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ABSTRACT 

. ~W:i?er stochastic .lineai: dynamical systems, dx=Axdt+Bdw,dy=Cxdt+d,,,y(O)=O,x(O) a 
given !Dl~al random vanable mdependent of the standard independent Wiener noise processes w, v. 
The matnces A,B,C are supposed to be constant. In this paper I consider two problems. For the 
first one A,B and C are supposed known and the question is how to calculate the conditional pro­
bability density of x at time t given the observations y(s),Oo;;;so;;;t in the case that x(O) is not 
necessarily gaussian. (In the gaussian case the answer is given by the Kalman-Bucy filter). The 
second problem concerns identification, i.e. the A,B, C are unknown (but assumed constant so that 
dA =O,dB =O,dC=O), and one wants to calculate the joint conditional probability density at time 
t of (x,A,B,C), again given the observations y(s),Oo;;;so;;;t. The methods used rely on Wei-Norman 
theory, the Duncan-Mortensen-Zaka.i equation and a "real form" of the Segal-Shale-Weil represen­
tation of the symplectic group Sp.(R). 

AMS classification: 93El I, 93B30, 17899, 93CIO, 93B35, 93El2 
Key words and phrases: nongaussian distribution, identification, non-linear filtering, DMZ equa­
tion, Duncan-Mortensen-Zakai equation, propagation of nongaussian initials, Wei-Norman theory, 
Segal-Shale-Weil representation, reference probability approach, unnormalized density, Kalman­
Bucy filter, Lie algebra approach to nonlinear filtering. 

l. Introduction 

Consider a general nonlinear filtering problem of the following type: 

dx = f(x')dt + G(x)dw , xeR•, weRm (I.I) 

dy = h(x')dt + dv ' yeRP, PERP (1.2) 

where/, G,h are vector and matrix valued functions of the appropriate dimensions, and the w, v are standard Wiener 
processes independent of each other and also independent of the initial random variable x(O). One takesy(O)=O. 

The general non-linear filtering problem is this setting asks for (effective) ways to calculate and/or approximate the 
conditional density 11(x,t) of x given the observationsy(s),O.;;so;;;1; i.e.11(x,t) is the density of x =E[x(t)[Y(s), Oo;;;so;;;t] 
the conditional expectation of the state x(t). 

One approach to this problem proceeds via the socalled DMZ equation which is an equation of a rather nice form 
for an unnormalized version p(x,1) of w(x,t). Here unnormalized means that p(x,t)=r(t!n'(x,t) for some function r(t) 
of time alone. A capsule description of this approach is given in section 2 below. Using this approach was strongly 
advocated by Brockett and Mitter (cf. e.g. their contributions in (6)), and initially the approach had a number of non­
trivial successes, both in terms of positive and negative results (cf. e.g. the surveys [9] and [4D. Subsequently, the 
approach became less popular; perhaps because a number of rather formidable mathematical problems arose, and 
because the number of systems to which the theory can be directly applied appears to be quite small. CC [41 for a dis­
cussion of some aspects of these two points. 

It is the purpose of this paper to apply this approach to two problems concerning linear systems, which do not fall 
within the compass of the usual Kalman-Bucy linear filtering theory. More precisely, consider a linear stochastic 
dynamical system 

Various sub<electioDJ of the material in this anicle have formed the subject of various talks at dilfercnl cooieten=; e.g. the 2nd cooier­
eo<c on the road-vehicle syslem in Torino in June 1987, the 24-th Winter school on theoretical physics in Karpacz in January 1988, the 
3rd meeling of the Bellman continuum in Vall>oono in June 1988, the present one, and the special program on signal processing of the 
IMA in Mimicapolis in the summer of 1988. As a "'8ult this article may also appear in the procccdings of these moetings. 
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(1.3) 

