical protocol can be reformulated to a bi-objective

optimization problem without losing key insight into trade-o�s by

combining the DVH indices of the same group (i.e., target coverage

or organ sparing) into a representative objective of that group.

To this end, we employ a risk-averse perspective, meaning that a

treatment plan is evaluated to be only as good as the worst target

coverage index and theworst organ sparing index. More speci�cally,

each candidate plan has two objective values: the Least Coverage
Index (LCI), which corresponds to the worst-scored DVH index in

the target coverage group, and the Least Safe Index (LSI), which

corresponds to the worst-scored DVH index value in the organ

sparing group. �erefore, for a speci�c treatment plan, all indices

in a group are at least as good as the representative value of the

group. Such an approach has an analogy with the clinical practice

in the iterative focus on improving the current worst index at each

time as mentioned previously. Moreover, unlike the weighted-sum
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approach, where all criteria are added together, each DVH index in

our problem modeling is still, in e�ect, considered separately.

�e feasible search space is enlarged to contain solutions that

violate the clinical protocol to some degree. �ere are two reasons

for this. �e �rst is that, in this way, the clinically-feasible solu-

tions can be approached from both the clinically-feasible and the

clinically-infeasible space, making the search in these regions more

e�cient. Secondly, we account for the fact that sometimes there

exists no treatment plan satisfying all clinical protocols (due to the

quality of the implants and/or the geometry of the involved organs,

see Section 2.1), and a treatment plan that (slightly) violates the

protocol must thus be accepted. To relax the clinical constraints,

the new upper bounds for organ sparing indices are increased four

times (e.g., V bladder
86

≤ 1cc in the protocol becomes V bladder
86

≤ 4cc
in the optimization model). �e new lower bounds for target cov-

erage indices are also decreased accordingly as: V
prostate
100

≥ 80%

and V vesicles
80

≥ 80%. �e optimization constraints are presented

in Table 2. Let Vmax
x denote the clinical protocol threshold of

a dose level x for an organ. To measure and normalize the dis-

tance of an organ sparing index value to its corresponding upper

bound, we de�ne δ (Vx ) = 1 − Vx
4×Vmax

x
. �e larger the value of δ

is, the be�er the corresponding DVH index value Vx of that or-

gan is and how safe an organ is compared to the relaxed protocol

threshold, with a value of 0.75 meaning that the clinical protocol

constraint is met. �e LSI objective value is de�ned as the minimum

δ value among all organ sparing indices. Similarly, the LCI objec-

tive value of a treatment plan is de�ned as the minimum coverage

value among all target coverage indices. For example, a treatment

plan with V
prostate
100

= 97%,V vesicles
80

= 96%, V
prostate
150

= 19%,V
prostate
200

=

7%,V bladder
86

= 0.5cc,V bladder
74

= 1.3cc,V rectum
78

= 0.4cc,V rectum
74

= 1.2cc,

V urethra
110

= 0.1cc would have the Least Coverage Index value as 0.96

(taking the value of V vesicles
80

) and the Least Safe Index value as 0.75

(corresponding with V urethra
110

).

Prostate Bladder Rectum Urethra Vesicles

V100 ≥ 80% V86 ≤ 4cc V78 ≤ 4cc V110 ≤ 0.4cc V80 ≥ 80%

V150 free V74 ≤ 8cc V74 ≤ 8cc
V200 ≤ 80%

f1 = min{V prostate
100

,V vesicles
80

}
f2 = min{δ (V prostate

150
),δ (V prostate

200
),δ (V bladder

86
),δ (V bladder

74
),δ (V rectum

78
),

δ (V rectum
74

),δ (V urethra
110

)}
f3 = number of catheters used.

Table 2: Multi-objective optimization model for BT treat-

ment planning. f1 and f2 should be maximized while f3
should be minimized. Because of the relaxation factor,

V
prostate
150

has become unconstrained.

In this paper, we focus on the pre-planning phase, i.e., before

the catheters are inserted. To generate data and problem input

that corresponds to real-world clinical practice, we are currently

bound to real-world clinical so�ware. Given a prostate BT patient, a

number of possible catheter con�gurations can be determined, a�er

which the clinical so�ware provides information on these possible

catheter con�gurations and their corresponding dwell positions.

