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Abstract

Stochastic convex optimization, where the objective is the

expectation of a random convex function, is an important

and widely used method with numerous applications in ma-

chine learning, statistics, operations research and other ar-

eas. We study the complexity of stochastic convex optimiza-

tion given only statistical query (SQ) access to the objective

function. We show that well-known and popular first-order

iterative methods can be implemented using only statisti-

cal queries. For many cases of interest we derive nearly

matching upper and lower bounds on the estimation (sam-

ple) complexity including linear optimization in the most

general setting. We then present several consequences for

machine learning, differential privacy and proving concrete

lower bounds on the power of convex optimization based

methods.

The key ingredient of our work is SQ algorithms and lower

bounds for estimating the mean vector of a distribution over

vectors supported on a convex body in Rd. This natural

problem has not been previously studied and we show that

our solutions can be used to get substantially improved SQ

versions of Perceptron and other online algorithms for learn-

ing halfspaces.

1 Introduction

Statistical query (SQ) algorithms, defined by Kearns
[47] in the context of PAC learning and by Feldman et al.
[34] for general problems on inputs sampled i.i.d. from
distributions, are algorithms that can be implemented
using estimates of the expectation of any given function
on a sample drawn randomly from the input distribution
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Universidad Católica de Chile. E-mail: crguzmanp@uc.cl.
§Part of this work was done during an internship at IBM

Research - Almaden, at a postdoctoral position of Núcleo Milenio
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D instead of direct access to random samples. Such
access is abstracted using a statistical query oracle that
given a query function φ : W → [−1, 1] returns an
estimate of Ew[φ(w)] within some tolerance τ (possibly
dependent on φ). We will refer to the number of samples
sufficient to estimate the expectation of each query of
a SQ algorithm with some fixed constant confidence as
its estimation complexity (often 1/τ2) and the number
of queries as its query complexity.

Statistical query access to data was introduced as
means to derive noise tolerant algorithm in the PAC
model of learning [47]. Subsequently, it has been re-
alized that reducing data access to estimation of sim-
ple expectations has a wide variety of additional use-
ful properties. It played a key role in the develop-
ment of the notion of differential privacy [22, 12, 26]
and has been subject of intense subsequent research in
differential privacy1 (see [25] for a literature review).
It has important applications in a large number of
other theoretical and practical contexts such as dis-
tributed data access [17, 61, 70], evolvability [72, 30, 31]
and memory/communication limited machine learning
[8, 4, 68]. Most recently, in a line of work initiated by
Dwork et al. [27], SQs have been used as a basis for
understanding generalization in adaptive data analysis
[27, 42, 28, 69, 6].

Here we consider the complexity of solving stochas-
tic convex minimization problems by SQ algorithms. In
stochastic convex optimization the goal is to minimize
a convex function F (x) = Ew[f(x,w)] over a convex
set K ⊂ Rd, where w is a random variable distributed
according to some distribution D over domain W and
each f(x,w) is convex in x. The optimization is based
on i.i.d. samples w1, w2, . . . , wn of w. Numerous central
problems in machine learning and statistics are special
cases of this general setting with a vast literature de-
voted to techniques for solving variants of this problem
(e.g. [67, 63]). It is usually assumed that K is “known”
to the algorithm (or in some cases given via a suffi-

1In this context an “empirical” version of SQs is used which
is referred to as counting or linear queries. It is now known that

empirical values are close to expectations when differential privacy
is preserved [27].
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ciently strong oracle) and the key challenge is under-
standing how to cope with estimation errors arising from
the stochastic nature of information about F (x).

Surprisingly, prior to this work, the complexity
of this fundamental class of problems has not been
studied in the SQ model. This is in contrast to
the rich and nuanced understanding of the sample
and computational complexity of solving such problems
given unrestricted access to samples as well as in a wide
variety of other oracle models.

The second important property of statistical al-
gorithms is that it is possible to prove information-
theoretic lower bounds on the complexity of any sta-
tistical algorithm that solves a given problem. The first
one was shown by Kearns [47] who proved that parity
functions cannot be learned efficiently using SQs. Sub-
sequent work has developed several techniques for prov-
ing such lower bounds (e.g. [10, 66, 34, 35]), established
relationships to other complexity measures (e.g. [64, 45])
and provided lower bounds for many important prob-
lems in learning theory (e.g. [10, 48, 33]) and beyond
[34, 35, 14, 74].

From this perspective, statistical algorithms for
stochastic convex optimization have another important
role. For many problems in machine learning and com-
puter science, convex optimization gives state-of-the-art
results and therefore lower bounds against such tech-
niques are a subject of significant research interest. In-
deed, in recent years this area has been particularly ac-
tive with major progress made on several long-standing
problems (e.g. [36, 60, 53, 49]). As was shown in [35], it
is possible to convert SQ lower bounds into purely struc-
tural lower bounds on convex relaxations, in other words
lower bounds that hold without assumptions on the al-
gorithm that is used to solve the problem (in particular,
not just SQ algorithms). From this point of view, each
SQ implementation of a convex optimization algorithm
is a new lower bound against the corresponding convex
relaxation of the problem.

