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In this article we describe a translation of the Parallel Object-Oriented 
Language POOL to the language of ACP, the Algebra of Communicating 
Processes. This translation provides us with a large number of semantics for 
POOL. It is argued that an optimal semantics for POOL does not exist: what is 
optimal depends on the application domain one has in mind. We show that the 
select statement in POOL makes a semantical description of POOL with 
handshaking communication between objects incompatible with a description 
level where message queues are used. Attention is paid to the question how 
fairness and successful termination can be included in the semantics. Finally it 
is shown that integers and booleans in POOL can be implemented in various 
ways. 

1. INTRODUCTION 

At this moment there are a lot of programming languages which off er facilities 
for concurrent progranuning. The basic notions of some of these languages, for 
example CSP [18], occam [19] and LOTOS (20], are rather close to the basic 
notions in ACP, and it is not very difficult to give semantics of these languages 
in the framework of ACP. Milner (23] showed how a simple high level con­
current language can be translated into CCS. However, it is not obvious at first 
sight how to give process algebra semantics of more complex concurrent pro­
gramming languages like Ada [6], Pascal-Plus [13] or POOL (1-3]. This is an 
important problem because of the simple fact that a lot of concurrent systems 
are specified in terms of these languages. In this article we will tackle the 
problem, and give process algebra semantics of the language POOL. 

In order to modularize the problems we first give, in Section 2, a translation 
to process algebra of a simple sequential programming language: with each ele­
ment of the language a process is associated, specified in terms of the operators 
·, +, ~ (sequential and alternative composition, and chaining). 

In Section 3, we give process algebra semantics of a representative subset of 
the programming language POOL-T (see [l]). POOL is an acronym for 'Paral­
lel Object-Oriented Language'. It stands for a family of languages designed at 
Philips Research Laboratories in Eindhoven. The 'T' in POOL-T stands for 
'Target'. POOL is a language that permits the programming of systems with a 

Partial support received from the European Community under ESPRIT project no. 432, An In­
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large amount of parallelism, using object-oriented programming. I~ [4] an 
operational semantics is given of a l~~age from. the POOL-family .. Our 
semantics of POOL is to a large extent msprred by this paper. A denotational 
semantics of POOL is presented in [5]. 

In order to deal with the complexity of POOL (compared to the toy 
language of Section 2) we make use of attribute grammars. We associate with 
each (abstract) POOL program a process specified in the signature of ACP 
together with some additional operators. As soon as the translation of a pro­
gramming language into the signature of ACP (+additional operators) is 
accomplished, the whole range of process algebras becomes available as possi­
ble semantics of the language. We think this is a major advantage of our 
approach. Especially when dealing with concurrent programming languages, 
the answer to the question what is to be considered as the optimal semantics, 
is heavily influenced by the application one has in mind: if the system that 
executes the program is placed in a glass box and does not communicate with 
the external world, one can work with a more identifying semantics (allowing 
for simpler proofs) than in the case in which the system is part of a network 
and does communicate with the external world. Issues like fairness and the 
presence of interrupt mechanism are also relevant in the choice of the optimal 
semantics. The axioms we will give correspond to bisimulation semantics. In 
this semantics relatively few processes are identified, and therefore all the 
results we will prove are also valid in a large number of other semantics. 

The process algebra semantics are very operational: we can define a term 
rewriting machine that executes the process algebra specification we relate to a 
program. Interestingly, the semantics are also (to a large extent) composi­
tional: the value denoted by a construct is specified in terms of the values 
denoted by its syntactic subcomponents. 

A good theory of semantics of programming languages is a method which 
makes it possible to predict the behaviour of a computer that executes a pro­
gram. Furthermore a good theory assists people in building new predictable 
computers. This implies that a theory of semantics of programming languages 
should provide tools which make it possible to substantiate the claim that the 
mathematical models in which the language constructs are interpreted indeed 
model reality. In our framework such a tool is the abstraction operator T1. 

This operator makes it possible to prove that the semantics of POOL as 
presented in Section 3 has a common abstraction with a number of other 
semantics of the language, which are closer to implementation. 

In an implementation of the language POOL there will be message queues in 
which the incoming messages for an object are stored. On the conceptual 
level, there are no queues and we have handshaking communication between 
the objects. In Section 4 an example is presented which shows that these two 
views are in contradiction with each other. The problem is due to the so­
called 'select statement', which is part of the language POOL-T. A minor 
change in the definition of the select statement is proposed in order to remove 
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this difficulty'. However, it is shown that even with the new language 
definition the two descriptions are different in bisimulation semantics. 
Although we think that the two views of a POOL system are equivalent in 
failure semantics, we have not proved this. 

A similar question is dealt with in Section 6: on the conceptual level each 
integer and boolean in POOL is an object which has a data part and a process 
part. In an implementation this is of course not the case. Instead, an imple­
mentation will contain some special circuits for arithmetical and logical opera­
tions. We prove that these views of the system have a common abstraction. 

In Section 5 we discuss a trace semantics of the language POOL. A lot of 
things can be proved with more ease in this semantics, but we show that this 
semantics does not describe deadlock behaviour in a situation in which the 
POOL system interacts with the environment. We also pay some attention to 
the question how issues like fairness and successful termination can be 
included in a semantical description of POOL. 

Section 7 contains a number of conclusions. 
At the end of this introduction we give the definition of the renaming opera­

tors and chaining operators. These operators will pay an important role in the 
rest of the paper, but are not described in the introduction of this volume. 

1.1. Renaming operators (RN) 
For every function f:AT8-?A.,s with the property that f (8)=8 and f('r)=r, 
we define an operator p1 : P~P. Axioms for Pf are given in Table I.I. (Here 
aEATs.) 

pj(a) = f (a) RNl 

pj(x +y) = pj(x)+pj(y) RN2 

pj(xy) = pj(x)·p_t(y) RN3 

TABLE 1.1 

For t EA Tll • and H <:A we define the function r1,H : A Tll ~A Tll by: 

{
t if aEH 

'i.n(a) = a otherwise 

We use tH as a notation for the operator Pr,,H· The operators an and on are 
considered to be equal. 

I. In a more recent offspring of the POOL-family of languages, called POOL2 (see [3]), the select 
statement has been removed altogether. Instead this language contains a 'conditional answer state­
ment'. It seems that this construct does not lead to semantical problems like the select statement. 
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1.2. Chaining operators (CH) 
A basic situation we will encounter is one in whlch there are processes which 
input and output values in a domain D. Often we want to 'chain' two 
processes in such a way that the output of the first one becomes the input of 
the second. In order to describe thls, we define chaining operators :::P> and ». 
In the process x>:::Py the output of process x serves as input of process y. 
Operator » is identical to operator >~, but hides in addition the communi­
cations that take place at the internal communication port. The reason for 
introducing two operators is a technical one: the operator » (in whlch we are 
interested most) often leads to unguarded recursion. We will define the chaining 
operators in terms of the operators of ACP1 +RN. In this way we obtain a 
finite axiomatisation of the operator (if the alphabet of atomic actions is 
finite). 

First we make a number of assumptions about the alphabet A and the com­
munication function y. Let for d ED, td be the action of reading d, and id be 
the action of sending d. Let A' be the following set 

A'= {id,td, s(d),r(d),c(d) I dED}. 

We assume A'~A and furthermore that for a,bEA-A': y(a,b)~A'. On A' 
communication is defined by 

y(s(d),r(d)) = c(d) 

and all other communications give o. Define HCH = {s(d),r(d) I dED}. The 
renaming functions f and g are defined by 

f (id) = s(d) and g(td) = r(d) (dED) 

and f (a)=g(a)=a for every other aEA 18 . Now the 'concrete' chaining of 
processes x and y, notation x >>>y, is defined by means of the axiom 

Figure 1.1 contains a graphical display of the construction. 
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Define the set I cH = { c ( d) I d ED}. The 'abstract' chaining of processes x 
andy, notation x»y, is defined by means of the axiom 

I x»y = 'TfcH(x>>>y) CHA I 

One of the properties of the chaining operators we use most is that they are 
associative (under some very weak assumptions). The conditional axioms 
below state that the chaining operators are associative if the actions of HcH do 
not occur in the alphabets of the components. In [26] it is shown that, if we 
add some natural axioms about alphabets to the axiom system, these two 
axioms become derivable. 

o:(x) n HcH =o:(y) n HcH =o:(z) n HCH = 0 

(x>~y)~>z =x>>>(y>~z) 

o:(x)nHCH =o:(y)nHCH =o:(z)nHCH = 0 

(x»y)»z =x»(y»z) 

CCl 

CC2 

The module consisting of axioms CHC, CHA, CCI and CC2 is denoted CH. 

1.2.1. Notation. For the term 

x~>( ~ td1 · · · ~ tdn ·yd,, ... ,d,) 
d, ED, d.ED. 

(where D 1, ••• ,Dn <;;,D) we write 

x>>>d,, ... ,d. Jd,, ... ,d,, 

In all applications it will be clear from the context what Di. ... ,Dn are. A simi­
lar notation is used for the »-operator. 

2. A SIMPLE SEQUENTIAL PROGRAMMING LANGUAGE 
The following definition of a simple programming language is adopted from 
[9]. In the definition a choice between different versions of a rule is indicated 
by a vertical bar ('I'). 

2.1. DEFINITION (syntax of /exp, Bexp and Stat). Let Ivar, with typical ele­
ments v,w,u, ... , and Jeon, with typical elements o:, ... , be given finite sets of 
symbols. 
a. The class /exp, with typical elements s,t, ... , is defined by 

s ::= v I o: I s 1 +s2 I · · · I ifb thens1 elses2 fi 
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(Expressions such as s1 - s2, s 1 Xs 2, ... may be added at the position of 
the .. ., if desired.) 

b. The class Bexp, with typical elements b, ... , is defined by 

b ::::: true I false I s1 = s2 I · · · I-, b I b1 ::J b2 

(Expressions such as s 1 < s2, ••• may be added at the position of the .. ., if 
desired.) 

c. The class Stat, with typical elements S, ... , is defined by 

S ::= v :=s I S 1 ; S2 I ifb then S1 else S2 fi I whileb doS od 

2.2. Note. In contrast to [9], we require the sets Ivar and Icon to be finite. If 
we would allow them to be infinite this would lead to infinite sums in our pro­
cess algebra specifications. It is trivial to add an infinite sum operator to, for 
example, the term model defined in [16]. However, the combination of such 
an operator and the abstraction operators TJ leads to a number of non-trivial 
questions that are worth separate investigation. For this reason we will confine 
ourselves to the finite case in this article. 

2.3. Semantics of the toy language. We will now relate to each element of the 
language defined in Section 2.1, a recursive specification in the signature of the 
operators·, + and ~- The first thing we have to do is to give the parame­
ters of ACP: the alphabet A and the communication function. The value 
domain D of the chaining operator is 

D = (Ivar~Jcon)Ulcon U {true, false}. 

Here Ivar~Icon is the set of all functions from variables to their values. The 
set A of atomic actions is the set A' as described in Section 1.2. Communica­
tion on A' is also as described in Section 1.2. 

2.4. Notation. Let aElvar~Icon, v Elvar and aElcon. We use the well-known 
notation a{alv} to denote the element of Jvar~Icon that satisfies for each 
v'Elvar 

{
a if v'=v 

a{alv}(v') = a(v') otherwise 

2.5. Below we give a number of process algebra equations. The variables in 
these equations are elements of the toy language with semantical brackets ( '[' 
and']') placed around them, often sub- and super-scripted with elements of D. 
The process corresponding to execution of language element 
wElexpUBexpUStat, with an initial memory configuration oElvar-+lcon, is 
the solution of this system, with 

[w]a 
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:aken as root variable. Throughout the rest of this section a,a' El con, 
r3,,8'E{true,false} and a,a'Elvar~Icon. 

?. 6. The class I exp 

[v]0 = jcr(v) 

[a]O = jo: 

[s1 +s2]0 = [s,]0 ·[s2]"~>a,a'fsum(a,a') 

[ifb then s1 else s 2 fi]0 = [b]">>>(!true·[s 1]0 + tfalse·[s 2] 0 ) 

2. 7. The class Bexp 

[true]0 = jtrue 

[false]" = jfalse 

[s1 =s2]" = [s1]" ·[s2]">>>.,,A=]a,a' 

{
jtrue if a= o:' 

[ = ]a,a' = jfalse otherwise 

[......,b]0 = [b]"~>(!true·jfalse + tfalse·jtrue) 

[b 1 ::J b2]" = [b 1 ]" >>>(!true·[b2D°' + tfalse·jtrue) 

2.8. The class Stat 

[v: =s]" = [s]0 >>>a jcr{ o:/ v} 

[S1 ;S2]" = [S1]">~",[S2]"' 

[ifbthen S1 else S 2 fi]" = [b]">>>(ttrue·[S 1]" + tfalse·[S2]") 

[whilebdoSod]" = [b]">~ 

(!true·([S]" >>>Awhile b do Sod]"') + tfalse·jcr) 

The following theorem shows that the specification presented above singles out 
a unique process. 

2.9. THEOREM. The specification defined in 2.6-2.8 is guarded. 

PROOF. Define a relation ~ between elements of:=: by 

X ~ Y ~ Y occurs unguarded in tx. 

It is enough to show that the relation ~ is well founded (i.e. there is no 

infinite sequence X1 ~X2 ~X3 · • • ). This can be done by defining a 
function m : :=:~N such that for X, YE:=: 
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X ~y =:} m(Y)<m(X). 

The definition goes by induction on the complexity of the language elements in 
the variables. We give only a very small part of it. This should convince the 
reader that it is possible to give a complete definition, which has the desired 
property. 

etc. 0 

m([v]0 ) = l 
m([a]") = 1 

m([s1 +s2)") = m([s1]") + m([s2]") 

2.10. Note. As a direct consequence of axiom CCl we have that ';' is associa­
tive: 

2.11. Remark. In the equation for [s 1 +s2]" we say that, in order to evaluate 
s 1 +s2, we first have to evaluate s 1 and thereafter s2. Other possibilities would 
have been 

[s 1 +s2]" = [s2]" · [s 1 ]">~a,a'jsum (a,a') 

(evaluation in the reverse order), or 

[s1 +s2]" = ([s1]"ll[s2] 0')~>a,a'isum(a,a') 

(evaluation in parallel). The three resulting semantics are all different. One can 
prove however that they are identical after appropriate abstraction. 

2.12. Remark. It is easy to define a term rewriting system which, for given 
guarded specification E = {X=tx \ XES}, rewrites a given term tin the sig­
nature of ACPT +RN+ CH with variables in :=:, into a term of the form 
"ia; · t; + "ib1. Now the simple data flow network of Figure 2.1 represents a 
machine that 'executes' specification E. Here TRS is a component that imple­
ments the term rewriting system described above, and N is a nondeterministic 
device that for each input "ia; · t; + "ib1 chooses either one summand a; ·t;, 
and thereafter sends term t; to the input port and atomic action a; to the out­
put port, or chooses one summand b1 and sends this to the output port. 