(1.4) 

where the A,B,C are matrices of the appropriate sizes. The first problem I want to consider is the filtering of (1.3)­
(1.4) in the case that the initial condition x (0) is a non-gaussian random variable. The second problem concerns the 
identification of (l.3)-(1.4); i.e. one assumes that the matrices A,B,C are constant but unknown and it is desired to 
calculate the conditional density ff(x,A,B,C,t) oC the (enlarged) state (x,A,B,C) at time 1. Technically this means that 
one adds to (1.3)-(1.4) the equations 

dA = 0, dB = 0, dC = 0 (1.5) 

and one oonsiders the filtering problem for the nonlinear system ( 1.3)-( 1.5). Strictly speaking this problem is not well 
posed. Simply because A,B,C can not be uniquely identified on the basis of the observations alone. In the DMZ 
equation approach this shows up only at the very end in the form that p(x,A,B,C,t) will be degenerate in the sense 
that p(Sx,SAs- 1,sB,cs-1,t)=p(x,A,B,C,t) for all constant invertible real matrices S. As a result the normalization 
factor jp(x,A,B,C,t)dxdAdBdC does not exist, and in fact ff(x,A,B,C,t) is also degenerate. One gets rid of this by 
passing to the quotient space (finite moduli space) {(x,A,B,C)}/GL,.(R) for the action just given and/or by consider­
ing (local) canonical forms. The normalization factor can be calculated by integrating over this quotient space. 

Besides the DMZ-equation, already mentioned, the tools used to tackle the two problems described above are 
Wei-Norman theory and something which could be called a real form of the Segal-Shale-Weil representation of the 
symplectic Lie group Sp.(R). These two topics are discussed in sections 3 and 4 below. 

2. The DMZ approach to nonlinear filtering 

Consider again the general nonlinear system (l.1)-(1.2). These stochastic differential equations are to be considered as 
Ito equations. Let "ll(x,t) be the probability density of E[x(t)[y(s), O...;s...;1], the conditional expectation of x(I). (Given 
sufficiently nice f,G and h if can be shown that ff(x,1) exists.) Then the Duncan-Mortensen-Zakai result [l, 10, 12] is 
that there exists an unnormalized version p(x,t) of w(x,t), i.e. p(x,t)=r(t)w(x,1), which satisfies an evolution equation 

dp = £pdJ + !.hkpdyk(t), p(x, 0) = #_x) (2.1) 
where l/i(,x) is the distribution of the initial random variable x(O) and where £ is the second-order partial differential 
equation 

1 a1 r a 12 
£<f> = 2.}; -;--x a (GG )1/I> - ~-a Ji<t> - 2.};hk.P. 

iJ " i Xj I X; k 
(2.2) 

Here hk,yk(t),Ji are components of h,y(t) and/ respectively and (GGr);i is the {i,j)-entry of the product GGT of the 
matrix G and its transpose. 

Equation (2.l) is a Fisk-Sf!:atonovi~ stochastic differential equation. The corresponding Ito differential equation is 
obtained by removing the - 2 !.ht4> term from (2.2). 

As it stands (2.1) is a stochastic partial differential equation. However the transformation 

ii(x,I) = exp(!.hk(X}yk(t))p(x,t) 

turns it into the equation 

d'P = (£ii + l:£;'Py, + f I£;J'PYV'1)dl 

(2.3) 

(2.4) 

where ii is the operator commutator ft =[h1, £)=h1£-£h1 and fij=[h;, [hi, £J]. Cf. [4] for more details. In (2.4) I have 
explicity indicated the dependence of the various quantities on x,t to stress that here h (x) should simply be seen as a 
known function of x and not as the time function h(x(t)). Equation (2.4) does not involve the derivatives dy; 
anymore; it makes sense for all possible paths y(t), and can be regarded as a family of PDE parametrized by the pos­
sible observation paths y(t). Thus there is a robust version of (2.1) and we can work with (2.1) as a parametrized fam­
ily of PDE parametrized by the y(t). Note that knowledge of i>(x,1) (and y(t)) immediately gives p(_x,t) and that the 
conditional expectation of any function .p(x(t)) of the state at time t can be calculated by 

E[.p(x(t))ty(s), O<s.,..I] = (jp(x,t)dx)- 1 f<P<x)p(x,t) dx (2.5) 

Possibly the simplest example of a filtering problem is provided by one-dimensional Wiener noise linearly 
observed: 

dx = dw, x, weR 

dy = xdt + dP, y, PER. 

In this case the corresponding DMZ equation is 
I d2 I 

dp = <2 Jxl -2x2 pdt + xp dy 

(2.6) 

(2.7) 

(2.8) 
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an Euclidean Schr&linger equation for a forced harmonic oscillator. 

