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Dynamic Adaptive Streaming over HTTP (DASH) is the premier technology for Internet video stream-
ing. DASH efficiently uses existing HTTP-based delivery infrastructures implementing adaptive streaming.
However, DASH traffic is bursty in nature. This causes performance problems when DASH players share
a network connection or in networks with heavy background traffic. The result is unstable and lower qual-
ity video. In this article, we present the design and implementation of a so-called DASH Assisting Network
Element (DANE). Our system provides target bitrate signaling and dynamic traffic control. These two mech-
anisms realize proper bandwidth sharing among clients. Our system is privacy friendly and fully supports
encrypted video streams. Trying to improve the streaming experience for users who share a network con-
nection, our system increases the video bitrate and reduces the number of quality switches. We show this
through evaluations in our Wi-Fi testbed.
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1. INTRODUCTION
Internet video streaming is an application that uses a substantial share of the network
bandwidth. Streaming services, like YouTube and Netflix, are very popular [Sandvine,
Inc 2016]. Combining this with the large number of Internet-enabled devices which are
around us, we can conclude that users sharing a network connection for video stream-
ing is no longer an exception. Dynamic Adaptive Streaming over HTTP (DASH) is the
dominant technology for delivering video content. However, DASH underperforms in
networks with multiple DASH players or with heavy background traffic [Akhshabi
et al. 2011][Akhshabi et al. 2012]. This results in lower video bitrate and changes
in video quality. Both negatively impact the user quality of experience (QoE) [Cran-
ley et al. 2006][Hamberg and de Ridder 1999][Robinson et al. 2012]. In this article,
we present our design and implementation of a DASH Assisting Network Element
(DANE) that mitigates these issues.

Off-the-shelf DASH players compete for bandwidth with each other, and with other
traffic on the network link [Akhshabi et al. 2011]. Networks with concurrent traffic
offer little to no support for improving video streaming performance. TCP, which is
used by DASH players for transport, requires large windows sizes to reach through-
puts sufficient for video streaming. DASH players periodically download short video
segments. This bursty on/off traffic pattern prevents the TCP window to grow. This
results in DASH players streaming at suboptimal bitrates. State-of-the-art adaptation
mechanisms for DASH players improve the stability of a stream, but they cannot in-
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crease the throughput that is needed for high-quality video. Furthermore, bandwidth
estimations remain challenging because players have a limited view of the network
activity and cannot make assumptions on the underlying network infrastructure

To overcome these issues, we present an architecture for network assisted DASH
in this article. With our architecture, we keep the DASH protocol stack simple and
scalable for content providers. We add a websocket connection to an element that we
call the Service Manager. The Service Manager divides available bandwidth in the
network among DASH players and other services. Through target bitrate signaling
and dynamic traffic control mechanisms, our system improves the QoE of users by
increasing the video bitrate and reducing the number of quality switches.

We introduced an early version of our system in [Kleinrouweler et al. 2016]. This
article extends [Kleinrouweler et al. 2016] with the following contributions:

— An improved implementation that is based on the new version of the DASH.js player
(v2.2.0)1. We achieve up to 50% faster adaptation to the optimal bitrate for starting
players.

— The Buffer Occupancy based Lyapunov Algorithm (BOLA) [Spiteri et al. 2016], which
adapts the video bitrate is implemented in the DASH.js player. It is included in the
evaluation.

— Two traffic control configurations are added to our network switch. We evaluate
video streaming performance using a single DASH service queue and multiple client
queues (i.e. each DASH player has its own queue). Both types of queues can be set
up as rate limiting queue or minimum rate queue.

— The effect of the queuing configuration on the throughput for background traffic is
evaluated.

— A bandwidth sharing policy taking devices type into account is implemented and
analyzed.

The remainder of this article is organized as follows: Section 2 describes and dis-
cusses the related work. Section 3 outlines the design of our system. Section 4 describes
the experimental setup. Section 5 provides a thorough evaluation of our system and
shows its effectiveness. Section 6 summarizes this article and gives an overview of
future work.

2. RELATED WORK
DASH is the primary technology for Internet video streaming and large content
providers. For example, YouTube and Netflix implement this technology in their play-
ers [Lederer 2015]. DASH provides a manifest (i.e. list of representations of the same
video) to the player, where representations differ in bitrate and resolution [Sodagar
2011]. The player selects one of the available representations in the general DASH
architecture. DASH players base their decisions on current network conditions, the
current buffer level, or take the capabilities of the host device into account. However,
off-the-shelf DASH players show that they have difficulties selecting a bitrate when
multiple DASH players share a bottleneck link [Akhshabi et al. 2011][Akhshabi et al.
2012][Huang et al. 2012]. In this case, the players suffer instability and unfair net-
work resource sharing. The on/off download patterns for DASH segments cause both
over- and underestimations of available network resources. The double feedback loop
– both DASH player and TCP respond to changes in bandwidth – eventually leads to
quality oscillations and unfairness [Esteban et al. 2012]. The throughput for video seg-
ments does not match the throughput of other services when a DASH player shares a
network connection with other bandwidth demanding applications.

1https://github.com/Dash-Industry-Forum/dash.js (last accessed January 17, 2017)
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Lower video bitrate and frequent changes in bitrate lower the overall quality of ex-
perience (QoE) and diminish user engagement [Cranley et al. 2006][Dobrian et al.
2013][Robinson et al. 2012]. Maximizing the video bitrate while keeping the number of
switches to a minimum increases the QoE for the viewer [Hoßfeld et al. 2015]. Several
proposals that improve the performance of adaptation algorithms in DASH players ap-
peared in the literature [Jiang et al. 2012][Liu et al. 2011][Miller et al. 2012][Jarnikov
and Özçelebi 2011][Spiteri et al. 2016]. However, as we will show in this article, chang-
ing the adaptation algorithm in the player has limited effect in crowded networks. The
stream will still end up having a too low bitrate. The model where DASH players are
fully in charge of selecting the video quality limits the ability to configure network
resource sharing among clients and services. In this article, we will show how central-
izing this decision process could lead to a more meaningful (i.e. assign more network
resources that require more) sharing of network resources.

