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ABSTRACT 

Toyama proved that confluence is a modular property of tenn rewriting systems. 

'This means that the disjoint union of two confluent term rewriting systems is again 

confluent. In this paper we extend his result to the class of conditional term rewrit­

ing systems. In view of the important role of conditional rewriting in equational 

logic programming, this result may be of relevance in integrating functional pro­

gramming and logic programming. 

Introduction 

Two directions can be distinguished in the use of conditional term rewriting systems. 

Bergstra and Klop [l], Kaplan [10] and Zhang and R~my [25] studied conditional term rewrit­

ing as a means of enhancing the expressiveness in the algebraic specification of abstract data 

types. Recently, serious efforts have been initiated for integrating functional and logic program­

ming. It has been recognized that conditional term rewriting systems provide a natural compu­

tational mechanism for this integration, see Dershowitz and Plaisted (5, 6], Fribourg [7] and 
Goguen and Meseguer [8]. 

For ordinary tenn rewriting systems a sizeable amount of theory has been developed. 
Only a small part has been extended to conditional term rewriting systems, notably sufficient 

conditions for confluence and tennination ([l], [3], [4], [9], [11]). In this paper we extend a 

result of Toyama [22), which states that if a tenn rewriting system can be partitioned into two 

confluent systems with disjoint alphabets then the original system is confluent, to conditional 

term rewriting systems. 

Conditional term rewriting is introduced in the next section. In Section 2 we consider dis­
joint unions of term rewriting systems. In Section 3 we prove that confluence is a modular pro­

perty of join systems, a particular form of conditional term rewriting introduced in the next sec­

tion. In Section 4 we observe that confluence is also a modular property of so-called semi­

equational and normal systems and we conclude with suggestions for further research. 

Note: Research partially supported by ESPRIT BRA project nr. 3020, Integration. 
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1. Conditional Term Rewriting Systems: Preliminaries 

Before introducing conditional term rewriting, we review the basic notions of uncondi­

tional term rewriting. Term rewriting is surveyed in Klop (12] and Dershowitz and Jouannaud 

[2]. 

Let Y. be a countably infinite set of variables. An unconditional term rewriting system 

(TRS for shon) is a pair (fl, 9l). The set !J consists of/unction symbols; associated with every 

f efJ is its arity n O!:O. Function symbols of arity 0 are called constants. The set of terms built 

from fJ and Y., notation ff (fJ, Y. ), is the smallest set such that V- c ff (ff, V-) and if f e fJ has arity 

n and tlt •.. , tn eS(fJ, Y.) then f Vi. .. ., tn) e5(~. V-). Terms not containing variables are 

ground terms. The set 9l consists of pairs (l, r) with l, r e ff (fJ, Y.) subject to two constraints: 

(1) the left-hand side J is not a variable, 

(2) the variables which occur in the right-hand side r also occur in l. 
Pairs (l, r) are called rewrite rules or reduction rules and will henceforth be written as l-+ r. 

We usually present a TRS as a set of rewrite rules, without making explicit the set of function 

symbols. 

A substitution a is a mapping from V- to ff(!!!, V-) such that the set {x e Y. I a (x) ;!: x} is 

finite (the symbol= stands for syntactic equality). This set is called the domain of a and will be 

denoted by :D(G). Substitutions are extended to morphisms from f1(9, V-) to f1(fJ, V), i.e. 

a(j(th .. ., tn)) =! (a(t 1), •• ., a(tn)) for every n-ary function symbol/and terms tlt ... , t". We 

call o (t) an instance oft. An instance of a left-hand side of a rewrite rule is a redex (reducible 

expression). Occasionally we present a substitution a as a= (x-..a(x) lxe.7J(a)}. The empty 

substitution will be denoted bye (here :IJ(e) = 0). 
A context C [ , ... , ] is a 'term' which contains at least one occurrence of a special sym­

bol C. If C [ , ... , ] is a context with n occurrences of C and t 1, ••• , tn are terms then 

C [t 1, ••. , t n] is the result of replacing from left to right the occurrences of Cl by t 1, •.. , ln. A 

context containing precisely one occurrence of a is denoted by C [ ]. A term s is a subterm of a 
tenn t if there exists a context C [ ] such that t E C [ s ]. 

