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BUEKENHOUT-TITS GEOMETRIES

We intend to discuss the following preprints:

-M. Aschbacher, Flag structures in Tits geometries, 18pp.
- , Presheaves on Tits geometries, 43pp.

- & St. D. Smith, Tits geometries over F defined
2

by groups over F , 7pp.
3

—-F. Buekenhout, Diagram geometries for sporadic groups, 29pp.
-W.M. Kantor, Some exceptional 2-adic buildings, 29pp.
-F. Timmesfeld, Tits geometries and parabolic systems in finite

groups, 113pp.
1.BASIC NOTIONS.
Throughout this section, I is an index set.

1.1 DEFINITION.

A geometry over I is

a triple Gamma =(V,*,t), where V is a set, * a symmetric and reflexive

relation on Vv, called incidence and t: V -—-> I a map, called the type

map, such that ((t(x)=t(y) and x*y)=> x=y) for all x,y in Gamma.
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Thus, V is the disjoint union of subsets Vv =t (i) for i in I,
i

called the parts of Gamma. The graph of Gamma is the tuple (V,”) with ~

the adjacency relation defired by x~y if and only if x*y and x/=y

for x,y in V. Notions such as connectedness and cliques will often

be zapplied to Gamma when in fact they are meant for its graph.
If W is a subset of V and J a subset of I containing t(W),
we call the geometry (W, *|WxW , t|W) over J

the (full) subgeometry of Gamma over J induced on W. A flag
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of Gamma is a subset F of V such that x*y for all x,y in F. Note that
the restriction of t to a flag is injective. Let F be a flag. Then

the type of F, type(F), is the set ty(F),

the cotype of F, cotype(F), is the set I\t(F),

the rank of P, rank(F), is the cardinality of type(F), and

the corank of F, corank(F), is the cardinality of cotype(F).

F
We shall write Vv ={x in V | x*F}, where x*F means x*y for each y in F,

r

and V =V \ F.
F

P
The link of F (in Gamma) is the full subgeometry over I induced on V ,

F
notation Gamma , and the residue of F is the full subgeometry over

I\t(F) induced

on V , notation Gamma or Res(F) when Gamma is clear.
F F

The radical of Gamma, notation Rad(Gamma), is the set

{x in V | x*y for all y in V with t(y)/=t(x)}.

The rank of Gamma is the cardinality of I. A chamber is a flag of

corank 8.

The transversality property is said to hold for Gamma if every

flag is contained in a charber. Gamma is said to be firm if each

flag which is not a chamber is contained in at least two chambers,

and thick if each flag which is not a chamber is contained in at

least three chambers. Gamma is said to be thin if the transversality

property holds and each flag of corank 1 is in exactly two chambers.

Buekenhout defines Gamma to be strongly connected if for any two dis-

tinct i,j in I, and any flag F whose type is contained in I\{i,j}
the subgraph of (V,”) on the points of -

-1 -1
[(t (i) Ut (J)) meet Res F] is connected.
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Tits [A local approach...] defines Gamma to be residually connected

if for each flag of corank at least 2 1its residue is connected

N

and for each flag of corank at least 1 its residue is nonempty.

1.2 PROPOSITZON.
Let I be finite and let Gamma be a geometry over I.
Then Gamma is residually cornected if and only if Gamma

is strongly zonnected and satisfies the transversality property.

PROOF .

Clearly, strsng connectedness and the transversality property
imply residwml connectedness.

Assume that @amma is residually connected. If I has cardinality
at most 2 , then there is notting to show. We apply induction on
the rank of €amma. Thus, for each nonempty flag its residue is
residually osnnected and-hence strongly connected. It remains

to establish trat for each x in V and y in v there is a path R
i ]

from x to ywith t(R) contained in {i,3t.

By residual connectedness of Gamma there is a path Rl:

X=X,X,___,x=y.
'] 1 m

If t(R ) is contained in {i,j:, we are done, so suppose there is k
1 .

in I with t{x )=k for some r {1<r<m). Now for any r with t(x )=k
i = r
r = =

proceed as follows.

Since x ¢ X are in Res x , which is strongly connected by induc-
r-1 r+l1 .

tion, there is a path x , X , X i oeee G X , X with
r-1 r,l Ye2 r,m(r) r+l

t(x ) im {i,j,t(x ), t(x )} for each a (1 < a < m(r) ).
r-1,a r-1 r+l B =

The new path R from x to y so obtained has type t(R ) contained in
2 2

(t(R ) U {i.3}: \ {k}.
1
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Continuing with R by repeating this process
2

for a type k distinct from i,j occurring in t(R ), and so on,

.

we find a path from x to y with types i,j only. This proves the

proposition.