The following theorem says that the operators + and >>> can be eliminated 
in favour of the sequential composition operator " This means that in the case 
of the toy language the nondeterrninistic device N of Section 2.12 never has a 
real choice. 
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2.13. THEOREM. Using the axioms of ACP+RN+CH+RDP+PR+AIP- we 
can prove: 

(1) 'rlsE!exp 'rlaE(lvar-'?/con) 3d1, ••• ,dnED 3aE!con: 

[s]a = c(di) · · · c(dn)·ta 

(2) VbEBexp VaE(Ivar-'?/con) 3d1, ••. ,dnED 3,BE{true,false}: 

[b]a = c(di) · · · c(dn)·t/3 

(3) VS EStat VaE(lvar-'?/con): 
(3d1, ... ,dnED 3a'E(lvar-'?/con): [S]" = c(d1) · · · c(dn)·ta') 
V (3d1,d2, ... : [S]a = c(di)·c(d2) · · ·) 

PROOF. By induction on the complexity of the language elements. 0 

2.14. REMARK. The reason why we used the operator ~> instead of operator 
» in the definitions above is that the use of » would lead to unguarded sys­
tems of equations. There exist models of ACP7 (for example the term model 
discussed in [16]) in which we can relate to each specification (so also the 
unguarded ones) a special solution. If we would work in these models it would 
be possible to use the operator » instead of the operator ~>. But as stated 
before, we do not want to restrict ourselves to one single model. In the 
axiomatic framework the following approaches are available if one wants to 
obtain 'abstract' semantics: 
1. Partial abstraction. In the system of equations defining the semantics of 

the toy language (Sections 2.6-2.8) we can replace all occurrences of 
operator ~> in the equations for the classes !exp and Bexp by an opera­
tor ».Using induction on the structure of the elements of !exp and Bexp 
one can prove that the resulting system is still guarded. It is not possible 
to replace occurrences of ~> in the equations for elements of the class 
Stat by ». Consequently this approach will not lead to 'full abstractness'. 

2. Delayed abstraction. Let E be a guarded specification that contains no r­

steps or abstraction operator. For a language element w and a memory 
configuration a, [w]" is the formal variable that corresponds to execution 
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of w with initial memory configuration a. Now we extend specification E 
with variables (w)0 for which we have equations 

(w? = 1"I([w]0 ). 

Here I is a set of 'unimportant' actions which we want to hide. Formal 
variable (w)a corresponds to the execution of program w with initial 
memory state a, in an environment where actions from I cannot be 
observed. Call the new system E1 . E1 has a unique solution because E 
has one. Note that when we follow this approach we lose, to a certain 
extent, compositionality. 

3. Combination of l and 2. 

3 TRANSLATION OF POOL TO PROCESS ALGEBRA 

3.1. In this section we give a translation to process algebra of a (representa­
tive) subset of the programming language POOL-T. POOL is an acronym for 
'Parallel Object-Oriented Language'. It stands for a family of languages 
designed at Philips Research Laboratories in Eindhoven. The 'T' in POOL-T 
stands for 'Target'. Below we give, by means of a context-free grammar, the 
definition of a language POOL-..l-CF. This language is a subset of the context 
free syntax of POOL-T, as presented in [I ]1. In this section we will give pro­
cess algebra semantics of a language POOL-..l, defined by: 

POOL-..l = POOL-TnPOOL-..l-CF. 

By giving a definition in this way we do not have to give an exhaustive 
enumeration of all the context conditions. Because most of the context condi­
tions in POOL are rather obvious ('all instance variables are declared in the 
current class definition', etc.), this is not a serious omission. Moreover, we will 
mention context conditions whenever we need them. 

First we will define a mapping SPECc that relates a process algebra 
specification to each element of the language POOL-..l. The subscript Cindi­
cates that the resulting specification is in the signature of concrete process 
algebra, as opposed to the specification we will present in Section 3.11, which 
contains an abstraction operator. 

3.2. Contextjree languages. Although the notions of a context-free grammar 
and the language generated by it will be commonly known, we give a formal 
definition, because we will need this later on. 

I. Except for the fact that the expression denoting the destination object in a send-expression can 
be nil in POOL-..L-CF, which is not the case in the context-free syntax of POOL-T. 
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3.2.1. DEFINITION. A co~textjree grammar is a 4-tuple G = (T,N,S,P), 

where T a~d N are firute sets of terminal resp. nonterminal symbols; 

!' = T_ UN is called the vocabulary of symbols; SEN is the start symbol, and P 

1s a fimte set of production rules of the form x0_,x1 • • • Xn with XoEN, n>O, 
and X i. ... , Xn E V - { S}. 

3.2.2. DEFINITION. Let G = (T,N,S,P) be a context-free grammar, and let 

V = TUN. Let 0L = (N - { 0 })' be the set of sequences of positive natural 

numbers. We write e for the empty string, and use a.O as a notation for 

sequence a. A derivation tree of G is a 2-tuple t = (nodes (t),label (t)), where 

nodes(t) is a nonempty finite subset of 9L such that for all aE9L and 
m,nEN-{0}: 
l. a.n Enodes(t) ~ aEnodes(t) 

2. a.n Enodes (t)/\m <n ~ a.m Enodes(t) 

and label(t) is a function from nodes(t) into V such that if a.n Enodes(t) and 

a.(n + I)~nodes(t), and label(t)(a.j) = J0 for O~j~n, then production 

(Xo-?X1 · · · Xn) is in P. (Xo-?X1 · · · Xn) is called the production applied at 

a. An element aEnodes(t) is called a leaf if a.l~nodes(t). A derivation tree is 

called complete if the labels of all the leaves are in T. Let a1 · · · O"n be the 

sequence consisting of all the leaves of t, ordered lexicographically. Now 

yield(t) is the sequence label(a1) · · · label(an). 

3.2.3. DEFINITION. Let G = (T,N,S,P) be a context-free grammar. The 

language L ( G) generated by G is the set 
L(G) = {yield(t) I t is a complete derivation tree of G and label(t)(£)=S}. 

3.3. Objects in POOL A system that executes a POOL-program can be 

decomposed into objects. An object possesses some internal data, and also a 

process, that has the ability to act on these data. Each object has a clear 

separation between its inside and its outside: the data of an object cannot be 

accessed directly by (the process part of) other objects. 
Interaction between objects takes place in the form of so-called method calls. 

One object can send a message to another object, requesting it to perform a 

certain method (a kind of procedure). The result of the method execution is 

sent back to the sender. In this way one object can access the data of another 

object. However, because the object that receives a method call decides 

whether and when to execute this method, every object has its own responsibil­

ity of keeping its internal data in a consistent state. 
The programs of POOL are called units. A unit consists of a number of class 

definitions. A class is a description of the behaviour of a set of objects. All 

objects in one class (the instances of that class) have the same data domain, the 

same methods for answering messages, and the same local process (called the 

object's body). 
If a unit is to be executed, a new instance of the last class defined in the 

unit is created and its body is started. The body of an object can contain 
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instructions for the creation of new objects. This makes it possible for the first 
object to start the whole system up. 

When several objects have been created, their bodies may execute in parallel, 
thus introducing parallelism into the language. However, the sender of a mes­
sage always waits until the destination object has returned its answer (this 
mechanism is known as rendez-vous message passing). 

A number of standard classes are already predefined in the language (e.g. 
Integer and Boolean). They can be used in any program without defining them, 
but they also cannot be redefined. 

The symbol nil denotes for each class a special object present in the system. 
Sending a message to such an object will always result in an error. The initial 
value of variables that are not parameters of a procedure is nil. 

Because numbers are also objects, the addition of 3 and 4 is indicated in 
POOL by sending a message with method name add and parameter 4 to the 
object 3. 

We first give, in Section 3.4, the formal definition of POOL-..L-CF. Section 
3.5 contains some remarks concerning this definition, and the relation with 
POOL-T and POOL-..L. 

3.4. DEFINITION (POOL-..L-CF). We assume that two finite sets, Ud and 
Uld, of syntactic elements are given. These sets correspond to the lower­
identifiers resp. upper-identifiers in POOL-T. Elements of Ud are strings start­
ing with a lower case letter, elements of Uid start with an upper case letter. 
We define: Id= LldUUld. Let N0 el\I be given. The set Int of integers in 
POOL-..L is 

Int = {-N0 , .. .,-1,0,1, ... ,N0 }. 

N 0 can not be w because that would lead to infinite sums and infinite merges. 
The set Boo/ of booleans is 

Boo! = {true,false}. 

Now the context-free grammar G, which defines POOL-..L-CF, is 

G = (T,N,U,P) 

where 

T = Id U Int U Bool U {root, unit, class, var, body, end, method, routine, local, in, nil 

return,post,if,then,else,fi,do,od,sel,les,or,answer,self,new, ; , ·, ~, ! , , , : } 

N = { U,RU,CDL, CD,MDL,MD,RDL,RD,PD, VDL, VD,SS,S,SE, 

GCL,GC,AN,MIL,E,CO,SN,RC,MC,EL,CI,MI,RI, VI} 

P : see Table 3.1 

In Table 3.1, optional syntactical elements are enclosed in square brackets ( '[' 
and']'). 



Process algebra semantics of POOL 185 

Syntax of POOL-..L 

No Description Syntactic Rule 

unit u_,,Rv 

2 root unit RU-'>root unit CDL 

3 class definition list CDL-'>CD [, CDL] 

4 class definition CD-'>class CI[varVDL ][RDL ][MDL] 
body SS end C/ 

5 method definition list MDL-'>MD [MDL] 

6 method definition MD-'>method MI PD end MI 

7 routine definition list RDL-7RD [ RDL] 

8 routine definition RD-?routine RI PD end RI 

9 procedure denotation PD-'>( [ VDL]) C/: [local VDL in] [SS] 
return E [post SS] 

10 variable declaration list VDL-7 VD [, VDL ] 

11 variable declaration VD-'>Vl: Cl 

12 statement sequence ss_,,s [; ss J 

13 statement s_,, VI~E 
IAN 
I if Ethen SS [else SS ]fi 
I do E then SS od 
I SE 
I SN 
I MC 
I RC 

14 select statement SE-'>sel GCL Jes 

15 guarded command list GCL-'>GC [or GCL ] 

16 guarded command GC-'> E [AN ]then SS 
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17 answer statement 

18 method identifier list 

19 expression 

20 constant 

21 send expression 

22 method call 

23 routine call 

24 expression list 

25 class identifier 

26 method identifier 

27 routine identifier 

28 variable identifier 

AN 4answer ( MIL) 

M/L4Ml [ ,MIL] 

£4 VI 
I self 
I co 
I new 
I SN 
I MC 
I RC 
1 nil 

C04c (for c EBool U lnt) 

SN4 E !MI([EL ]) 

MC4Ml([EL]) 

RC4 Cl· Rf ([EL]) 

EL4E[,EL] 

Cl4 C (for CE Uld) 

Ml 4 m (for m ELJd) 

Rf 4 r (for r ELld) 

VJ4 V (for V ELfd) 

TABLE 3.1 

3.5. Remarks (numbers refer to productions). 

F. W Vaandrager 

(1) In POOL-T a unit can also be a specification unit or an implementation 
unit. This makes it possible to group a set of class definitions together 
into a logically coherent collection and to specify a clear interface with 
other units. 

(2) The names of the classes defined in a unit must be different (similar 
context conditions in (5), (7), (9) and (10)). There are 4 standard 
classes: Integer, Boolean, ReadJ'i/e and Write _File. The definitions of 
these classes can be found in Section 3.9.3. The standard classes can be 
used in any program without defining them, but they also cannot be 
redefined. Elements of lnt are instances of class Integer and elements of 



Process algebra semantics of POOL 187 

(4) 

(8) 

(9) 

(11) 

(13) 

(14) 

Boo! are instances of class Boolean. 
The class identifier following the end must be identical to the initial 
class identifier (similar context conditions in (6) and (8)). 
Routines are procedural abstractions related to a class, rather than to 
an individual object. They can be called also by objects from another 
class. Two objects can call and execute a routine concurrently as though 
each has its own version of the routine. 
The first variable declaration list is the formal parameter list, the second 
one contains the local variables of the method or routine. Only in the 
case of a method, a post-processing section may be present. The type of 
the return expression must be the same as the class identifier in the pro­
cedure denotation. 
A strong typing mechanism is included in the language: each variable is 
associated to a class (its type) and may contain the names of objects of 
that class only. 
The statement VI ~E is called an assignment and executed as follows: 
First the expression on the right hand side is evaluated and its result (a 
reference to an object) is determined. Then the variable is made to con­
tain this reference. 
The statement do E then SS od is the classical while statement. 
A send expression, a method call and a routine call can occur as state­
ment as well as expression. If they occur as statement, the correspond­
ing expression is evaluated, and its result is discarded. So only the 
side-effects of the evaluation are important. 
The select statement is the most complicated construct in the language. 
It specifies the conditional answering of messages. A select statement is 
executed as follows: 

All the expressions (called: guards) of the guarded commands 
are evaluated in the order in which they occur in the text. If any 
of them results in nil, an error occurs. 
The guarded commands whose expressions result in false are dis­
carded, they do not play a role in the rest of the execution of the 
select statement. Only the ones with true (the open guarded com­
mands) remain. If there are no open guarded commands, an 
error occurs. 
Now the object may choose to execute the (textually) first open 
guarded command without an answer statement, or it may 
choose to answer a message with a method identifier which 
occurs in one of the answer statements of an open guarded com­
mand that has no open guarded command without an answer 
statement before it. In the last case it must select the first open 
guarded command in which the method identifier of the chosen 
message occurs. 
If the object has chosen to answer a message, this is done. 
After that in either case the statement after then is executed, and 
the select statement terminates. 
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(17) 

(19) 

(21) 

(22) 

F. W. Vaandrager 

An object executing an answer statement waits for a message with a 
method name that is present in the list. Then it executes the method 
(after initializing parameters). The result is sent back to the sender of 
the message, and the answer statement terminates. 
The symbol self always denotes the object that is executing the expres­
sion itself. 
The expression new may only occur in a routine. When a new expres­
sion is evaluated, a new object of the class where the routine is defined, 
is created, and execution of its body is started. The result of the new 
expression is a reference to that new object. 
When a send expression is evaluated, first the expression before the '!' 
is evaluated. The result will be the destination for the message. Then 
the expressions in the expression list are evaluated from left to right. 
The resulting objects will be the parameters of the message. Thereafter 
the message, consisting of the indicated method identifier and the 
parameters, is sent to the destination object. The answer of the destina­
tion object is the result of the send expression. 
An object may not send a message to itself. If an object wants to 
invoke one of its own methods, this can be done by means of a method 
call. A method call may not occur in a routine. 

3.6. Attribute grammars. The complexity of the language POOL does not allow 
for a translation into process algebra which is as straightforward as in the case 
of the toy language of Section 2. Several problems arise, e.g. how to establish 
the relation between a method call and the corresponding method declaration, 
the semantics of a new expression, etc. 