The rewrite relation -+.11. c 5 (!J, V-) x ff (fJ, Y.) is defined as follows: s -+,,, t if there 

exists a rewrite rule l -+ r in 9l, a substitution a and a context C [ ] such that s = C [ a (/)] and 

t = C [ o (r)]. The transitive-reflexive closure of ..-.+Jl't is denoted by -'»st; ifs -'»st t we say that s 
reduces to t. We write s t-st t if t ~st s; likewise for s <+-st t. The symmetric closure of ~.ft is 

denoted by Hst· The transitive-reflexive closure of Hse is called conversion and denoted by 

=.it. If s =se t then s and t are convertible. Two terms t 1, t 2 are joinable, notation t 1 J.st t 2, if 
there exists a tenn t 3 such that t 1 -'»st t 3 *-se t 2. Such a tenn t 3 is called a common reduct of t 1 

and t2. The relation J..11. is calledjoinability. We often omit the subscript 9l. 
A term s is a normal form if there are no terms t with s ~ t. A 1RS is terminating or 

strongly normalizing if there are no infinite reduction sequences t 1 ~ t 2 ~ t 3 ~ .... In other 

words, every reduction sequence eventually ends in a nonnal form. A 'IRS is confluent or has 
the Church-Rosser property if for all terms s, ti. t 2 with t 1 <t-s-»t2 we have t 1 J.t2• A well­

known equivalent formulation of confluence is that every pair of convertible tenns is joinable 

(t1=t2 => t1J.t2). 
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The rewrite rules of a conditional term rewriting system (CTRS) have the fonn 

l-tr~s 1 =ti. ... ,sn.=tn 

with S1t .•• , Sn, t1 •••• , tn, l, r efl(~. V-). The equations s 1 = tl> ... , Sn= tn are the conditions of 
the rewrite rule. Depending on the interpretation of the =-sign in the conditions, different 

rewrite relations can be associated with a given CTRS. In this paper we restrict ourselves to the 
three most common interpretations. 

(1) In a join CTRS the =-sign in the conditions is interpreted as joinability. Fonnally: s -t t if 
there exists a conditional rewrite rule l -t r ~ s 1 = t i. ... , Sn = tn, a substitution <1 and a 

context C[] such that s =C[O'(l)], t=C[O'(r)] and a(s;).,J..a(ti) for all ie (1, ... , n). 

Rewrite rules of a join CTRS will henceforth be written as 

1-tr ~s1 ..J..ti. ... ,sn..J..tn. 

(2) Semi-equational CTRS's are obtained by interpreting the =-sign in the conditions as 
conversion. 

(3) In a normal CTRS !/l the rewrite rules are subject to the additional constraint that every t; 

is a groWld normal fonn with respect to the unconditional TRS obtained from :R. by omit­

ting the conditions. The rewrite relation associated with a nonnal CTRS is obtained by 

interpreting the equality sign in the conditions as reduction ( ~ ). 

This classification originates essentially from Bergstra and Klop [l]. The nomenclature stems 

from Dershowitz, Okada and Sivakwnar [4]. 

The restrictions we impose on CTRS 's !/l in any of the three fonnulations are the same as 

for unconditional TRS 's: if l -+ r ~ s 1 = t 1, ••. , s n = tn is a rewrite rule of !/l then l is not a sin­

gle variable and variables occurring in r also occur in l. In particular, extra variables in the con­

ditions are perfectly acceptable. In Section 4 we will discuss the technical problems associated 

with a possible relaxation of this requirement. 

Sufficient conditions for the termination of CTRS's were given by Kaplan [11], Jouan­
naud and Waldmann [9] and Dershowitz, Okada and Sivakumar [4]. Sufficient conditions for 

confluence can be found in Bergstra and Klop [1] and Dershowitz, Okada and Sivakurnar [3]. 