1.3 DEFINITION.
Let Gamma=(V,*,t) and Gamma'=(V',*',t') be geometries over I.

A morphism from Gamma to

Gamma' is a type and incicence preserving map £ from Vv
to V', i.e. t'(f(x))=t(x), and (x*y ==> f(x)*'f(y)) for all x,y in V.

Isomorphisms and automorphisms of geometries over I are defined in

the obvious way. Aut Gamma stands for the automorphism group of Gamma.

A subgroup G of Aut Gamma is said to be flag transitive if for each

subset J of I it is transitive on the flags of Gamma of type J. The

geometry Gamma is called flag transitive whenever Aut Gamma is flag

transitive. G is said to be edge transitive if for each subset J of

I of cardinality at most 2, it is transitive on the flags of type J.

In the remainder of this section, Gamma=(V,*,t) is a geometry over I.

1.4 DEFINITION.

Let G be a group, and F = (P ) a collection of subgroups of G
iiinI

indexed by I. Define the geometry Gamma=Gamma(G,F) as follows:

Gamma=(V,*,t), with Vv the formal disjoint union of G/P over all i
i

in I, where t(xP )=i, and xP *ypP iff XxP meets yP nontrivially.
i i j i j

It is readily checked that Gamma is a geometry with edge transitive
group G, acting on V by left multiplication. Such a geometry will

be called a coset geometry on G with respect to F.

If J is a subset of I, we shall write P for the intersection of all p
J 3

for j in J. ’



1.5 REMARK.
It is readily verified that
(i) G is tramsitive on the set of flags of type {r,s,t} if and only

if P Pmeet PP = P P .
rx s t {r,s} t

Furthermore, this is equivalent to

(P meet 2 ) (P meet P )=P meet P P .
r s r r s t

(i1)G is flag transitive on Gamma if and only if for each subset J
of I and each i in I\J the equality P P = n_u_aet(P_P‘) holds.
Ji jing 3J 1
1.6 THEOREM(3SCHBACHER) .
Suppose Gamma'=(V',*',t') is a geometry over I with edge transitive
group G, and F is a chamber of Gamma'. For x in F,

let P =G be the stabilizer
t(x) x

of x in G under left multiplication on V',

set F=(P ) and let Gamma=Gamma(G,F)=(V,*,t) be the correspon-
iiing

ding coset geometry. Then the map f : V' --> V given by gx -->gPt(x)

for any g in G and x in F
is an isomorphism of geometries over I , commuting with the actions

of Gon V and v'.,
PROOF. S'traightforward.

1.7 EXAMPLE{TIMMESFELD) .
Let G be the alternating group Alt(7) on 7 letters.
pPut al=(2,3,5)(4,7,6), a2=(1,3,7)(2,5,4), a3=(1,6,2)(3,5,7),
1={1,2,3}, and P.=<aj,ak) whenever {i,j,kl=I.
i
and F=(P ) . Then each P 1is a Frobenius group of order 21 and
iiin i
Gamma(G,F) is a flag transitive residually connected geometry
such that the residue of any flag of rank 1 is isomorphic
to the incidence structure or the points and lines of the Fano plane.

Flag transitivity follows frcm verification of Plemeet P2P3= P{l,Z}P3'

see Remark 1.5. We shall see later, in 2.108, how residual connectedness

can be established.



1.8 DEFINITIONS.

A Coxeter system is a pair (W,R) consisting of a group W and a

finite subset R of W for which there is a matrix M=(m(r,s))
r,s in R

with m(r,r)=1 for all r in R , such that

m(r,s)
<r in R | (rs) =1 for every s in R>

is a presentation for W.

The matrix M is uniquely determined

by the system (W,R), in fact, m(r,s) is the order

of rs in W for any two distinct r,s in R, see [Bourbaki].

In this situation, W is called the Coxeter group of (W,R) and the

pair (R,M) is called the Coxeter diagram of (W,R).

The Coxeter diagram can be viewed as a labeled graph by letting
{r,s} for r,s in R be an edge whenever m(r,s) > 2.

If J is a subset of R, denote by W the subgroup of W generated by J,
J

and by V the subgroup W &
J ~I\J

If w is in W, denote by 1 (w), or just 1(w), the length of a shortest
R
expression of w as a product of elements in R.

1.9 THEOREM.
Let (W,R) be a Coxeter system and let I,J,K be subsets of R. Then

(1) The pair (W ,I) is a Coxeter system with (W meet R)= I.
p 1 - I

(ii) (W meet W W ) =W W .
I J K I meet J I meet K

(iii) w=v v for i,j, in I if and only if i,j are in distinct
=3
connected compcnents of the Coxeter diagram.