As an alternative to changing the adaptation logic in the DASH player, network
elements can be used to assist players in selecting a video representation. So-called
DASH assisting network elements (DANEs) [Thomas et al. 2015], have better knowl-
edge of the network capabilities and a better view of the current network activity.
Based on this information, DANEs can support DASH players to make more informed
decisions when selecting a video representation. In Houdaille et al. [2012], DASH traf-
fic is implicitly supported by limiting the flows of DASH streams to prevent players
from selecting too high bitrate video segments. Others route DASH traffic through a
DASH-aware proxy server [Bouten et al. 2012][Kleinrouweler et al. 2015]. The proxy
servers alter the content of the manifest and segment requests to move players to the
desired bitrate. Petrangeli et al. [2015] utilize a chain of proxy servers to address net-
working infrastructures with multiple bottlenecks. Georgopoulos et al. [2013] present
an OpenFlow-enabled system with an orchestrating module that signals the represen-
tation that DASH players should select. The drawback of these implementations is
that they use intrusive means for detecting DASH traffic and require the DANE to
inspect the manifest to obtain the DASH characteristics. Depending on who owns the
DANE (user, Internet service provider, or content provider) this is an invasion of the
users’ privacy, as the DANE has full knowledge of what a user is watching.

Our system (first presented in [Kleinrouweler et al. 2016]) works on a “need to know”
basis, where DASH players only communicate essential information to the DANE.
Moreover, as we maintain an out-of-band communication channel to the DASH player
and do not touch the content of the original video flow, our implementation is fully
compatible with encrypted streams (i.e. HTTPS). Our system also takes background
traffic into account. The implementations mentioned above are evaluated in networks
with only DASH traffic, and thus cannot guarantee that their adaptation assistance
is effective in environments with background traffic. Unfair distribution of bandwidth
between background traffic and DASH streams results in lower video quality [Huang
et al. 2012]. We will demonstrate that providing Quality of Service (QoS) support in
the network is essential when implementing a DANE.

Type and format of messages between DASH player and DANE used in our system
are similar to those specified in the Server and Network Assisted DASH (SAND) pro-
posal [Thomas et al. 2015]. Our system fits into this design as it implements a DANE.
It could easily be extended to comply with the SAND message format once standard-
ized. However, SAND only specifies the message exchange but leaves bandwidth shar-
ing policies and enforcement of these policies up to the DANE implementors.
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3. SYSTEM DESIGN
We designed our system to be deployed in a Software Defined Networking (SDN) en-
vironment. In SDN, network control is separated from the data forwarding plane. We
follow this approach in our four layers architecture, as shown in Figure 1. The layers
(from bottom to top) are: assistance enabled DASH players, programmable network
hardware, a Network controller, and a DASH-aware Service Manager. Together the
components carry out stable and high-quality DASH streaming.

Programmable 
network infrastructure

Network 
Controller

Service 
Manager

SDN network
management

Network application
controllers

DASH 
player

Assistance enabled
DASH players

Fig. 1: Overview of our SDN-based architecture. The dashed line between the DASH
player and the Service manager marks the communication channel for sending adap-
tation assistance messages.

Communication between DASH player and DANE can be done through in-band and
out-of-band messaging. In-band messaging piggy-bags adaptation instructions into the
data flow, for example via additional HTTP headers. However, we have chosen for out-
of-band messaging via an extra connection between DASH player and Service Man-
ager. This design provides the benefits of privacy friendliness, support for encryption,
and flexible placement of Network Controller and Service Manager. In our system, we
separate the content of the stream (i.e. manifest and video segments) from the mes-
sages for adaptation assistance. Using this messaging scheme, the Service Manager
does not inspect the content of the stream. Messages for adaptation assistance contain
only essential information needed by the Service Manager to function. The Service
Manager needs to know that a DASH player is streaming and the set of representa-
tions for the video. However, it does not need to know which video a user is watching.
This results in an increase of privacy for the user.

Nowadays, many content providers serve their video content exclusively over
HTTPS. With our out-of-band messaging scheme we support encrypted streams. The
Service Manager does not need to touch the content of the stream. Different encryption
keys can be used for video content and adaptation assistance messages. As a result,
the privacy of the user increases even further.

We have the flexibility to position the Network Controller and Service Manager at
different locations in the network. For example, in a home network the Wi-Fi router
hosts both Network Controller and Service Manager. In an office network the Network
Controller and Service manager can be located at separate servers. For larger scale
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networks, like an ISP access network, offloading to the cloud is a possibility. The only
requirement is that the DASH players can establish a connection with the Service
Manager.

3.1. Programmable Network Hardware and Network Controller
Programmable network hardware (e.g. switches, routers, Wi-Fi access points) build
the basis of our system. In SDN, programmable network elements have two functions:
First, they collect device status and network statistics. Second, they execute sophis-
ticated forwarding rules. The Network Controller is the central entity that monitors
and configures the SDN network elements. It has a global view of the network and
dynamically adds and deletes forwarding rules in the switches.

The Network Controller in our system provides transparent routing from the DASH
player to the Service Manager. The DASH player may not know up front how to contact
the Service Manager because it can be positioned in different places in the network.
The DASH players open a connection to the Service Manager using a generic address.
The Network Controller (transparently) routes this connection to the Service Man-
ager. We use the standard protocol OpenFlow [McKeown et al. 2008] for the interface
between Network Controller and network hardware.

The second responsibility of the Network Controller is traffic control configuration.
Although OpenFlow has the enqueue message to put packets into queues, it lacks mes-
sages to create, modify, and destroy queues. Therefore, we implemented an additional
interface on our switch that allows queue configuration. By default, the Network Con-
troller configures a queue for background traffic. Background traffic can use the full
bandwidth of the channel when there are no DASH players active. When additional
queues for DASH traffic are configured, the size of the background queue is automati-
cally adjusted.

The traffic control implementation in our switch offers two ways of creating queues
to the Network Controller: rate limit based or minimum rate based. A rate limiting
queue restrains the throughput for packets in the queue. Rate limiting queues cannot
share unused bandwidth with other queues. In contrast, a minimum rate queue guar-
antees a minimum throughput for packets in that queue. This type of queue does im-
pose a maximum throughput, and remaining bandwidth can be shared among queues.