Hence, there is a restriction in the sense that the optimization can

only use pre-determined catheter positions. In the so�ware many

catheters can be placed, but in a real patient it is desirable to have

catheters not too close to each other to avoid complications. In

order to have both a large enough search space for interesting �rst

results and a set of con�gurations in which catheters are not too

close to each other, we chose the set of possible con�gurations to

consist of 30 catheters for each patient.

�e optimization problem now contains d discrete and c contin-
uous variables. �e d discrete variables represent all the possible

catheter placement positions. Each of these variables takes on a bi-

nary value, where 1 represents placing the corresponding catheter,

and 0 not placing the catheter. Each of the continuous variables

represents the dwell time corresponding to a dwell position in a

catheter. Dwell times for dwell positions inside an inactive catheter

can be ignored.

3 MODEL-BASED MULTI-OBJECTIVE

MIXED-INTEGER EVOLUTIONARY

ALGORITHM

In this section we summarize key concepts and terminology pertain-

ing to mixed-integer and multi-objective optimization and provide

an overview and summary of GAMBIT, and introduce the Multi-

Objective GAMBIT (MO-GAMBIT).

3.1 Terminology

3.1.1 Mixed-integer optimization. A mixed-integer problem is

de�ned as follows:

max f (xd ,xc )

s.t. h(xd ,xc ) = 0, g(xd ,xc ) ≤ 0

Here, x represents the solution

x = xdxc = d0...dld−1 c0...clc−1

where di ∈ {0, 1}, ci ∈ R, and xd , xc are the groups of all dis-

crete and real-valued variables, respectively. ld and lc represent

the number of discrete and continuous variables. Moreover, f is

the objective function, and h and g are the sets of equality and

inequality constraint functions, respectively. If both sets are empty,

the mixed-integer problem is said to be unconstrained.

3.1.2 Multi-Objective Optimization. AMulti-Objective (MO) op-

timization problem consists ofm objectives fi (x), i ∈ {0, 1, . . . ,m−
1}, that without loss of generality, must all be maximized. �e objec-

tive value vector of a solution x is f (x) = (f0(x), f1(x), .., fm−1(x)).
A solution x0 dominates a solution x1 (denoted x0 � x1) if and
only if fi (x0) ≥ fi (x1),∀i ∈ {0, 1, . . . ,m − 1} and f (x0) , f (x1).
A solution x0 is Pareto optimal if and only if there does not exist

a solution x1 such that x1 � x0. �e Pareto-optimal set PS of

the problem at hand is the set of all Pareto-optimal solutions. �e

Pareto-optimal front PF is the set of the objective value vectors of

all Pareto-optimal solutions. �e goal of MO optimization is to �nd

a set of non-dominated solutions whose objective value vectors

constitute a good approximation of the Pareto-optimal front [4].
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3.2 GAMBIT

GAMBIT is a recently introduced EA aimed at solvingmixed-integer

problems, especially in the black-box se�ing. Here, we give a brief

outline of GAMBIT. More details can be found in literature [12].

GAMBIT is a parameter-free model-based EA capable of learning

and exploiting di�erent types of variable dependencies, through a

clustering mechanism and an integrated dependency-models mech-

anism. �e ability to learn such dependencies (i.e., which groups

of variables have a joint synergistic e�ect on a solution’s quality)

allows for the creation of variable subsets which represent impor-

tant building blocks of the problem. �ese building blocks can

be used to exploit problem structure and generate new and be�er

solutions more e�ectively. Such exploitation of problem structure

based on dependencies is well-established for discrete and continu-

ous variables, respectively. Mixed-integer optimization introduces

new optimization challenges, however. �e existence of discrete

and continuous variables creates a potential for intra- and inter-

variable dependencies that domain-speci�c model-based EAs are

not equipped to handle. GAMBIT therefore introduces a new way

to learn and process mixed inter-domain variable dependencies,

alongside intra-domain dependencies (i.e., in individual domains)

during optimization.