3. Wei-Norman theory 

Wei-Norman theory is concerned with solving partial differential equations of the fonn 

{f;- = u1A 1p+ · · · +u.,A.,p (3.1) 

where the Ai. i = l, ... ,m are linear partial differential operators in the space variables xi. ... ,x., and the U;, i = l, ... ,m 
are given functions of time, in terms of solutions of the simpler equations 

2e_ = A·p . I at I • I= , ... ,m (3.2) 

which we write as 

p(_x,t) = eA•'>J.<x), #_x) = p(x, 0) (3.3) 

Originally, the theory was developed for the finite dimensional case, i.e. for systems of ordinary differential equations 

z = u1A1z+ • · · +u.,A.,z (3.4) 

where z eRk, and the A1 are k Xk matrices. Both in the finite dimensional case (3.4) and the infinite dimensional case 
(3.1) it is well known that besides in the given directions A 1p, ... ,A.,p, the to be determined function or vector can also 
move (infinitesimally) in the directions given by the commutators [A1,Ai]p=(A1Ai-AJA1)p, and in the directions given 
by repeated commutators ([A1,A1],Ak], ([Ai.A1], [Ak,A11l. etc. etc. 

Let Lie(A i. . .,A.,) be the Lie algebra of operators generated by the operators A 1, •• .,A ... This is the smallest vector 
space L of operators containing A 1, •• ,A. and such that if A,BeL then also [A,B]:=AB-BAeL. In the finite 
dimensional case (3.4) L is always finite dimensional, a subvector space of g/k(R), the vectorspace (Lie algebra) of all 
kXk matrices. In the infinite dimensional case the Lie algebra generated by the operators Al>···•Am in (3.1) can easily 
be infinite dimensional and it often is; also in the cases coming from filtering problems via the DMZ equation. Cf. [5] 
for a number of examples. 

This is the essential difference between (3.1) and (3.4). Accordingly, here I shall assume that the Lie algebra 
L = Lie(A h···•A..,) generated by the operators A i.···•Am in (3.1) is finite dimensional. For a discussion of various 
infinite dimensional versions of Wei-Norman theory cf. (4). Hence, granting this finite dimensionality property, by set­
ting. if necessary, some of the 11i(1) equal to zero, and by combining other uj(I) in the case of linear dependence among 
the operators on the RHS of (3.1 ), without loss of generality, we can assume that we are dealing with an equation 

f = u1A1p+ · · · +u.A.p 

with the additional property that 

[A1, Ai] = ~ytAk ;i,j = l, ... ,n 
k 

for suitable real constants yt; i,j,k = l, ... ,n. 

The central idea of Wei-Norman theory is now to try for a solution of the form 

(3.5) 

(3.7) 

p(,t) = e1'(r)A, eg,(t)A, • • • er.(r)A,iji (3.8) 

where the gi are still to be determined functions of time. The next step is to insert the Ansatz (3.8) into (3.5), to obtain 

P = g1A e1',i' · · · e'",i·.p + e8',i' 82A 2e8'A' • · • e'"A·.p + · · · 
+ ef•A ... ef.-•A·-•g,,A.ef.A•.p 

Now, for i =2, ... ,n insert a tenn 
e -1i-1A1-1 ••• e -, • ...c. ef1A1 ••• eJi-1A1-1 

just behind k;A1 in the i-th tenn of (3.9). Then use the adjoint representation formula 

e,iBe-A = B + [A,B] + l![A,[A,B]) + ;![A,(A,B]]]) + · · · 

(3.9) 

(3.10) 

and (3.7)) repeatedly, and use the linear independence of the A ., ... ,A. to obtain a system of ordinary differential 
equations for thegi. ... ,g. (with initial conditionsg1(0)=0=g2(0)= ... =g.(O)). 

These equations are always solvable for small time. However they may not be solvable for all time, meaning that 
finite escape time phenomena can occur. 

Let's consider an example, viz. the example afforded by the DMZ equation (2.8). One calculates that 

I d2 I 2 d I d2 t 2 d 
IT"d;r-·p • x) = dx • 12 dx2 -2x • dxl = x 
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[~,xj= I, [A,IJ=O 

h . lin b" . f •'- f I d2 I 2 d I 
w ere A JS any ear com mauon o we our operators 2 dx2 -2 x , x, dx , . 

to the equation 

• I d2 I 2 d 
P = (2 dxl --p )p + xpu(t) + dx pO + Ip() 

one finds the equations 

k1 = 0, cosh(g1)g2 + sinh(gi),b = u(t), 

sinh(g1 )g2 + cosh(g1 )g3 = 0, g4 = g3g2 

which are solvable for all time. 