1.1 Overview of Results We focus on iterative
first-order methods namely techniques that rely on up-
dating the current point xt using only the (sub-)gradient
of F at xt. These are among the most widely-used
approaches for solving convex programs in theory and
practice. It can be immediately observed that for ev-
ery x, ∇F (x) = Ew[∇f(x,w)] and hence it is sufficient
to estimate expected gradients to some sufficiently high
accuracy in order to implement such algorithms (we are
only seeking an approximate optimum anyway). The
accuracy corresponds to the number of samples (or es-
timation complexity) and is the key measure of com-
plexity for SQ algorithms. However, to the best of our

knowledge, the estimation complexity for specific SQ
implementations of first-order methods has never been
formally addressed.

We start with the case of linear optimization,
namely ∇F (x) is the same over the whole body K. It
turns out that in this case global approximation of the
gradient (that is one for which the linear approxima-
tion of F given by the estimated gradient is ε close to
the true F ) is sufficient. This means that the question
becomes that of estimating the mean vector of a distri-
bution over vectors in Rd in some norm that depends on
the geometry of K. This is a basic question (indeed, cen-
tral to many high-dimensional problems) but it has not
been carefully addressed even for the simplest norms like
`2. We examine it in detail and provide an essentially
complete picture for all `q norms with q ∈ [1,∞]. We
also briefly examine the case of general convex bodies
(and corresponding norms) and provide some universal
bounds.

The analysis of the linear case above gives us the
basis for tackling first-order optimization methods for
Lipschitz convex functions. That is, we can now obtain
an estimate of the expected gradient at each iteration.
However we still need to determine whether the global
approximation is needed or a local one would suffice
and also need to ensure that estimation errors from
different iterations do not accumulate. Luckily, for this
we can build on the study of the performance of first-
order methods with inexact first-order oracles. Methods
of this type have a long history (e.g. [57, 65]), however
some of our methods of choice have only been studied
recently.

We give SQ algorithms for implementing the global
and local oracles and then systematically consider sev-
eral traditional setups of convex optimization: non-
smooth, smooth and strongly convex. While that is not
the most exciting task in itself, it serves to show the
generality of our approach. Remarkably, in all of these
common setups we achieve the same estimation com-
plexity as what is known to be achievable with samples.

All of the previous results require that the opti-
mized functions are Lipschitz, that is the gradients are
bounded in the appropriate norm (and the complexity
depends polynomially on the bound). Addressing non-
Lipschitz optimization seems particularly challenging in
the stochastic case and SQ model, in particular. Indeed,
direct SQ implementation of some techniques would re-
quire queries of exponentially high accuracy. We give
two approaches for dealing with this problem that re-
quire only that the convex functions in the support of
distribution have bounded range. The first one avoids
gradients altogether by only using estimates of func-
tion values. It is based on random walk techniques of
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Kalai and Vempala [44] and Lovász and Vempala [51].
The second one is based on a new analysis of the clas-
sic center-of-gravity method. There we show that there
exists a local norm, specifically that given by the iner-
tial ellipsoid, that allows to obtain a global approxima-
tion relatively cheaply. Interestingly, these very differ-
ent methods have the same estimation complexity which
is also within factor of d of our lower bound.

Finally, we highlight some theoretical applications
of our results. We show that our algorithms imply
lower bounds for a broad and practically useful class
of convex relaxations for any problem for which a suffi-
ciently strong SQ lower bound is known. As an exam-
ple, we demonstrate consequences for classic constraint
satisfaction problems. We then show that our mean
estimation algorithms imply dimension-independent es-
timation complexity for the SQ version of the classic
Perceptron algorithm and several related algorithms.
Finally, we give corollaries for two problems in differ-
ential privacy: (a) new algorithms for solving convex
programs with the stringent local differential privacy;
(b) strengthening and generalization of algorithms for
answering sequences of convex minimization queries dif-
ferentially privately given by Ullman [71].

1.2 The Model The algorithms we consider here
have access to a statistical query oracle for the input
distribution.

Definition 1.1. ([47, 34]) Let D be a distribution
over a domain W, τ > 0 and n be an integer. A statis-
tical query oracle STATD(τ) is an oracle that given as
input any function φ :W → [−1, 1], returns some value
v such that |v − Ew∼D[φ(w)]| ≤ τ . A statistical query
oracle VSTATD(n) is an oracle that given as input any
function φ : W → [0, 1] returns some value v such that

|v − p| ≤ max

{
1
n ,
√

p(1−p)
n

}
, where p

.
= Ew∼D[φ(w)].

We say that an algorithm is statistical query (or, for
brevity, just SQ) if it does not have direct access to
n samples from the input distribution D, but instead
makes calls to a statistical query oracle for the input
distribution.

Query complexity of a statistical algorithm is the num-
ber of queries it uses. The estimation complexity of
a statistical query algorithm using VSTATD(n) is the
value n and for an algorithm using STAT(τ) it is n =
1/τ2. Note that the estimation complexity corresponds
to the number of i.i.d. samples sufficient to simulate the
oracle for a single query with at least some constant
probability of success. However it is not necessarily
true that the whole algorithm can be simulated using
O(n) samples since answers to many queries need to be

estimated. Answering m fixed (or non-adaptive) statis-
tical queries can be done using O(logm ·n) samples but
when queries depend on previous answers more samples
might be necessary (see [27] for a detailed discussion).
Whenever that does not make a difference for our upper
bounds on estimation complexity, we state results for
STAT to ensure consistency with prior work in the SQ
model. All our lower bounds are stated for the stronger
VSTAT oracle.