The main tool we will use in order to manage this complexity is the formal­
ism of attribute grammars. This is not the place to give an extensive introduc­
tion into the theory of attribute grammars. For this we refer to e.g. (12, 14,21]. 

Informally an attribute grammar is a context-free grammar in which we add 
to each nonterminal a finite number of attributes. For each occurrence of a 
nonterminal in a derivation tree these attributes have a value. With each pro­
duction rule of the context-free grammar we associate a number of semantic 
rules. These rules define the values of the attributes. Some of the attributes are 
based on the attributes of the descendants of the nonterminal symbol. These 
are called synthesized attributes. Other attributes, called inherited attributes, are 
based on the attributes of the ancestors. 

In the theory of abstract data types one presents specifications of the stack, 
Petri net people model the producer/consumer problem, and in the field of 
communication protocols one verifies the Alternating Bit Protocol. The exam­
ple one always encounters in an introduction into the theory of attribute gram­
mars is the one, first presented in (21 ], in which the binary notation for 
numbers is defined. We do not want to break with this tradition, and will also 
give the famous example. 
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3.6.1._ EXAMPLE. We start with a context-free grammar that generates binary 
notat10ns for numbers: the terminal symbols are ·, 0, 1; the non terminal sym­
bols are B, L and N, standing respectively for bit, list of bits, and number; the 
starting symbol is N; and the productions are 

B--?0 I l 
L--?B I LB 

N--?L I L·L 

Strings in the corresponding language are for instance 'O', '010', '0.010' and 
'1010.101'. Now we introduce the following attributes 

l Each B has a 'value' v(B) which is a rational number. 
2 Each B has a 'scale' s (B) which is an integer. 
3 Each Lhasa 'value' v(L) which is a rational number. 
4 Each Lhasa 'length' /(L) which is an integer. 
5 Each L has a 'scale' s (L) which is an integer. 
6 Each N has a 'value' v (N) which is a rational number. 

These attributes can be defined as follows: 

Syntactic Rules Semantic Rules 

B--?0 v(B) = 0 

L--?B v(L) = v(B);s(B) = s(L);l(L) =I 

v(N) = v(L);s(L) = 0 

v(N) = v(L 1)+v(L2);s(L1) = 0; 

s(L2) = -l(L2) 

TABLE 3.2 

(In the fourth and sixth rules subscripts have been used to distinguish between 
occurrences of like non terminals.) If one looks for some time at this equations, 
one sees (hopefully) that for each complete derivation tree t with l~bel(t)(€)=N 
there is a unique valuation of the attributes such that the semantic rules hold. 



190 F. W. Vaandrager 

Furthermore the v attribute of the root nonterminal gives the value of the 

string generated by the tree. 

Below we give a formal definition of an attribute grammar. There are many 

(often essentially different) definitions possible. The following one is a 
simplified version of the definition presented in [ 14]. 

3.6.2. DEFINITION. The elements of an attribute grammar G are: 
1. A context-free grammar G0 = (T,N,So,P). 
2. A semantic domain (or set of data types) D = (Q,<I>), where Q is a finite 

set of sets and <I> is a set of functions of type V 1 X · · · X Vm ~ V m + 1 for 

m ~O and V; EQ. In the case m =O, <I> can contain elements of V (for 
V ES2). We demand that for each V EQ there is a v E V with v Ell>. 

3. An attribute description consisting of 
a. Two finite disjoint sets S-Att and 1-Att of synthesized or s-attributes 

resp. inherited or i-attributes; Att = S -Att U l -Att is the set of attri­

butes. 
b. For X EN, S (X) and l (X) are subsets of S-Att resp. 1-Att; A (X) = 

S(X)Ul(X) is the set of attributes of X. We demand l(S0 ) = 0. 

c. For each aEAtt, V(a)EO is the (possibly infinite) set of attribute 

values of a. 
4. First some intermediate terminology: 

For each production rule p : X o ~ X 1 • • • Xn, we define the set A (p) of 
attributes of p, by 

A (p) = { (a,j) I O~j~n, aEA (Xj)}. 

Intuitively (a,j) is an attribute of the occurrence of x1 on the j-th posi­
tion in p. Furthermore the sets lNT(p) and EXT(p) of internal resp. exter­
nal attributes of p are defined by 

lNT(p) = { (a,j) I (j =O/\aES(X0))V(l ~j~n !\aEl(X1))} 

EXT(p) = { (a,j) I (j =O/\aEl(X0))V(l~j~n /\aES(Xj))} 

A semantic rule for p is a string of the form 

(a,j) = j( (ai,k1), ... ,(am,km>) (*) 

with (a,j)E/NT(p), m~O, (a;,k;)EEXT(p) for l~i~m, and /E<I> is a 
function from V(ai)X · · · X V(am) into V(a). 
Now we continue the definition: 
For each p EP, R (p) is a finite set of semantic rules for p. We demand 

that for eachpEP and (a,j)ElNT(p), R(p) contains exactly one seman­
tic rule. 

The definition above gives the 'syntax' of attribute grammars. To define the 
'semantics' of an attribute grammar, we need again some terminology: 
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3.6.3. DEFINITION. Let G be an attribute grammar. Let t be a derivation tree 
of the corresponding context-free grammar. The attributes oft are defined by 

A(t) = {(a:,o") I aEnodes(t), aEA(label(t)(a))} 

(the notation A(.) is clearly overloaded, but always means 'attributes of ... ' ). 
A decoration of t is a function 

val: A (t)~{ v I 3aEA (t): v E V(a)} 

such that for each (a,a) EA (t), val(a,a)E V(a). 

Suppose aEnodes(t) and p: x0~x1 · · · Xn is a production applied at a. If 
R (p) contains a semantic rule (*) (see Definition 3.6.2), then the string 

(a,a.j) = J(<a.1 ,a.k1), ... , <am,a.km)) (**) 

is called a semantic instruction of t. 

3.6.4. DEFINITION. A decoration vat of t is called a correct decoration if for 
each semantic instruction (* *) of t 

val(a,a.J) = f(val(aJ,<J.k1), ... ,val(am,a·km)) 

(this is a serious equality, not a string!) 

3.6.5. It follows from the Definitions 3.6.2 and 3.6.3, that for each attribute 
(a,a) there is exactly one semantic instruction in R(t) of the form (a,o) = .... 
This means that each attribute of t is defined by exactly one equation in the 
system of equations R (t). A sufficient condition to solve this system is that the 
system of equations contains no circularities. In [21], an algorithm is given 
which detects for an arbitrary attribute grammar whether or not the semantic 
rules can possibly lead to circular definition of some attributes. All the attri­
bute grammars we will employ, contain no circularities, and therefore there is 
for each complete derivation tree precisely one correct decoration. This decora­
tion can be computed if the functions which occur in the semantic rules are 
computable. 

3. 7. State Operator (SO). In [8], state operators A.:;' are introduced. Here m is 
member of a set M, the set of objects. These objects are very much like the 
objects in POOL: they posses some internal data, and there is a local process 
which can act upon these data. The object can block actions of the process, or 
rename then, depending on the data. A.:;'(x) is a process corresponding to 

object m in state a, executing process x. We can visualize as in Figure 3.1. 
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m 

00 
FIGURE 3.1 

Below we give the formal definition of the state operators. 

3. 7.1. DEFINITION. Let Mand L be two given sets. Elements of Mare called 
objects, elements of L are called states. Suppose two functions act and eff are 
given 

act: A XMXL4A 78 (action function) 

eff: A XMXL4L (effect function) 

Now we extend the signature with operators 

A:;': p4p (for m EM, a EL) 

and extend the set of axioms by (a EA; x,y EP; m EM; aE~) 

A.:;'(o) = o SOl 

A.:;'(T) = T S02 

A.;;'(ax) = act(a,m,a)-A.ef(a,m,a)(x) S03 

A.:;'(Tx) = T·A;;'(x) S04 

;\;;'(x +y) = ;\;;'(x)+;\;;'(y) S05 

TABLE 3.3 

The state operators can be defined in terms of the operators and constants of 
ACPT +RN (see [26]). 
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3.8. Parameters of the axiom system. We will relate to POOL-J_ programs 
specifications in the signature of ACP +RN+ CB+ SO. The first thing we have 
to do is to specify the parameters of the axiom system. We will not give a 
complete list of all the atomic actions. The alphabet A of atomic actions sim­
ply consists of all the atomic actions we mention. 

3.8.1. Objects. Let N 1 be a fixed natural number. N 1 gives an upperbound on 
the number of active (or non-standard) POOL objects which can be created 
during the execution of a POOL-J_ program. The set AObj contains references 
to these potential objects. 

AObj = {O, 1, ... ,N 1} 

The hats are needed to distinguish between the names of the non-standard 
objects and the names of the standard objects which are always present in the 
system: 

SObj = /ntUBoo/U{nil}U{input,output}. 

The set Obj = SObj UAObj gives the domain of values of variables in 
POOL-J_ programs. It is also the value domain of the chaining operator we 
will employ; this means that the alphabet contains actions ta,Ja, etc. for 
aEOb;). 

3.8.2. Communication. Objects in POOL communicate by sending frames to 
each other. These frames are built up as follows 

destination type of message message sender 

The field 'sender' contains a reference to the object which sends the message; 
the field 'destination' contains a reference to the object which reads the mes­
sage. There are two types of messages: 
me: The sender asks the destination to perform a method-call. The field 'mes­

sage' contains the name of the method together with the actual parame­
ters. So a me-frame looks as follows 

(a,mc,m (ah ... ,an),/3) (3.8.2. l) 

an: After an object has executed a method call, an an-frame is sent back to 
the object which originated the method call. The field 'message' contains 
the answer (a reference to an object): 

(/3,an,y,a) (3.8.2.2) 

Let N 2 be a fixed natural number. N 2 gives an upperbound on the length of a 
variable declaration list of a procedure denotation. The set ~ of messages that 
occurs in a method call frame is: 
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')Ti,= {m(a1, .. .,an) I mELld,O~n~N2,aI> .. .,anEObj} 

and the set qr of frames is: 

qr= {(a,mc,d,{3) I a,/3E0bj,dEGJrL} U {(f3,an;y,a) I a,/3,yEObj}. 

F. W. Vaandrager 

(3.8.2.3) 

(3.8.2.4) 

For each frame f EIJ, we have atomic actions read(j), send(j) and comm(j). 

The communication function on these actions is given by 

read (j) I send (j) = comm (j) for f E £3: 

The set J of forbidden actions that will be encapsulated is 

J = {read(j),send(j) If EGJ'}. 

(3.8.2.5) 

(3.8.2.6) 

3.8.3. Renamings. A POOL object is fully determined by its class and by its 
name. For each class we will specify a process that gives the general behaviour 
of the instances (the objects) of that class. Now the only thing we have to do 
in order to define the process corresponding to a specific object, is to give a 
renaming function which renames the actions of the process which is related to 
the class of that object. This renaming function gives the object its identity, a 
name. The frames which are sent and received by an object, contain the name 
of that object. But since on the level of a class this name is not known, the 
process related to a class contains 'unfinished' read and send actions: actions 
rd(uf) and sn(uj), where ufis an unfinished frame in which the field that gives 
the identity of the object is absent. Actions of the form rd(uj) and sn (uf) do 
not communicate. 

For each aEObj we define a renaming function fa by: 

fa(sn(/3,mc,m(a1> .. .,an)))= send(f3,mc,m(a1, .. .,an),a) (3.8.3.l) 

fa(rd(mc,m (a1, .. .,an),/3)) = read(a,mc,m (a1, ... ,an),{3) 

fa(sn({3,an,y)) = send({3,an,y,a) 

fa(rd(an,/3,y)) = read(a,an,{3,y) 

(3.8.3.2) 

(3.8.3.3) 

(3.8.3.4) 

If an object executes a self expression, the corresponding process on class level 
contains a non-deterministic choice between actions eqs(/3) for {3E0bj. The 
following equations for the renaming functions make that, for a specific 
instance of the class, the action which will be actually performed is the right 
one. 

{
skip if [3=a 

fa(eqs(/3)) = 8 otherwise (3.8.3.5) 

If an object answers a method call, the result of the return expression in the 
procedure denotation has to be sent back to the sender of the method call. To 
model this we introduce renaming functions ga· The function ga interprets a 
t/3 action as a sn (a, an, {3) action: 

g a(i/3) = sn (a, an, {3). (3.8.3.6) 
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3.8.4. Process ~reation. For d Eq}(,XAObj we introduce atomic actions 
create(d), create (d) and create(d). create(d) stands for: ask for the creation 
of a process on basis of initial information d. create• (d) means: receive a 
request for creation. create(d) indicates that process creation has taken place. 

Elements of q}(, (see Definition 3.2.2) play the role of formal variables in the 
process algebra specification that we will construct in order to give the seman­
tics of POOL-1-. In general the process denoted by the first parameter of a 
create action will give the behaviours of a certain class, and the second para­
meter gives the name of the instance of that class to be created. 

We extend the communication function by 

create(d) I create*(d) = create(d). (3.8.4. l) 

Create actions are not involved in any other proper communication. Let 

K = {create(d), create*(d) I dEq}(,XAObj}. (3.8.4.2) 

Actions from K will be encapsulated. 
Our way of dealing with process creation in POOL is inspired by the 

mechanism described in [ 10]. We have chosen however not to use the process 
creation operator Ecp presented there, because of the lack of proof rules for 
this operator. 

3.8.5. State operator. In the semantical description of the toy language of Sec­
tion 2 the state of the memory was a parameter of the formal variables in the 
specification. In principle this approach can also be followed in the case of the 
language POOL-1-. But since in POOL objects of a different class have, in 
general, different variables and the language contains recursion, which leads to 
the creation of new instances of variables, the memory state of a POOL object 
can become rather complicated. For this reason we prefer to keep track of the 
memory state in a different way: namely by means of a state operator. For 
each variable v ELJtf and value aEObj, ;\~ represents a memory cell with name 
v in state a. A value f3 can be assigned to variable v by means of an atomic 
action ass (v,/3): 

;\~(ass(v,f3)·x) =skip ·>--p(x). (3.8.5.l) 

If in the evaluation of an expression the value of a variable v is needed, this 
can be expressed at the level of process algebra by means of an alternative 
composition of actions eqv (v, {3). The following equation makes that in an 
environment with variable cell v, the correct action will be actually performed: 

{
skip ·;\~(x) if a=/3 

;\~(eqv(v,/3)·x) = o otherwise <3·85·2) 

Notice that in the case of nested ;\~ operators, actions ass (v,/3) and eqv (v, /3) 
interact with the innermost ;\~ operator. This is relevant for nested method 

calls, etc. , 
The initial object, which starts the system up, has name 0. An object 
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counter counts the number of objects which have been created. It also provides 
an environment in which new objects obtain new names. An error occurs when 
more than N 1 objects have been created. For n E~ we have 

x~ounter(c;:;a/e(X,a)·x) = error·A.~Of{er(x) if n =N1 (3.8.5.3) {
skip ·A~Of{er(x) if a=n An <N 1 

6 otherwise 

3.8.6. Formal variables. The set :=: of formal variables of the process algebra 
specification related to POOL-..l consists of the elements of 3 possibly sub­
and superscripted with elements of Lid and Obj*. Formally we have: 

E: = GJl U GJlXUd U GJlX(Obj*) U GJlXLldX(Obj*). (3.8.6.l) 

We define node : :::~GJl to be the projection function which relates to each 
variable the corresponding element of m. 