In our system design, we distribute network management over the Network Con-
troller and the Service Manager. The Network Controller focusses on forwarding, rout-
ing, and shaping packets in the network. However, it has no knowledge of DASH play-
ers. The Service Manager is aware of DASH and instructs the Network Controller
to configure the network based on its DASH specific information. The advantage of
this approach is a possible generalization to other services. If we would implement a
service manager for another (non-DASH) service, this service could also benefit from
assistance in the network.

3.2. DASH-aware Service Manager
DASH players connect to the Service Manager to receive adaptation assistance. This
makes the Service Manager aware of active DASH players. The Service Manager com-
bines knowledge of DASH players and network capabilities which it receives from
the Network Controller. Based on this information, it divides the available band-
width among the DASH players. Depending on its configuration, the Service Manager
equally divides the bandwidth among players, or takes other parameters (e.g. device
type) into account.

The adaptation actions from the Service Manager propagate in two ways: via tar-
get bitrate signaling on the control channel and through dynamic traffic control in
the switch. DASH players use the target bitrate as guidance in their adaptation al-
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gorithm. The traffic control mechanism allocates enough network resources for the
managed link. DASH players now have enough network resources to stream at the
target bitrate.

We provide two traffic control configurations in our system: per service and per
client. Per service traffic control closely relates to differentiated services (DiffServ).
This method creates a single queue for DASH traffic, while other traffic goes into a
background queue. The size of the service queue depends on the number of active
DASH players, and the bitrate assigned to each player by the Service Manager (i.e.
the size of the queue is the sum of all bitrates). The Service Manager reconfigures the
queue when a new DASH player starts or an active player stops.

The second traffic control configuration creates a dedicated queue per DASH player.
In this mode, the Service Manager separates DASH from background traffic, and in-
dividual players from each other. Using this configuration, the Service Manager can
better enforce policies where it assigns a different bitrate to a different client. It cre-
ates a new queue when a DASH player starts and destroys this queue after the player
stops.

For both traffic control configurations, we add a safety margin to the size of the
queue. Through experimentation we found that the size of the queue(s) should be 1.2
times the (aggregated) target bitrate, ensuring smooth playback and healthy buffer
levels. Furthermore, the safety margin provides robustness against variations in video
bitrate (e.g. as a result of VBR encoding).

3.3. Assistance-enabled DASH Player
Existing DASH players need to be modified to support adaptation assistance from the
Service Manager. The DASH player connects to the Service Manager via a websocket.
Websockets offer a two-way communication channel and are a widely implemented web
technology. Leveraging websockets makes our setup compatible with DASH players
that work in the browser. Moreover, websockets do not create issues with firewalls and
Network Address Translation (NAT).

DASH players open the websocket connection to the Service Manager during their
initialization phase. Opening the connection indicates the Service Manager that DASH
streaming is imminent. After receiving the manifest from the server, the DASH re-
ports the bitrates from the manifest (for both audio and video) to the Service Man-
ager. The player may leave out some of the (higher) bitrates in this report. For exam-
ple, it can ignore the bitrates that exceed the capabilities of the device. If the player
wants to change the set of bitrates during playback (e.g. the user resizes the player to
fullscreen), it sends the new collection of bitrates to the Service Manager. The Service
Manager redivides the bandwidth when it receives such an update. Players that pause
or end a stream indicate this to the Service Manager using separate messages, or by
closing the websocket.

The Service Manager applies the sharing policy after it receives a set of bitrates
from a DASH player. The result is a target bitrate for each player. The target bitrate
denotes the representation for which the Service Manager thinks it is the best rep-
resentation given current network activities. The Service manager sends each DASH
player its target bitrate in a control message. Besides target bitrate signaling, the Ser-
vice Manager also instructs the Network Controller to configure traffic control, using
the target bitrate as an indication for the size of the queues. The sequence of messages
between DASH players and Service Manager, and between Service Manager and Net-
work Controller is shown in Figure 2. It shows the full cycle for Player A (both start
and stop) and the actions taken when Player B starts while Player A is still active.

In our configuration, the player follows the target bitrate from the Service Man-
ager. However, as a back-up players perform bandwidth estimations. In case download
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Network ControllerService ManagerPlayer A Player B

open websocket
report representations send queue config

send target bitrate

open websocket
report representations send queue config

send target bitrate
send target bitrate

close websocket send queue config
send target bitrate

Fig. 2: Sequence of messages between DASH players, Service Manager and Network
Controller

speeds are too low, it might jeopardize the stream continuity. Our DASH player then
decides to ignore the target bitrate and rely on bandwidth estimations for adaptation.
We also maintain a threshold on the buffer level (10 seconds in our implementation) to
switch between bandwidth estimations and target bitrate. The player has the freedom
to select lower bitrate segments during the initial buffering phase to start playing
sooner. The advantage of this approach is that it allows players to make informed
adaptation decisions while maintaining their flexibility and robustness to changing
network conditions.

4. EXPERIMENTAL EVALUATION
We benchmark the performance of our system in our Wi-Fi testbed. This section de-
scribes the implementation of our system, the testbed, and the design of the experi-
ments.

4.1. Wi-Fi Testbed
We implement our system using a Raspberry Pi 2B2. The Raspberry Pi acts as an
OpenFlow-enabled switch, which we create using Open vSwitch (version 2.3.0)3. Open
vSwitch is widely used software and offers a kernel based switch implementation. This
switch allows for relatively high switching performance compared to non kernel-based
implementations. We found that the switching performance while using Open vSwitch
was not limited by the CPU power of the Raspberry Pi, only by the network interface.
The CPU load remains under 10%, even when fully loading the network interfaces. We
use Linux tc to implement our dynamic traffic control mechanism. Because OpenFlow
does not provide queue configuration messages, we added an additional interface to
the switch to configure tc.