EXAMPLE 1.1. The semi-equational CTRS 

{
a -t b 

!/l1 = a -+ c 
b -t c <= b=c 

is easily shown to be confluent. So conversion in that system coincides with joinability. How­

ever, the corresponding join CTRS 

5l,.={=:: 
b -+ c ~ b..J..c 
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is not confluent: the reduction step from b to c is no longer allowed. 

The following inductive definition of -71 is fundamental ([l, 3, 4]) for analyzing the 

behaviour of eras 's. 

DEFINITION 1.2. Let 5l be a join, semi-equational or normal CTRS. We inductively define 
TRS's 5?.i for i 2!:0 as follows (D denotes J,, =or-*): 

9?-o = {l-7r I l -7r e5?.} 

fili+I = {cr(l)-7a(r) I l-7r <= s 1 D t 1, ... , Sn at" efil and 

cr(sj) c.1t, a(tj)for j=l, ... ,n}. 

Observe that !/li s;: !li+l for all i ~O. We haves -7.1t t if and only ifs -7.1t, t for some i ~O. The 

depth of a rewrite step s -7.1t t is defined as the minimwn i such that s -71; t. Depths of conver­

sions s =.1t t and valleys s J,.1t tare similarly defined. 

2. Modular Properties 

In this section we review some of the results that have been obtained concerning the dis­
joint union of TRS's. We will also give the necessary technical definitions and notations for 
dealing with disjoint unions. These are consistent with [22, 24, 15]. 

DEFINITION 2.1. Let (9'1 .. ~.1) and (9'2. !l2) be CTRS's with disjoint alphabets (i.e. 
!11ri9'2=0). The disjoint union 5?.1 $!/l2 of (9'1, 5?.1) and (!12 , :Jl2 ) is the CTRS 

(!/1u92. !l1 u !l2). 

DEFINITION 2.2. A property !P of CTRS's is called modular if for all CTRS's !li. !l2 the fol­
lowing equivalence holds: 

5?.1 e 5?.2 has the property ;p <=> both 5?.1 and :R.2 have the property ;p. 

All previous research on modularity has been carried out in the world of unconditional 
TRS's. This research can be characterized by the phrase "simple statements, complicated 
proofs". Confluence was the first property for which the modularity has been established. 

THEoREM 2.3 (Toyama [22)). Confluence is a modular property ofTRS' s. a 

Toyama also gave the following simple example showing that termination is not modular. 

EXAMPLE 2.4 (foyama (23]). Let :R.1 = {F(O, l, x)-7F(x, x, x)} and 

{ 
or(x, y) -7 x, 

9l2 = or(x, y) -7 y. 

Both systems are terminating, but in5?.1 $5?.2 the tennF(or(O, l),or(O, 1), or(O, 1)) reduces to 

itself. 
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Other modularity results are presented in [13, 14, 15, 16, 21, 23, 24]. Middeldorp [20] con­
tains a comprehensive survey. 

Let (Sii.5'1) and (f}i,5'2) be disjoint ClRS's. Every term te:l(f}iu52,V-) can be 
viewed as an alternation of 9"1-parts and .9'2-parts. This structure is fonnalized in Definition 2.5 
and illustrated in Figure 1. 

NOTATION. We abbreviate :1(51 u 5 2, V-) to 5 and we will use :Ji as a shorthand for :!(!ii, V-) 

(i = 1, 2). 

DEFINITION 2.5. 
(1) The root symbol of a term t, notation root(t), is defined by 

{
F ift=F(t 1, ••• ,t,,), 

root(t)= t 

otherwise. 

(2) Lett== C[ ti. ... , tn] e5 with C [, ... , ] f:. a. We write t = C[ ti. ... , tnD if C [, ... , ] is a 
Sa-context and root(ti), ... , root(tn) e:h for some a, be {I, 2) with a ~b. The t/s are 
the principal subterms oft. 