3.8.7. Note. From now on, when we speak about a POOL-..L program, what 
we mean is an extended program, in which the class definition list begins with 
the class definitions of the standard classes (see Section 3.9.3). 

3.9. Attribute description. Table 3.4 contains a list of all the attributes we will 
employ for the semantical description of POOL-..L. In Section 3.9.1 we give a 
detailed description of these attributes. Section 3.9.2 contains all the semanti­
cal rules which were not already given in Section 3.9.1, and in Section 3.9.3 the 
standard classes are defined. 

3.9.1. Remarks. 
1. We make the names of the nodes in a derivation tree explicit by means of 

an inherited attribute [.]. With each node in a derivation tree we will 
relate a number of process algebra equations with variables in :=:. The 
values of the attribute U (which are elements of E:) will be the 'most 
important' or 'key' variables in this specification. The semantic rules for 
this attribute are as follows 

For production u~RU the rule is [RU] = 1 
If x0~x 1 • • • Xn is a production with X0 -=l=U, and if X; EN for cer­
tain l~i~n then we have the rule [X;] = [X0].i. 

2. The value of synthesized attribute id is (one of) the identifier(s) generated 
by the corresponding nonterminal. 

3. Attribute vd collects variables declared in a variable declaration list. 
4. Attribute pd gives the information concerning a procedure declaration that 

we need: a formal variable denoting the process related to the procedure, 
and the number of parameters of the procedure. 

5. The attribute rd gives for each routine in a routine definition list the 
essential information: a process variable and the number of parameters. 
The v3;1ue of rd is arbitrary for elements of Lld which are not the name of 
a routme. 



Process algebra semantics of POOL 197 

Name .1 D .. Attribute 
tt z s escrzptwn value Nonterminals a r. 

[-] I Key variable 0L N-{U} 
id s Identifier Lld {VI,RI,MI,CI, 

VD,RD,MD,CD} 
vd s Variable declarations Lld* {VDL} 
pd s Procedure declaration 'VLXN {PD,RD,MD} 
rd s Routine declarations Lfd--?0LXN {RDL,CD} 
md s Method declarations L!d--?0LXN {MDL,CD} 
cd s Class declarations Uld--?'VL {CDL} 
rdc s Routine decl. of a CDL UldXLfd--?0LXN {CDL} 
mdc s Method decl. of a COL UldXLld--?0LX~ {CDL} 
cdf Class definitions Uld--?<!JL N-{U,RU} 
rdf Routine definitions UldXL!d--?0LXN N-{U,RU} 
mdf Method definitions UldXL/d--?0LXN N-{U,RU} 
class Class Uld N-{U,RU,CDL,CD} 
I s Length N {EL} 
mis s Method ident. set Pow(Lld) {MIL,AN,GC} 
misl s Method ident. set list (Pow (LI d))* {GCL} 
peq s Process equations Sets of eq. over N-{U,VI,RI,MI,CI, 

ACP+RN +CH+SO VD,VDL,RD,RDL, 
with variables in E MD,MDL} 

spec s Specification Sets of eq. over N-{VI,RI,MI,CI, 
ACP+RN +CH+SO VD,VDL,RD,RDL, 
with variables in E MD,MDL} 

TABLE 3.4 

6. The meaning of attribute md is similar to the meaning of rd. 
7. The attribute cd gives the essential information for each class definition in 

a class definition list: the process corresponding to the general behaviour 
of that class. The value of cd is arbitrary for elements of Uld which are 
not present in the class definition list. 

8. Attribute rdc is like rd but now for a list of class definitions. 
9. Attribute mdc is like md but now for a list of class definitions. 
10. All the information that is gathered in the s-attribute cd is distributed 

over the parse tree by means of the i-attribute cdf: 
For production R U--?root Wlit CDL we have the rule cdf ( CDL) = 
cd(CDL). 
If X0--?X1 • • • Xn is a production (Xo=/=-U,RU), and if X; EN forcer­
tain 1 ~i~n, then cdj(X;) = cdf (Xo). 
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11. Attribute rdf is like attribute cdf 
12. Attribute mdf is like attribute cdf 
13. In order to define the semantics of, for example, a new expression, we 

need to know in which class definition this expression occurs. Therefore 
we define an i-attribute class with domain Uld: 

For production 

CD~class C/1 [varVDL ][RDL ][MDL ]body SS end C/2 

we have rules 

[ class(VDL)=] [ class(RDL)=] [ class(MDL)=]class(SS)=id(C/1) 

If x0~x1 • • • Xn is a production (Xo=/=U,RU,CDL,CD), and if 
X;EN for certain l:s;;;t~n, then class(X;) = c/ass(Xo). 

14. In the semantic rules for the send expression we need information about 
the length of the expression list. This information is contained in attribute 
I. 

15. The attribute mis gives the method identifiers which occur in the method 
identifier list of an answer statement. The attribute is used to define the 
semantics of the select statement. 

16. The attribute misl gives a list of the method identifier sets which occur in 
the answer statements in a guarded command list. 

17. The value of the attribute peq is a set of equations in the signature of 
ACP +RN+ CH+ SO with variables in E. We will define the attribute in 
such a way that for each nonterminal X: 

(Y=ty)Epeq(X) ~ node(Y)=[X]. 

Furthermore we take care that for each nonterminal X, peq (X) never con­
tains two equations for the same variable. These conditions make that the 
union for all the nodes in a derivation tree of the values of attribute peq 
never contains two equations for the same variable. 

18. The s-attribute spec collects the values of attribute peq. The value of the 
attribute spec belonging to the root of the derivation tree (which has label 
U) is the specification we relate to the parse tree. We have the following 
semantic rules: 

Let x0~x1 • • • Xn be a production such that X0=/=U has attribute 
spec. Let S k { 1, ... ,n} be the set of indices i for which X; has an 
attribute spec. Then: 

spec(Xo) = peq(Xo)U LJspec(X;) 

For production u~RU we have: 

spec(U) = spec(RU) U 

ieS 

U {(X=8) I XEE and there is no equation for X in spec(RU)}. 
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3.9.2. Semantic rules. In case a production contains an optional syntactical 

element, we will often use a fraction notation in the semantic rules: the 

numerator corresponds to the semantic rule for the production with the 

optional element, the denominator corresponds to the production without the 

optional element. In case of a semantic rule peq (X) = { E i,E2 , ... }, we only 

write down the equations E 1,E2, •.. !!! Numbers refer to the numbering of pro­
ductions in Table 3.1. 

Vf-7V (v EL/d) (28) 

id(VJ) = v 

Rl-7r (rELld) (27) 

id(RI) = r 

MJ_,,rn (mELJd) (26) 

id(MI) = m 

Cl-7C (CEUld) (25) 

id(CI) = C 

ELo-7E [, EL1] (24) 

l(EL0 ) = 1 [ + l(EL1)] 

[ELo] = [E] [ · [EL1]] 

0 We state again that the equation for [EL0 ] is not to be considered as a 

semantic rule defining attribute [.], but as an element of the set defining attri­

bute peq. The equation says that execution of an expression list consists of 

sequential execution of all the expressions from left to right. 

RC_,,CJ · RI() 

Let 

rdf (RC)(id(CJ),id(RI)) = (X n) 

then 

[RC] = skip · X, 

(23. l) 

O In a correct POOL-1- program n will be 0. The skip action is needed in 

order to keep the specification guarded. 

RC-7CI · RI (EL) 

Let 

rdf (RC)(id(CJ),id(RI)) = (X n) 

then 

[RC] = [EL]>>> .. ,, ... ,a" Xa,, .. .,a. 

(23.2) 
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O First the expressions of the parameter list are evaluated. Thereafter the rou­
tine call is executed, with the actual parameters instantiated. In a correct pro­
gram the number of actual parameters equals the number of formal parame­
ters: !(EL) = n. 

MC ...... MI() (22.1) 

Let 

. mdf(MC)(class(MC),id(MJ)) = (X n) 

then 

[MC] = skip· X, 

MC ...... MI(EL) 

Let 

mdf (MC)(class(MC),id(MJ)) = (X n) 

then 

[MC] = [EL]>>>al> .. .,a. Xa,, . .,a. 

SN ...... E !MI() 

Let 

then 

id(MI) = m 

[SN] = [E] »>a [SN]a 

{
error if a =nil 

[SN]a = sn(a,mc,m( ))· L rd(an,/3,a)·t/3 otherwise 
/3e0bj 

(22.2) 

(21.1) 

0 First the expression on the left is evaluated. If the result is nil an error 
occurs. Otherwise the result of the expression is the destination of the message. 
Now the message is sent and the answer awaited. This answer (if it comes) is 
the result of the send expression. In a correct POOL program the type of 
expression E will be a class that contains a method m without parameters. 

SN ...... E !MI(EL) 

Let 

then 

id(MI) = m 

/(EL) = n 

[SN] = [E] >>>a [SN] a 

(21.2) 
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[SN]0 u = error 

and for a~nil: 
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[SN]a =[EL]>~a,, ... a,sn(a,mc,m(a1, ... ,an))· 2: rd(an,/3,a)·i/3 
/JE0bj 

0 Like 21.l but now with parameters. 

CO~c (cEBoo!Ulnt) 

[CO] = jc 

E~VI 

[£] = 2: eqv(id(Vl),a)-fa 
aEObj 

0 Cf. equation 3.8.5.2. 

£~self 

[£] = 2: eqs(a)·ia 
aEObj 

0 Cf. equation 3.8.3.5. 

E~co 

[£] = [CO] 

E~new 

Let 

cdf (E)(class (£)) = X 

then 

[£] = 2: create(X, a)· ja 
aEAObj 

(20) 

(19.1) 

(19.2) 

(19.3) 

(19.4) 

0 Process creation takes place in an environment (cf. equation 3.8.5.3) that 

takes care of the naming of new objects, and always allows only one of the 

actions create(X, a) to occur. 

E~SN ( 19.5) 

[£] = [SN] 

E~Mc ( 19.6) 

[E] =[MC] 

E~RC (19.7) 

[E] = [RC] 
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E~nu 

[E] = jnil 

MIL0__,,MJ[,MIL1] 

Let 

id(Ml) = m 

mdf (MILo)(class(MILo),m) = (X n) 

then 

mis(MJL0) = {m} [ Umis(MIL 1)] 

F. W. Vaandrager 

(19.8) 

(18) 

[MILo]m = L: rd(mc,m(ai, ... ,an), a)· Pg.(Xa, . .. ,aJ 
a" .. .,a0 ,aEObj 

[MIL1]-
[MJL0];;:; = () m if m=j=m 

0 For the m which occur in the method identifier list, [MILo]m gives the pro­
cess that describes the answering of a message m: first a method call with 
identifier m is read, then the method is executed, and the result is returned to 
the sender (cf. equation 3.8.3.6). Form not in MIL0, [MILo]m = 8. 

AN~answer(MIL) (17) 

mis(AN) = mis(MIL) 

[AN]m = [MIL]m 

[AN] = L: [MIL]m 
meLid 

0 The variables [AN]m will be needed for the description of the select state­
ment. 

The semantic rules for the nonterminals MIL, AN, GC, GCL and SE are 
rather complicated. This is because the semantics of the select statement is to a 
large extent not compositional: it is not defined in terms of the semantics of 
the answer statements which occur in the guarded commands, but in terms of 
the individual method identifiers of these answer statements. The formalism of 
attribute grammars has difficulties in dealing with such a case. 

GC__,,£thenSS (16.1) 

mis(GC) = 0 

[GC] = [E] 

[ GC]. = skip ·[SS] 

0 The prefix skip in the equation for variable [ GC]E is needed because we 
want to give a different semantics to the following two select statements: 
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sel 

les 

and 

sel 

les 

true answer(m 1) then x~l or 

true answer(m 2) then x~2 

true answer(m 1) then x~ I or 

true then answer(m 2) ; x~2 

203 

If the environment offers a method call with method identifier m 1, but no 
method call with method identifier m2 , then the first select statement will 
answer m 1• The second select statement however may choose to execute the 
second guarded command, which will result in a deadlock. 

GC-4E AN then SS 

GCL-4GC 

Let 

then 

mis ( GC) = mis (AN) 

[GC] = [E] 

[ GC]m = [AN]m . [SS] 

mis(GC) = M 

misl(GCL) = (M) 

[GCL] = [GC] 

[GCL],a = 

[GCL]::, 

{
[
0
GC], if a=truei\M= 0 

otherwise 

{
[GC], if a=truei\M= 0 

[GC]m if a=truei\mEM 

o otherwise 

0 See remark about production 14. 

GCL0-4GC or GCL 1 

Let 

mis(GC) =Mo 

(16.2) 

(15.l) 

(15.2) 
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then 

misl(GCLo) = (Mo,M" .. .,Mn) 

[GCLo] = [GCl [GCL1] 

{
[GC], 

[ GCLo]~· ... ,a. 
' [GCL1]~1 ' ••• ,a. 

{
[GC]. 

[GCLo]~· .... a. = [GC]m 

[GCL1]~· ... ,a. 

if ao =true/\Mo = 0 

otherwise 

if ao = true/\M 0 = 0 

if ao = true/\m EM 0 

otherwise 

0 See remark about production 14. 

SE-,)sel GCL les 

Let 

misl(GCL) = (Mi. ... ,Mn) 

then 

[SE] = [GCL] >~al, .. .,aJSE]a\, .. .,a. 

[SE]aJ, .. .,a. = error if (3i: a; =nil)V('v'i: a; =false) 

[SE]a1, ••• ,a. ~ [GCL]~' .. .,a. otherwise 
mEUdU{£) 

(14) 

0 Execution of a select statement starts with evaluation of the expressions in 
the guarded commands. If one expression yields nil or all expressions yields 
false an error occurs. The intuitive meaning of variable 

[ GCL]~1 ' ····"· 

is: Execute the first open guarded command without an answer statement, 
assuming that evaluation of the expressions yields values a 1 , .•• , an. If there is 
no open guarded command without an answer statement the result is 8. 
Analogously, form ELid, the intuitive meaning of variable 

[GCL]::;· .. .,a, 

is: Execute the first open guarded command without an answer statement or 
with m in the method identifier list of the answer statement. 