GAMBIT splits the population in each generation with the use

of a clustering algorithm as detailed in Figure 2. Each of the sub-

populations acquired is then subject to variation through the inte-

grated dependencymodels mechanism, summarized in pseudo-code

in Figure 3. Speci�cally, a Family-Of-Subsets (FOS) model is learned

at the beginning of every generation, which is used to describe de-

pendencies and to create o�spring solutions [13]. Essentially, a

FOS is a set of linkage sets. Each linkage set contains the indices of

the variables that are considered to be dependent. �e linkage sets

may overlap. �e FOS consists of three types of subsets: discrete,

continuous, and mixed. In its full black-box optimization con�gu-

ration discrete subsets are generated using a so-called linkage tree,

which is a speci�c type of FOS that was �rst used in the algorithm

known as Linkage Tree Genetic Algorithm (LTGA), which is now

considered to be an instance of the Gene-pool Optimal Mixing Evo-

lutionary Algorithm (GOMEA) family [13]. �e linkage tree is a

FOS structure acquired by building from the bo�om up (i.e., start-

ing with singleton subsets of problem variables) a tree of subsets

by means of a hierarchical clustering algorithm based on mutual

information between pairs of variables. �e linkage tree has 2ld − 1
discrete subsets representing important building blocks in the dis-

crete domain. �e same number of continuous subsets are added

to the FOS, each containing every continuous problem variable.

Additionally, lc + ld mixed subsets are added to the FOS by building

another linkage tree constrained to merge discrete and continuous

variables using a mixed mutual information metric, described in

detail in [12]. Such mixed subsets allow for the consideration of dis-

crete and continuous variables together, resulting in the ability to

exploit potential mixed variable dependencies. Each type of subset

is processed with a corresponding mechanism type to generate new

solutions. Once all subsets are processed, new solutions replace the

previous population and the clustering process begins anew.

GAMBIT Overview

P ← GenerateAndEvalRandomPopulation(n)
while ¬TerminationCriterionSatisfied do

C ← DetermineClusterCenters(P,k)
for j ∈ {0, 1, . . . ,k − 1} do
Pk ← GrowSubPopFromCenters(P,Ck )
O′k ← IntegratedModelsMechanism(Pk )

P ← O′
0
∪ O′

1
... ∪ O′k−1

Figure 2: Pseudo-code overview of GAMBIT. P represents

the population of size n. C contains k cluster (also called sub-

population) centers. Pi represents the i-th sub-population

and O′i is the o�spring generated from sub-population Pi .

Integrated Model Mechanism for a sub-population Pk
IntegratedModelMechanism(Pk )
F = LearnFOS(Pk )
for i ∈ {0, 1, . . . , (|F | − 1)} do

if F i is all continuous then
S ← TruncationSelection(Pk ,τ )
UpdateContinuousModel(k,S)
for j ∈ {0, 1, . . . ,n − 1} do
((Pk )j )F i ← SampleContinuousModel(k, F i )
EvaluateFitness((Pk )j )

if F i is all discrete then
for j ∈ {0, 1, . . . ,n − 1} do
O ← (Pk )j
donor ← GetRandomSolution(Pk )
(O)F i ← (donor )F i

EvaluateFitness(O)
if �tness(O) at least as good as �tness((Pk )j ) then
((Pk )j )F i ← (O)F i

if F i is mixed then

Pksub [0, ...,k − 1] ← GroupIntoClusters(i,k,Pk )
UpdateMixedSubModels(i,Pksub )
for j ∈ {0, 1, . . . ,n − 1} do
SubID ← DetermineSubPopulation(j)
O ← (Pk )j
(O)F i ← SampleSubModel(i,Pksub [SubID])
EvaluateFitness(O)
if �tness(O) at least as good as �tness((Pk )j ) then
((Pk )j )F i ← (Ok )F i

return Pk
Figure 3: Pseudo-code for generating solutions with GAM-

BITs Integrated Models Mechanism.

3.3 Multi-Objective GAMBIT

In this paper we introduce MO-GAMBIT that brings the black-

box mixed-integer optimization capabilities of GAMBIT into the

MO domain. �e approach to handle MO problem landscapes with

GAMBIT is to include mechanisms designated speci�cally to exploit

the multi-objective nature of the problem landscape, such as an

elitist archive and the ability to rank solutions in a multi-objective

space. In this section, we outline the key components used in the

design ofMO-GAMBIT and its speci�c application to brachytherapy

pre-treatment planning.