1.3 Linear optimization and mean estimation
We start with the linear optimization case which is a
natural special case and also the basis of our implemen-
tations of first-order methods. In this setting W ⊆ Rd
and f(x,w) = 〈x,w〉. Hence F (x) = 〈x, w̄〉, where
w̄ = Ew[w]. This reduces the problem to finding a suf-
ficiently accurate estimate of w̄. Specifically, for a given
error parameter ε, it is sufficient to find a vector w̃, such
that for every x ∈ K, |〈x, w̄〉 − 〈x, w̃〉| ≤ ε. Given such
an estimate w̃, we can solve the original problem with
error of at most 2ε by solving minx∈K〈x, w̃〉.

An obvious way to estimate the high-dimensional
mean using SQs is to simply estimate each of the coor-
dinates of the mean vector using a separate SQ: that is

E[wi/Bi], where [−Bi, Bi] is the range of wi. Unfortu-
nately, even in the most standard setting, where both K
and W are `2 unit balls, this method requires accuracy
that scales with 1/

√
d (or estimation complexity that

scales linearly with d). In contrast, bounds obtained us-
ing samples are dimension-independent making this SQ
implementation unsuitable for high-dimensional appli-
cations. Estimation of high-dimensional means for var-
ious distributions is an even more basic question than
stochastic optimization; yet we are not aware of any
prior analysis of its statistical query complexity. In par-
ticular, SQ implementation of all algorithms for learn-
ing halfspaces (including the most basic Perceptron) re-
quire estimation of high-dimensional means but known
analyses rely on inefficient coordinate-wise estimation
(e.g. [15, 11, 3]).

The seemingly simple question we would like to an-
swer is whether the SQ estimation complexity is differ-
ent from the sample complexity of the problem. The
first challenge here is that even the sample complex-
ity of mean estimation depends in an involved way on
the geometry of K and W (cf. [56]). Also some of the
general techniques for proving upper bounds on sample
complexity appeal directly to high-dimensional concen-
tration and do not seem to extend to the intrinsically
one-dimensional SQ model. We therefore focus our at-
tention on the much more benign and well-studied `p/`q
setting. That is, K is a unit ball in `p norm and W is
the unit ball in `q norm for p ∈ [1,∞] and 1/p+1/q = 1
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(general radii can be reduced to this setting by scal-
ing). This is equivalent to requiring that ‖w̃ − w̄‖q ≤ ε
for a random variable w supported on the unit `q ball
(denoted by Bdq (1)) and we refer to it as `q mean es-
timation. Even in this standard setting the picture is
not so clean in the regime when q ∈ [1, 2), where the
sample complexity of `q mean estimation depends both
on q and the relationship between d and ε.

In a nutshell, we give tight (up to a polylogarithmic
in d factor) bounds on the SQ complexity of `q mean
estimation for all q ∈ [1,∞]. These bounds match (up
to a polylogarithmic in d factor) the sample complexity
of the problem. The upper bounds are based on several
different algorithms.

• For q = ∞ straightforward coordinate-wise esti-
mation gives the desired guarantees. This can be
achieved using d queries to STAT(ε);

• For q = 2 we demonstrate that Kashin’s representa-
tion of vectors introduced by Lyubarskii and Ver-
shynin [52] gives a set of 2d measurements which
allow to recover the mean with estimation complex-
ity of O(1/ε2). This algorithm can be implemented
using 2d queries to STAT(Ω(ε)).

• For q ∈ (2,∞) we use decomposition of the samples
into log d “rings” in which non-zero coefficients
have low dynamic range. For each ring we combine
`2 and `∞ estimation to ensure low error in `q
and nearly optimal estimation complexity. The
algorithm uses 3d log d queries to STAT(ε/ log(d)).

• For q ∈ [1, 2) substantially more delicate analy-
sis is necessary. For large ε we first again use a
decomposition into “rings” of low dynamic range.
For each “ring” we use coordinate-wise estima-
tion and then sparsify the estimate by remov-
ing small coefficients. This analysis also relies on
the stronger VSTAT oracle. For small ε a bet-
ter upper bound can be obtained via a reduc-
tion to `2 case. Hence the algorithm uses 2d log d
queries to VSTAT((16 log(d)/ε)p) or 2d queries to
STAT(Ω(d1/2−1/qε)).

Nearly-Optimal `2 Mean Estimation Algo-
rithm: In addition to the algorithm based on Kashin’s
representation, we give a randomized algorithm for `2
mean estimation that has slightly worse O(log(1/ε)/ε2)
estimation complexity but its analysis is simpler, more
intuitive, and self-contained.

The algorithm uses coordinate-wise estimation in a
randomly and uniformly chosen basis. By concentration
of measure on the sphere, the coefficients of any unit
vector in such a basis will have magnitude of at most

Õ(1/
√
d) with high probability. This implies that we

can estimate the mean of each coefficient up to ε/
√
d by

truncating the values of the coefficient that are larger
than Õ(1/

√
d), rescaling to [−1, 1] and then feeding the

result as a query to STAT(Ω̃(ε)). The concentration
results allow us to control the error due to truncation
and ensure success with any constant probability. To
obtain logarithmic dependence on the failure probability
δ, we use an additional confidence amplification step
via a high-dimensional analogue of the median-of-means
procedure.