S-,) Vl~E 

[S] = [E]~>a ass(id(VI),a) 

0 Cf. equation 3.8.5.1. 

(13.1) 
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S.-:;AN 

[S] =[AN] 

S .-:;if Ethen SS 1 [else SS 2 ] fi 

[S] = [E]~> .. [S]" 

[SS1] if a=true 

[S]" = 
[SS2] 

if a=false 
skip 

error otherwise 

s~doE then SS od 

s~sE 

s~sN 

[S] = [E] >>>" [S] .. 

{
[SS]· [S] 

[S] .. = skip 
error 

[S] = [SE] 

if a=true 

if a=false 
otherwise 

[S] = [SN]>>>( ~ ta) 
aEObj 
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( 13.2) 

(13.3) 

(13.4) 

(13.5) 

(13.6) 

0 The send expression is evaluated and afterwards the result is discarded. 

s~Mc 

[S] = [MC]~>( ~ Ja) 
aEObj 

s~Rc 

[S] = [RC] >~( ~ Ja) 
aEObj 

SSo~S[;SS1] 

[SSo] = [S][·[SS1]] 

VD~VI:CI 

id(VD) = id(VI) 

VDLo~ VD [ , VDL1] 

vd(VDL 0 ) = (id(VD))[*vd(VDL1)] 

0 The function * denotes concatenation of lists. 

(13.7) 

(13.8) 

(12) 

(11) 

(10) 
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PD4([ VDL 1 ])Cl: [local VDL 2 in] [SS1] retmnE[postSS2] (9) 

Let 

vd(VDLi) = (v1> ... ,vn) 

vd(VDL2) = (wi. ... ,wk) 

(n =O or k =O if there is no VDL1 resp. VDL2) 
then 

pd(PD) = ([PD] n) 

[PD],.,,····"·=/..~', 0 ••• of..~: o/..~i\ 0 ••• o/..~i1( [[SS 1 l ][E] [·[SS 2]]) 

0 Process [PD]a,, ... ,a, corresponds to execution of the procedure with param­
eters ai. ... ,an. 

RD 4routine Rf 1 PD end Rf 2 

id(RD) = id(RI i) 

pd(RD) = pd(PD) 

RDLo4RD[RDL1] 

rd(RDLi) 
rd(RDL0 ) = d {pd(RD)!id(RD)} 

r o 

(8) 

(7) 

0 We use the notation for function modification of Section 2.4. rd0 is an 
arbitrarily chosen element out of the domain of attribute rd. We use similar 
conventions in the semantic rules for productions 5, 4 and 3. 

MD4methodMI 1 PDendM/2 

id(MD) = id(M/ 1) 

pd(MD) = pd(PD) 

MDLo4MD [MDL 1] 

md(MDL0 ) = md(M:Li) {pd(MD)!id(MD)} 
m o 

CD4classC/1 [varVDL] [RDL] [MDL]bodySSendC/2 

Let 

then 

id (CD) = id (Cl I ) 

md(CD) = md(MDL) 
md0 

rd(CD) = rd(RDL) 
rd0 

(6) 

(5) 

(4) 
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[CD] = A.~ho · · · 0A.~11 ([SS]) 

CDLo_,,CD [, CDL 1 J (3) 

cd(CDL 1) 
cd(CDLo) = cdo {[CD]/id(CD)} 

mdc(CDLi) 
mdc(CDLo) = {md(CD)I id(CD)} 

mdc0 

rdc(CDL 1) 
rdc(CDLo) = {rd(CD)!id(CD)} 

rdc0 

[CDL ] = [CDL1] 
0 [CD] 

0 Process [CDLo] gives the behaviour of the last class defined in CDL0 • 

RU_,,root unit CDL (2) 

Let 

then 

cd(CDL)(lnteger) = I 

cd(CDL)(Boolean) = B 

cd(CDL)(ReadJile) = R 

cd(CDL)(WriteJ'ile) = W 

e = {cd(CDL)(C) I CEU/d} 

ACTIVE= II (2°:create'(X,a)·p.r.(X)) 
aeAObj Xee • 

STANDARD = «.~L/1.(I) )llP1._(B)llP1..,.(B)llP1-(R)llP1_.(W) 

[RU] = A.gounteroo1 ooK(create([CDL],6)1\ACTIVEl\STANDARD) 

0 The environment in which a POOL-J.. unit is to be executed consists of 
encapsulation operators a1 and aK (cf. equations 3.8.2.6 and 3.8.4.2), and the 
object counter (cf. equation 3.8.5.3). In the scope of these operators we have 
the 'sleeping' active objects and the standard objects (except for nil, which is in 
our semantics a kind of virtual object). Now execution of a POOL-J.. unit 
starts with an action that orders for the creation of an instance of the last class 
defined in the unit. 

3.9.3. Standard classes. In POOL-T there are a number of classes that are pre­
defined. Four of them, the classes Integer, Boolean, ReadJ'ile and WriteYile, 

are, although in simplified form, also present in POOL-J... The standard 
classes can, to a large extent, be defined in terms of POOL-J... To make a 
complete definition possible, we extend the language POOL-J.. with a new 
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construct: 

E-?acp t pea 

for each closed term t in the signature of ACP. The corresponding semantic 
rule is 

peq(E) = {[E] = t }. 
The standard classes are described by the following class definitions: 

3.9.3.1. The Booleans. This is a class with as only objects true, false and the 
virtual nil. The methods of the class generate an error if a parameter is nil. 
Surprisingly, we can describe this class completely in terms of POOL itself. 

class Boolean 

var result : Boolean 

method or ( b : Boolean ) Boolean : 

if self then 

fi 

if b then result~true else result~true fi else 

if b then result~true else result~false fi 

return result 

end or 

method and ( b : Boolean ) Boolean : 

if self then 

fi 

if b then result~true else result~false fi else 

if b then result~false else result~false fi 

return result 

end and 

method not ( ) Boolean : 

if self then result~false else result~true fi 

return result 

end not 

method equal ( b : Boolean ) Boolean : 

if self then 
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fi. 

if b then result~true else result~false fi else 

if b then result~false else result~true fi 

return result 

end equal 

body do true then answer( or,and,not,equal) od 

end Boolean 
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3.9.3.2. The Integers. This class contains all the integers from Int (plus nil). 

The methods of the class generate an error if the parameter is nil. In case of 
overflow the result of a method call is nil (so, for example sum(N0 ,N0 ) =nil). 

Another option would have been to generate an error. We only give the 
definition of the method add. The other method definitions are similar. 

class Integer 

method add ( i : Integer) Integer : 

return acp ~ eqs(a)( ~ eqv(i,/3)·jsum(a,f3) + eqv(i,nil)·error) pea 
aElnt {3Efnt 

end add 

etc., etc. 

body do true then answer(add, sub, mu!, div, mod, power, minus, 

less, less _or _equal, equal, greater, greater _or __equal) od 

end Integer 

3.9.3.3. The classes ReadJ'ile and WriteJ'ile. In POOL-T it is possible to 
open new input and output files. These options are not present in POOL-_L: 
there is only one object of class ReadJ'ile (the object input), and one object of 

class Write _Fife (the object output). These objects communicate with the exter­

nal world by means of actions input ( d) and output ( d), for d EI nt U Boo/. 

class Read _Fife 

routine standard _in ( ) Read _File : 

return acp jinput pea 

end standard__in 

method read__int ( ) Integer : 

return acp ~ input (a) · ja pea 
aElnt 
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end read...int 

method read ...hoof ( ) Boolean : 

return acp ~ input ({3) · i /3 pea 
/3EBool 

end read ...hoof 

body do true then answer(read _int, read ...hoof) od 

end Read Ji le 

class Write _Fife 

routine standard _out ( ) Write Jile : 

return acp joutput pea 

end standard _out 

method write _int ( i : Integer) Write Jile : 

F. W. Vaandrager 

return acp ~ eqv(i,a)·output(a)·joutput + eqv(i,nil)·error pea 
(1.Efnt 

end write _int 

method write ...hoot ( b : Boolean ) Write Jile : 

return acp ~ eqv(b,/3) · output(f3) · joutput + eqv(b,nil) ·error pea 
/3eoBool 

end write ...hoof 

body do true then answer(write_int, write_bool) od 

end Write _Fife 

3.10. THEOREM. For each program w EPOOL-1- the specification SPECc(w) is 
guarded. 

PROOF. Introduce a new s-attribute height for those nonterminals which have 
attribute peq. Let the value domain of this new attribute be the set f\l of 
natural numbers. Let X0-')X1 • • • Xn be a production where X 0 has attribute 
height. Then the semantic rule for the attribute height is: 

height(X0 ) = max({O}U{height(X;) I l~i~n and X; has attribute height})+! 

Using the same technique as in the proof of Theorem 2.9, the proof that for 
each POOL-l. program the corresponding specification is guarded can now be 
given by means of straightforward induction on the value of attribute height. 
D 
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~.11. Abstraction. Most of the atomic actions which were used in the descrip­

tion of the semantics for POOL will be invisible in an actual implementation 

of the. language. If one looks at a computer executing a POOL program, one 

most likely cannot observe that one object sends a message to another object. 

In general the only visible actions will be the actions by means of which the 

POOL system communicates with the external world: the error action and the 

actions input(d) and output(d) (dElnt UBoo/) as defined in Section 3.9.3.3. 
Therefore we define: 

I = {c(d) I dED} U {comm(j) I /E§} U {skip} (3.11.l) 

and introduce a new formal variable ROOT, which will be the root variable of 

the specification corresponding to a given POOL-J_ unit. The equation for 
ROOT is: 

ROOT = T1([RU]). (3.1 l.2) 

ROOT gives the abstract behaviour of a POOL system executing a given unit. 

We call the corresponding function from POOL units to process algebra 
expressions SPECA. 

3.12. Models. A lot of semantics (models, };-algebras) have been given of the 

signature that is used in this section. In this article we are only interested in 

models where the principles RDP and RSP are valid. For each of these models 

M, there exists a mapping !NT M that relates to every guarded specification E 

the unique solution of this system in the model. As examples of models we 

mention the semantics &<_BS) of terms modulo bisimulation equivalence 

presented in [ 16], the semantics &1._FS) of process graphs modulo failure 

equivalence described in [11 ], and the trace model that is presented in [28]. 

4. MESSAGE QUEUES 

In the description of POOL as presented in the previous section, communica­

tion between objects takes place by means of handshaking. However, in the 

official language definition (see [l]) communication is described differently: All 

messages sent to a certain object will be stored there in a queue in the order in 

which they arrive. When that object executes an answer statement, the first 

message in the queue whose name occurs in the method identifier list of the 

answer statement will be answered. Below we present a modified process alge­

bra description of POOL, in which each object has its own message queue. 

This description, which, due to the select statement, turns out to be rather 

complicated, corresponds to the language definition in [I]. We call the new 

translation function SPECAQ· Thereafter, in Section 4.5, we discuss the impor­

tant question for which models M the mappings INTu 0 SPECA and 

INTMoSPECAQ are identical. 
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4.1. New channels. If we view the field 'type of message' of a frame (cf. Sec­
tion 3.8.2) as the name of a channel, then we can depict the situation in which 
there are two objects a and /3, connected by channel me, 'classically' as fol­
lows: 

FIGURE 4.1 

In this section we introduce for each object /3 a message queue Pf~ (Q). Furth­

ermore we have new channels (message types) iq, om and fm. The new version 
of Figure 4.1 becomes: fm 

me 

om 
FIGURE 4.2 

First we discuss the new message types. 
iq: (in queue). If object a wants to send a message to object /3, it must send 

this message by channel iq to the queue of object /3. We have the follow­
ing new semantic rules for the send expression: 

SN~E!MI() 

Let 

id(MI) = m 

then 

[SN] = [E]>>>a[SN],, 

{
error 

SN = [ ],, sn(a,iq,m())· L rd(an,/3,a)·j/3 
/3e0bj 

(production 21.2 is changed analogously). 

if a=nil 
otherwise 

(21. l) 
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om: ~order messa~e). Let L r;;,L/d. By sending message L along channel om to 
its queu~, obJ.ect ~ orders the queue to deliver the first message with a 
message identifier m L. The message type om occurs in the new semantic 
rules for the answer statement: 

AN--?answer(MIL) 

Let 

M = mis(MIL) 

then 

mis(AN) = M 

[AN]m = sn(om,{m})·[MIL]m 

[AN] = sn(om,M)· ~ [MIL]m 
mEM 

( 17) 

fro: (first method). During the execution of a select statement object /3 some­
times needs to know, for given L r;;,Lid, if there is a message in its queue 
with a method identifier in L, and if so, what is the method identifier of 
the first one. This information is passed along channel fm (the negative 
answer is coded as €). The new semantic rules for the select statement 

are: 

SE __,,sel GCL les 

Let 

Ma1, ... ,a. 

then 

[SE] = [GCL] >>>a1, .. .,aJSE]a1, .. .,a. 

[SEL1, ····"·=error 

if (3 i : o:i = nil) V ('v' i : o:; =false), 

[SE]"1> ... ,a.= ~ rd(jm,(Ma\> .. .,a.,m))-[GCL]~' .. .,a. 

mEUd 

if 'v'i: a; =true ~ M;=F 0, and 

[SE]a1, .. .,a. ~ rd(jm, (M "\> .. .,a. ,m))'[GCL]~· ····"· 
mELJdU{E} 

otherwise. 

(14) 

O M is the set of all method identifiers occurring in the answer 

state~~~t·";f an open guarded command. If there is no message in the 
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queue whose method identifier is in Ma,, ... ,a,, and there are open guarded 
commands without an answer statement (M; = 0 for some i), then the 
(textually) first of them is selected. If there is no message in the queue 
whose method identifier is in Ma,, ... ,a,, and there is no open guarded com­
mand without an answer statement, the object waits until a message that 
belongs to Ma,, ... ,a, arrives, and then proceeds with this message. This 
waiting may last forever. If there is a message in the queue with method 
identifier in Ma,, ... ,a, this message is selected. The first guarded command 
is chosen that has either no answer statement or whose answer statement 
contains the method named in the message. 

4.2. The process Q. We introduce a new object q as parameter of the state 
operator. The state of this object (the content of the queue) will be an element 
of (')]CX Obj)* (for definition °JR., see equation 3.8.2.3): a list of pairs of method 
calls and references to the senders of these calls. We need four fresh formal 
variables Q, R, S and A. The process Q gives the behaviour of an 'unfinished' 
queue, a queue that is not yet associated with one specific object. We have the 
following equation: 

Q = ;\l(RllSllA). ( 4.2. l) 

Q consists of the merge of three processes, R, S and A, which operate in an 
environment in which the content of the queue is known. The job of process R 
is to read messages in the queue: 

R = 2: 2: rd(iq,d, a)· R. (4.2.2) 
dE0ri. acObj 

The relevant equation for the state operator is: 

l.Z(rd(iq,d,a)·x) = rd(iq,d,a)·A(d,a)*"(x). (4.2.3) 

The process S first waits for an order to deliver a message with method 
identifier in a certain set L, and thereafter delivers the first message in the 
queue with this property. When such a message is not in the queue, process S 
waits until it arrives. 