Applying the recipe sketched above 

(3.11) 

(3.12} 

This fact and the form of the resulting equations: straightforward quadratures and one set of linear equations 

B(t)g=b(t), with B(t),b(t) known and B(t) invertible, is typical for the case that the Lie algebra L = ESRA1 spanned 

by the A 1,. • .,A. is solvable. This means the following. Let [L,L] be the subvectorspace of L spanned by all the opera­

tors of the form (A,B],A,BeL. It is easily seen that this is again a Lie algebra. Inductively let L<•>=[L,L(•-llj be 

the subvectorspace of L spanned by all operators of the form [A,B], AeL,BeL<•- 1>, L<0l=L. These are all sub Lie 

algebras of L. 

The Lie algebra of L is called nilpotent if L<•> =O for n large enough. It is called solvable if [L,L I is nilpotent. 

The phenomenon alluded to above, i.e. solvability of the Wei-Norman equations for all time, always happens in case 

L is solvable [ 11 ]. (And it is no accident that these algebras have been called solvable. Though this is not the result 

which gave them that name.) 

Note that the DMZ equation (2.1) corresponding to a nonlinear filtering problem ( l.1)-(1.2) is of the type (3.1) 

(with 11,l(t)=cryk(I)). Thus the Lie Algebra generated by the operators £, h 1 (x),. . .,h.P(x) occuring in (2.1) clearly has 

much to say about how difficult the filtering problem is. This Lie algebra is called the estimation Lie algebra of the 

system (1.1)-(1.2) and it can be used to prove a variety of positive and negative results about the filtering problem [4, 

5, 9]. 

4. The Segal-Shale-Weil representation and a 'real form' 

Let J be the standard syrnplectic matrix J = [-~. ~·], where I. the n X n unit matrix. Consider the vector space of 

2n X 2n real matrices defined by 

sp.(R) = {M: JM+ MTJ = O}. (4.1) 

Writing Mas a 2X2 block matrix, M :::: [~ ~].the conditions on then Xn blocks A,B,C,D become 

B1 = B, C1 = C, D :::: -.A. 1 . (4.2) 

As we shall see shortly below this set of matrices occurs naturally for filtering problems coming from linear sys-

tems ( 1.1)-(1.2). · 

The corresponding Lie group to Sp.(R) is the group of invertible 2n X 2n matrices defined by 

Sp0 (R) = {SeR2nX2n: S1JS = J} (4.3) 

(This is a group of matrices in that if Si. S2esp.(R) then also S1 S2 eSp.(R) and Si 1 esp.(R) as is easily verified.) 

There is a famous representation of Sp.(R) (or more precisely of its two-field covering group Sp.(R)) in the Hilbert 

space L2(R") called the Segal-Shale-Weil representation or the oscillator representation; cf. [8). Here the word 

'representation' means that to each S eSp.(R) there is associated a unitary operator Us such that Us,s, = Us, Us, for 

all Si.S2eSp0 (R). 

For the purposes of this paper a modification of it is of importance. It can be described as follows by eKplicit 

operators associated to cenain specific kinds of elements of Sp.(R): 

(i) Let P be a symmetric n Xn matrix; then to the element 

(~ ~) esp.(R) 

there is associated the operator j(x) .... exp(xTPx)f (x) 

(ii) Let A eG.L,,(R) be an invertible n Xn matrix. Then to the element 



(~ (r~ir] esp.(R) 

there is associated the operator 

j(x) .... ldet(A)l112/(A r x) 
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(iii) let Q be a symmetric n Xn matrix. Then to the element 

[~ OJ) e Sp.(R) 

there is associated the operator 

f (x) ... 'ir"° 1 (exp(xrQx~f(x)) 

where '!I' denotes the Fourier transform. 

(The operator corresponding to the element 

[~I ~) e Sp.(R) 

is in fact the Fourier transform itself). 

Except for one snag to be discussed below, this suffices to describe the operator which should be associated to any 
element SeSp.(R). Indeed let 

[S1 S2) 
S = S3 S4 e Sp.(R) (4.4) 

(4.5) 

(It is easily verified that all four factors on the right are in fact in Sp.(R). 