The Raspberry Pi also acts as the Wi-Fi access point. A Wi-Fi network is an interest-
ing environment for our experiments because users often encounter the Wi-Fi network
as the bottleneck. Small variations in throughput add an extra layer of difficulty for
the DASH players and our system. Nevertheless, we designed our system to be generic,
and it also works on wired network connections.

We create the Wi-Fi access point using a USB Wi-Fi dongle (TP-Link TL-WDN4200)
in combination with the hostapd software (version 2.5.0)4. The access point operates

2https://cdn-shop.adafruit.com/pdfs/raspberrypi2modelb.pdf (last accessed January 17, 2017)
3http://openvswitch.org (last accessed January 17, 2017)
4http://w1.fi/hostapd/ (last accessed January 17, 2017)
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in the 5 GHz band on channel 44 (20 MHz wide channel). The transmission power of
the Wi-Fi dongle is 20 dBm, in compliance with Dutch regulations.

The Network Controller is implemented using POX (version 0.2.0)5. POX is a
Python-based SDN controller platform that enables quick prototyping of network con-
trollers. The southbound interface talks OpenFlow 1.0 to the Open vSwitch software
switch. In addition to OpenFlow, we implement an additional interface for configuring
traffic control. The Network Controller offers an interface to the Service Manager on
the northbound. The Service Manager uses this interface to apply the DASH specific
bandwidth sharing policy. The Network Controller and Service Manager can run on
different hosts. However, in our experiments both processes run on the Raspberry Pi.

The DASH player used in our experiments is browser-based and implemented using
the DASH.js player (version 2.2.0). We extend it by adding the AssistanceController
and AssistedAbrRule components to it. The AssistanceController implements the com-
munication between the DASH player and the Service Manager. The AssistedAbrRule
is the actual adaptation algorithm that follows the target bitrate from the Service Man-
ager when it can. Splitting the implementation allows us to maintain a communication
channel to the Service Manager while still relying on the built-in throughput-based
and BOLA algorithm.

The DASH players run in the Chrome browser on current MacBook Pro and Mac-
Book Air machines. The laptops connect to the Wi-Fi access point created by the Rasp-
berry Pi. The Raspberry Pi stands in the middle of an office space with the laptops
distributed around it.

4.2. Experimental Design
We evaluate the scenario of four DASH players sharing a Wi-Fi network connection. In
this scenario, the Wi-Fi network forms the bottleneck link with a capacity of 25 Mbit/s.
We replicate a setting of four family members sharing the household Wi-Fi where each
member watches video on their own device. In the experiments with background traffic
we add a fifth node to the network. This node generates background traffic in the form
of an iperf6 download.

The video nodes stream a ten-minute clip from the movie Sintel. The nodes start
approximately one minute after each other. The video stream provides 12 different
representations. The bitrates range from 300 Kbit/s at 240p to 10 Mbit/s at 1440p
(2K)7. The DASH manifest implements the MPEG-DASH Live Profile [ISO/IEC 23009-
1 2014] and is compatible with the guidelines from the DASH-IF.

In the evaluations we focus on the bitrate of the stream and the changes in bitrate
that occur over time. These two factors play the biggest role in the user’s QoE.The
evaluation covers four experiments:

— Impact of adaptation algorithms and target bitrate signaling (Experiment
1): We evaluate the performance of the built-in adaptation algorithms (throughput-
based adaptation and the BOLA algorithm) and our assisted algorithm. We assess
the algorithms in an environment with and without background traffic.

— Impact of dynamic traffic control (Experiment 2): We focus on the dynamic
traffic control mechanism. We implemented a total of four traffic control configura-
tions. The first two options are using a service queue that puts the DASH players in
a single queue, and using client queues where each DASH player is in its own queue.

5https://github.com/noxrepo/pox (last accessed January 17, 2017)
6https://iperf.fr (last accessed January 17, 2017)
7296Kbit/s@240p, 395Kbit/s@240p, 493Kbit/s@360p, 732Kbit/s@360p, 971Kbit/s@480p, 1.458Kbit/s@480p,
1.934Kbit/s@720p, 2.878Kbit/s@720p, 3.779Kbit/s@1080p, 5.544Kbit/s@1080p, 7.234Kbit/s@1440p,
10.563Kbit/s@1440p
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Both types of queues can work as rate limiting queue (i.e. capping the throughput) or
as minimum rate queue (i.e. provide a throughput guarantee without a cap). In this
experiment, we focus on how dynamic traffic control helps the built-in adaptation
algorithms. We will not only investigate if adding traffic control counters streaming
at low bitrate due to background traffic, but we will also look into the stability of the
streams.

— Combination of target bitrate signaling and dynamic traffic control (Exper-
iment 3): We combine target bitrate signaling with dynamic traffic control. In this
part, we investigate if combining the two assistance mechanisms outperforms setups
with only one of the two mechanisms enabled.

— Differentiation of device types (Experiment 4): In addition to the equal band-
width sharing policy, we also implement a device-aware policy. In the last experiment,
we demonstrate the effectiveness of our system and show that it can give assistance
tailored to the device. For this analysis, we use the same devices, but we trick the
system in thinking that they are different (i.e. the DASH players report a different
device type to the Service Manager when reporting the representations in the mani-
fest).

5. RESULTS
In this section, we evaluate the performance of our system and investigate how tar-
get bitrate signaling and dynamic traffic control contribute to the video quality of the
stream. We first evaluate each mechanism individually, then combined. We end the
evaluation with a demonstration of a sharing policy that assigns different bitrates to
different devices.

5.1. Impact of Adaptation Algorithms and Target Bitrate Signaling
Throughput-based algorithms have difficulties in selecting a stable bitrate when mul-
tiple DASH players share a bottleneck link [Akhshabi et al. 2011][Akhshabi et al.
2012]. We confirm this problem using the throughput-baed adaptation algorithm in
the DASH.js player. Even though it is known to exhibit instability, we include this
adaptation algorithm because it is the default algorithm in the DASH.js player. Figure
3a shows the frequent fluctuations in video bitrate when multiple players are active at
the same time.