Lower bounds: We prove lower bounds for
stochastic linear optimization over the `p unit ball and
consequently also for `q mean estimation using the tech-
nique from [35]. The technique is based on bounding
the statistical dimension with discrimination norm. The
discrimination norm of a set of distributions D′ relative
to a distribution D is defined as:

κ2(D′, D)
.
= max
h:X→R,‖h‖D=1

{
E

D′∼D′

[∣∣∣∣E
D′

[h]−E
D

[h]

∣∣∣∣]} ,
where the norm of h over D is ‖h‖D =

√
ED[h2(x)] and

D′ ∼ D′ refers to choosing D′ randomly and uniformly
from the set D′. We give a simple construction of a hard
family of distributions with low discrimination norm. It
leads to the following lower bounds:

Theorem 1.1. For any q ≥ 1, ε > 0 and r >
0, 2Ω(r) queries to VSTAT(n) are necessary for
ε-accurate stochastic linear optimization over Bdp(1)
with success probability at least 2/3, where n =
min{d2/q−1/(rε2), 1/(rεp)}. The same lower bound
holds for `q mean estimation with error ε.

Note that the lower bound on query complexity grows
exponentially when estimation complexity is below that
of our upper bounds (by at least a logarithmic factor).
We summarize the bounds in Table 1.3 and compare
them with those achievable using samples.

We then briefly consider the case of general K with
W = conv(K∗,−K∗) (which corresponds to normalizing
the range of linear functions in the support of the
distribution). Here we show that for any polytope
W the estimation complexity is still O(1/ε2) but the
number of queries grows linearly with the number of
faces. More generally, the estimation complexity of
O(d/ε2) can be achieved for any K. The algorithm relies
on knowing John’s ellipsoid [43] for W and therefore
depends on K. Designing a single algorithm that given
a sufficiently strong oracle for K (such as a separation
oracle) can achieve the same estimation complexity for
all K is an interesting open problem. This upper bound
is nearly tight since even forW being the `1 ball we give
a lower bound of Ω̃(d/ε2).
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q SQ estimation complexity Sample

Upper Bound Lower bound complexity

[1, 2) O

(
min

{
d

2
q
−1

ε2 ,
(

log d
ε

)p})
Ω̃

(
min

{
d

2
q
−1

ε2 , 1
εp log d

})
Θ

(
min

{
d

2
q
−1

ε2 , 1
εp

})
2 O(1/ε2) Ω(1/ε2) Θ(1/ε2)

(2,∞) O((log d/ε)2) Ω(1/ε2) Θ(1/ε2)

∞ O(1/ε2) Ω(1/ε2) Θ(log d/ε2)

Table 1: Bounds on `q mean estimation and linear optimization over `p ball. Upper bounds use at most 3d log d
queries. Lower bounds apply to all algorithms using poly(d/ε) queries. Sample complexity is for algorithms with
access to samples.

1.4 The Gradient Descent family The linear case
gives us the basis for the study of the traditional setups
of convex optimization for Lipschitz functions: non-
smooth, smooth and strongly convex. The most basic
Lipschitz (also called non-smooth) setup is determined
by a bound on the magnitude of gradients in dual norm,

F0
‖·‖(K, L0)

.
= {f : K → R : f convex,

‖∇f(x)‖∗ ≤ L0, ∀x ∈ K,∇f(x) ∈ ∂f(x)}.

In the stochastic `p/`q setting we assume that for
each w in the support of the distribution D and x ∈ K,
‖∇f(x,w)‖q ≤ L0 and the radius of K is bounded by R
in `p norm. The smooth and strongly convex settings
correspond to second order assumptions on F itself.
For the two first classes of problems, our algorithms
use global approximation of the gradient on K which
as we know is necessary already in the linear case.
However, for the strongly convex case we can show that
an oracle introduced by Devolder et al. [21] only requires
local approximation of the gradient, leading to improved
estimation complexity bounds.

Specifically, we use our SQ mean estimation algo-
rithms to efficiently implement the following approxi-
mate oracles.

Definition 1.2. ([19, 21, 20]) Let F : K → R be
a convex subdifferentiable function. We say that g̃ :
K → Rd is an η-approximate gradient if for all x ∈ K
|〈g̃(x) − ∇F (x), y − u〉| ≤ η ∀y, u ∈ K. We say that
(F̃ (·), g̃(·)) : K → R×Rd is a first-order (η,M, µ)-oracle
if for all x, y ∈ K
(1.1)
µ

2
‖y−x‖2 ≤ F (y)−[F̃ (x)−〈g̃(x), y−x〉] ≤ M

2
‖y−x‖2+η.

In the non-smooth case we use the mirror-descent
algorithm with η-approximate gradient to derive the

following corollary for `p norms for p ∈ [1,∞] (we state
only the p ∈ [1, 2] case for brevity):

Corollary 1.1. Let p ∈ [1, 2], L0, R > 0,
and K ⊆ Bdp(R) be a convex body. There
exists an SQ algorithm that solves any problem
of the form minx∈K{Ew[f(x,w)]}, where for all
w ∈ W, f(·, w) ∈ F0

‖·‖p(K, L0), with accu-

racy ε using O

(
d log d · 1

(p− 1)

(
L0R

ε

)2
)

queries

to STAT

(
Ω

(
ε

[log d]L0R

))
. For p ∈ {1, 2},

STAT(Ω(ε/(L0R))) suffices.

