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Abstract 

Results are reported for Incomplete line LU (ILLU) in two different roles. One role is the 
role of smoother in a mu!tigrid method for the solution of linear systems resulting from the 9-
point discretization of a genera.I linear second-order elliptic PDE in two dimensions. Together 
with features like matrix-dependent gridtransferoperators we obtain a blackbox multigrid 
solver (MGD9V). Another role for ILLU is as preconditioner in a. stabilised bi-cg method 
(Bi-CGSTAB), a.s recently developed by Van der Vorst. In this role the preconditioner can 
easily be generalized for a discretized system of PDEs. A comparison is made between the 
two different roles. 

1 Introduction 

We consider a general linear 2nd order elliptic PDE in two dimensions 

au au 
- 'il · (D'ilu) + b1 (x, y) fJx + b2(x, y) fJy + c(x, y)u = f (x, y) (1) 

on a bounded domain. D(x, y) is a positive definite 2 x 2 matrix function and c(x, y) ~ 0. The 
discretized equation can be solved both by conjugate gradient and multigrid methods. Already 
for a long time incomplete decompositions have been applied fruitfully within these type of 
methods. In section 2 a description is given of the specific incomplete decomposition that we 
consider in this paper. The use of ILLU as smoother in multigrid methods is considered in 
section 3. Mere application of ILLU is not sufficient to ensure robustness and matrix-dependent 
gridtransfer operators are needed as well. Recently Van der Vorst developed the Bi-CGSTAB 
method (11] which is a variant of the method of Induced Dimension Reduction (IDR) as de­
veloped by Sonneveld (14]. We consider the use of ILLU as preconditioner for this method in 
section 4 and make a comparison with multigrid. In section 5 we generalize ILLU for the case 
of discretized systems of PDEs and we consider the application within Bi-CGSTAB. We end up 
with concluding remarks in section 6. 

2 Incomplete line LU 

The incomplete line LU decomposition (ILLU) has been originated by Underwood [10], and 
has also been proposed and elaborated upon by Concus, Golub and Meurant [4], Axelsson [2, 3], 
Meijerink [8] and others. In (6, 9] an extensive description of the method can be found. Here we 
repeat the general outline of the method. We assume to have a discretization on a rectangular 
computational grid that may be curvilinear in the geometrical sense. Let n., denote the number 
of volumes in the x-direction in the case of a cell-centered discretization or the number of vertical 
lines in the case of a vertex-centered discretization. Likewise we define ny, corresponding with 



they-direction. Further we assume the common five point coupling {as with central differences) 
or nine point coupling (as with bilinear finite elements). With these assumptions we obtain after 
discretization a block tridiagonal linear system of the form 

Ax= b (2) 

where 

[~ 
Ui 

) 
L2 D2 U2 

A= 
Ls Ds 

Dn, 

(3) 

The block Dj has the tridiagonal form: 

( dlj 

Utj 

~J 
l2j d2j u2; 

Di= 
la; dsj (4) 

The blocks L; and U; are of dimension n,,, just like D;. In case of five point stencils the blocks 
L; and Uj are diagonal-matrices. In case of nine point stencils these blocks are tridiagonal. The 
point of the ILLU-method is to make an incomplete factorization of A by the following formulae: 

Di, 

Di - tridiag(LjDj~ 1 Uj-1) 1 j = 2(1)ny. 

(5) 

(6) 

The operator tridiag() forces a block (by clipping) into the sparsity pattern of the D;. Without 
this particular operator, the factorization of A would be a complete one. 

Performing one ILLU-rela.xation sweep requires the following steps: 

ILLU-sweep: 
r= b-Ax; 
Zl = Ttj 

-n-1 
z; = r; - L;u;-1Zj-li 

-n-1 
CnlJ = Vn11 Zn11 i 

--1 
c; = D; (z; - U;c;+1), 
Xnew=x+c; 

j = 2(1)ny; 

j = ny - 1(-1)1; 

3 ILLU and multigrid 

We adhere to the assumptions about the grid and the discretization as made in the previous 
section. The general concept of multigrid methods is assumed to be known. We have a set of 
increasingly coarser grids: 

!1i, !11-Ji • • • I nkt • • • I !11. 