The DASH.js player also implements the BOLA algorithm [Spiteri et al. 2016].
BOLA uses the buffer level as an indication for adaptation. Figure 3b shows that
BOLA significantly reduces the number of changes in video quality compared to the
throughput-based algorithm. Nevertheless, it exhibits unfairness in the period from
t = 400 until t = 550. One player increases its video bitrate, but the other players
adapt to lower bitrates. Although BOLA proves to outperform the throughput-based
algorithm in terms of number of switches, it is not immune to unfairness.

The run with our assisted adaptation algorithm shows to perform best regarding sta-
bility and unfairness. The DASH players strictly follow the target bitrate from the Ser-
vice Manager. Figure 3c shows that assisted adaptation reduces the bitrate switches to
the moments where DASH players start and stop. It also points out that the response
to a starting player is much quicker and that active players release bandwidth to the
new player. The video bitrate is lower compared to the BOLA algorithm (4.739 Kbit/s
versus 6.307 Kbit/s). The lower video bitrate is an effect of the sharing policy that
strictly assigns the same bitrate to each player. However, if we would assign a higher
bitrate to one or two players, this effect would disappear.

Adding adaptation assistance from the Service Manager improves the stability of
the streams. However, without traffic control, the Service Manager cannot guaran-
tee a sufficient throughput for the DASH players. Figure 4 shows the distribution of
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Fig. 3: Video bitrates for four competing DASH players in a network without back-
ground traffic

video bitrates. Figure 4a shows the experiments without background traffic. Figure
4b shows the experiments with background traffic(i.e. an iperf download), where the
video bitrates drop significantly, also for the assisted adaptation algorithm. In the ex-
periments with background traffic, the assisted algorithm did not adapt to the target
bitrate. The bandwidth and buffer estimations detected that the throughput is too low.
This triggered the fallback mode in the DASH players, resulting in a lower video bi-
trate. However, forcing the target bitrate would have led to more (severe) interruptions
in the video stream.

Throughput BOLA Assisted

Adaptation algorithm

0

2

4

6

8

10

12

B
it

ra
te

 (
M

b
it

/s
)

(a) Only DASH players

Throughput BOLA Assisted

Adaptation algorithm

0

2

4

6

8

10

12

B
it

ra
te

 (
M

b
it

/s
)

(b) DASH players and background traffic

Fig. 4: Distribution of video bitrates. Whiskers show the mean video bitrate.

Figure 5 displays the buffer fill levels for each player, comparing BOLA and the
assisted adaptation algorithm. We estimate the buffer levels from the traces based on
the interval between two segment requests (i.e. the buffer grows when the interval
between two segments is less than the segment size; the buffer level shrinks when the
interval between two segments is larger than the segment size). Figure 5 shows that
BOLA players 3-4, and assisted player 3, have difficulties in maintaining a healthy
buffer level. The buffers grow much slower and are empty several times.
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Fig. 5: Buffer levels of the DASH players, experiments with background traffic

The low buffer levels are the result of the competition for bandwidth between DASH
players and the background TCP flow, where the background flow keeps to much of the
available bandwidth. Figure 6 shows that the performance of the background flow is
only marginally affected by the DASH traffic. Given the 25 Mbit/s capacity of the net-
work, each TCP flow (DASH.js uses HTTP/1.1 and keeps the connection to the server
open) should have a throughput of 5 Mbit/s. However, the background node uses a man-
ifold of that and the DASH players stream below this rate. The adaptation algorithm
does not have an mean bitrate. The DASH players stream on average at 1157 Kbit/s
(σ = 1341 Kbit/s) for the throughput-based algorithm, 1434 Kbit/s (σ = 955 Kbit/s) for
BOLA, and 1305 Kbit/s (σ = 1433 Kbit/s) for the assisted adaptation algorithm.
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Fig. 6: Throughput for background traffic

From the results, we can conclude that the adaptation algorithm is essential for cre-
ating a stable streaming experience and to divide the bandwidth evenly among the
players. However, adaptation algorithms react to the download speeds of the video
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segments. They do this directly by using throughput measurements or indirect by ob-
serving the buffer level. If the download speeds are not sufficient, DASH players adapt
to a lower video bitrate. When we add background traffic to the network, download
speeds are no longer sufficient. Then, improving client-side adaptation algorithms or
using target bitrate signaling is not enough. In the next part of this evaluation, we will
show how traffic control can solve these issues and realize high-quality streaming.

5.2. Impact of Dynamic Traffic Control
In this part of the evaluation, we investigate the impact of our dynamic traffic con-
trol mechanism. The DASH players contact the Service Manager and thus benefit
from traffic control, but they still rely on the built-in adaptation algorithms (default
throughput-based algorithm and BOLA). First, we evaluate the impact of traffic con-
trol on the streaming bitrate. Second, we look into differences between using a service
(i.e. DASH) queue and using client queues. Third, we investigate the impact of rate
limiting queues and minimum rate queues. In any of the configurations, the Service
Manager allocates an equal bitrate for each DASH player.

As shown in the previous section, the problem with DASH traffic in a network
with significant background traffic is that DASH players cannot reach sufficient down
speeds. The on/off traffic pattern in DASH traffic causes a reset of the TCP window.
Segment download always start with the minimal TCP window. The TCP window
size will only slowly increase because there is already a high load in the network.
TCP will not have enough time to obtain a fair share since the video segments are
short (e.g. between two and ten seconds). We can mitigate this issue and increase the
download speeds for DASH, by creating different queues for different flows. Figure 7
shows the bitrates for the throughput-based algorithm and BOLA. The players with
the throughput-based algorithm can stream at the preferred bitrate. However, they
also show a considerable number of quality switches. BOLA shows that it can provide
a stable stream following the queues set by the Service Manager.

Figure 7 shows the video bitrates in a network with background traffic and the most
strict traffic control configuration. For these experiments, the Service Manager creates
one queue per DASH player and one queue for background traffic. Furthermore, each
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Fig. 7: Video bitrates for four DASH players in a network with background traffic and
client queues with a rate limit
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queue has a rate limit and completely separates each flow from each other. In our SDN
switch we use Linux tc with hierarchical token buckets (HTB). This allows us to create
large queueing configurations. Other SDN switches may not offer this functionality
and put a limitation on the number of queues.