1.18 COROLLARY.

Let F=(V ) . Then Gamma(W,F) is a thin flag transitive
r r in R

geometry over R.



PROOF.

Flag transirivity is an immediate consequence of REMARK 1.5

and the abowe ~heorem.

Since the transversality pr-perty holds for any flag transitive
geometry with a chamber, we need only show that a flag

of cotype {z} is contained in precisely two chambers. Let F' be

the unique flag in F of this cotype, then xV *F' implies x in <r>
r

so the only chamber distinct from F containing F' is
(F' U rV ). Hence Geamma is thin.
r
1.11 DEFINTPIONS AND NOTATION.
The Coxeter diagrams whose Coxeter groups are finite have a finite
number of connected components, each of which is isomorphic to exactly

one of A (> 1),B=C (n>2),D (n>4), E (n=6,7,8),F , G ,
n = n n = n = n 4 2

m

H (n=2,3,4), I (m > 7), in the notation of [Bourbaki].
n =

If the diagram is connected, the Coxeter group and system are called

irreducible, otherwise they are called reducible. Note that due to

the above theorem reducible Coxeter groups are direct products of
irreducible ones, the components in the direct product decomposition
corresponding to the connected components of the diagram.

A finite Coxeter group is also called spherical.

1.12 DEFINITION.

Let G be a group. A Tits system in G is a 4-tuple (B,N,W,R)

consisting of two subgroups B,N of G, a group W and a subset R of W
such that
(1) G is generated by B and N.
(2) The intersection H of B and N is a normal subgroup of N.

with W=N/H.
(3) For any r in R and w in W we have
(3") ' fBw is contained in BwB U BrwB, and -

-1

(3'") rBr is not contained in B.
Note that the notation rBw makes sense as rBm=rBm' for any two

representatives m, m' of w in N.
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The group W is called the Coxeter group of the system.

Tits systems are studied in [Tits, Buildings of ...,SLN 386].

and [Bourbaki, Groupes et algebres de Lie, Chap. 4,5,6 ].

1.13 THEOREM.
Let G be a group with Tits system (B,N,W,R). Then
(1) The pair (W,R) is a Coxeter system.

(ii) For every subset J of R the set G = BW B is a subgroup of G.
J J

Moreover, for any subgroup of G containing B there is a subset

I of R such that this subgroup is G .
I

(iii) Let I,J be subsets of R. The map Ww W --> G W G is a
I J I J

bijection from W \W/W onto G \G/G .
I J I J

(iv) If U,V are subsets of W closed under taking products
of subexpressions of expressions
of elements w of W as products of 1(w) elements
of R, then BUBVB = BUVB.

(v) G G meet GG =G G .
IK J K I meet J K

(vi) For any subset J of R the subgroup G has Tits system (B,N ,W ,J),
J J

where N is the inverse image of W in N under the natural map
J J

from N to W.
PROOF. See [Tits, Bourbaki].

1.14 DEFINITION.

The subgroups G of a group G with a Tits system (B,N,W,R)
I

are called tte standard parabolics (parabolic subgroups) of G with

respect to the Tits system. The conjugates of standard parabolics

are called perabolics of G.
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A parabolic is called maximal if it is a proper subgroup of G not

contained iz any other proper subgroup of G. Thus maximal parabolics
< )
have the fom g G g for some g in G and r 1n R.
A\({r}
With any TiZs systes {B,N,W,R) in a group G we can associate a flag-

transitive geometry Gamma (G,F) over R, where F=(G ) -
R\{r} r in R

We shall ca&l this geometry the building associated with the Tits

1.15 COROLLaRY.
Let G be a yroup with Tits system. Then its building is a thick

geometry over R on which G acts flag transitively.

PROOF .

As for Corollary 1.18. Note that the building is a thick geometry as

B<r>P, wherz p=G ,
R\{r}

is nct contained in P U rP.

1.16 EXAMPIZ.

Take G=GL(®m,K), where K is a field, B the subgroup of G consisting

of upper triangular matrices and N the subgroup of

G of monomial matrices.