S = 2: rd(om,L)·sn(mc,L)·S. (4.2.4) 
L<;;;,Lld 

In order to define the interaction between actions sn (mc,L) and operator ;\~ 
we need three auxiliary functions. The function mf ( L, a) picks the first mes­
sage in a with a method identifier in L, and returns t: if there is no such mes­
sage. The function is recursively defined by: 

mj(L,t:) = t: (4.2.5) 

{
m(a1, ... ,an) if mEL 

mj (L,a*(m(a 1, ... ,an), a)) = zj(L ) th . m , a o erw1se (4.2.6) 

The function sf (L, a) returns the sender of the first message in a with method 
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identifier in L, or returns E:. 

sf(L,E) = £ 

{
a if mEL 

sf(L,a*(m(a1, ••• ,an),a)) = if(L ) th . s , CJ o erw1se 
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(4.2.6) 

(4.2.7) 

The function of (L, CJ) omits the first element of CJ with method identifier in L. 

of (L, t:) = € ( 4.2.8) 

of(L,a*(m(a1, ... ,an),a)) = . {
CJ if m EL 

of (L, a)*(m (ai. ... ,an ),a) otherwise (4.2.9) 

Now we can define: 

{
sn (mc,mf (L, a),sf (L, a))· A.Zf(L,a)(x) if mf (L, a)=l=t. 

\,(sn(mc,L)·x) = 8 otherwise (4.2.10) 

The process A gives an answer to questions of the form: 'Is there a message in 
the queue with method identifier in a set L, and if so, what is the method 
identifier of the first one?'. 

A = ~ ~ sn(jm,(L,m))·A. (4.2.11) 
L<;;,Lld mELldU{<} 

Again we need an auxiliary function: ij(L,CJ) gives the identifier of the first 
message in o with identifier in L. 

if (L,t:) = E: 

if (L, o>(m (a1 , ..• ,a"),a)) = {; (L, o) 
if mEL 

otherwise 

The relevant equation for the state operator is: 

_ {sn(jm,(L,m))·A.Hx) if if(L,o) = m 
A.~(sn(jm,(L,m))·x) - 8 otherwise 

(4.2.12) 

( 4.2.13) 

(4.2.14) 

4.3. Extensions. We add the new frames which were introduced in the previous 
section to the set§' of frames (see equation 3.8.2.4), we introduce actions rd(j), 
sn (j), read (j), send (j) and comm (j) for the new frames, and extend the com­
munication function in the obvious way. Furthermore the set J of encapsu­
lated actions (see equation 3.8.2.4) is extended. For the new atoms the renam­
ing functions fa are defined by: 

fa(sn(/3,iq,d)) = send({3,iq,d,a) (4.3.1) 

fa(rd(iq,d,/3)) = read(a,iq,d,/3) 

fa(sn (om,M)) = send(a,om,M, a) 

fa(rd(om,M)) = read(a,om,M,a) 

(4.3.2) 

(4.3.3) 

(4.3.4) 
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fa(sn(jm, (M,m))) = send(a,fm, (M,m),a) 

fa(rd(jm, (M,m))) = read(a,fm, (M,m),a) 

F. W. Vaandrager 

(4.3.5) 

(4.3.6) 

4.4. Root unit. Now we change the semantic rule for the root unit as follows: 

RU-Hoot unit CDL 

Let 

then 

cd(CDL)(Integer) = I 
cd(CDL)(Boolean) = B 

cd(CDL)(Read_File) = R 

cd(CDL)(Write_Fi/e) = W 

e = {cd(CDL)(C) I CEU!d} 

ACTIVE = II ( 2: create* (X, a)· P.r. (X)) 
aEAObj XEe • 

STANDARD = (a~~n/f. (I) )llPJ ... (B)llPj,,.. (B)llP1-(R)llP1 ...... ( W) 

QUEUE = II (PJ. (Q)) 
aEObj • 

[RU] = A.3°unteroa1 oaK(create([CDL],O)llACTIVEllSTANDARDllQUEUE) 

(2) 

4.5. The incompatibility of SPECA and SPECAQ· Clearly the mapping SPECAQ 
is much more complicated than the mapping SPECA. Therefore we would like 
to work with SPECA instead of SPECAQ· But since SPECAQ corresponds to 
the official language definition in [l] and SPECA does not, we first have to 
show that the two mappings lead to the same semantics of POOL. Unfor­
tunately this is not possible: for any model M of ACPT which preserves fair­
ness and liveness properties we have 

/NT M 0 SPECA =/=./NT M 0 SP ECAQ· 

Stated infonnally, the fairness we require of the models is that (1) all processes 
that become permanently enabled, must execute infinitely often, and (2) two 
processes that can communicate infinitely often will do so infinitely often_ 
These fairness requirements correspond to the fairness requirements formu­
lated in [1]. The issue of fairness is discussed in more detail in Section 5.4. 

The notions of safety and liveness are frequently used in the literature_ 
Roughly, safety means that something bad cannot happen, while liveness 
means that something good will eventually happen. In the context of POOL, 
liveness implies that a program that will certainly perform a certain action is 
different from a program which may not do this. 

Now consider the situation in which an object executes the following piece 
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of POOL text: 

b~true; 

do b then sel 

les od; 

true answer(m 1) then b~false or 

true then b ~b or 

true answer(m2) then b~false or 

WriteJ'ile. standard_out() ! write-hool(b) 
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Suppose the object operates in a system with message queues, and that at the 
moment at which the object starts execution of the POOL text, the message 
queue of the object contains two messages: first a message with method 
identifier m2, and after that a message with method identifier m1. Now execu­
tion of the POOL text takes place as follows: first b is set to true, then the 
object enters the do-loop and the select statement is executed. The set of 
method identifiers occurring in an open guarded command is {m 1,m 2}. The 
first message in the queue with a method identifier in this set is m2• Now the 
first guarded command is chosen that has either no answer statement or whose 
answer statement contains m2• In our case this is the second guarded com­
mand. The trivial statement part of this guarded command is executed, and the 
select statement terminates. But since variable bis still equal to true, the select 
statement is immediately executed for the second time. Again b remains true. 
It will be clear that the select statement never terminates. 

However, if the object operates in a system without message queues, the 
select statement will terminate! In the situation with handshaking communica­
tion there is one object that wants to send a message with identifier m 1, and 
one object that wants to send a message with identifier m2 • Due to the fair­
ness requirement communication of the message with identifier m 1 will eventu­
ally take place, b is set to false, the do-loop terminates, and false is printed. 
This means that there is a difference with respect to liveness between the situa­
tion with, and the situation without message queues. 

A good semantics of POOL should preserve fairness and liveness properties. 
The example presented above shows that in a semantical description employ­
ing handshaking communication between the objects instead of communication 
by means of message queues, liveness properties get lost almost inevitably. 

4.6. In this section we propose a minor change in the language definition of 
POOL, which removes the difficulty of Section 4.5. In the example of Section 
4.5 it is clear from the beginning that the third guarded command will never 
be chosen. But instead of leaving the turmoil of battle, the third guarded com­
mand starts helping his neighbour, the second guarded command. Beca~se of 
this the competition between the first and the sec~nd guarded c?mm~nd is not 
fair and the second guarded command always wms. The modification of the 
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language definition we propose consists of the removal of all open guarded 
commands in a select statement which have an open guarded command 
without an answer statement before them. Formally this means that we replace 
the definition of sets Ma,, .. .,a. in the semantic rules for the select statement in 
Section 4.1 by: 

Ma,, ... ,a, = {m I 3i:mEM;!\a1=true!\('v'j<i:aJ=true =;. M1=/=0)}. 

The modified version of SPECAQ is called SPECAQ'· 

4. 7. Even after modification of the language definition, the semantical descrip­
tion with handshaking communication is not equivalent to the description 
using message queues. The following theorem shows that it is impossible to 
prove equivalence if one only uses the axioms presented thus far. However, 
whereas the difficulty of Section 4.5 was a general difficulty, present in all 
semantical descriptions employing handshaking communication between the 
objects, the difficulty pointed out in the following theorem is specific, and only 
present in bisimulation semantics and other semantics which distinguish 
processes that cannot be distinguished by observation. 

4. 7.1. THEOREM. INT ©,BS)oSPECA =/=INT@(BS) 0 SPECAQ" 

PROOF. Below we present a POOL-..l unit u with the property that in the term 
model modulo bisimulation the unique solutions of specifications SPECA(u) 
and SP ECAQ'(u) are different. The program is a very simple one: the initial 
object of class Root creates 3 objects of class Number and these three objects 
ask the standard output object to print resp. numbers I, 2 and 3. 

root unit 

class Number 

var m : Integer 

routine new ()Number: 

return new 

end new 

method init (n : Integer)Number: 

m~n return self 

end init 

body answer(init); Write _File. standard_out ( ) ! write __int (m) 

end Number, 
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class Root 

body Number. new()! init(l); Number. new()! init(2); Number. new()! init(3) 

end Root 

Writing down SPECA(u) and SPECAQ.(u) is a long and tedious job which we 
happily leave to the reader. However, it is easy to see that the process graphs 
that correspond to these specifications can not be bisimilar. If there is a mes­
sage queue before the standard output object, it is possible that at a certain 
moment during execution of the program the three method calls of the three 
objects of class Number are waiting in the queue. Because, for given method, 
an object answers the methods calls in the queue in the order in which they 
have arrived, the order in which the actions output (l ), output (2) and output (3) 
will be performed, is completely determined in such a state. However, in the 
case where there are no message queues there is no state in which no output 
action has taken place but still the order in which the output actions will occur 
is known. Therefore the process graphs corresponding to SPECA and SPECAQ' 
are not bisimilar. 0 

What we learn from Theorem 4.7.1 is that we can either do bisirnulation 
semantics based on a translation of units in which we use queues (this leads to 
very long and complicated proofs), or add some axioms to our theory in such 
a way that we can prove equivalence of SPECA and SPECAQ'· We conjecture 
that 

INT(jj_FS) 0 SPECA = INT&.(FS) 0 SPECAQ' 

and that equivalence can be proved if we add to our theory the axioms of 
failure semantics as presented in [11]. The proof however will be long and 
complicated, and we do not give it in this article. 

5. TRACE SEMANTICS, FAIRNESS AND SUCCESSFUL TERMINATION 

5.1. The trace model as presented in [28], is not a good semantic domain for 
POOL in the sense that it identifies too much and does not describe deadlock 
behaviour. In &f...TRden) we have for example: 

output(O) = output(O) + T·o. 
We do not want to identify these processes because the first one will definitely 
output a 0, whereas the second one may not. 

5.2. It is well-known that it is not possible to give a trace model of ACP in 
which one looks at the terminating (and infinite) traces, and the trace sets do 
not have to be prefix closed. In such a model a(b +c) and ab +ac would be 
identical. This is problematic since a{c}(a(b +c)) = ab and a{cJ(ab +ac) = 
ab +ao are different. 
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5.3. However, there exist some interesting semantics of POOL based on trace 
sets. The basic idea of the approach which is, although in a different setting, 
followed in [4], is that one first interprets a specification in a domain in which 
not very many processes are identified (the domain of transition systems, the 
model l!P{BS)) and then takes the set of terminating (and infinite) traces of this 
process. In this approach one typically looks at 

YIELD 0 1NT iif..BS) 0 SPECA (u) 

where YIELD is a function that gives the set of terminating (and infinite) 
traces of elements of <!P{BS). The resulting semantic domain is not a model of 
ACP but for most applications that does not matter. An advantage of the 
approach is that it allows for simple solutions to a number of problems. 

5.4. Fairness. The fairness problem for example can be solved easily. In [l] a 
fairness condition concerning POOL is formulated by stating that the execu­
tion 'speed' of any object is arbitrary but positive. Whenever an object can 
proceed with its execution without having to wait for a message or a message 
result, it will eventually do so. A second fairness requirement on the execution 
of a POOL program is the condition that all messages sent to a certain object 
will be stored there in one queue in the order in which they arrive. In process 
algebra we have deliberately chosen to ignore the exact timing of occurrences 
of events. Fortunately the fairness requirements concerning POOL can be 
defined without referring to timing aspects. The first fairness requirement is 
called weak process fairness or justice in the literature: 

All processes that become permanently enabled, must execute infinitely often 
The second requirement is called strong channel fairness: 

Two processes that can communicate infinitely often will do so infinitely often 
For reviews of the literature on fairness we refer to [15, 24]. We think that the 
Petri net model for ACP based on occurrence nets, which is presented in [17], 
preserves enough information for a description of the fairness requirements of 
POOL. More research is needed to make this explicit. In the trace set 
approach the solution is very simple: one omits all the unfair traces and looks 
at: 

YIELDp 0 /NT iif..BS) 0 SPECc(u) 

where YIELDp gives the set of fair terminating and infinite traces of elements 
of @{BS). 

5.4.1. Fair abstraction. If we work with 'abstract' translation functions like 
SPECA and SPECAQ• then it is possible to give a 'more or less' fair semantics 
of POOL without using a YIELDp function. This employs the fact that 
Koomen's Fair Abstraction Rule (KF AR) is valid in (for example) the model 
@{BS). Consider the following unit f 
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root unit 

class Out 

routine new( ) Out : 

return new 

end new 

body WriteYile. standard_J)ut ! write_int(O) 

end Out, 

class Chatter 

var x: Integer 

body Out. new(); do true then x-1 od 

end Chatter 

It can be proved that in any model Min which KF AR holds: 

INTM 0 SPECA(j) = 'T"OUtput(O)·o. 
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This means that the object of class Out will make progress despite the infinite 
chatter of the object of class Chatter. Note that KFAR equates infinite chatter 
and deadlock. 

5.4.2. KFAR is too fair. We give an example which shows that sometimes 
KF AR is too fair. Consider the architecture of Figure 5.1. 

Driverl 

Driver2 

m 
1 

Merge 
write_int(O 

FIGURE 5.1 

There are two objects Driver] and Driver2. The only thing these objects do is 
sending method calls to an object Merge. Driver] all the time asks Merge to 
perform method m 1 and analogously Driver2 asks Merge to perform method 
m 2• The object Merge has the task to perform statement answer(m1,m 2) until 
doomsday. Every time when it has answered method m 1 two times 
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consecutively, the object Merge asks the object output to print a 0. We leave it 
to the reader to write down the corresponding POOL program. 

The point we want to make is this. According to the language definition in 
[!], the execution where object Merge answers messages of Driver] and Driver2 
in turn (mi, m2, m 1, m2,. .. ) will be fair. Hence it is possible that Merge never 
orders to print a 0. However, in a semantics where KFAR holds, a 0 will be 
printed: the only way for the system to get out of the 'cluster' of internal 
actions is to perform an action output (0). This action is always possible during 
execution of the program. KFAR says that therefore it will occur. Again we 
leave it to the reader to fill in the formal details. 