We also evaluate a setup with a single queue for DASH traffic. Figure 8 shows
the comparison of the video bitrates using no traffic control, a single DASH service
queue, and client queues. For completeness, we also include the experiment where we
disabled traffic control. The video bitrate is slightly higher when employing the ser-
vice queue: 4768 kbit/s (σ = 2442 kbit/s) compared to 3578 kbit/s (σ = 2507 kbit/s) for
the throughput-based algorithm, and 5191 kbit/s (σ = 2329 kbit/s) versus 4570 kbit/s
(σ = 1837 kbit/s) for BOLA. Both adaptation algorithms increase the video bitrate
when possible (i.e. when they either reach sufficient download speeds or have suffi-
cient buffer). If we combine the four players into a single queue, then some players
occasionally adapt to a higher bitrate (compared to the target bitrate). These tempo-
rary upgrades increase the mean bitrate. In contrast, the throughput-based algorithm
shows a large number of requests for low bitrate video segments when using client
queues. In this case, the players were not confident enough and did not fully utilize
the whole queue. This has the effect of a lower mean bitrate for this experiment.
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Fig. 8: Distribution of video bitrates in a network with background traffic and traffic
control. The whiskers denote the mean video bitrate.

For the BOLA algorithm, in stream variability is different when using a service
queue compared to using client queues. Using the service queue, BOLA selects some
of the segments in higher bitrates (relative to the target bitrate). However, other seg-
ments, also from other players, had to be requested in a lower bitrate as compensation.
Regarding stream stability, using client queues increases performance. BOLA with
client queues reduces the total number of switches by 52%, from 122 to 59 switches.
BOLA combined with client queues eliminates most of the quality switches. This is
also visible in Figure 7b.

Regarding background traffic we do not observe a difference in throughput for dif-
ferent queueing configuration. The queuing configuration does not affect the size of
the background queue (i.e. the service queue has the same size as the combined client
queues) Figure 9 illustrates how throughput of background traffic is adjusted and how
network bandwidth is now available for DASH streaming. A starting player causes
a decrease in throughput for the background flow, except when starting the fourth
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Fig. 9: Throughput for background traffic when using a service queue and client queues

player at t = 200. The sudden increase in throughput is an effect of the policy that
divides bandwidth among players. The sum of the target bitrates cannot exceed the
reserved bandwidth for DASH. In our policy, this limitation is 20 Mbit/s. Three players
at 6.653 Kbit/s use more bandwidth than four players at 4.535 Kbit/s (19.959 Kbit/s
versus 18.140 Kbit/s). This behavior is inevitable and is the result of the limited num-
ber of available bitrates in the DASH manifest. In this experiment, adding the fourth
player causes a decrease of only one quality level.

In this article, we also look into differences between rate limiting and minimum
rate queues. We implemented both, queues that limit the throughput for certain pack-
ets and queues that guarantee a minimum throughput given their is enough traffic.
Figure 10 compares video bitrates for these two types of queues. The results show that
using minimum rate queues increases the mean video bitrate by at least 1 Mbit/s. This
result is expected and comes from the greediness of the DASH players (i.e. they will
increase the video bitrate when possible). In our system, we only provide a throughput
guarantee for DASH traffic, but not for background traffic. Due to the implementation
of hierarchical token buckets (HTB) in Linux tc, DASH players have an advantage
over background traffic.

Users typically prefer an improvement in video bitrate. However, we can argue that
the increase in bitrate when using minimum rate queues is unwanted behavior in
this scenario. We assume that the Service Manager makes an optimal division of the
available bandwidth, as that is its main purpose. The DASH players do not have to try
to increase their video quality. However, we observe that for both algorithms the DASH
players sometimes select higher quality segments. This causes a larger variability in
video bitrate and more quality switches, eventually resulting in a lower QoE for the
user.

Figure 10 illustrates higher variability for minimum rate queues and shows that the
distribution of bitrates in which DASH players request video segments is spread more
over available bitrates. This effect is the strongest for the throughput-based algorithm,
but it is also observed for BOLA.

In general, using minimum rate queues also increases the number of quality
switches. Figure 11 displays the total number of quality switches (i.e. the sum of the
number of switches from the four players) for the experiments without background
traffic (a) and with background traffic (b). In the experiment without background traf-
fic, we only evaluate client queues. A single DASH queue does not make sense because
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Fig. 10: A comparison of the distribution for video bitrate in a network with back-
ground traffic: rate limiting queue versus minimum rate queues
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Fig. 11: Comparison of the number of switches when using rate limiting queues and
minimum rate queues

the size of the queue would then be equal to the capacity of the network. Figure 11a
shows that applying queues with a rate limit reduces the number of quality switches.
For the throughput-based algorithm, employing traffic control reduces the number of
switches by 71%, from 205 to 60. For BOLA we observe a reduction of 58%, from 73
to 31 switches. However, minimum rate queues only reduce the number of switches by
32% for the throughput-based algorithm and by 8% for BOLA.

For the experiments with background traffic, we observe a similar effect. How-
ever, differences between queuing configurations are smaller. The exception is the run
with the throughput-based algorithm in combination with rate limiting client queues.
In this setting, we see that DASH players often switch to a low video bitrate. The
throughput-based adaptation algorithm is too aggressive and reacts too fast to small
changes in throughput. This causes over 330 quality fluctuations. Overall, BOLA in
combination with client queues performs best regarding the number of switches.

A third consequence of using minimum rate queues is lower throughput for back-
ground traffic. The background queue does not have a minimum rate guarantee and
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gives DASH players an advantage over background traffic. Figure 12 shows the decline
in throughput when DASH players get active. If we compare download speeds of back-
ground traffic for both rate limiting queues and minimum rate queues, we can observe
a decrease of around 80%. For example, the average download speeds drop from 6.506
Kbit/s (σ = 2.050 Kbit/s) to 1.250 Kbit/s (σ = 1.952 Kbit/s) given the BOLA algorithm
with a single service queue (measured in the interval where all four DASH players are
active, t ∈ [200, 600]).
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Fig. 12: Throughput for background traffic when using minimum rate queues

Based on the results in this part of the evaluation, we conclude that dynamic traffic
control is essential for realizing high-quality DASH streaming. Given our goal is to
stream close to the target bitrate from the Service Manager, using client queues with a
rate limit provides the best performance. Nevertheless, using a single service queue is
still useful, and it protects DASH players from background traffic taking over. We do
not recommend to configure minimum rate queues with traditional adaptation algo-
rithms. These algorithms are greedy and attempt to upgrade the video quality at the
cost of instability and poor performance for background traffic.