(3) Ifte.9"then 

{

1 

rank(t) = 
1 + ma.x{rank(t;) I I ~i Sn} if t = C[tt> ... , tn]. 

(4) A subterm soft is special ifs =tor sis a special subterm of a principal subtenn oft. 

special 
subterms 

rank(t) = 5 

FIGURE 1. 

To achieve better readability we will call the function symbols of !11 black and those of 
[12 white. Variables have no colour. A black (white) term does not contain white (black) func­
tion symbols, but may contain variables. In examples, black symbols will be printed as capitals 
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and white symbols in lower case. 

PR.orosmoN 2.6. Ifs ~3t1 Ell.1!z t then rank(s) ~ rank(t). 

PROOF. Straightforward. IJ 

DEFINITION 2.7. Lets~ t by application of a rewrite rule l-7r. We writes ~it if I ~r is 
being applied in one of the principal subtenns of sand we write s ~0 t otherwise. The relation 

~; is called inner reduction and ~0 is called outer reduction. 

DEFINITION 2.8. Suppose er and t are substitutions. We write a oc 't if a (x) = a (y) implies 
't(x) = 't(y) for all x, y eV-. Notice that cr oc £if and only if a is injective. We write a-» 't if 
a(x) ~ t(x) for allxeV. Clearly cr(t)-7? t (t) whenever a-» t. 

DEFINITION 2.9. A substitution a is called black (white) if cr (x) is a black (white) term for 
every x e:ll(cr). We call a top black (top white) if the root symbol of a(x) is black (white) for 
every x e:JJ(a). 

Notice the subtle difference in handling variables: the substitution a= (x -t F(y), y ~ x} 
is black but not top black. The following proposition is frequently used in the next section. 

PRorosmON 2.10. Every substitution cr can be decomposed into cr2 oa1 such that 01 is black 
(white), a 2 is top white (top black) and cr2 "" e. 
PROOF. Let lti. .. ., tn} be the set of all maximal subterms of cr (x) for x e.il(a) with white root. 
Choose distinct fresh variables z 1, ... , z,. and define the substitution cr2 by 
cr2 = {zi ~t; I l:Si:Sn). LetxE:ll(cr). We define a 1 (x) by case analysis. 
( 1) If the root symbol of cr (x) is white then a (x) = ti for some i E { 1, .. ., n } . In this case we 

define cr1 (x) = zi. 
(2) If cr (x) is a black tenn then we take a 1 (x) =a (x ). 
(3) In the remaining case we can write er (x) = C[ t11 , .. ., t;l] for some 1:Si 1, .. ., it :Sn and we 

define cr1 (x) = C [ z; 1 , ••• , z;J 
By construction we have cr2 oc e, cr1 is black and cr2 is top white. a 

3. Modularity of Confluence for Join Systems 

In this section we show that confluence is a modular property of join CTRS's. To this 
end, we assume that 5?.1 and :Jl2 are disjoint confluent join CTRS's. We asswne furthermore that 
all rewrite relations introduced in this section are defined on 5, unless stated otherwise. The 
same assumption is made for terms. 

The fundamental property of the disjoint union of two unconditional TRS's 5l1 and 5l2 , 

that is to says -7,1{1 e$!2 t implies either s -7.1l1 tor s ~~ t, does no longer hold for CfRS's, as 
can be seen from the next example. 

EXAMPLE 3.1. Let 5l1 = {F(x, y)~G(x) <=x J.y} and :Jl2 ={a ~b}. We have F(a, b) 
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-+""1 E9"'1 G (a) because a .J,"'1 E9.lt2 b, but neither F (a, b) -+.lt1 G (a) nor F (a, b) -+"'1 G (a). 