Now assign to the operator S the product of the four operators corresponding to the factors on the RHS of ( 4.5) 
according to the recipe (i}{iii) given above. There is a conceivable second snag here in that it seems a priori possible 
that different factorisations could give different operators. Ths in fact does not happen precisely because the 
'representation' described by (i)-(iii) is a 'real form' of the oscillator representation Sp.(R)~Aut(L2 (R")). The relation 
between the oscillator representation and (i}{iii) above is given by the substitution xk .... Vi xk where i = Y-T. (The 
possible sign ~biguity which could come from the fact that the oscillator representation is really a representation of 
the covering Sp.(R) rather than Sp.(R) itself also seems not to happen; if would in any case be irrelevant for the 
applications dicussed below.) 

It remains to discuss the fust snag mentioned just above (5.4) and why the words 'representation' and 'real form' 
above have been placed in quotation marks. The trouble lies in part (iii) of the recipe. Taking a Fourier transform and 
than multiplying with a quadratic exponential may well take one out of the class of functions which are inverse 
Fourier transformable. Another way to see this is to observe that the operator described in (iii) assigns to a function 
l/i the value in t = I of the solution of the evolution equation 

an a a 
ai=«a;YQax)p,p(x,O)=if.(x) (4.6) 

and if Q is not nonnegative definite this involves anti-diffusion components for which the solution at t = l may not 
exist. Additionally; - but this is really the same snag - applying recipe (i) to a function may well result in a function 
that is not Fourier transformable. 

What we have in fact is not a representation of all of Sp.(R) but only a representation of a certain sub-semi-group 
cone in Spn(R). 

For the applications to be described below this means that we must be careful to take factorizations such that apply­
ing the various operators successively continues to make sense. The factorization (5.5) does not seem optimal in that 
respect and we shall for the special elements of Sp.(R) which come from filtering problems use a different one. 

Incidentally, one says that two structures over R are real forms of one another if after tensoring with C ( = extend­
ing scalars to C) they become isomorphic (over C). It is in this sense that the 'representation' described by the recipe 
(i)-(iii) is a 'real form' of the oscillator representation. 



304 

5. Propagation of non-gaussian initials 

Now, finally, after all this preparation, consider a known linear dynamical system 

dx = Axd! + Bdw, Cxdt + dv;, x e Rn,w elR'",y,v e RP. 

with a known, not necessarily Gaussian, initial random variable x(O) with probability distribution if.<x). 

The DMZ equations in this case is as follows 

dp = £pdt + ~ (Cx)jd)>j(t) 
j=l 

where ( Cx )1 is the j-th component of the p-vector Cx. The operator £ in this case has the form 

_ .L~ r a2 a 1 
£ - 2~(BB );Ja-:-a - ~jixJ-a - Tr(A) - 2:L(Cx)J 

i.1 X1 Xj l,j X; j 

Taking brackets of the multiplication operators ( Cx )1 with £ yields a linear combination of the operators 

a a 
x1, ... ,x,.; -a-, ... ,-a-; 1. 

X] Xn 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

This is a straightforward calculation to check. Moreover, the bracket ( = commutator product) of £ with any of the 
operators in (5.4) again yields a linear combination of the operators listed in (5.4). It follows that for linear stochastic 
dynamical systems (5.l) the associated estimation Lie algebra(= the Lle algebra generated by £, (Cx)i. ... ,(Cx)p) is 
always solvable of dimension o;;;2n + 2. 

As a mather of fact it is quite simple to prove that the system (5.l) is completely reachable and completely observ­
able if and only if the dimension of the estimation Lie algebra is precisely 2n + 2 so that a basis of the algebra is 
formed by the (2n + 1) operators of (5.4) and£ itself. 

In all cases Wei-Norman theory is applicable (working perhaps with a slightly larger Lie algebra than strictly 
necessarily makes no real difference). 

Thus we can calculate effectively the solutions of the unnormalized density equation (5.2) provided we have good 
ways of calculating the expressions. 