Then H=(B meet N) = the group of diagonal matrices

and W=N/H is isomorphic to the symmetric group Sym(n) on n letters.
Identify Wwith the subgroup of G of permutation matrices in the
obvious way and let R={(i,i+1) | i=1,...,n-1}. Then (B,N,W,R) is a Tits
system. Its building can be identified with the geometry Gamma=

(V,*,t) over 1={g,...,n-2} in which v is the set of all proper nonempty
i

subspaces of the projective space PG(n-1,K) over K of projective
dimension i, two members x,y of V are incident (i.e., x*y) if x is
contained is y or vice ve;‘sa, and t(x) stands for the projective
dimension of x in v, For, icentify R and I by means of (i,i+l) <->i-1.
Since G acts on Gamma flag transitively,

we can apply Theorem 1.6 in order to identify -

the buildiey and Gamma.



1.17 REMARK.
The finite buildings of rank at least two have been determined
by Fong-Seitz for rank = 2 under an additional hypothesis
and Tits for rank > 2.
They are essertially the (twisted) Chevalley

groups A (q), B (q), C (Q), D (q9), E (@), F (@), G (9,
n n n n n 4 2

2 2 3 2 2 )
A (9, D(q), D(q , E (9, F (9 in the notation of
n o 4 6 4
a

[Gorenstein]. The associated buildings are denoted by [ X (q) 1,
n

a
if G = X (q). Here we use the convention a=1 for normal
n

Chevalley gromps. Thus, [A (q)] is the building discussed
n-1

in the above example, if K is the field of g elements.

The following theorem by Seitz extends a theorem by D.G. Higman,
and determines all flag transitive groups on a building of

rank >1 coming from the Tits system of a (twisted) Chevalley group.

1.18 THEOREM(SEITZ) .

Let Gamma be a finite building of rank >1 and of irreducible type.
and suppose L is a subgroup of G=Aut Gamma which is flag transitive
on Gamma. Then either L contains the

generalized Fitting subgrcup of G or one of the following holds:

(1) Gamma=[A2(2)], G=PSL(3,2) and L has order 3.7.

(ii) Gamma:[Az(s)], G=PGammaL(3,8) and L has order 9.73.

(iii) Gamma=[A4(2)], G=PSL(4,2) and L is isomorphic to Alt(7).

(iv) Gamma=[C (2)], G=Sp(4,2) and L is isomorphic to Alt(6).
2

(v) Gamma:[Gz(z)], G=G2(2) and L =G’

2 2
(vi) Gamma=[ F (2))], G= F (2) and L=G'.
4 4

(vii) Gamma=[C (3)], G=PSp(4,3) and L is a maximal parabolic
2

6
of PSU(4,2) of order 2 *3*5.
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1.19 DEFINITIONS.

For m at least 2, a generalized m-gon is a firm connected geometry

of rank 2 whose graph has diameter m and girth (minimal length of

a cycle) 2m.

A diagram on I is a collection D of nonempty sets D , indexed by the
J

subsets J of I of cardinality 2, consisting of geometries over J.
The graph of D is the has vertex set I; its vertices i,j are adjacent

whenever some member of D is not a generalized 2-gon.
{i,3}
Notions such as connectedness will be
applied freely to D when in fact they are meant to apply to its graph.

If for any two distinct i,j in I, there is an integer m(i,j) such that

D consists of all generalized m(i,j)-gons, then D is determined
{i,3}

uniquely by the Coxeter ciagram (I,M), where M=(m(i,j)) with the
i,j in 1
convention that m(i,i)=1 for all i in I, cf. 1.8.

Conversely, any Coxeter diagram (R,M) determines a unique diagram

over R with D ={generalized m(i,j)-gons} for all distinct i,j in I.
{i,j}

By abuse of language, such a diagram D will also be referred to

as a Coxeter diagram.

A geometry Gamma over I is said to belong to a diagram D if Gamma
““““ T

is isomorphic to a member of D whenever T is a flag of cotype J
J

and corank 2.
If Gamma is a residually connected geometry belonging to a diagram D

then G is said to be a geometry of type D. A geometry of type

a Coxeter diagram will be called

a Tits geometry. Thus, buildings are Tits geometries.

The minimal diagram D(Gamma) of a geometry Gamma is a diagram

D such that D consists of a representative system of geometries for
J

the isomorphism classes of Camma as T varies over all flags of cotype
T

J. Clearly, the minimal diagram of a geometry is unique up to
"isomorphism”.
If i is in I, then D\{i} denotes the restriction of D

to I\{i}.
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1.28 PROPOSITION.
Let Gamma be a residually connected geometry over I belonging to
diagram D. Suppose J and K partition I and are unions of connected

of D. Then x*y for any x,y in V with t(x) in J and t(y) in K.

PROOF.