3.3.1 Elitist Archive. In previous work on multi-objective EAs,

elitism has been shown to be very important [3]. For this reason,

an elitist archive is added in MO-GAMBIT. Because real-valued

variables are involved, we use a technique that adaptively changes
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the grid that governs the elitist archive so as to harbor a prede�ned

maximum number of solutions, preventing occurrences of very

similar solutions in the archive while promoting diversity. For

more details, see [10].

3.3.2 Selection and Variation. �e selection and variation mech-

anisms are changed in MO-GAMBIT to account for the MO nature

of the problems, and to make use of the elitist archive. Solutions

are still clustered at every generation, however clustering is per-

formed in the objective space. �is allows MO-GAMBIT to special-

ize model-based optimization in di�erent areas of the Pareto front.

Variation proceeds by improving existing solutions, as is reminis-

cent of GOMEA, in case of discrete and mixed linkage sets. Solution

parts are copied from donors and mixed into solutions, and changes

are only accepted in case of a multi-objective improvement. Con-

tinuous variables are supplied from normal distributions estimated

from a population-based MO rank-based selection [3] following

procedures of the real-valued EDA known as iAMaLGaM [2] and

its multi-objective counterpart iMAMaLGaM [1]. For an overview

in pseudo-code, see Figure 3.

Upon sampling new solutions, the clusters are populated with

solutions from the previous generation as well as a fraction of

τ = 0.35 elitist archive solutions that are closest to the given cluster

in the objective space, using a Euclidean distance metric. If not

enough elitist archive solutions exist, the entire archive is used

for each cluster. �is combination of solutions from the previous

generation and the elitist archive is used to estimate and sample new

solutions. Previously, in MO versions of GOMEA and iAMaLGaM

this was found to have a positive e�ect on convergence to high-

quality solutions [1, 10].

3.3.3 Population and Cluster Sizing. Determining parameters

such as the population size or number of clusters can be crucial

for the e�ectiveness of EAs. Small population sizes or insu�cient

number of clusters can lead to premature convergence. Conversely,

too many clusters or too large population sizes can result in a

very large overhead. To avoid the need to specify these parame-

ters, MO-GAMBIT adapts a interleaved multistart scheme, which

dynamically introduces larger population sizes. Speci�cally, the

scheme runs di�erently sized instances of GAMBIT in an inter-

leaved fashion. For every γ = 2 generations of a certain instance

of GAMBIT, one generation of an instance of GAMBIT with twice

the population size and one more cluster is performed. By doing

so, smaller population sizes perform more generational steps than

larger ones. �e scheme already used with GAMBIT is altered to

make use of the elitist archive. With GAMBIT, all the di�erently

sized instances are completely independent of each other. In MO-

GAMBIT the elitist archive is shared over all instances, allowing to

transfer knowledge about high-quality solutions already obtained

with the smaller populations.

3.3.4 Problem-Specific Knowledge. A strictly black-box opti-

mization algorithm may be a great starting point when considering

new problems. In a real-world se�ing however, some problem-

speci�c information can potentially improve performance. In our

case consider that every discrete variable d0,d1, ...,dld−1 is associ-
ated with an independent set of dwell positions. Instead of learning

mixed-variable dependencies, which could result in a signi�cant

overhead, a pre-de�ned mixed-variable subset structure is de�ned

that captures key dependencies. Speci�cally, each subset contains

one discrete variable (representing the catheter) and the set of con-

tinuous variables that represent the dwell positions associated with

this catheter. Moreover, because we do not expect strong depen-

dencies to exist between continuous variables, we do not model

them jointly in one linkage set as per default in GAMBIT, but rather

model them independently, i.e., univariately to reduce substantially

the overhead of sampling high-dimensional Gaussian distributions.