The problem is that when a rule of one of the CTRS's is being applied, rules of the other 

C'fRS may be needed in order to satisfy the conditions. So the question arises how the rewrite 

relation -+"'1 E9.lt2 is related to -+""1 and -+""2 • In the example above we have F (a, b) 

-+"'1 F (b, b) -7.1'!1 G (b) t-"'1 G (a). This suggests that -+5t1 E9"'1 corresponds to joinability with 

respect to the union of -+""1 and -+"'2. However, it turned out that -7.1'!1 u -+"'1 is not an entirely 

satisfactory relation from a technical viewpoint. For instance, confluence of -+.1'!1 u -7"'1 is not 

easily proved (cf. Lemma 3.6). We will define two more manageable rewrite relations -+1 and 

-+2 such that: 

(1) their union is confluent (Lemma 3.6), 

(2) reduction in st1 e st2 corresponds to joinability with respect to -+1 u-+2 (Lemma 3.8). 

From these two properties the modularity of confluence for join CTRS's is easily inferred 

(Theorem 3.9). The proof of the first property is a more or less straightforward reduction to 

Toyama's confluence result for the disjoint union of TRS's. The proof of the second property is 

rather technical but we believe that the widerlying ideas are simple. 

DEFINITION 3.2. The rewrite relation -71 is defined as follows: s -+1 t if there exists a rewrite 

rule I-+ r <= s 1 .J, t 1, ••• , Sn .!. tn in .1l1, a context C [ ] and a substitution cr such that s = C [a(/)], 

t = C[ cr(r)] and a(s;) .J,'i cr(t;) for i =I, ... , n, where the superscript o in a(s;).J,i a (t;) means 

that a (s;) and a (t;) are joinable using only outer -71-reduction steps. Notice that the restric­

tions of-+1 and -+""1 to f/1 x fl1 coincide. The relation -+2 is defined similarly. 

EXAMPLE 3.3. Let 

{ 
F(x, y) -+ G(x) <= x ,J..y 

Sli = A -+ B 

and suppose st2 contains an unary function symbol g. We have F(g(A), g(B)) -+""1 G(g(A)) 

but not F(g(A), g(B))-+1 G(g(A)) because g(A) and g(B) are different normal forms with 

respect to -+i. The terms F(g(A), g(B)) and G(g(A)) are joinable with respect to -+1: 

F(g(A), g(B)) -+1 F(g(B), g(B))-+1 G(g(B)) t-1 G(g(A)). 

NOTATION. The union of -+1 and -72 is denoted by-+1,2 and we abbreviate -+St1 E9"'1 to-+. 

PROPOSmON 3.4. Ifs -+1.2 I then s -+ t. 
PROOF. Trivial. CJ 

The next proposition states a desirable property of ~ r-reduction. The proof however is 

more complicated than the analogical statement for TRS's (cf. Lemma 3.2 in [22]). 

PROPOsmoN 3.5. Let s, t be black terms and suppose a is a top white substitution such that 

a(s)-+~ a(t). lf-cisa substitution withaoc t then-c(s)-+'i -c(t). 

Bit~:.:,_,•hr;ek 

#;\;mtrum \i0t)1 \f . . ~ .. 111·11.lt• t'!n Inform~ 
.~~,1""1;.:rerdarn 
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PROOF. We prove the statement by induction on the depth of a (s) ~r a (t). The case of zero 

depth is straightforward. If the depth of a(s) ~Y a(t) equals n+l (n ~0) then there exist a con­

text C ( ], a substitution p and a rewrite rule l ~ r <= s 1 .!. t 1, ••• , Sm .!. tm in 9'.1 such that 
a(s) = C[p(l)], o(t) sC[p (r)] and p(s;) J.! p (ti) for i= 1, ... ,m with depth less than or equal 

to n. Proposition 2.10 yields a decomposition p2 o p1 of p such that p1 is black, P2 is top white 
and p2 oc e. The situation is illustrated in Figure 2. We define the substitution p• by 

O' 

P2 

FIGURE2. 

p*(x) = 't (y) for every x e.i>(p2) and ye .i>(a) satisfying p2 (x) = a(y). Notice that p* is well­
defined by the assumption er oc 't. We have p2 oc p* since p2 oc e and e oc p•. Combined with 