If J or K is empty, there is nothing to prove. If J and K both have
rank 1, then the result is clear from the definition of the graph
of D. Without loss of generality, we assume that J has cardinality
at least 2. By residual connectedness, there is a vertex of type

in J which is incident to y. Hence, Proposition 1.1 yields a path

X=X ,X (X =y such that t{x ) is in J for all i<n.
g 1 n i

If n=1, then we are done. Suppose n>l. Now Xx , y are both in
n-2

the residue of x , and the latter geometry belongs to D\{t(x 1)}.
n-1 n-

Since t(x ) is imn J and t(y) is in K, we get by induction on the
n-2

rank of Gamma that y*x . Thus by induction on the length of a
n-2

path from x to y, we obtain x*y as wanted.

1.21 EXERCISE.
Show that there is a bijective correspondence between Tits geometries

Gamma=(V,*,t) of type A and generalized projective spaces P of
3

projective dimension 3 suzh that the members of V , V , V correspond
1 2 3

to points, lines , and planes of P respectively, and such that *
corresponds to symmetrized inclusion. Hint: Use the axioms of Veblen

and Young for projective spaces, see [TAMASCHKE],[TITS].
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2. FLAG TRANSITIVITY.

In this section I is a finite index set, Gamma=(V,*,t)

and Gamma(G,C) is a coset geometry over I with C=(P ) s

iiinI
Our goal is to give an inductive criterium for flag transitivity

and for residual connectedness in the case of coset geometries.

2.1 DEFINITION.

Let T be a set of flags of Gamma.

A flag strocture Sigma on Gamma over T is

T T T T
a collection of partial subgeometries Sigma =(U ,0 ,t|U )

over I of Gamma indexed

by the members T of T , such that

the following properties hold:

(i) Por any S,T in T with S contained in T, the geometry

T S
Sigma is a partial subgeometry of Sigma .

T
(ii) For any T in T, we have that T is contained in Rad (Sigma )

null null
(iii)The null set is a member of T, and Sigma = Gamma

A flag structure is called dense if for each T in T and each flag X

T
of Sigma with T of corank at most 2 in X, we have X in T, and

rigid if T is the collectior of all flags of Gamma.

2.2 EXAMPLE.

Let Gamma=(G,C) be a coset geometry over I. Set

T={gFl g in P and F contained in C}, and for T in T with J=t(T),

t (F) =
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i,j in I, and x,y in gp , set
J

T
U={zP | z in gP and k in I}, and
k J :

T -1
xP o yP whenever y x is in P P .
i 3 Ju{j} Juf{i}

Then the collection Sigma=Sigma(G,C) consisting of all

T T T T
Sigma =(U ,0 t|lu ) for T in T is a dense flag structure

on Gamma. It is rigid if and only if G is

flag transitive on Gamma.

2.3 EXAMPLE.

A trivial example of a rigid flag structure Sigma on Gamma is provided

T 3 o
by Sigma =Gamma for each T in T={flags of Gamma}. In fact,

due to Lemma 2.5 below, this is the only rigid example.

2.4 NOTATION.

For T a collection of flags and T in T, we set

T
={S in T| S contains T} and T ={S\T | S contained in T}.
= =T =

-3

In the remainder of this section, Sigma denotes a flag structure on

Gamma over T and Sigma =(U ,o ,t|U ) for every T in T.

2.5 LEMMA.

Let Sigma be a flag structure on Gamma and let T be a member

of the flag set T of Sigma.

T T
(i) The members of T are flags of Sigma .

T
(ii) If sigma is rigid, then the geometry Sigma is the full

T
subgeometry Gamma of Gamma.
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PROOF.

T
(i) Let S be a member of T .

By axiom (ii) of the definition of flag structure, S is a flag

S T
of Sigma .Hence, by axiom (i), S is a flag of Sigma .

T T
(ii) Suppose that x,y in U satisfy x*y. We have to show that xo y.

Write R=T U {x,y}. Then R is a flag of Gamma, and hence by rigidity
T T

and (i) a flag of Sigma . Hence xo Y.

2.6 DEFINITION.

For Sigma a flag structure on Gamma and T in T, we

T
denote by Sigma the full induced subgeometry of Sigma on V ,
T T

and by Sigma(T) the collection of geometries

S (S U T) S
Sigma(T) =(W, o (W x W), tIW) where W=(U ) R
i o
indexed by S in T .
=T
It is easy to check that Sigma(T) defines a flag structure on Sigma
T

over T .

=T
2.7 LEMMA.

Let Sigma be a dense flag structure on Gamma over T. Then

(i) If T in T, then Sigma(T) is a dense flag structure on Sigma
= T

(ii) Every flag of Gamma of rank at most 2 is in: T,

PROOF. Easy.

2.8 LEMMA.

Let Sigma be a dense flag structure on Gamma and X a flag

of Gamma.