5.3. Combination of Target Bitrate Signaling and Dynamic Traffic Control
In the first two sets of experiments, we showed that target bitrate signaling and dy-
namic traffic control both contribute to the streaming performance. However, we also
pointed out that they have their shortcomings. In this part of the evaluation, we com-
bine target bitrate signaling with dynamic traffic control. If we assume that the link
that we manage with our system is the bottleneck, we can reduce the uncertainty
for the player via target bitrate signaling and ensure sufficient throughput with our
traffic control mechanism. By combining the two mechanisms, DASH players adapt
quicker to the target bitrate and react faster to other DASH players starting and stop-
ping. Figure 13 shows a comparison of the video bitrate for the BOLA algorithm and
our assisted adaptation algorithm. In this experiment, we use client queues with a
rate limit. Both BOLA and the assisted adaptation algorithm follow the target bitrate
from the Service Manager. BOLA uses buffer estimations to find out the target bitrate
where our assisted adaptation algorithm gets the bitrate sent directly. If we compare
the time that a player needs before it streams at the target bitrate, then our assisted
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Fig. 13: Video bitrates for DASH players in a network with background traffic and
client rate limiting queues

adaptation mechanism adapts 51% faster than BOLA. We observed an average reduc-
tion from 16.75 segments (33.5 seconds) for BOLA to 8.25 segments (16.5 seconds) for
assisted adaptation.

Combining our assisted adaptation algorithm with other queuing configurations re-
sults in similar performance when looking at video bitrate and stability. However, Fig-
ure 14 shows that different queueing configurations produce different buffer levels.
The buffers fill slower when using queues with a rate limitation. Rate limiting queues
only offer little room for the DASH player to grow their buffer, especially because the
throughput of traffic in the queue cannot exceed the target bitrate. Queues with a min-
imum rate guarantee provide a solution for this problem and allow DASH players to
increase their download speeds temporarily. Minimum rate queues shorten the time
that DASH players need to reach a full buffer of 30 seconds. A service queue with
minimum rate reduces the buffering time from 91 to 24 seconds. For client queues,
the reduction is from 167 to 21 seconds on average. The peak in buffer level for the
first DASH player in Figures 14b and 14d is the result of a bug in the scheduler of the
DASH.js player. We configured the players to maintain a 30 second buffer. However,
the DASH.js player temporarily ignored this limit, allowing the buffer to grow up to
60 seconds. Nevertheless, this bug did not affect the streaming bitrate for the other
players.

The problem with client-side adaptation algorithms, such as the throughput-based
and BOLA algorithm in the DASH.js player, is that they are greedy and try to increase
the video bitrate at all times. This behavior causes problems with the throughput for
background traffic when using queues with a minimum rate. Target bitrate signaling
not only prevents DASH players from selecting a too low bitrate, but it also restricts
players from picking bitrates that are higher than the target bitrate. This approach
has the advantage that it does less harm to background flow download speeds. Fig-
ure 15 shows that assisted adaptation has a smaller impact on the throughput for
background traffic compared to client-side adaptation algorithms. Starting and stop-
ping cause fluctuations in throughput, but minimum rate queues induce an overall
increase in download speed.
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Fig. 14: Buffer levels when using assisted adaptation and different queuing configura-
tions
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Fig. 15: Throughput for background traffic when using our assisted adaptation algo-
rithm with different queuing configurations
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Based on these results, we conclude that combining target bitrate signaling with
dynamic traffic control produces a high-quality video stream with excellent stability.
Target bitrate signaling enables DASH players to adapt the video bitrate quickly when
a new player starts, or an active player stops. It gives network administrators flexibil-
ity to configure different traffic control mechanisms.

5.4. Differentiation of Device Types
In the previous experiments, we used a simple sharing policy that equally divides
20 Mbit/s over the active DASH players. Until now, we made the assumption that
each client is equal. However, device characteristics and user needs differ in practice.
In the following experiments, DASH players communicate their type (e.g. TV set-top
box, tablet computer) to the Service Manager. We configured two players to report
themselves as a smartphone (small screen), one as a laptop, and one as a TV. The
Service Manager assigns representations up to 360p for smartphones, up to 1080p
for the laptop, and up to 1440p for the TV. The players start in the random order:
smartphone, smartphone, laptop, TV.

Table I lists the mean bitrates for the four implementations that execute the de-
vice aware sharing policy. The first implementation combines the players into a single
service queue and requires that the users manually configure a maximum bitrate in
the players. In the second and third implementation, the maximum bitrate is enforced
using per client queues with a maximum rate. The throughput-based algorithm and
BOLA algorithm in the DASH.js player handle video bitrate adaptation in these im-
plementations. The last implementation is the combination of the assisted adaptation
algorithm and client queues with a rate limit.

Table I: Average video bitrates per device when using a device-aware policy

Adaptation algorithm Phone 1 Phone 2 Laptop TV
Kbit/s (σ) Kbit/s (σ) Kbit/s (σ) Kbit/s (σ)

Throughput algorithm 711 (89) 696 (121) 3.401 (995) 8.365 (3.089)
with fixed maximum
Throughput algorithm 717 (122) 712 (177) 2.953 (1.338) 10.101 (1.813)
BOLA algorithm 725 (51) 880 (140) 3.676 (579) 10.077 (1.916)
Assisted adaptation 726 (55) 728 (58) 3.707 (425) 10.391 (1.216)
Target bitrate 732 732. 3.779 10.563

The results show that all implementations result in higher bitrates for the lap-
top and TV. However, the mean bitrate for the TV is too low when using a service
queue and manually configured players. Frequent quality fluctuations between the
target bitrate and a lower bitrate cause the mean video bitrate to be lower. Using the
throughput-based algorithm with client queues shows a similar effect. BOLA and as-
sisted adaptation result in a mean bitrate that is close to the target bitrates.