The discretization on the finest grid !11 evokes the linear system 

(7) 
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We have to define our specific choice for the prolongation operator Pk, the restriction operatrn 
Rk-l and the coarse grid matrices Ak-1 (k = 2, ... , l). For the restriction we choose 

Rk-1 =Pl. (8 

Further we choose the Galerkin approximation 

Hence, once Pk has been chosen, R1c-i and Ak-1 follow automatically. Definition (8) is an es· 
sential ingredient for a blackbox algorithm because now a user only needs to define his problerr 
on the finest grid (for a discussion on the concept of multigrid blackbox solvers see [13]). WE 
may consider possible choices for the prolongation operator. A standard choice is bilinear in· 
terpolation. This amounts to taking an equal average of values of the solution at neighbourin~ 
coarse gridpoints (see Figure 1). 

• 0 • 
• coarse grid point 

0 0 0 

o fine grid point 

• 0 • 
1/2 1/2 

Figure 1: Bilinear prolongation. 

At the gridpoints of the fine grid that coincide with the coarse grid we take identical val· 
ues. One algorithm incorporating the foregoing prolongation is MGSYM [16). It is a sawtooth 
multigrid correction scheme [12] which is furnished with ILLU as relaxation method. This al· 
gorithm works fine for a considerable class of problems. Yet the multigrid rate of convergencE 
deteriorates severely at two different instances: 

1. The diffusion coefficients in D(x, y) are discontinuous across certain interfaces between 
subdomains. 

2. The convection term is dominating, roughly speaking hllbll > llDll with h the meshsize. 

For an elaboration on the first instance we refer to [1, 7] and also to [5, § 10.3] where a onE 
dimensional interface problem is analysed. A first example that the second instance causee 
divergence can be found in [17]. A complete analysis for this instance and a remedy can hE 
found in [16], here the results of the analysis are illustrated when applied to the following simplE 
example. 

3.1 Example of Galerkin approximation for a convection dominated problem 

Consider the following linear operator: 

{Ju 
Au = -diu + fJx (10) 
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For vanishing diffusion the following stencil is the result from a simple upwind discretization on 
a grid with meshsize equal to 1: 

[ 
0 0 

A1 ~ -1 +l 
0 0 : l ( 11) 

By repeatedly applying (8) and (9) for the standard choice we obtain on the n times coarsened 
grid f!1-n the stencil: 

(12) 

The two stencils are the same ones as evoked by discretization with bilinear finite elements of a 
diffusion and convection term in the x-direction. On the right hand side there is a remainder 
that decreases exponentially with n. What matters is the observation that the convection-stencil 
increases exponentially with n. The spurious solutions thus created on the coarse grids will affect 
severely the convergence of the multigrid algorithm as a whole. 

A remedy for this particular example is to use an upwind prolongation instead, meaning here 
that only information from the left hand side is accepted. This corresponds to a prolongation 
with biassed weights, see Figure 2. 

• 0 • 
• coarse grid point 

0 0 0 

o fine grid point 

• 0 • 
0 

Figure 2: Example of upwind prolongation. 

Now, by repeatedly applying (8) and (9) we obtain on the n times coarsened grid f!1-n the 
stencil: 

[ 
0 0 

Az-n ~ zn -1 +l 
0 0 

and the multigrid algorithm as a whole converges. 

3.2 Matrix-dependent prolongations and restrictions 

(13) 

In [16] a prolongation operator has been proposed, able to handle both the case of dominant 
convection (in general directions) and interface problems at the same time. Here we give only 
an outline of the method. The grid f!k is split into four disjunct subgrids as follows: 
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ok,(o,o) = ok-1, 

ok,(1,0) = {(x + hk, y) E Ok I (x, y) E ok-1}, 

ok,(0,1) = {(x, y + hk) E nk I (x, y) E ok-1}, 

ok,(1,1) = {(x + hk, y + hk) E Ok I (x, y) E nk_i}, 

where hk is the meshsize of grid o •. 

1. Let ~ E nk,(l,O) or ~ E nk,(O,l) be a point where we have to interpolate a coarse g 
correction. Decompose the matrix Ak in its symmetric and antisymmetric part. 1 
symmetric part Sk is supposed to correspond with diffusion and the zeroth order te1 
the antisymmetric part Tk with convection. 