5.4.3. Failure semantics. In [11] it is shown that KFAR is not valid in the 
model 131._FS). Nevertheless the model admits a restricted rule KFAR- for the 
fair abstraction of so-called unstable divergence: 

(KFAR-) x = ix+ry 

KF AR - turns out to be sufficient for the protocol verifications in [22, 25, 27]. 
However, for our purposes KF AR - is not what we want. Like KF AR, the 
rule is too fair for some applications. But in addition there are applications 
where KF AR - is not fair enough. KF AR - does not allow for a proof that 
the object of class Out in the example of Section 5.4.1 will make progress. We 
even have: 

7T1 (JNT !l(Fs) 0 SPECA(j))=/=T · output(O) · 8. 

This is a crucial observation. Failure semantics - being a linear semantics -
often yields simpler proofs than bisimulation semantics which preserves the 
full branching structure of processes. Although the notion of full abstractness 
still has to be defined for the language POOL, it is clear that failure semantics 
is closer to full abstractness than bisimulation semantics. Furthermore, as 
pointed out in Section 4, failure semantics will supposedly allow for a proof 
that the communication between objects can be implemented by means of 
message queues. Thus failure semantics seems to be ideal for POOL But now 
it turns out that the combination of failure semantics and weak process fair­
ness is problematic. At present we do not know if it is possible to give a 
semantics of POOL which is 'fully abstract' and also 'fair'. 

5.5. Deadlock behaviour. A limit on the applicability of the trace approach 
sketched in Section 5.3 is that it only describes the behaviour of a POOL sys­
tem in situations in which this system is placed in a 'glass' box, and does not 
communicate with the environment. Below we present two POOL-_L units u 1 
and u 2 with the property that 
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although 

!NT fi(Bs) 0 SPECA(u 1) =/= INT@.(BS) 0 SPECA(u2) 

(we even have 

!NT fi(FS) 0 SPECA(u 1) =/=!NT fi(FS) 0 SPECA(u2) ). 
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l?e root object of ~nit u l creates ~ object that performs the job of output­
ting a 0. After ordenng for the creation, the root object inputs a value. 

root unit 

class Out 

routine new( ) Out: 

return new 

end new 

body Write_Fi/e. standard_out ! write-.int(O) 

end Out, 

class In 

body Out. new( ) ; Read_Fi!e. standard_in( ) ! read-.int() 

end In 

In unit u 2 the root object of class Semaphore creates two objects: one object 

has to output a 0, and the other object inputs a value. But before the I/O 

actions can take place the objects have to decrease a semaphore. After an 

object has decreased a semaphore, it can perform the I/O action. After that, it 

increases the semaphore again. If during execution of u 2 the input actions are 

blocked (the enemy has bombed the input device), it can happen (if the object 

that has to input a value is the first one to decrease the semaphore) that the 

output action will not take place. In this respect u 2 differs from u I: if during 

execution of u l the input actions are blocked, the output action will still hap­

pen. 

root unit 

class Out 

var sern : Semaphore 

routine new( ) Out : 

return new 

end new 
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method init (s : Semaphore) Out : 

sem ~s return self 

end init 

body 

end Out, 

class In 

answer(init); 

sem ! down( ) ; 

Write _File. standard _out( ) ! write _int(O) ; 

sem ! up() 

var sem : Semaphore 

routine new( ) In: 

return new 

end new 

method init (s : Semaphore) In : 

sem ~s return self 

end init 

body 

end In, 

answer; 

sem ! down( ) ; 

Read_Fi/e. standard_in( ) ! read.J.nt(); 

sem ! up() 

class Semaphore 

method down ( ) Semaphore : 

return self 

end down 

method up ( ) Semaphore : 

return self 

F. W. Vaandrager 
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end up 

body 

Out . new ( ) ! init (self) ; 

In. new ( ) ! init (self); 

do true then answer(down); answer (up) od 

end Semaphore 

We can prove in the theory that: 
(1) The following x 1 is a solution of SPECA(u 1): 

x1 == T-(output(O)ll ~ input(a))·o 

(2) The following x 2 is a solution of SPECA(u2): 
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X2 == T°(T·output(O)-( ~ input(a)) + T-( ~ input(a))-output(O))-o 

Let B 

cr.Efnt C<.Efnt 

{input(a) I a.E/nt} be the set of blocked actions. Then 

a s(X I) == T ·output (0)- 0 

as(x2) == T-(T·output(O)·o + T·o) 

Thus units u l and u 2 behave differently in an environment which does not 
offer certain actions: in environment 08 u 1 will certainly output a 0, whereas 
u 2 may not do this. 

5.6. Successful termination. For arbitrary POOL units u 1 and u2, and for an 
arbitrary model M we have that: 

INTM 0 SPECA(u1)·/NTM 0 SPECA(u2) == /NTM 0 SPECA(ui). 

This is because the process corresponding to a unit is infinite or ends in a 
deadlock. If one wants to describe a situation where after execution of a 
POOL unit, something else can be done, one has to change the semantics. In 
the trace set approach of the previous section this is simple: one simply defines 
the operation sequential composition in the obvious way. In the axiomatic 
approach things are not that easy. We propose (but do not work out) a solu­
tion in the spirit of [7]: one defines a program transformation that transforms 
the original program (in the case of POOL also the definitions of the standard 
classes have to be transformed). The transformation introduces a number of 
new program variables and statements in such a way that the resulting pro­
gram can terminate successfully. In this approach it is possible to differentiate 
between various ways in which a unit can terminate: one option is that a unit 
terminates successfully ii all active objects have finished execution of their 
body; another option says that a unit terminates successfully if there is no 
object (or pair of objects) that can do a step. 
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6. INTEGERS AND BOOLEANS 

On the conceptual level, each integer and each boolean is represented by a 
different object. In an implementation of the language it will of course not be 
possible to point at different processors saying: 'This is object true' or 'That 
processor over there implements object 4370578', etc. On the level of imple­
mentation integers and booleans certainly will not be objects. Instead an 
implementation will contain some special circuits for arithmetical and logical 
operations. The aim of this section is to make it plausible that, when speaking 
about integers and booleans, the conceptual and implementation view of the 
system are not in contradiction with each other (although there is a problem). 

6.1. Simple expressions for integer and Boolean objects. The first two equations 
in a SPECA specification have the form (cf. equation 3.11.2 and the semantic 
rule for production (2) in Section 3.9.2): 

ROOT = r1([RU]) 
A 

[RV] = A.3°un1"031o3K(create([CDL],O)llACTIVEllSTANDARD) 

Here/= {c(d)ldED}U{comm(f)lfE§}U{skp}. If we define 

I'= {c(d) I dED}U{skp} 

then we can prove, using the conditional axioms, that this is equivalent to: 

ROOT = r1([RU]) 

[RV] = A.3°un1er031 o3K(create([CDL],O)llACTIVEllrr(STANDARD)) 

Applying the conditional axioms again gives that Tr(STANDARD) equals 

( II rr0P'f. (/) )\1Tr 0Pr (B)llrr 0 Pr (B)l\'Ti, 0 pr (R)llr1' 0 P'f. ( W). 
aElnt Q Jtn1t ;w-. Jlnpm: our,..c 

The processes corresponding to the objects of class Integer and Boolean are 
very simple. For the object true we can derive: 

Tr 0 PJ- (B) = 
= r·( ~ ~ read(true,mc,or(/3),a)·send(a,an,true,true)·Tr 0 PJ.,,.(B) 

{JEBool aEObj 

+ ~ read(true,mc,or(nil),a) ·error· rroPJ,,_ (B) 
IJ.E0bj 

+ ~ ~ read(true,mc,or(/3),a) ·8 + · · · ). 
{JEObj-Bool-(nil) aEObj 

The dots at the end of the equation stand for similar summands corresponding 
to the other methods of class Boolean. In a correct POOL-1- program the 
parameter of a message with method identifier or will always be an element of 
BoolU{~il}. '!'he~e~ore the sumrnand .L,eEObJ-Bool-{nil)(.) is redundant in the 
context m which it is placed, and we can omit it (the corresponding summands 
of the other methods can of course also be omitted). A formal proof of this 
obvious fact can be given using the theorems about the notion of 'redundancy 
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in a context' of [28]. 
After this simplification the process that gives the behaviour of object true 

can be written into the following form: 

X1rue = T • (2:read(true,mc, ... ,/3) · send(/3,an, ... ,true) 

+ 2:read(true,mc, ... ,/3) ·error)· X1rue. 

Using the identity rx l[y =T(x l[y), we can replace the equation for variable 
ROOT by: 

ROOT = T"T1([RU]) 

and omit the initial r in the equation for X1rue: 

xtrue = (2:read(true,mc, ... ,/3)·send(f3,an, ... ,true) 

+ 2:read(true,mc, ... ,/3) ·error)· X1rue. 

We claim that all the processes corresponding to objects of class Integer and 
Boolean can be specified analogously. Let for a EI nt U Boo/, ~a ~'ff be the set 
of frames that can be sent to object a: 

~a= {(a,mc,d,/3) I dEGJri...,/3E0bj and dcorrectfora}. 

Message d is correct for object a if the method identifier of d occurs in the 
class description of a, the number of parameters is correct, and the parameters 
are of the right type. For each aElnt UBool process Xa is defined by: 

Xa = 2: read(j)-anrXa. 
jE'iJ, 

Here an1 is an atomic action, the answer to the method call f This can be a 
send action or the error action. For example: 

an(l,mc,add(l),i) = send(I,an, 2, l) 

an(l,mc,minus(nil),DJ = error 

Now we define: 

INT = II Xa 
aElnt 

BOOL = X1ruellXra1se 

I I 0 = r1· 0 P1-(R)llT1• 0 Pf_(W) 

Let SPECAA be the same function as SPECA except for the fact that the term 
for variable ROOT is prefixed with a r and that in the equation for [RU] 
STANDARD is replaced by JNTllBOOLllI I 0. We have for all models M: 

JNTM 0 SP£CA = JNTM 0 SPECAA· 
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6.2. Monadic objects. The processes STANDARD and INTllBOOLllI! O both 
consist of the merge of a number of objects. Each object answers all the mes­
sages for one integer or boolean, and different objects answer messages for 
different integers or booleans. 

We now introduce processes INTM and BOOLM. These processes are com­
posed of a huge amount of 'monadic' objects. For each frame there is a 
monadic object which has nothing else to do but answering that fra,..me. There 
is for example a monadic object answering the message from object 0 to object 
l in which it asks to perform method add with parameter 3: 

A A 

M(l,mc,add(3),0) = read(I,mc,add(3),0)·send(O,an,4, 1)-M(l,mc,add(3),0)· 

Let ?J1Nr = U ?Ja and ?JnooL = ?J1rue U ~alse· We define for f E?JJNr U ?JnooL 
aEJnt 

the process Mf by: 

Mf = read (j) · an1 · Mf­

Processes !NT M and BOOLM are defined by: 

!NT M = II M1 and BOOLM = II Mf-
fe?i,"' fe'iiaooL 

Let SPECAM be the same as SPECAA except for the fact that in the equation 
for [RU], INTllBOOL is replaced by INTMllBOOLM· 

6. 3. The error action. We would like to prove for all models M: 

INTM 0 SPECAA = INTM 0 SPECAM· 

This would be a nice theorem because the same argument used to 'ungroup' 
the standard objects into monadic objects, can, when reversed, also be used to 
'group' the monadic objects into a new configuration (a single object integer 
and a single object boolean, or separate objects for the various methods, etc. ). 

Unfortunately the two semantics are different. The problem, which has to do 
with the error action, is illustrated by the following POOL unit m: 

root unit 

class One ...plus _one 

var n : Integer 

routine new( ) One -Plus _()ne : 

return new 

end new 

body n ~ 1 ! add ( 1) ; Write .J'ile ·standard _out ( ) ! write _int ( n) 

end One -Plus _one, 
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class One _minus JZi! 

body One -Plus _one ·new ( ) ; 1 ! minus (nil) 

end One _minus JZil 
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In the SPECAA case where integers are objects, it can happen that object I 
first answers the method call minus (nil). This leads to a state in which no 
external action has been performed but the order in which the actions will be 
executed is fully determined, namely first the error action and then the action 
output(2). In the SPECAM case such a state cannot be reached since there are 
different monadic objects for frames (l,mc,minus(nil),O) and (l,mc,add(l), h. 
and these monadic objects work independently. If the error action is blocked it 
can happen in the SPECAA case that the action output(2) will not be per­
formed. In the SPECAM case the output(2) action will always be performed in 
such a situation. As a result of this: 

6.4. Ostrich policy. The problem is not typical for the 'monadic' implementa­
tion of the integers and booleans but arises in every implementation different 
from the one suggested by SPECAA· However, it has to be noticed that in the 
trace set approach of Section 5.3, SPECAA and SPECAM (and thereby all other 
implementations) lead to the same semantics. In case we do not want to 
describe the system in terms of trace semantics, the best solution seems to be 
to abstract from the error action. We replace the equation for variable ROOT 
in SPECAA and SPECAM by 

ROOT = 'T''TJU{error)([RUD). 

Call the new functions SPECAAO and SPECAMO (the 'O' from ostrich policy). 

CLAIM. For all models M: 

INTM 0 SPECAAO = INTM 0 SPECAMO· 

We will not give a rigorous proof of this claim but confine ourselves to a 
sketch of it. 

6.5. DEFINITION. A specification E = {X=tx I XE2:} is called strict~r linear 
if for every X E :='.: 

tx = 'T or 

tx = o or 

3m;;;. I 
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6.6. THEOREM. For every guarded specification E there exists a strictly linear 

guarded specification F with the same solution. 

6. 7. Structure of active objects. Although a POOL system contains a large 

amount of parallelism, the individual objects work in a totally sequential way. 

The process algebra equations which define the behaviour of these objects con­

tain chaining operators but, beside value passing, the process on the right hand 

side always starts after termination of the left hand side process. This observa­

tion (which of course can be expressed formally) motivates the following claim. 

CLAIM. For every aEAObj there exists a strictly linear guarded system of 

equations with root variable Xa such that 

Xa = 2:create•(V,a)·P1.(V) 
VE8 

and with the property ( cf. semantic rules for production 21) that atomic 

actions send(a,mc,m(a1, .. .,an),/3) only occur in equations of the form: 

X = send(a,mc,m (a1, .. .,an),/3) · Y 

where Y is a variable for which we have an equation of the form: 

y = 2: read(/3,an, y,a). z'/' 
yEObj 

This means that every time when an active object performs an action 

send(a,mc,m(a1, ... ,an),{3), the next action will be of the form read(/3,an, y,a). 

6.8. We rewrite the equations for /NT, BOOL, INTM and BOOLM into the 

following form: 

/NT = 2°: read(j) · INTf 
fE'?i/NT 

INTf = ( 11 X13)llanr Xa for f E'iia 
/3E!nt-(a} 

BOOL = ~ read(j)·BOOU 

BOOU = ( II X13)llanr Xa for /E'iia 
/3EBool- (a} 

INTM = ~ read(j)-INTit 
fE'?i/NT 

INTit = ( _ II Mg)llanr M1 
gE:li1Nr-(f) 

BOOLM = ~ read(j)·BOO£it 
fE'?iBOOL 
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Define: 

I" = {comm (a, an, /3, y) I a,/JE Obj; y Elnt U Boo!} U {error}. 