For the smooth case we rely on the analysis by
d’Aspremont [19] of an inexact variant of Nesterov’s
accelerated method [55], and for the strongly convex
case we use the recent results by Devolder et al. [20] on
the inexact dual gradient method which we implement
using (η,M, µ)-oracle. We summarize our results for
the `2 norm in Table 1.4. In the full version we
provide detailed statements of these results and also
demonstrate the implications of our results for the well-
studied generalized linear regression problems.

It is important to note that, unlike in the linear
case, the SQ algorithms for optimization of general
convex functions are adaptive. In other words, the
SQs being asked at step t of the iterative algorithm
depend on the answers to queries in previous steps.
This means that the number of samples that would be
necessary to implement such SQ algorithms is no longer
easy to determine. In particular, as demonstrated by
Dwork et al. [27], the number of samples needed for
estimation of adaptive SQs using empirical means might
scale linearly with the query complexity. While better
bounds can be easily achieved in our case (logarithmic –
as opposed to linear– in dimension), they are still worse
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Objective
Inexact gradient

method
Query complexity

Estimation
complexity

Non-smooth Mirror-descent O
(
d ·
(
L0R
ε

)2)
O
((

L0R
ε

)2)
Smooth Nesterov O

(
d ·
√

L1R2

ε

)
O
((

L0R
ε

)2)
Strongly convex

non-smooth
Dual gradient O

(
d · L

2
0

εκ log
(
L0R
ε

))
O
(
L2

0

εκ

)
Strongly convex

smooth
Dual gradient O

(
d · L1

κ log
(
L1R
ε

))
O
(
L2

0

εκ

)
Table 2: Upper bounds for inexact gradient methods in the stochastic `2/`2 setting. Here R is the Euclidean
radius of the domain, L0 is the Lipschitz constant of all functions in the support of the distribution. L1 is the
Lipschitz constant of the gradient and κ is the strong convexity parameter for the expected objective.

than the sample complexity. We are not aware of a
way to bridge this intriguing gap or prove that it is not
possible to answer the SQ queries of these algorithms
with the same sample complexity.

Nevertheless, estimation complexity is a key param-
eter even in the adaptive case. There are many other
settings in which one might be interested in implement-
ing answers to SQs and in some of those the complexity
of the implementation depends on the estimation com-
plexity and query complexity in other ways (for exam-
ple, differential privacy). In a number of lower bounds
for SQ algorithms there is a threshold phenomenon in
which as one goes below certain estimation complexity,
the query complexity lower bound grows from polyno-
mial to exponential very quickly (e.g. [34, 35]). For such
lower bounds only the estimation complexity matters as
long as the query complexity of the algorithm is poly-
nomial.

1.5 Non-Lipschitz Optimization The estimation
complexity bounds obtained for gradient descent-based
methods depend polynomially on the Lipschitz constant
L0 and the radius R (unless F is strongly convex). In
some cases such bounds are too large and we only have a
bound on the range of f(x,w) for all w ∈ W and x ∈ K
(note that a bound of L0R on range is also implicit
in the Lipschitz setting). This is a natural setting
for stochastic optimization (and statistical algorithms,
in particular) since even estimating the value of a
given solution x with high probability and any desired
accuracy from samples requires some assumptions about
the range of most functions.

For simplicity we will assume |f(x,w)| ≤ B = 1,
although our results can be extended to the setting
where only the variance of f(x,w) is bounded by B2

using the technique from [32]. Now, for every x ∈ K,
a single SQ for function f(x,w) with tolerance τ gives

a value F̃ (x) such that |F (x) − F̃ (x)| ≤ τ . This, as
first observed by Valiant [73], gives a τ -approximate
value (or zero-order) oracle for F (x). It was proved
by Nemirovsky and Yudin [54] and also by Grötschel
et al. [39] (who refer to such oracle as weak evaluation
oracle) that τ -approximate value oracle suffices to ε-
minimize F (x) over K with running time and 1/τ being
polynomial in d, 1/ε, log(R1/R0), where Bd2(R0) ⊆ K ⊆
Bd2(R1). The analysis in [54, 39] is relatively involved
and does not provide explicit bounds on τ .

Here we substantially sharpen the understanding of
optimization with approximate value oracle. Specifi-
cally, we show that (ε/d)-approximate value oracle for
F (x) suffices to ε-optimize in polynomial time.

Theorem 1.1. There is an algorithm that with prob-
ability at least 2/3, given any convex program
minx∈K F (x) in Rd where ∀x ∈ K, |F (x)| ≤ 1 and K
is given by a membership oracle with the guarantee that
Bd2(R0) ⊆ K ⊆ Bd2(R1), outputs an ε-optimal solution
in time poly(d, 1

ε , log (R1/R0)) using poly(d, 1
ε ) queries

to Ω(ε/d)-approximate value oracle.

We outline a proof of this theorem which is based on
an extension of the random walk approach of Kalai and
Vempala [44] and Lovász and Vempala [51]. This result
was also independently obtained in a recent work of
Belloni et al. [7] who provide a detailed analysis of the
running time and query complexity.