2. Reconstruct the diffusion and zeroth order coefficients at ~ from Sk, and the convect. 
coefficients from Tk. 

3. Use expressions that define an optimal choice for each sample of a set of degenerated ea 
for Ak. 

4. At the fine grid points in Ok,(O,oJ we adopt the values on Ok-l · 

5. At the fine grid points in nk,(l,l) we solve the homogeneous equation to obtain the corr 
tion. 

Applying the derived formulae to the particular example of section 3.1 we obtain the upwi 
prolongation in Figure 2. Also here we adhere to (8) and (9), though the implementation 
the latter is far from trivial. The actual computation of the coarse grid matrices takes l· 
work than the ILLU-decompositions. The above is employed in the code MGD9V (de Zeem 
this code uses the sawtooth multigrid correction scheme [12] and ILLU for smoother. Fo1 
detailed motivation of the prolongation and a description of the code, together with numeri• 
experiments to illustrate its good behaviour, see [16]. 

4 ILL U and Bi-CGSTAB 

In this section we consider the use of ILLU as preconditioner in Bi-CGSTAB (Van c 
Vorst [11]). A numerical example and comparison with the multigrid method MGD9V is p. 
sented at the end of this section. We have the linear system 

Ax=b. ( l 

We consider two versions of Bi-CGSTAB: one with preconditioning from the right and one wi 
preconditioning from the left. The first version reads: 

right-Bi-CGSTAB: 
Xo = Q; 
to a do RELAX(A,xo,b); 
ro = b-Axo; 
Po= a= wo = 1; 
vo =Po= Q; 
for i = 1, 2, 3, ... 

Pi= (ro, r;-1); /3 = (pi/ Pi-1 )(a/wi-1); 
Pi= r;-1 + f3(Pi-l - Wi-JVi-1); 
y = Q; to a do RELAX(A, y,p;) 
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end 

Vi= Ay 
a= pif (ro, vi); 
s = ri-1 - avi; 
z = Q; to a do RELAX(A, z, s) 
t = Az 
Wi = (t,s)/(t,t); 
Xi = Xi-1 + ay + WiZ; 

Ti= S -w;t; 

At the i-th sweep this scheme delivers some approximation x; of the solution x of (14), and 
the corresponding residual r;. This residual is called the updated residual for the way in which 
it is computed. 

Note that compared with preconditioning from both sides, we have gained a degree of free­
dom, for we can choose er> 1. When we apply ILLU for RELAX we have to compute (2+2(a-1)) 
matrix times vector operations for each i. Therefore, choosing a = 2 instead of er = 1 roughly 
doubles the amount of work per sweep. Yet, various numerical experiments have indicated that 
a = 2 provides a more efficient choice for this parameter because of the faster convergence. Still 
higher values of a decrease the effi.ency. 

Note further that the initial guess for xo is determined by performing a ILLU-sweeps on the 
zero solution. 

We now introduce a variant of Bi-CGSTAB, based on preconditioning from the left. 

left-Bi-CGSTAB: 

Xo = Q; 
to a do RELAX(A,xo,b); 
ro = b- Axo; 
fo = Q; to a do RELAX (A,i'o, ro); 
Po= a= wo = 1; 
vo =Po= Q; 
for i = 1, 2, 3, ... 

end 

Pi= (fo, i';-1); fJ =(pi/ Pi-1)(a/Wi-1); 
Pi= i'i-1 + fJ(Pi-1 - W;-1Vi-1); 
Vi= Q; to a do RELAX(A,v;, Api) 
a= Pi/(i'o, vi); 
S = fi-1 - CtVij 

t = Q; to a do RELAX(A, t, As) 
w; = (t, s)/(t, t); 
Xi = Xi-1 +°'Pi+ w;s; 
f; = s -wit; 

At the i-th sweep this scheme delivers some approximation x; of the solution x of (14). An 
important feature of this second scheme is that the gridfunction i'; is not the updated residual 
belonging to system (14). Instead, it is the updated residual belonging to a left-preconditioned 
version of this system. The preconditioning consists of the approximate inverse of A correspond­
ing to a relaxation sweeps. An important advantage of this new version of Bi-CGSTAB is that 
fi is a properly scaled residual. In fact, when applying ILLU for RELAX, i'; will be a close ap­
proximation of the error rather than the residual. This is of importance e.g. within the context 
of semiconductor problems. Jacobians originating from this problems depict entries that differ 
in orders of magnitude. This make it hard to decide whether the residual is small or not. For 
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making this kind of decisions (criterions etc.) the f; as approximation of the error, is a mon 
convenient tool (see [15]). 