(i) If X has rank 3 then X is in T if and only if it is a flag

T
of sigma for some flag T of rank 1.
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(ii) The flag X is in T if and only if it is a flag of

T
Sigma for every T contained in (X meet T).

PROOF.

T
If X ,T are in T and X contains T, then X in T , whence

T
X is a flag of Sigma by Lemma 2.5.

This proves an implication for each of (i) and (ii).
The reverse implication for (i) is a consequence of the definition
of density and Lemma 2.7; the reverse impliéation of (ii) follows from

(i) by induction on the rank of X.

2.9 DEFINITION.

A flag structure Sigma on Gamma is called residually

T
connected if Sigma is connected for each T in T of corank at least 2

and nonempty for each T in T of corank at least 1.

2.10 LEMMA.
Let Gamma(G,C) be a coset geometry.
(i) sigma(G,C) is

residually connected if and only if P =<P 1i in I\J>
J Ju{i}

for each subset J of I with I\J of cardinality at least 2.

(ii)For T in T, take J=t(T) and g in G such that

T=g{P | i in J}. Set C ={P | i in I\J}. Then the map
i J Ju{i}
-]
XxP --> g - xP (x in P )
i Ju{i} a
from gp P /P to P /P is an isomorphism of
Ji i J Ju{i}

geometries from Sigma onto Gamma(P ,C ) such that
T J J

Sigma(T) maps onto Sigma(P ,C ).
J J
PROOF .

Exercise.
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2.11 PROPOSITION.

Let Sigma be a dense flag structure on Gamma. Then the
following are equivalent:

(1) Sigma is rigid.

(ii) For each S,T in T with S contained in T, the geometries

T ST
Sigma and (Sigma ) coincide.

1f, moreover, Sigma(T) is rigid for every T in T of rank 1, then this

is equivaleant to each of:

(iii)Any flag of rank 3 is in T.

(iv) Each flag X of rank 3 centains a flag T of rank 1 such that
T
X is a flag of Sigma .

PROOF .

The implication (i)-->(iii) is immediate. (i)-->(ii) and (1) -->(iv)
follow by Lemma 2.5

and (iv)-->(iii) follows by Lemma 2.7.

Assume for the moment that Sigma(T) is rigid for each T in T of rank 1.

and assume that (iii) holds. Let X={x1,x2,...,xs} be a flag. In proving
(i), we assume that s>2 without loss of generality. Set T={x1} and
Ti={x1,xi} for i>1. By (iii), we have Ti U Tj in

T B T . . -
T for any i,j, whence X is a flag of Sigma . But Sigma(T) 1s rigid

so X\T is in T , and X is in T, proving (i).
=T =

Finally, in order to prove (ii)-->(i), assume (ii) and let T be a
flag of rank 1. Then (ii) also holds

for the flag structure Sigma(T), so by induction on the

rank of Gamma, we have that Sigma(T) is rigid. Thus we can apply the
implication (iii)--(i) just proved. In view of this,

T
it suffices to show X in T for any flag X of rank 3

T T
containing T. But this follows as Sigma and Gamma coincide by (ii).
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2.12 THEOREM(Aschbacher[ ]) .

Let Gamma(G,C) be a coset geometry such that Sigma=Sigma(G,C) is
residually connnected. Suppose that for any P in C the flag

structure Sigma({P}) is rigid.

Then G is flag transitive on Gamma if and only if G is transitive

on the set of flags of type J for any subset J of I of cardinality 3.

If this holds, then Gamma is residually connected.

PROOF .
Follows from Proposition 2.11, density of Sigma,see Example 2.2,

and Lemma 2.5.

2.13 REFORMULATION.

Let Gamma=Gamma(G,C) satisfy P =<P | £ in I\J>, and
J JU {r}

P P meet PP = P P for any subset J of I with |[I\J| at least 2
ik ik {i,3} k

and distinct i,j,k in I.
Then Gamma is residually connected and G is flag transitive on Gamma

if and only if P is flag transitive on Gamma(P,C ) for each P in C
P P

where C ={p 1§ in I\t(P)}.
P t(P)u{j}
PROOF .

Use Remark 1.5 and Lemma 2.10.

2.14 COROLLARY.

Let Gamma(G,C) be a coset geometry such that

Sigma=Sigma(G,C) is residually

connnected. Suppose that for any pair i,j in I, the subgroup P=

P of G is flag transitive on Sigma . Suppose, moreover ,that
i (P}

for any subset J of I of cardinality 3 there are i,j in J such that

with {k}=J\{i,j} we have either

(a) P is intransitive on G/P and P has at most 2 orbits on
i k {i,3}
each of P /P and P /P y O
i {i,k} j {3.k}
(b) P =P P .

i {i,3) (i}

Then G is flag transitive on Gamma.
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PROOF.
Let J be a subset of I of cardinality 3.