,....L 
e1£1/i, e''" 1/i, e 8"' lji, e'tf! (5.5) 

for arbitrary initial data tf!. The last three expressions of (5.5) cause absolutely zero difficulties 

(exp(t-0
3 ')t/I = if.<x1o ... ,X;- 1 ,x1+t,x1+i. .... xn)). Thus it remains to calculate the e'£"1 where£ is an operator of the 
X; 

form (5.3). It is at this point that the business of the Segal-Shale-Weil representation of the previous section comes in. 
As a matter of fact the Segal-Shale-Weil representation itself, not the 'real form' described in section 4 above, is a 
representation of the Lie algebra spanned by the operators 

. a+'• . a2 . _r-;-1 
rxkxi, xk -a- 2 .,i.,1,, -a-~-· 1 = v -1 

X1 Xk(IXj 
(5.6) 

and apart form multiples of the identity (which hardly matter) and the occurence of vCi" these are the constituents 
of the operators £ in (5.3). It is to remove the factors v:::J that we have to go to a real form. Cf. [3] for more details 
on the Segal-Shale-Weil representation itself, and what it, and its real form, have to do with Kalman-Bucy filters. 

It is convenient not to have to worry about multiples of the identity. To this end note that if £' = £+al then 
exp(1£')o/ = exp(la)exp(lf)i/I, so that neglecting multiples of the identity indeed matters hardly. 

The first observation is now that, modulo multiples of the identity operator, if £ and £' are two operators of the 
form (5.3) then 'feir commutator difference [£,£'] = ££' - £'£ is again of the same form. (To make this exact replace£ 
in (5.3) by£+ 2Tr(A) and similarly for£:.) Thus these operators actually form a finite dimensional Lle algebra and 

this is, of course, the symplectic Lie algebra spn(R). The correspondence is given by assigning to £(=£(A,B,C)) the 
2n X2n matrix 

£(A,B,C)~ [=;:T -~TC] (5.7) 

(U you want to be finicky it is the operator £(A,B,C) + fTr(A) which corresponds to the matrix on the right of (5.7).) 

In terms of a basis on the left and right side the correspondence (i.e. the isomorphism of Lie algebras) is given as 
follows. Let E;i be the n X n matrix with a l in spot (i,j) and zero everywhere else. Then 

ilx~~xl ,_. [-E;jO-Ei; ~) (5.8) 
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(5.9) 

(5.10) 

It is now straightforward ty check that this does indeed define an isomorphism of Lle algebras from the Lie algebra of 

all operators £.(_A,B,C) + 1Tr(A) where £ is as in (5.3) and the algebra sp.(R) described and discussed in section 4 

above. For example one has 

a2 a [-,.-a-· X2X3] = X3 -a- (5.11) 
<1XJ X2 :CJ 

which fits perfectly with 

1(-E 1~-E21 ~l [~ E23 :E32)J= (E~i -~ 13) (5.12) 

It is precisely the correspondence (5.8) - (5.10) or, modulo multiples of the identity, (5.7),._lll.us the fact that 'real 
form' described in section 4 of the SSW representation is precisely the way to remove the V - I factors, plus, again, 
the fact that the SSW is really a representation, which makes it possible to use finite dimensional calculations to 
obtain expressions for 

I 
exp(1(£(A,B,C) + 2Tr(A))"1 (5.13) 

for arbitrary initial conditions. 

Basically the recipe is as follows. Take £.(_A,B,C) + +Tr(A). Let M£ sp.(R) be its associated matrix as defined by 

tbe RHS of (5.7). Calculate exp(1M)=S(1). Write S(t) as a product of matrices as in (i), (ii), (iii) in section 4. Apply 
successively the operators associated to the factors. The result, if defined, will be an expression for (5.13). One' factori­

sation which can be used is that of (4.5) above. It does not, however, seem to be very optimal and it is difficult to 
show that everything is well defined. 

It is better and more efficient to use a preliminary reduction. Consider the algebraic Riccati equation 

ATP +PA - PBBTP + ere= 0 (5.14) 

determined by the triple of matrices (A,B,C). It is ~y to check that for any solution Pone has 

[I - P] [I Pl ( -Y OJ 
0 I M 0 I = -BBT A (5.15) 

where A =A - BBT P. Given this it becomes useful to know when (5.14) has a solution and to know some properties of 
the solutions. These will also be important for the next section. In fact the function rc(A,B,C) that assigns to the triple 
(A,B,C} under suitable conditions the unique positive definite solution of (5.14) is important enough to be considered 
a standard named function which should be available in accurate tabulated form much as say the Airy function or 

Bessel functions. I know of no such tables. The symbol 're' of course stands for Riccati. 

Let A• be the adjoint of the complex n Xn matrix A, i.e. the conjugated transpose of A, so, if A is real, A' =AT. 