3.3.5 Sliced 3-objective optimization. We minimize the num-

ber of catheters in one of the objectives. However, we slice this

3-dimensional problem into many 2-dimensional multi-objective

problems. Li�le relation between con�gurationswith di�erent num-

bers of catheters exists, and switching a catheter on (i.e., changing

a binary variable from 0 to 1) has huge impact, implying there

exist big jumps in the search space across di�erent numbers of

catheters, making a direct 3-objective optimization approach ex-

tra di�cult. A sliced approach allows an instance of GAMBIT to

focus on con�gurations with the same number of catheters, while

at the same time making it easier to parallelize the optimization

across con�gurations with di�erent number of catheters. We refer

to our approach as a multi-layer approach, where in a given layer

only combinations with the of number of catheters are allowed.

Because solutions resulting in a di�erent numbers of catheters can

be created in variation, a simple random repair mechanism is used

to activate or deactivate a required number of catheters.

4 EXPERIMENTS

4.1 Setup

Clinical data from three recently treated patients is used for opti-

mization. For each patient, there are 30 possible catheter locations,

resulting in 30 MO-GAMBIT instances, each performing optimiza-

tion on a 2-objective mixed-integer problem. �e duration of opti-

mization for each MO-GAMBIT instance is limited to 48 hours (on

an AMD Opteron(tm) Processor 6386 SE and Intel(R) Xeon(R) CPU

E5 2699 v4), with all 30 con�gurations executed in parallel. During

the optimization 20,000 randomly chosen dose calculation points

are used to compute the objective values for every function eval-

uation. To ensure su�cient accuracy in reporting �nal outcomes,

the �nal set of solutions on the Pareto front is re-evaluated with

100,000 dose calculation points, which is commonly considered to

be su�ciently accurate.

4.2 Results

Results in Figure 4 illustrate the quality of solutions which can be

acquired with di�erent numbers of catheters. �e results provide a

clear illustration of the trade-o�s between the objectives. A solution

that satis�es clinical protocol lies in the area of the Pareto front

where LCI ≥ 0.95 while LSI ≥ 0.75. �e clinically approved solutions

for the considered patients all used 16 catheters. Figure 4 shows

that it is possible to obtain approvable, high-quality plans using

smaller numbers of catheters. Very li�le quality of solutions is lost

when using a few less catheters. Only when many less catheters

are used (less than 9 for the tested patients) the resulting solutions
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Figure 4: Pareto fronts obtained with MO-GAMBIT illustrating trade-o�s between three objectives for three patients. �e

color coding represents the number of catheters. Green points represent the high-quality solutions selected for visualization

in Figure 5 with 10,12 and 16 catheters for patients 1,2 and 3 respectively.

lead to clearly inferior and unacceptable plans when considering

the other two objectives.

Outcomes still di�er widely between patients. More solutions

with be�er objective values are found for patient 2. Increasing

the number of catheters for patient 2 provides bigger bene�ts in

terms of the LCI and LSI objectives than for patient 1. �is suggests

that plan optimization can substantially di�er for di�erent patients,

further highlighting the potential bene�ts of enabling insight into

possible trade-o�s and especially the added value of considering

the number of catheters as part of optimization.

When the number of catheters is small, the addition of catheters

can substantially improve the trade-o�s between target coverage

and organ sparing (e.g., see the gap between the 2D Pareto fronts

of using less vs more than 5 catheters). However, when the number

of catheters is su�cient, the trade-o� improvement due to adding

more catheters clearly diminishes. It would be interesting for fu-

ture work to investigate the marginal added value of each catheter

insertion with respect to the (2D) Pareto-front improvement when

considering a larger patient group.

�e severity of trade-o�s between the LCI and LSI is much higher

in the more extreme regions of the Pareto front. For example, at the

area where LCI is larger than 0.95, trying to increase target coverage

can quickly worsen the sparing of OARs. On the other hand, if a

treatment plan of LCI = 0.95 is satis�able, the healthy tissues can

be considerably spared from radiation risks (e.g., compare the high

value of LSI of solutions having LCI = 0.95). �is is very likely part

of the notorious practical hardness of deciding upon what values

for a good plan to ultimately use.

Figure 5 illustrates selected plans obtained with MO-GAMBIT

with only 10, 12 and 16 catheters for patients 1, 2 and 3 respectively.