It turns out that the dependence on d in the
tolerance parameter of this result cannot be removed
altogether: Nemirovsky and Yudin [54] prove that
even linear optimization over `2 ball of radius 1 with
a τ -approximate value oracle requires τ = Ω̃(ε/

√
d)

for any polynomial-time algorithm. This result also
highlights the difference between SQs and approximate
value oracle since the problem can be solved using SQs
of tolerance τ = O(ε). Optimization with value oracle
is also substantially more challenging algorithmically.
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Luckily, SQs are not constrained to the value infor-
mation and we give a substantially simpler and more ef-
ficient algorithm for this setting. Our algorithm is based
on the classic center-of-gravity method with a crucial
new observation: in every iteration the inertial ellip-
soid, whose center is the center of gravity of the current
body, can be used to define a (local) norm in which the
gradients can be efficiently approximated globally. The
exact center of gravity and inertial ellipsoid cannot be
found efficiently and the efficiently implementable Ellip-
soid method does not have the desired local norm. How-
ever we show that the approximate center-of-gravity
method introduced by Bertsimas and Vempala [9] and
approximate computation of the inertial ellipsoid [50]
suffice for our purposes.

Theorem 1.2. (Informal) Let K ⊆ Rd be a con-
vex body given by a membership oracle Bd2(R0) ⊆
K ⊆ Bd2(R1), and assume that for all w ∈ W, x ∈
K, |f(x,w)| ≤ 1. Then there is a randomized al-
gorithm that for every distribution D over W out-
puts an ε-optimal solution using O(d2 log(1/ε)) sta-
tistical queries with tolerance Ω(ε/d) and runs in
poly(d, 1/ε, log(R1/R0)) time.

Closing the gap between the tolerance of ε/
√
d in

the lower bound (already for the linear case) and the
tolerance of ε/d in the upper bound is an interesting
open problem. Remarkably, as Thm. 1.1 and the lower
bound in [54] show, the same intriguing gap is also
present for approximate value oracle.

1.6 Applications We now highlight several applica-
tions of our results. Additional results can be easily
derived in a variety of other contexts that rely on sta-
tistical queries (such as evolvability [72], adaptive data
analysis [27] and distributed data analysis [17]).

1.6.1 Lower Bounds The statistical query frame-
work provides a natural way to convert algorithms into
lower bounds. For many problems over distributions it
is possible to prove information-theoretic lower bounds
against SQ algorithms that are much stronger than
known computational lower bounds for the problem. A
classical example of such problem is learning of parity
functions with noise (or, equivalently, finding an assign-
ment that maximizes the fraction of satisfied XOR con-
straints). This implies that any algorithm that can be
implemented using statistical queries with complexity
below the lower bound cannot solve the problem. If
the algorithm relies solely on some structural property
of the problem, such as approximation of functions by
polynomials or computation by a certain type of cir-
cuit, then we can immediately conclude a lower bound

for that structural property. This indirect argument ex-
ploits the power of the algorithm and hence can lead to
results which are harder to derive directly.

One inspiring example of this approach comes from
using the statistical query algorithm for learning half-
spaces [11]. The structural property it relies on is lin-
ear separability. Combined with the exponential lower
bound for learning parities [47], it immediately im-
plies that there is no mapping from {−1, 1}d to RN
which makes parity functions linearly separable for any
N ≤ N0 = 2Ω(d). Subsequently, and apparently un-
aware of this technique, Forster [37] proved a 2Ω(d) lower
bound on the sign-rank (also known as the dimension
complexity) of the Hadamard matrix which is exactly
the same result (in [64] the connection between these
two results is stated explicitly). His proof relies on a
sophisticated and non-algorithmic technique and is con-
sidered a major breakthrough in proving lower bounds
on the sign-rank of explicit matrices.

Convex optimization algorithms rely on existence of
convex relaxations for problem instances that (approx-
imately) preserve the value of the solution. Therefore
given a SQ lower bound for a problem, our algorithmic
results can be directly translated into lower bounds for
convex relaxations of the problem. We now focus on
a concrete example that is easily implied by our algo-
rithm and a lower bound for planted constraint satis-
faction problems from [35]. Consider the task of dis-
tinguishing a random satisfiable k-SAT formula over n
variables of length m from a randomly and uniformly
drawn k-SAT formula of length m. This is exactly the
refutation problem studied extensively over the past
several decades (e.g. [29]). Now, consider the follow-
ing common approach to the problem: define a con-
vex domain K and map every k-clause C to a convex
function fC over K scaled to the range [−1, 1]. Then,
given a formula φ consisting of clauses C1, . . . , Cm, find
x that minimizes Fφ(x) = 1

m

∑
i fCi

(x) which roughly
measures the fraction of unsatisfied clauses (if fC ’s are
linear then one can also maximize F (x) in which case
one can also think of the problem as satisfying the
largest fraction of clauses). The goal of such relaxation
is to ensure that for every satisfiable φ we have that
minx∈K Fφ(x) ≤ α for some fixed α. At the same time
for a randomly chosen φ, we want to have with high
probability minx∈K Fφ(x) ≥ α + ε. Ideally one would
hope to get ε ≈ 2−k since for sufficiently large m, every
Boolean assignment leaves at least ≈ 2−k fraction of the
constraints unsatisfied. But (so called) integrality gap
of this relaxation can reduce the difference to a smaller
value.

We now plug our algorithm for `p/`q setting to get
the following broad class of corollaries.
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Corollary 1.2. For p ∈ {1, 2}, let K ⊆ Bdp(1) be a
convex body and Fp

.
= F0

‖·‖p(K, 1). Assume that there

exists a mapping M that maps each k-clause C ∈ Xk

to a convex function fC ∈ Fp. Further assume that
for some α ∈ R, ε > 0 and m = Ω(n/ε2): If φ =
C1, . . . , Cm is satisfiable then

min
x∈K

{
1

m

∑
i

fCi(x)

}
≤ α.