I1f (a) holds for J, then there are x in P
i

and y in P such that

3
P2=p P U P x P , and
ik {i,j} k {i,3} k
PP =P P u P Y P .
Ik {i,j} K {i,3} k
Therefore, sither P P meet P P = P P = P P .
ik j k ik j Kk
or P P meet P P =P P .
ik j k {i,3}
The former rase leads to P P = <P ,P >P =GP =G,
ik i j k k
in contradirtion with the intransitivity of P on G/P
i k
hence PP meet PP =P P .
ik j k {i,3} «k
1f (b) holds for J, then
PP meet PP =P P meet PP =P P -
ik j k {i,i} k ik {i,3) k

Thus in view of Remark 1.5, the group G is transistive
on the set of flags of type J for any subset J of I of

cardinality 3. Hence we are done by the above theorem.

2.15 EXERCISE.
Reprove the flag transitivity of the thin coset geometry
Gamma(W,F) defined by means of Coxeter groups in Corollary 1.10.

Show that Gamma(W,F) is residually connected.

2.16 COROLIARY.
Let G be a group with Tits system (B,N,W,R), and let Gamma=
Gamma(G,C) be its building.

Then Gamma is residually connected and flag transitive.

PROOF .
Sigma(G,C) is residually connected by Lemma 2.10 as

< BW Bl i in R\J>=B <W | i in R\J> B=
Ju {i} J u {i}

B W B =P by Theorem 1.13.
J J



By Corollary -.15, the group G is flag transitive on Gamma.
Thus, Sigma is rigid so that residual connectedness of Sigma

implies res3dual connectedness of Gamma.

2.17 EXAMPLZ(ASCHBACHER-SMITH[ 1) .
Let H=Sym(7} be the linear group of the 6-dimensional vector space

over F persuting the basis wl,w2,w3,wd4,wS,w6,w7. Then H preserves
3

the standarf inner product with respect to this basis. Let V be the
orthoplement of wl+w2+w3+w4+w5+w6+w7 with respect to this form and
denote by B the restriction of the form to V. Observe that V 1s

stabilized By H. Since the rows of M=

represent am orthonormal basis of V with respect to -B, the form B

has Witt isdex 2 and Aut(Vv,B)=0 (6,3).

Set G=Omega (6,3). The refleczion r=(56) of Sym(7)=H induces an outer
automorphism on G. Define L to be the setwise stabilizer in H of the
basis A={235,145,136,246,127,347,567},

where ijk stands for wi+wj+wk.

Clearly, L is isomorphic to PSL(3,2), and L1=<(12)(34),(1236475)>-
1

Consider the linear map on W sending wi to the i-th element of A.
Its restriction s to V is a linear transformation of V whose square

S -
is the homothety -1. Now r and r are reflections on V whose elgen—

vectors with eigenvalue -1 are w5-w6 and wl+w2-w3-w4 respectively.

s
Since the latter two are perpendicular, r and r commute. This implies

-1 -1 4 2 . . "
st s = s rsr , whence (rs) =1, in view of s =-1. Since s takes

into an orthormal basis with respect to B, it takes B to -B, so that

s normalizes G.

Set S=<(12)(34),(34)(56),(14)(23)>, P =H'=Alt(7), and x=(246) (135).
1
(rs)

Furthermore, set P =(sr)P (rs)=P , and
i+1 i i
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(rs)
L =(sr)L (rs)=L for i=1,2,3.
i+l i i

We are interested in the geometry Gamma=Gamma(G,C) over 1={1,2,3,4},

where C=(P )
i

iinI

First of all we calculate some intersections.

Note that x is in P , where-$24 is short for {1,2,4}.
3 124
rs
Hence x =(142)(675) 1is in P
123
sr
and x =(123)(657) 1is in P %
134

Moreover, S is contained in L as it preserves B, and stabilized
1

by both r and s under conjugation.
rs sr

Therefore, K=<S,x ,x > is contained in P .But K is the
13

stabilizer of {1,2,3,4}

inside H=Alt(7) and hence maximal,6in P . Consequently,

13
2 -
P =K. Applying (rs) to K, we get P . Next we determine P .
13 24 12
Obviously, L is contained in P . But L is also contained inp ,
1 1 1 2
Sr sr Sr ST

for L =<(12)(34),(1236475)> =<(12)(34) ,(1236475) >=
1
=<(12} (34),(1345726)> is contained in P .
1

Since L is maximal in P , this yields that P =L . Applying rs and
1 1 12 1

its powers, we get P =L .
{i,i+1} 1

By now it is easy to derive that P =<S,x> and that P =S.
124 1234

Thus, apart from images under conjugation by rs, all intersections P
J

for J a subset of I have been determined.