P2 (P1 (s;)) J.Y P2 (p1 (t;)), the induction hypothesis and the observation that if p2 (u 1) ~Y u2 and 
u 1 is a black term then u2 = p2 (u3) for some black tenn u3 , we obtain p*(p1 (s;)) .. l,i p*(P1 (I;)) 

by a straightforward induction on the length of the conversion p2 (p1 (s;)) J.Y P2 (p1 (t;)) for 
i = 1, ... , m (see Figure 3). Hence p•(pi(l)) ~r p*(p1 (r)). Let c* [] be the context obtained 

P2 (P1 (s;)) U1 U2 P2 (P1 (t;)) 

= = 5 = observation 

P2 (P1 (s;)) P2 (v1) P2 (v2) P2 (P1 (t;)) 

~ ~ ~ ~ 
induction 

hypothesis 

p*(P1 (s;)) p*(v1) p*(v2) p*(P1 (t;)) 

= 0 

1 
FlGURE3. 

from C (] by replacing every principal subtenn, which has the form a (x) for some variable 

x eil(o), by the corresponding t (x). We leave it to the motivated reader to show that 

t (s) = C"[ p*(pi(/))] and t (t) = C*[ p*(P1 (r))]. We conclude thatt (s) ~~ t(t). c 
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LEMMA 3.6. The rewrite relation -11,2 is confluent. 

PROOF. Define the unconditional TRS's Y1 and Y2 by (i = l, 2) 

Yi = { s -'> t I s, t E 5; and s -ti t}. 

With some effort we can show that the restrictions of -'>:1,. -7; and -7St, to 5; x 5; are the same t. 

Therefore .i'1 and :1'2 are confluent TRS's. Theorem 2.3 yields the confluence of Y'1 $.i'2 • We 

will show that -'>:1, and -7; coincide (on 5x ;/).Without loss of generality, we only consider the 

case i= 1. 
~ Ifs -'>:11 t then there exists a rewrite rule 1-t r in .i'i. a substitution cr and a context C [] 

such that s == C [ cr (l)] and t == C [ cr (r)]. By definition l -71 r, from which we immediately 

obtains -t1 t. 

;;;;i Ifs -71 t then there exists a rewrite rule l -7 r <= s 1 .J, ti. ... , Sn .J, tn in S'li. a substitution cr 

and a context C [] such that s = C [ cr (l)], t = C [ cr (r)] and cr (s;) ir cr (t;) for i = l, ... , n. 

According to Proposition 2.10 we can decompose cr into cr2 o cr 1 such that a 1 is black, cr2 is 

top white and o2 oc £. Induction on the number of rewrite steps in a (s;) J_ i a (tj} together 

with Proposition 3.5 and the observation made in the proof of Proposition 3.5 yields 

01 (s;)J.~ cr1 (t;) (i = 1, ... , n). Hence o 1 (I) -t1 a 1 (r). Because cr1 (l) and cr1 (r) are black 

tenns, cri(/) -Hl·i(r) is a rewrite rule of :f 1. Therefore s = C [ cr2 (cri(/))] 

-1s 1 C [ cr2 (cr1 (r))] = t. 
Now we have -7:11 m:12 = -'>111 u -1:11 = -'>1 u -'>2 = -'>1,2 • Therefore -'>1,2 is confluent. a 

Due to space limitations, the reader is referred to the full version [17] of this paper for the 

complicated proof of the next proposition. The proof can also be found in [20]. 

PRorosmoN.3.7. Let s 1> ••• , sn- t 1, ... , tn be black terms. For every substitution cr with 

cr (s;) .J,1,2 cr (ti) for i = 1, ... , n there exists a substitution 't such that cr -»1,2 't and 't (si) ir 't (ti) 
for i = 1, ... , n. o 

LEMMA 3.8: Ifs -1 t then s .J,1,2 t. 