4.1 Problem 1 

The following testproblem has been proposed by Van der Vorst [11]. It is a simplified aquifer· 
problem, the convection-diffusion equation reads 

au 
-\I· (D'Vu) + b(x, y) ax = f(x, y) 

n = (o, 1) x (o, 1) 

where the diffusion coefficient function D can be read from Figure 2, and 

b(x, y) = 2exp(2(x2 + y2)). 

We have Dirichlet boundary conditions: u = 1 on 8!2 except for y = 1 where u = 0. The 
function f(x, y) equals zero everywhere, except for the small (dashed) square in the centre 
where f (x, y) = 100. We use meshsize h = 1/130, leading to a system with 1292 unknowns. 

D=lOO 

yL~-----~ 
x 

Figure 3: Geometry of Van der Vorst's aquifer-problem. 

Here we use the same discretization as chosen by Van der Vorst, i.e. central differences. We 
observe that the diffusion coefficients are discontinuous across several interfaces and that at the 
shaded subdomain the convection is dominant. 

In Figure 4 we see the 10-logarithm of the Euclidean norm of the iteration vectors r; versus 
consumed workunits. One Bi-CGSTAB sweep (er = 2) takes 2 workunits, one MGD9V cycle 
takes 1 workunit. For MGD9V and right-Bi-CGSTAB the r; are residuals, as for left-Bi­
CGSTAB the Ti are scaled residuals. We observe that from the viewpoint of efficiency, MGD9V 
has a clear advantage over the Bi-CGSTAB algorithms. Along with ILLU as relaxation method 
this is due to advanced features like matrix-dependent gridtransfers and an automatic Galerkin 
approximation of coarse grid matrices. However, it is far from trivial to generalize these features 
from the case of a scalar equation to the case of a system of coupled equations. As for Bi­
CGSTAB, we show in the next section that, with a proper approach, the said generalization is 
rather straightforward. 
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Figure 4: Convergence history of MGD9V and Bi-CGSTAB for the aquifer problem. 

5 ILLU for discretized systems of PDEs 
Suppose we have a system of n coupled PDEs. For n = 1 we obtain the matrix A as 

described in section 2. For n > 1 the entries of the matrix A become blocks of dimension n 
instead of scalars. At the actual working-out of the formulae for the decomposition, as known 
and described (e.g. [6]) for the scalar case, we have to replace operations on scalars x and y by 
operations on matrices X and Y of dimension n as follows: 

x±y ---+ X±Y 

xy ---+ XY 
x/y ---+ xy-l . 

However, an important difference is that multiplication is no longer commutative and therefore 
the working-out of the formulae needs careful overhauling. 

In section 4 we mentioned the important advantage that in left-Bi-CGSTAB a properly 
scaled residual was computed for each i. Note that with the preconditioner for discretized 
coupled systems of PDEs, as developed in this section, we manage to do the scaling also over 
this coupling. For applications on semiconductor problems see [15]. 

6 Concluding remarks 
We have given a description of a robust blackbox multigrid solver (MGD9V). Apart from 

ILLU as robust smoother, it features matrix-dependent gridtransferoperators in order to tackle 
problems with discontinuous diffusion and/or dominant convection. These features are hard to 
generalize to the case of a system of coupled PDEs. The solver (written in standard FORTRAN 
77) is available from the author. We have also given descriptions of particular versions of the 
Bi-OGSTAB algorithm of Van der Vorst, furnished with ILLU as robust preconditioner. These 
versions have been generalized to the case of a system of PDEs. The left preconditioned version 
is especially suited for problems stemming from the field of semiconductor equations. This 
version might be of equal importance in other applications, e.g. fluid dynamics. 
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