If φ is drawn from the uniform distribution Uk over k-
SAT formulas of length m then

Pr
C1,...,Cm∼Uk

[
min
x∈K

{
1

m

∑
i

fCi
(x)

}
> α+ ε

]
≥ 2/3.

Then d = 2Ω̃(n·ε2/k).

For example, as long as k is a constant and ε = Ωk(1)
we get a lower bound of 2Ω(n) on the dimension of any
convex relaxation (where the radius and the Lipschitz
constant are at most 1). We are not aware of any ex-
isting techniques that imply comparable lower bounds.
More importantly, our results imply that Corollary 1.2
extends to a very broad class of general state-of-the-art
approaches to stochastic convex optimization.

Current research focuses on the linear case and re-
stricted K’s which are obtained through various hierar-
chies of LP/SDP relaxations. For those cases additional
structure of K was used to prove lower bounds that are
not implied by our work. A more formal treatment of
this technique can be found in the full version.

1.6.2 Online Learning of Halfspaces using SQs
Our high-dimensional mean estimation algorithms allow
us to revisit SQ implementations of online algorithms
for learning halfspaces, such as the classic Perceptron
and Winnow algorithms. These algorithms are based on
updating the weight vector iteratively using incorrectly
classified examples. The convergence analysis of such
algorithms relies on some notion of margin by which
positive examples can be separated from the negative
ones.

A natural way to implement such an algorithm
using SQs is to use the mean vector of all positive
(or negative) counterexamples to update the weight
vector. By linearity of expectation, the true mean
vector is still a positive (or correspondingly, negative)
counterexample and it still satisfies the same margin
condition. This approach was used by Bylander [15]
and Blum et al. [11] to obtain algorithms tolerant
to random classification noise for learning halfspaces
and by Blum et al. [12] to obtain a private version

of Perceptron. The analyses in these results use the
simple coordinate-wise estimation of the mean and
incur an additional factor d in their sample complexity.
It is easy to see that to approximately preserve the
margin γ it suffices to estimate the mean of some
distribution over an `q ball with `q error of γ/2. We
can therefore plug our mean estimation algorithms to
eliminate the dependence on the dimension from these
implementations (or in some cases have only logarithmic
dependence). In particular, the estimation complexity
of our algorithms is essentially the same as the sample
complexity of PAC versions of these online algorithms.
Note that such improvement is particularly important
since Perceptron is usually used with a kernel (or
in other high-dimensional space) and Winnow’s main
property is the logarithmic dependence of its sample
complexity on the dimension. Formally, we get an
algorithm with the following guarantees:

Theorem 1.3. For every p ∈ [2,∞], there exists
an efficient algorithm p-norm-SQ that for every ε >
0 and distribution D over Bdp(R) × {−1, 1} that is
supported on examples (x, y) that for some vector
w∗ ∈ Bdq (W ) satisfy y〈w∗, x〉 ≥ γ, outputs a half-
space w such that Pr(x,y)∼D[y〈w, x〉 < 0] ≤ ε.
For p ∈ [2,∞) p-norm-SQ uses O(d log d(WR/γ)2)
queries to VSTAT(O(log d(WR/γ)2/ε)) and for p =
∞ p-norm-SQ uses O(d log d(WR/γ)2) queries to
VSTAT(O((WR/γ)2/ε)).

This implementation immediately implies the strongest
known sample complexity bounds for learning halfs-
paces with random classification noise or differential pri-
vacy.

We note that a variant of the Perceptron algorithm
referred to as Margin Perceptron outputs a halfspace
that approximately maximizes the margin [2]. This
allows it to be used in place of the SVM algorithm.
Our SQ implementation of this algorithm gives an SVM-
like algorithm with estimation complexity of O(1/γ2),
where γ is the (normalized) margin. This is the same as
the sample complexity of SVM (cf. [63]). Many other
variants of the Perceptron and Winnow algorithms have
been studied in the literature and applied in a variety
of settings (e.g. [38, 62, 18]). The analysis inevitably
relies on a margin assumption (and its relaxations) and
hence, we believe, can be implemented using SQs in a
similar manner.

1.6.3 Differential Privacy In local or randomized-
response differential privacy the users provide the an-
alyst with differentially private versions of their data
points. Any analysis performed on such data is differ-
entially private so, in effect, the data analyst need not
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be trusted. Such algorithms have been studied and ap-
plied for privacy preservation since at least the work
of Warner [75] and have more recently been adopted
in products by Google and Apple. While there exists
a large and growing literature on mean estimation and
convex optimization with (global) differential privacy
(e.g. [16, 25, 5]), these questions have been only recently
and partially addressed for the more stringent local pri-
vacy. Using simple estimation of statistical queries with
local differential privacy by Kasiviswanathan et al. [46]
we directly obtain a variety of corollaries for locally dif-
ferentially private mean estimation and optimization.
Some of them, including mean estimation for `2 and `∞
norms and their implications for gradient and mirror de-
scent algorithms are known via specialized arguments
[24, 23]. Our corollaries for mean estimation achieve
the same bounds up to logarithmic in d factors. We
also obtain corollaries for more general mean estima-
tion problems and results for optimization that, to the
best of our knowledge, were not previously known.