All DVH indices satisfy the clinical constraints. For these plans

a doctor can decide whether it is acceptable, or whether a factor

should be improved at the expense of another factor. For example,

it may be desirable to use less than 12 catheters for patient 2, even

withworse target coverage (but still satisfying all constraints). From

the complete set of Pareto optimal solutions, a candidate plan in

that trade-o� direction can be taken, for which the same decision

can be made, until �nally the best Pareto-optimal solution is chosen

without optimization needing to be re-ran.

5 DISCUSSION AND CONCLUSIONS

�is paper considers BT treatment pre-planning optimization from

a multi-objective perspective, while combining, for the �rst time,

a true multi-objective optimization approach with optimization

directly on clinical evaluation criteria and considering trade-o�s

between key objectives: the covering of targets, the sparing of

organs at risk, and the number of catheters. In current medical

practice devising such plans depends heavily on the expertise of

doctors. We wish to assist them by enabling the ability to view and

consider a set of approximated Pareto optimal solutionswith respect

to the aforementioned objectives. With this ability, doctors may

gain additional insight into possible treatment plans, potentially

resulting in improved patient care. As a �rst proof of concept to

this end, we combined real-world clinical so�ware with a novel

extension of GAMBIT to multi-objective optimization.

�e generated three-objective Pareto fronts for real-world pa-

tients provided a useful overview of possible treatment plans with

respect to the number of catheters used, potential risk to healthy

organs, and the coverage of the targets. Including, for the �rst

time, the number and location of possible catheters placements

with a multi-objective optimization approach allowed us to gain

new, clinically relevant insight into BT pre-planning optimization.

We were able to obtain sets of clinically acceptable non-dominated

solutions, and indicated that it appears possible to obtain good

solutions with smaller numbers of catheters compared to the clini-

cally used plans for the tested patients. Using a larger number of

catheters can lead to be�er, clinically acceptable solutions in terms

of the other objectives, but the added value in key DVH indices

used to evaluate plans strongly diminishes when using more than

around 10 catheters. Outcomes further present insights into trade-

o�s between other key objectives, allowing doctors to utilize their

expertise, and consider which of such trade-o�s may be bene�cial

to the patient without re-running optimization.

Our approach based on MO-GAMBIT provides a new, promising

and insightful approach for optimization of BT treatment plans,
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but further improvements to this approach are needed and pos-

sible. Optimization mechanisms which consider problem struc-

ture speci�cs such as evaluation decomposability could potentially

improve optimization speed substantially. Combined with other

problem-speci�c mechanisms, such as a multi-resolution approach

to increasing the accuracy of dose calculations over time, a many-

fold speedup may be obtained, reducing required run times to

minutes rather than hours (even though in the pre-planning phase

this is far less of an issue than when making treatment plans a�er

physical catheter placement has taken place) and allowing for more

exhaustive exploration of the search space, potentially leading to

discovery of even more high-quality non-dominated solutions.
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(a) Selected patient 1 solution

Prostate Vesicles

V100 = 96.39% V80 = 96.40%

Prostate Bladder Rectum Urethra

V150 = 27.20% V86 = 0.58cc V78 = 0.78cc V110 = 0.09cc
V200 = 11.05% V74 = 1.78cc V74 = 1.09cc

(b) Selected patient 2 solution

Prostate Vesicles

V100 = 98.53% V80 = 99.00%

Prostate Bladder Rectum Urethra

V150 = 19.72% V86 = 0.52cc V78 = 0.81cc V110 = 0.08cc
V200 = 6.76% V74 = 1.82cc V74 = 1.21cc

(c) Selected patient 3 solution

Prostate Vesicles

V100 = 95.29% V80 = 95.50%

Prostate Bladder Rectum Urethra

V150 = 27.24% V86 = 0.85cc V78 = 0.50cc V110 = 0.09cc
V200 = 8.35% V74 = 1.87cc V74 = 0.69cc

Figure 5: Selected solutions from the Pareto fronts of pa-

tients 1, 2 and 3 resulting in a high-quality plan with 10, 12

and 16 catheters, respectively. �e �gures on the right show

the corresponding isodose lines in selected slices on the cor-

responding MRI scans, where red dots are active dwell posi-

tions. �e tables show the corresponding DVH indices. All

DVH index values satisfy the clinical constraints.
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