Table II lists the number of quality switches for each player. The number of switches
shows similar effects to results in the previous evaluation part. The BOLA algorithm
produces less switches compared to the throughput-based implementations. The as-
sisted adaptation algorithm makes players adapt quicker to the target bitrate and
increases the stability. Results show that our system is effective in enforcing policies
that go beyond equally sharing the network bandwidth. The advantage of assisted
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adaptation is that sharing policies only have to be configured in a single place (i.e.
the Service Manager). The Service Manager can potentially use a different policy at
different moments based on which clients are active.

Table II: Number of quality switches per device when using a device-aware policy

Adaptation algorithm Phone 1 Phone 2 Laptop TV
# switches # switches # switches # switches

Throughput algorithm 4 7 12 46
with fixed maximum
Throughput algorithm 16 31 79 8
BOLA algorithm 5 11 7 12
Assisted adaptation 2 2 3 3

In our implementation, clients send a special message informing the Service Man-
ager about the device form factor. This implementation does not require the Service
Manager to know up front which devices are going to be active. However, it provides
little means against cheating devices. Depending on the needs of the network adminis-
trator, we could potentially implement solutions like whitelisting, where only trusted
devices can send their device type and untrusted devices can only stream up to a fixed
limit.

6. CONCLUSION
Video streaming over the Internet is a popular application that accounts for a large
share of todays Internet traffic. Many content providers use dynamic adaptive stream-
ing over HTTP as technology for delivering video content. The simplicity of the proto-
col, the underlying use of HTTP for transport, and its scalability using content deliver
networks make it an attractive technology for content providers. The downside of using
HTTP in combination with the bursty on/off traffic patterns created by DASH, is that
it underperforms when multiple DASH players share a network link, and in networks
with heavy background traffic. Instead of fairly sharing network resources, download-
ing the DASH video segments becomes a competition for bandwidth. In this article we
demonstrated that DASH players are the losing party.

The presented system is designed to reduce the competition for bandwidth. Doing
this increases the video quality and reduces the instability of the stream. We leverage
the novel networking paradigm of software defined networking (SDN) to reduce the
effect of the protocols on streaming performance, while keeping DASH protocol stack
benefits intact. We have shown to overcome the drawbacks of using DASH by adding a
simple interaction mechanism between DASH players and an in-network component
that we call the Service Manager.

In our system, we offer DASH players two mechanisms for improving their stream-
ing performance: target bitrate signaling and dynamic traffic control. Target bitrate
signaling involves sending the DASH players a bitrate for which the Service Manager
thinks it is a good bitrate, considering the current network activity. Given that the
Service Manager has a better overview of the network activity compared to a DASH
player, it is better capable of fairly dividing the available bandwidth among clients.
The second mechanism, dynamic traffic control, ensures that DASH players are able
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to reach sufficient download speeds by setting up traffic queues in the network match-
ing the DASH demand.

We demonstrate that our system can provide a highly stable and high quality video
streaming experience through evaluations in our Wi-Fi testbed using real DASH play-
ers that are extended to support adaptation assistance. We showed that both adap-
tation assistance mechanisms increase streaming performance. Target bitrate signal-
ing can be used to increase stability when multiple DASH players share a connec-
tion. Dynamic traffic control shows to increase the video bitrate and stream stability
in networks with heavy background traffic. From results obtained in this study, we
can conclude, that separating DASH players in different rate limited queues gives the
best performance when only dynamic traffic control is enabled. Using a single service
queue or minimum rate queues shows to increase the variability of video quality in the
stream and increases the number of quality switches. Furthermore, we showed that
the greedy nature of current DASH adaptation algorithms gives problems when us-
ing minimum rate queues. Only by combining the two assistance mechanisms, we can
deliver an optimal video streaming experience, while also delivering acceptable down-
load speeds for background traffic. Using target bitrate signaling gives more freedom
in using different types of traffic control, potentially increasing the number of network
switches that could used.

By implementing a policy that assigns different bitrates to different devices – for in-
stance because they have different capabilities – we demonstrate that our system is an
effective tool for configuring how the network bandwidth should be shared among de-
vices. Configuring bandwidth sharing rules in the Service Manager has the advantage
of a central location where bandwidth sharing is configured, compared to configuring
each individual DASH player.

In future work we will focus on the improvement and evaluation of scalability of our
system. We built our system using scalable technologies (SDN and DASH). Both tech-
nologies are known to be deployed in large networks serving a large number of users.
For our system, two issues have to be addressed in order to support large networks:
computing resources for the Network Controller and Service Manager, and the traf-
fic control configuration. For every DASH player which receives adaptation support,
a connection to the Service Manager is maintained. The Service Manager needs to be
able to handle a large number of connections. Additionally, for each update (i.e. start-
ing or stopping players) the bandwidth sharing policy is applied. This should be fast
(e.g. new players could quicker start streaming) and the Service Manager host machine
should have sufficient computing power for the complexity of the sharing policy. The
Service Manager was located at the Wi-Fi access point in the experiments in this arti-
cle. It needs to be offloaded to another server or the cloud to support larger numbers of
DASH players. Our design supports flexible locating of the Service Manager (and Net-
work Controller). However, the effect of latency between DASH players and Service
Manager should be evaluated when moving the Service Manager further away from
the players. With regards to traffic control, we show that there are no differences be-
tween service and client queues when target bitrate signaling is used. However, main-
taining a large number of client queues may not be feasible. A single service queue
with a large number of DASH players may be less effective. In future experiments, we
will evaluate the use of multiple service queues to address this issue.

Furthermore, we will look into generalization of our system, to create a networking
platform where applications work together with the network through a Service Man-
ager, with the goal to tailor network performance to the demands, and improve the
user experience. This will require the development of bandwidth sharing policies, that
know how to divide DASH traffic, taking the characteristics of the user and its devices
into account, as well as the characteristics of other non-DASH services.
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