Consider the equation (algebraic Riccati equation) 

.A'P +PA= PBB'P - c·c (5.16) 

(Here A is an n Xn matrix, Bann Xm matrix, Can p Xn matrix.) Some facts about (5.16) are then as follows: 

(5.17)1f (A,B) is stabilizable, i.e. if there exists an F such that A -BF has all eigenvalues w,!th negative real part, then 
there is a solution of (5.16) which is positive semidefinite (P;;o.O) (and for this solution A = A - BB' P is stable). 

(So in particular if (A,B) is completely reachable there is a solution of (5.14).) 

(5.lS)Suppose (5.16) has a solution p;;.Q and suppose that (A,C) is completely observable. Then P is the only nonne­
gative definite solution of (5.16) and P >0. 

(5.19)Ir (A,B,C) is co and er then there is a unique P>O which solves (5.16). 

This last property is the essential one for this section. For the next one we need something better. Let L!':;~'.°p(R) be 
the space of all triples of real matrices (A,B,C) such that (A,B) is completely reachable and (A,C) is completely 
observable. Let rc(A,B,C) := P be the unique solution P of (5.16) such that P >0 (the matrix P is positive definite 
and selfadjoint). Then 
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(5.20)The function rc(A,B,C) from L::;~/R) to the space of selfadjoint matrices is real analytic {and so in particular 
c~ <-smooth) 

Moreover 
(5.2l)rc(TAr- 1, TB, cr- 1) = (T')- 1rc(A,B,C)r- 1 

(5.22)rc(-A'), ±C',±B') = rc(A,B,C)- 1 

Propeny (5.21) is important in section 6; more precisely it will be important when these results are really implemented 
for multi-input multi-output systems. The point is that the matrices (A,B, C) are not determinable from the observa· 
tions alone, simply because the systems (A,B,C) and (TAr- 1, TB, cr- 1) for TeGL,,(R) produce exactly the same 
input-output behaviour. For completely reachable and completely observable systems this is also the only indeter· 
minacy. Property (5.21) guarantees that the whole analysis of these two section 5 and 6 'descends' to the moduli space 
(quotient manifold) L~;~(R)/GL,,(R). 

Having all this available it is tempting (and natural) to play the trick embodied by (5.15) again, this time using 
conjugation by a 2 X 2 block matrix with identities on the diagonal, a zero in the upper right hand comer and a Ric· 
cati equation solution Q in the lower left hand comer. This, however, is no particular good because this will introduce 
both the two factors 

[-~ ~]' [~ ~) 
in the factorisation of S(t)=exp(tM), and at least one will cause difficulties 
transforms; cf. part (iii) of the recipe of section 4. 

with inverse and direct Fourier 

Instead, writing r-A T OJ 
exp(t -BBT A ) = (5.23) 

one uses the factorisation 

[-AT 0) 
exp(t T • ) = 

-BB A [ I ol [exp{-1Y) o ] 
-Rexp(tAT) I 0 exp(tA) 

(5.24) 

giving the following total factorisation for S(t)=exp(1M) 

S(t) = ·r • [I P] [ I o] [exp(-rAT) o ] 
0 I -Rexp(tA ) I 0 exp(IA) [~ -:1 (5.25) 

Except for possibly the second factor on the right hand side of (5.25) applying the recipe of section 4 is a total trivial­
ity. 

As to that second factor observe that 

.!L(exp(r(-.ATT ~1 = [-~p{-tA)AT o_ ·l 
dt -BB A --R exp(tA)A 

= [:~-tAT) ex:tA)) [=~:T ~) 
from which it follows that 

As a result 

dR = -RAT+ exp(fA)BBr dt . 

d ·T •T •T • -T ·T ·T 
dt (R exp(tA ) = - RA exp(tA ) + exp(tA)BBT exp(tA ) + RA exp(tA ) 

= exp(tA )BBT exp(rA \••0 

and it follows that 
•T 

R exp(tA ) >O all t 

(5.26) 

(5.27) 

(5.28) 

(5.29) 

which means that applying part (iii) of the recipe of section 4 ( = part. (iii) of the definition of the real form of the 
SSW representation) just involves solving a diffusion equation (no anti diffusion component); or, in other words that 
the inverse Fourier transformation involved will exist. Note also that if the initial condition iii is Fourier 
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transformable then, if P is nonnegative .definite, the result of applying the parts of the recipe corresponding to the 
third and fourth factors on the RHS of 5.25 will still be a Fourier transformable function. 