An additional implication in the context of differen-
tially private data analysis is to the problem of releasing
answers to multiple queries over a single dataset. A long
line of research has considered this question for linear or
counting queries which for a dataset S ⊆ Wn and func-
tion φ :W → [0, 1] output an estimate of 1

n

∑
w∈S φ(w)

(see [25] for an overview). In particular, it is known
that an exponential in n number of such queries can be
answered differentially privately even when the queries
are chosen adaptively [59, 41] (albeit the running time
is linear in |W|). Recently, Ullman [71] has considered
the question of answering convex minimization queries
which ask for an approximate minimum of a convex pro-
gram taking a data point as an input averaged over the
dataset. For several convex minimization problems he
gives algorithms that can answer an exponential num-
ber of convex minimization queries. It is easy to see
that the problem considered by Ullman [71] is a special
case of our problem by taking the input distribution to
be uniform over the points in S. A statistical query
for this distribution is equivalent to a counting query
and hence our algorithms effectively reduce answering
of convex minimization queries to answering of counting
queries. Therefore an immediate corollary of our bounds
is a strengthening and substantial generalization of the
results in [71]. The detailed statement and comparison
appear in the full version.

1.7 Related work There is long history of research
on the complexity of convex optimization with access
to some type of oracle (e.g. [54, 13, 40]) with a lot
of renewed interest due to applications in machine
learning (e.g. [58, 1]). In particular, a number of

works study robustness of optimization methods to
errors by considering oracles that provide approximate
information about F and its (sub-)gradients [19, 21].
Our approach to getting statistical query algorithms for
stochastic convex optimization is based on establishing
bridges to that literature.

A τ -approximate value (or zero-order) oracle for
F (x) is an oracle that for any x ∈ K returns a value
F̃ (x) such that |F (x) − F̃ (x)| ≤ τ . It was proved
by Nemirovsky and Yudin [54] and also by Grötschel
et al. [39] that τ -approximate value oracle suffices to
ε-minimize F (x) over K with running time and 1/τ
being polynomial in d, 1/ε, log(R1/R0), where Bd2(R0) ⊆
K ⊆ Bd2(R1). If we assume that |f(x,w)| ≤ B = 1
for all w, then a single SQ for function f(x,w) with
tolerance τ gives a τ -approximate value of F (x). Hence,
as first observed in [73], it is possible to optimize general
stochastic convex programs using SQs in polynomial
time. Unfortunately and unavoidably, in many cases
of interest this general approach leads to query and
estimation complexity that are much worse than bounds
that we get here since our bounds are based on gradient
information and also exploit Lipschitz properties, either
in the (standard) global norm or for suitable local
norms, such as for the center-of-gravity method.

A common way to model stochastic optimization is
via a stochastic oracle for the objective function [54].
Such oracle is assumed to return a random variable
whose expectation is equal to the exact value of the func-
tion and/or its gradient (most commonly the random
variable is Gaussian or has bounded variance). Analy-
ses of such algorithms (most notably the Stochastic Gra-
dient Descent (SGD)) are rather different from ours al-
though in both cases linearity and robustness properties
of first-order methods are exploited. In most settings we
consider, estimation complexity of our SQ agorithms is
comparable to sample complexity of solving the same
problem using an appropriate version of SGD (which
is, in turn, often known to be optimal). On the other
hand lower bounds for stochastic oracles (e.g. [1]) have
a very different nature and it is impossible to obtain
superpolynomial lower bounds on the number of oracle
calls (such as those we prove here).

SQ access is known to be equivalent (up to poly-
nomial factors) to the setting in which the amount of
information extracted from (or communicated about)
each sample is limited [8, 34, 35]. In a recent (and in-
dependent) work Steinhardt et al. [68] have established
a number of additional relationships between learning
with SQs and learning with several types of restrictions
on memory and communication. Among other results,
they proved an unexpected upper bound on memory-
bounded sparse least-squares regression by giving an
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SQ algorithm for the problem. Their analysis2 is re-
lated to the one we give for inexact mirror-descent over
the `1-ball. Note that in optimization over `1 ball, the
straightforward coordinate-wise `∞ estimation of gradi-
ents suffices. Together with their framework our results
can be easily used to derive low-memory algorithms for
other learning problems.

2 Conclusions

In this work we give the first treatment of two basic
problems in the SQ query model: high-dimensional
mean estimation and stochastic convex optimization.
In the process, we demonstrate new connections of our
questions to concepts and tools from convex geometry,
optimization with approximate oracles and compressed
sensing.

Our results provide detailed (but by no means ex-
haustive) answers to some of the most basic ques-
tions about these problems. At a high level our find-
ings can be summarized as “estimation complexity of
polynomial-time SQ algorithms behaves like sample
complexity” for many natural settings of those prob-
lems. This correspondence should not, however, be
taken for granted. In many cases the SQ version requires
a completely different algorithm and for some problems
we have not been able to provide upper bounds that
match the sample complexity.

Given the fundamental role that SQ model plays in
a variety of settings, our primary motivation and focus
is understanding of the SQ complexity of these basic
tasks for its own sake. At the same time our results
lead to numerous applications among which are new
strong lower bounds for convex relaxations and results
that subsume and improve on recent work that required
substantial technical effort.
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