Application of the conditional axioms gives that, in order to prove the claim of 
Section 6.4, it is enough to show: 

LHS = RHS 

where 

LHS = T1n°a1°aK(create ([ CDL],0)11( II x a)llINTllBOOL llJ I 0) 
aEAObj 

RHS = TJ'' 0 a1°aK(create([CDL],O)ll( II Xa)llINTMllBOOLMllI!O) 
aEAObj 

A quick inspection of the semantic rules defining SPECAAO learns us that LHS 

is specifiable by means of guarded equations for all n EN. Therefore it is 
enough to show that for every n EN: 

'll'n(LHS) = 'll'n(RHS). 

6.9. DEFINITION. For X a variable and ta term, the relation X occurs open in 
t is defined inductively by: 
1. X occurs open in X 
2. if X occurs open in t then X occurs open in t·s, t ll...s, t + s, s + t, t lls, slit, 

t \s, s It, an(t), T1(t), pj{t) and 7Tn(t). 
An occurrence of a variable X in a term t is needed if t contains a subterm of 
the form 7Tn(s) and X occurs open ins. 

6.10. DEFINITION. For given specification E, Eis the term rewriting system 

consisting of the axioms from ACPT+RN+CH+SO+PR+RC-AT together 

with the equations of E (read from left to right). Here RC is the rewrite rule: 

a\b=y(a,b) 

that rewrites a term a I b into the corresponding communication, and AT is the 

set of axioms consisting of Al, A2, Cl-3 and Tl-3. 

6.11. THEOREM. Let E be a guarded specification with root variable Xo. Let 

n EN. Then the term '1Tn(X0 ) will be rewritten into a closed term if we apply the 

rewrite rules of£, following the strategy that only needed occurrences of variables 

are replaced. 

6.12. Choose an EN. We have to prove: 

'TTn(LHS) = 'TTn(RHS). 

The specifications that specify LHS and RHS are almost the same. We relate 
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variables LHS and RHS, !NT and INTM, INTi and INTi, BOOL and 
BOOLM, BOOLI and BOO~, and furthermore all variables with the same 
name. Now we start to rewrite the term 'lTn(LHS) into a closed term. Simul­
taneously we start rewriting '!Tn(RHS) in exactly the same way. If on the left 
hand side a variable is rewritten, then we also rewrite the corresponding vari­
able on the right hand side, etc. The problem with this imitation game is of 
course that the equations for INTi and JNTi, BOOU and BOO~ are 
different. What we do in order to solve this problem is that, when during the 
rewrite process a variable INTf or BOOU becomes needed, we rewrite the left 
and right hand side in such a way that: 
1. The new left and right hand side are equivalent modulo names of vari­

ables. 
2. No variable INTi or BOOLI occurs needed in the left hand side. 
3. It is clear that this intermediate 'surgery' will not slow down the process 

of rewriting '!Tn(LHS) into a closed term. 
Using the imitation+surgery strategy we rewrite 'lTn(LHS) and 'lTn(RHS) into 
the same closed term. Because n was chosen arbitrarily that finishes the proof 
of the claim of Section 6.4. 

6.13. Surgery. Let aElnt and f = (a,mc,d,/3)E~a. (the boolean case can be 
dealt with analogously). Suppose that after some rewrite step variable INTf 
becomes needed in the left hand side term. We claim that INTf occurs in a 
subterm which can be brought into the form: 

comm(j) · 'lTm 0 ,,.1,, 0 aH 0 ax( · · · llJNTlll 2: read(/3,an,y,a) · Zy). 
yEObj 

If we rewrite variable INTi this becomes: 

comm(j)·'fTm 0 T1,, 0 aH 0 ax( ···II( 11 X,)llanrXa.11 2: read(/3,an,y,a)·Zy). 
KEfnt-{a.) yE0bj 

The corresponding right hand side subterm can be brought into the form: 

comm(j)·'fTm 0T1,, 0 aH0 3x( ···II( II Mg)llanrMill 2: read(/3,an,y,a)·Zr). 
gE'i>mr-{/) yeObj 

If an1 = error we bring the ostrich policy into practice: because error EI" we 
can replace the error action by ,,. in both terms. The next step is to eliminate 
these ,,.'s using the identity TX llY = T(x llY ). But then the sub term on the left 
contains the merge for all aElnt of Xa.. This is equal to !NT. The subterm on 
the right contains the merge for all f E~JNT of processes M1, which is equal to 
INTM. This finishes the surgery activities for the case an1 = error. 

In the other case we have an1 = send(/3,an,y,a) for some yEObj. Using the 
conditional axioms we can replace the left hand side subsubterm ( excusez le 
root): 

anrXa.11 2: read(/3,an,y,a)·Zy 
yEObj 

by 
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'r(comm(,8,an,Y,a)) 0 0(send(,8,an, y,a)) (send (/3,an, y,a) · X a II 2: read (/3,an, y,a) · Z y) 
yEObj 

which is equal to 

'1"" 'r(comm(/3,an,y,a)) 0 0{send(,8,an,y,a))(X,, llZ:y) + 
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+ 2:0b _read (/3,an, y,a). T(comm(/3,an, y,a)) o(J(send(,8,an, y,a)) (send(/3,an, y,a). x a llZy ). 
YE '} 

The second summand is redundant in the context in which it occurs and can 
be omitted. ~sing the conditional axioms again, together with identity 
TX l(y == T(x l(y ), yields that the term can be replaced by: 

X,,llZ:y. 

Now we have brought the left hand side subterm in a form which contains the 
merge for all aEint of X,,. This merge we can replace by !NT. The same stra­
tegy that was used to rewrite the left hand side can be used to rewrite the right 
hand side. The result is the same term as obtained on the left hand side, except 
that we have variable !NT M instead of !NT. 

7. CONCLUSIONS 

I. In this paper we showed that it is possible to give semantics of a realistic 
concurrent programming language by means of process algebra. The 
translation of POOL programs into process algebra is complicated, but 
this is mainly caused by the complexity of POOL, in particular by the 
complexity of the select statement. The attribute grammar which we used 
for the translation made it possible to give the semantics in a modular 
way. 

2. This paper contains an application of ACP where the sequential composi­
tion operator is used in full generality. It would have been more involved 
to give semantics of POOL in a signature containing prefixing (an opera­
tor A XP-'>P) instead of sequential composition. Three auxiliary opera­
tors, the renaming operator, the chaining operator and the state operator, 
turned out to be useful. 

3. Because we have no infinite sum and infinite merge operators in the signa­
ture, we had to choose the value domain of POOL variables finite. Furth­
ermore the number of objects which can be created during execution of a 
POOL unit is finite. Although it would be useful to have these infinitary 
operators available, we do not think that their absence in the present 
paper is a real deficiency: the memory of each computer is finite, and no 
computer will function eternally. 

4. The approach followed in this paper can also be used to give semantics of 
other concurrent programming languages. From the point of view of pro­
cess algebra we see no fundamental difference between the object-oriented 
approach from POOL, and the imperative, logic or functional approaches 
followed in other languages. However, at present it is difficult to give pro­
cess algebra semantics of a language in which real-time aspects play a 
role. 
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5. KFAR does not completely capture the notion of fairness in POOL. In 
Section 5.4.3 we pointed out that combination of failure semantics and 
weak process fairness is especially problematic. An open question is 
whether or not the two concepts can be combined in a consistent manner. 

6. There is not one single 'optimal' semantics of POOL. Depending on the 
application domain one has in mind one can try to find an optimum. 
There are a lot of features which can be included in the semantical 
description of the language: infinite domains of variables, fairness, error 
behaviour, termination behaviour, etc. An important parameter in the 
choice of a semantics is the type of interaction between the environment 
and the POOL system. In case one wants to use the semantics to build 
an executable prototype, the semantics has to be operational. In case the 
semantics is used for the construction of proof systems or for the correct­
ness proof of implementations, one requires abstractness and composi­
tionality. It might be the case that the combination of all these require­
ments leads to inconsistencies. 

7. The translation of POOL into process algebra can be used for prototyping 
of the language. The shortest route seems to be a translation into an alge­
braic specification formalism. The attribute grammar which we used can 
be specified algebraically in a straightforward way. The process algebra 
part is already specified algebraically but some work has to be done in 
order to deal with a number of notational conventions, for example the 
sum operator and the numerous ' .. .' occurring in the equations. There are 
several alternatives for transforming algebraic specifications into execut­
able prototypes, for example by means of a transformation into a com­
plete (conditional) term rewriting system and execution by means of an 
existing rewrite rule interpreter, or by means of a transformation into a 
set of Horn clauses and using an existing Prolog system for their execu­
tion. 

8. It would be interesting to construct a proof system, based on our process 
algebra semantics, which can be used to prove correctness of POOL pro­
grams. 

9. A semantical description of POOL with handshaking communication 
between the objects is incompatible with the description in [ 1 ], where mes­
sage queues are used. A minor change in the language definition is pro­
posed in order to remove this difficulty. In our opinion this result shows 
that, when dealing with concurrent programming languages, questions 
like: 'Is this semantical description in accordance with the language 
definition?' and 'Is this a correct implementation of the language?' are 
highly relevant. 

10. An important problem to be solved is in our view the development of 
techniques which make it possible to prove that two semantics of POOL 
have a common abstraction. In Section 6 we gave a sketch of such a 
proof, showing that the Integers and Booleans can be implemented in a 
lot of ways. In Section 4 we discussed the question whether or not the 

z 
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communication between objects can be implemented by message queues. 
We showed that, even after modification of the language definition, this is 
not possible in bisimulation semantics. An open question is the 
equivalence in failure semantics. 

ACKNOWLEDGEMENTS 
I would like to thank Pierre America, Joost Kok, Jan Rutten and all the parti­
cipants of the PAM seminar for their valuable criticism and many inspiring 
discussions. 

REFERENCES 
1. P. AMERICA (1985). Definition of the Programming Language POOL-T, 

ESPRIT project 415, Doc. Nr. 91, Philips Research Laboratories, Eindho­
ven. 

2. P. AMERICA (1986). Rationale for the Design of POOL. ESPRIT project 
415, Doc. Nr. 53, Philips Research Laboratories, Eindhoven. 

3. P. AMERICA (1987). A Sketch for POOL2, ESPRIT project 415, Doc. Nr. 
240, Philips Research Laboratories, Eindhoven. 

4. P. AMERICA, J.W. DE BAKKER, J.N. KOK, J.J.M.M. RUTIEN (1986). 
Operational semantics of a parallel object-oriented language. Conference 
Record of the l 3th A CM Symposium on Principles of Programming 
Languages, St. Petersburg, Florida, 194-208. 

5. P. AMERICA, J.W. DE BAKKER, J.N. KOK, J.J.M.M. RUTTEN (1986). A 
Denotational Semantics of a Parallel Object-oriented Language, CWI 
Report CS-R8626, Centre for Mathematics and Computer Science, 
Amsterdam. To appear in Information and Computation. 

6. ANSI (1983). Reference Manual for the Ada Programming Language, 
ANSl/MIL-STD 1815 A, United States Department of Defense Washing­
ton D.C. 

7. K.R. APT, N. FRANCEZ (1984). Modelling the distributed termination 
convention of CSP. TOPLAS 6(3), 370-379. 

8. J.C.M. BAETEN, J.A. BERGSTRA (1988). Global renaming operators in 
concrete process algebra. Information and Computation 78(3), 205-245. 

9. J.W. DE BAKKER (1980). Mathematical Theory of Program Correctness, 
Prentice-Hall. 

10. J.A. BERGSTRA (1989). A Process Creation Mechanism in Process Algebra. 
This volume. 

11. J.A. BERGSTRA, J.W. K.LOP, E.-R. OLDEROG (1987). Failures without 
chaos: a new process semantics for fair abstraction. M. WIRSING (ed.). 
Proc. IFIP Conf on Formal Description of Programming Concepts - III, 
Ebberup 1986, North-Holland, Amsterdam, 77-103. 

12. G.V. BOCHMAN (1976). Semantic evaluation from left to right. Communi­
cations of the ACM 19(2), 55-62. 

13. D.W. BUSTARD (1980). An introduction to Pascal-Plus. R.M. MCKEAG, 
A.M. MACNAGHTEN (eds.). On the construction of programs - an advanced 
course, Cambridge University Press, 1-57. 



236 

14. J. ENGELFRIET (1984). Formele Ta/en en Automaten 2, Department of 
Computer Science, State University of Leiden, lecture notes (in Dutch). 

15. N. FRANCEZ (1986). Fairness, Springer-Verlag, Berlin. 
16. R.J. VAN GLABBEEK (1987). Bounded nondeterminism and the approxi­

mation induction principle in process algebra. F.J. BRANDENBURG, G. 
VIDAL-NAQUET, M. WIRSING (eds.). Proc. STACS 87, LNCS 247, 
Springer-Verlag, 336-347. 

17. R.J. VAN GLABBEEK, F.W. VAANDRAGER (1987). Petri net models for 
algebraic theories of concurrency (extended abstract). J.W. DE BAKKER, 
A.J. NIJMAN, P.C. TRELEAVEN (eds.). Proceedings PARLE conference, Ein­
dhoven, Vol. II (Parallel Languages), LNCS 259, Springer-Verlag, 224-242. 

18. C.A.R. HOARE (1985). Communicating Sequential Processes, Prentice-Hall. 
19. INMOS, LTD. (1984). The Occam Programming Manual, Prentice-Hall. 
20. ISO (1987). A Formal Description Technique. ISO!TC97/SC21/WG16-l 

DP8807. 
21. D.E. KNUTH (1968). Semantics of context-free languages. Mathematica/ 

Systems Theory, 2, 127-145. Correction: Mathematical Systems Theory 5, 
1971, 95-96. 

22. C.P.J. KOYMANS, J.C. MULDER (1989). A Modular Approach to Protocol 
Verification using Process Algebra, This volume. 

23. R. MILNER (1980). A Calculus of Communicating Systems, LNCS 92, 
Springer-Verlag. 

24. J. PARROW (1985). Fairness Properties in Process Algebra - with Applica­
tions in Communication Protocol Verification, DoCS 85/03, Ph.D. Thesis, 
Department of Computer Systems, Uppsala University. 

25. F.W. V AANDRAGER (1986). Verification of Two Communication Protocols 
by means of Process Algebra, CWI Report CS-R8608, Centre for 
Mathematics and Computer Science, Amsterdam. 

26. F.W. VAANDRAGER (1986). Process Algebra Semantics of POOL, CWI 
Report CS-R8629, Centre for Mathematics and Computer Science, 
Amsterdam. 

27. F.W. VAANDRAGER (1989). Some Observations on Redundancy in a Con­
text. This volume. 

28. F.W. VAANDRAGER (1989). Two Simple Protocols, Tbis volume. 