PROOF. We use induction on the depth of s-'> t. The case of zero depth is trivial. Suppose the 

depth of s -7 t equals n + 1 (n 2! 0). By definition there exist a context C [ ], a substitution o and a 

rewrite rule l-7r<=sdt 1, ... ,sm.J,tm in5i'.1 EEl9l2 such thats=C[a(l)], t=C[a(r)] and 

cr (si) .J, cr (ti) (i = 1, ... , m) with depth less than or equal to n. Using the induction hypothesis and 

Lenuna 3.6 we obtain cr(s;).J,1,2 cr(t;) (i= 1, ... , m), see Figure 4 where (1) is obtained from the 

induction hypothesis and (2) signals an application of Lemma 3.6. Without loss of generality 

we assume that the applied rewrite rule stems from Ji'.1• Proposition 3.7 yields a substitution 't 

such that a -1>1,2 't and 't (si) .J, j 't (li) (i = 1, ... , m). The next conversion shows that s J.1,2 t: 

s = C [a(/)] -»1,2 C [ 't (l)] -71 C [ 't (r)] «-1,2 C (a (r)] = t. 
Cl 

t A minor technical complication is caused by rewrite rules containing extra variables in the conditions. 
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cr(si) Q: >p; ,__ _____ );O; ~:t'.'l~------p a(t1) 
/ ' / ' / ' 

; ' ' (1) ; ' ' ; 

' / v (2) 
' ' ' ' / 

v 
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' 

; 

(1) / ' (1) / ' ' (1) , / 
/ ' / ,, ' / ' / ' / 

~ (2) ~ (2) ~ 
/ 

/ 

; 
/ 

.; 
; 

; 

/ 

/ / 
; / 

/ / 
/ / 

/ 
.; 

/ 

/ 
/ 

/ 

' ; ; ' / / 

~ /// 

' / ' ; ' ; ' / v ----> = 
FIGURE 4. 

THEOREM 3.9. Confluence is a modular property of join CTRS' s. 

1,2 

PROOF. Suppose :R.1 and Jli are disjoint join CTRS's. We must prove the following 

equivalence: :R.1 E9 :R.2 is confluent <=> both :R.1 and :R.2 are confluent 

=> Trivial. 

<= Easy consequence of Proposition 3.4, Lemma 3.6 and Lemma 3.8. 

Cl 

4. Concluding Remarks 

In the previous section we have shown that confluence is modular property of join 
CTRS's. Since every normal C1RS can be viewed as a join CTRS, this result also holds for 

nonnal CTRS's. Confluence is also a modular property of semi-equational CTRS's. The proof 

has exactly the same structure, apart from the proof of Proposition 3.5, which is more compli­

cated because the observation made in order to make the second induction hypothesis applica­

ble is no longer sufficient Details can be found in [17] or (20]. It is conceivable that we might 
prove a more general theorem from which we not only immediately obtain the above results, 

but also 

(1) the modularity of confluence for other kinds of CTRS's like normal-join systems or meta­
conditional systems (see [4]), and 

(2) confluence results for the disjoint union of two different kinds of CTRS's. 

This matter clearly has to be further pursued. 

Another point which needs investigation is the syntactic restrictions imposed on the 

rewrite rules. From a programming point oC view the assumption of a rewrite rule 

l ~ r <= s i = t l • ... , s11 = 111 satisfying the requirement that r only contains variables occurring in 
l, is too restrictive. A semi-equational CTRS like ([3J) 

{
Fib (0) ~ <0, S (O)> 

Jl= Fib(S(x)) ~ <z,A(y,z)> $::= Fib(x)=<y,z> 
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should be perfectly legitimate. The CTRS's :1l we are interested in, can be characterized by the 

phrase "ifs ~.lit t then s ~ t is a legal unconditional rewrite rule". However, the proofs in the 

preceding sections cannot easily be modified to cover these systems. For instance, Proposition 

2.6 is no longer true and the proof of Proposition 3.5 seems insufficient 

In (18] and [19] we extended several other modularity results for TRS's to CfRS's. 

Acknowledgements. The author would like to thank Roel de Vrijer for discussions leading to a 

better understanding of the problem and Jan Willem Klop and Vincent van Oosttom for care­
fully reading a previous version of this paper. 
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