It is now straightforward to verify the conditions of Corollary 2.14.
We conclude that Gamma is a flag transitive residually connected
geometry whose rank 2 residues are generalized mii,j)—gons with
m(i,i+1)=3 and m(i,i+2)=2 for all i in I, indices modulo 4. In
particular, Gamma is a Tits geometry of type the Coxeter diagram

extended A .
3
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.18 DEFINITION.

A flag structure Sigaa on Gamna is said to belong

to a diagram D on I if for each subset J of I of cardinality 2 and each

T in T of cotype J we have Sigma in D . The minimal diagram D(Sigma)

= T g - "

of a dense flag structure Ssigma is the diagram with D(Sigma) a set
J

of representatives of the isomorphism classes of all Sigma as T
T

as T varies over all flags T of cotype J.
Note that such flags exist as sigma is dense.
oObviously, Gamma belongs to any diagram of a rigid

flag structure on Gamma.

2.19 PROPOSITION.
Let Sigma be a residually connected dense-flag structure
on Gamma belonging to a diagram D.

Then:

-1 -1
(i) The graph induced on t (i) u t (D is connected.

(ii) If I is partitioned by the subsets J and K such that the connected
components of D either belong to J or to K, then

for any S,T in T of type -in J,K respectively, the set S UT

is a flag in T.

PROOF.

(i) is a slight variation of proposition 1.2.
(ii)is an extension of proposition 1.28. Use induction on

“the rank of SUT.

2.28 COROLLARY.

Assume that Gamma has a dense residually connected flag

structure belonging to a diagram p. If i,j,k in I are such that
i,k occur in distinct connected components of D\{3j} and xi,xj,xk

are of type r with xi*xj and xj*xk, then we have xi*xk.

PROOF . -

Apply the proposition to Sigma  where F={xj}.
F
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2.21 COROLLARY.
Let Gamma(G,C) be a coset geometry over p €
(1) For i,j in I we have that i,j are nonadjacent

in D(G,C) if and only if P =P P -
1\{i,3} \{i} IN\{3}

(ii) If Sigma(G,C) is residually connected and the graph of D(G,C)
on I is a disjoint union of J and K, then G = P P .
J K

PROOF.

(i) Take T=Pp , with J=1\{i,j}. Since the diagram of sigma(T)
J

consists of two disjoint nodes, we have that xP and P
Ju{i} Ju{j}

are incident ir Sigma(T) for any X,Y in P . This

implies P P , which comes down to the equality in

Jﬁpau{j} Ju{i}

statement (i) . The converse is obtained by working backwards through
the argument jast given.

(ii) Suppose g in G. Let S,T be the subflag of C of type J,K

respectively. Then S and gT are in the flag set T of sigma(G,C) ,

so SUQT is a flag in T according to Proposition 2.19. This means

that there is h in G such that hP =P for i in J and
i i

hp =gp for i in K.
i i

Consequently, h in P neet gP whence g in P P . This proves the
J K J K

corollary.

2.22 THEOREM(ASCHBACHZR) .
Let Sigma be a dense residually connected flag structure
on Gamma belcnging to a diagram whose graph consists of a disjoint

union of paths. Then Sigma is rigid.
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PROOF.
Let T be a flag of rank 1.
Then Sigma(T; is a dense residually connected

flag structu-re on Sigma belonging to the diagram D\t(T), whose
T

graph is again a union of paths. Hence, by induction on the rank of
Gamma, Sigma(T) is rigid. By Proposition 2.11 it suffices to establish
that any flag X of rank 3

S
is in Sigma for some flag S of rank 1. Let X={xi,xj,xk} be a flag of

rank 3 with t(xr)=r for r=i,j,k occurring in this order along a path of
D(if there is such a path at all, otherwise the order is irrelevant).
S - -
Take S={xj}. Then xi o xk by Corollary 2.28 applied to Sigma .
S

S
Hence X in T .

This ends the proof of the theorem.

2.23 NOTATION.
If Gamma(G,C) is a coset geometry over I, then D(G,C)
denotes the minimal diagram of the flag structure Sigma(G,C).

Thus, D(G,C) ={Sigma } for each subset J of I of cardinality 2
J {p}

where P=P .

N\J
COMMAND- logout
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