This concludes the description of the algorithm for propagating non-gaussian initial densities. 

6. Identification 

Given all that has been said above, this section can be mercifully short. The problem is the following. Given a linear 
system 

dx = Axdt + Bdw, dy = C:/Cllt + dv (6.1) 

with unknown A,B,C, but constant A,B,C, we want to calculate the joint conditional density (given the observations 
y(s), O<:sc;1) for A,B,C,x. This can be approached as a nonlinear filtering problem by adding the equations 

dA = 0, dB = 0, dC = 0 (6.2) 

or, more precisely, the equations stating (locally) that the free parameters remaining after specifying a local canonical 
form are constant but unknown. More generally one has the same setup and problem when, say, part of the parame­
ters of (A,B,C) are known (or, generalizing a bit more, imperfectly known). 

The approach, of course, will be the calculate the DMZ unnormalized version of the conditional density p(_x,A,B,t) 
given the observationsy(s), O<s<t. Writing down the DMZ equation for the system (6.l}-(6.2) gives 

p 

dp = £pdt + ~(Cx)idyi(t) (6.3) 
/=I 

with £ given by (5.3); i.e. exactly the same equation as occurred in section 5 for the case of known A,B, C. And, 
indeed the only difference is that in section 5 the A,B,C are known, while (6.3) should be seen as a family of equations 
parametrized by (the unknown parameters in) the A,B,C. Thus if p(x,tjA,B,C) denotes the solution of (5.2) and 
p(x,A,B,C,t) denotes the solution of (6.3) then 

p(x,tjA,B,C) = p(_x,A,B,C,t) (6.4) 

Now the bank of Kalman-Bucy filters for x parametrized by (A,B,C)eL~:!~ gives the probability density 

11(x,tjA,B,C) = r(t,A,B,C)- 1p(x,t1A,B,C) (6.5) 

so that the normalization factor r(t,A,B, C) can be calculated as J p(x,t,A,B, C)dx. 
By Bayes 

11(x,A,B,C,t) = w(x,t!A,B,C)v(A,B,C,t)) (6.6) 

so that the normalization factor r(t,A,B,C) is, so to speak, precisely equal to the difference between the solution of the 
DMZ equation (6.3) (or (5.2)) and the bank of Kalman filters producing w(x,tj.A,B,C). I.e. the marginal conditional 
density 

v(A,B,C,t) = /w<.,x,A,B,C,t)dx = f p(x,A,B,C,t)dx / J p(x,A,B,C,t)dxdAdBdC (6.7) 

is obtainable from the unnormalized version of the bank of Kalman-Bucy filters parametrized by (A,B,C). Given the 
relations between this bank of filters described in [13) and brieffy recalled in section 7 below this may offer further 
opportunities. 

Be that as it may the marginal density v(A,B,C,t) which up to a normalization factor is equal to jp(x,A,B,C,()dx 
can be effectively calculated by the procedure of section 5 above with the only difference that P =rc(A,B,C) now has 
to be treated as a function. Once 'll(A,B,C,t) (or in various cases some unnormalized version p(A,B,C,t) is available a 
host of well known techniques such as maximum likelyhood become available. 

If it is possible (as it will be in many cases) to work with a p(A,B,C,t)=r(t)w(A,B,C,t) there is no (immediate) 
need to descend to the quotient manifold L~f.,(R)/ GL,,(R). 

7. On the relation between the 'real form' of the SSW representation and the Kalman-Bucy filter 

We have seen that the essential difficulty in obtaining the (unnormalized) conditional density p(x,t) lies in 'solving' 
exp(t£)1i where£ is the second order differential operator (5.3). Now £ corresponds in a fundamental way with the 
2n X 2n matrix 

[~:;T -~TC] (7.J) 

Not very surprisingly this matrix in turn is very much related to the matrix Riccati equation part of the Kalman-Bucy 
filter. Indeed, consider the matrix differential equation 

(~] = [-AT -cTc] [Xl 
y -BBT A Yj (7.2) 



and, assuming that X (t) is invertible, let 

-P = yx-•. 
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> = -:Yx-• + yx-1.Xx-1 = <+BBTx - AY)x-• + yx-•c-ATx-cTcnx-• 
= +BBT + AP +PAT - pcTcp 

which is tbe covariance equation of tbe Kalman-Bucy filter. 
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