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Abstract
We present new excess risk bounds for randomized and deterministic estimators for general un-
bounded loss functions including log loss and squared loss. Our bounds are expressed in terms of
the information complexity and hold under the recently introduced v-central condition, allowing for
high-probability bounds, and its weakening, the v-pseudoprobability convexity condition, allowing
for bounds in expectation even under heavy-tailed distributions. The parameter v determines the
achievable rate and is akin to the exponent in the Tsybakov margin condition and the Bernstein
condition for bounded losses, which the v-conditions generalize; favorable v in combination with
small information complexity leads to Õ(1/n) rates. While these fast rate conditions control the
lower tail of the excess loss, the upper tail is controlled by a new type of witness-of-badness con-
dition which allows us to connect the excess risk to a generalized Rényi divergence, generalizing
previous results connecting Hellinger distance to KL divergence.
Keywords: statistical learning theory, fast rates, PAC-Bayes, information geometry

1. Introduction

In statistical learning, a learning agent which we will call Learner is presented with samples from
an unknown probability distribution; Learner then plays a distribution over a set of actions in or-
der to minimize their expected loss over future samples. More formally, we consider a probability
distribution P over a sample space Z , with independent and identically distributed (i.i.d.) sam-
ples Z1, . . . , Zn ∈ Z drawn from P .1 The loss function ` ∶ F̄ × Z → R ∪ {∞} maps an action
f ∈ F̄ and sample z ∈ Z to a loss value, and Learner plays a randomized action over a model
F ⊂ F̄ . Classification, regression and (potentially misspecified) density estimation are special cases
of this statistical learning problem, which we represent compactly via the tuple (P, `,F). Learner’s
goal in this problem is to select a function f ∈ F that minimizes the excess risk EZ∼P [`(f,Z)] −
inff∈F EZ∼P [`(f,Z)], a setting equivalent to Vapnik’s (1995) general setting of the learning prob-
lem. For simplicity we assume the existence of f∗ ∈ F satisfying E[`f∗] = inff∈F E[`f ] as is done
in many related works such as Bartlett et al. (2005) and Mendelson (2014a), and so the excess risk
is measured with respect to an optimal comparator in F . We also generalize the setting by allowing
Learner to play distributions Π over F .

This work establishes new bounds on the performance of such randomized estimators using
information-theoretic arguments, including strengthenings of standard PAC-Bayesian excess risk
bounds (Catoni, 2003; Audibert, 2004). Our analysis recovers bounded loss results, but, more sig-
nificantly, also covers unbounded losses under a newly introduced set of assumptions. Specifically,

1. We generally ignore all measurability issues by implicitly assuming a suitable σ-algebra on Z .
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we establish fast rates of decay for the excess risk (i.e. faster than the “slow” rate of O(1/√n)),
under the recently introduced v-central condition and a weakening thereof, the v-pseudoprobability
convexity (PPC) condition (van Erven et al., 2015), both generalizations of fast rate conditions that
were called stochastic mixability by van Erven et al. (2012) and Mehta and Williamson (2014). For
bounded losses and v(x) ≍ x1−β , both v-central and PPC are equivalent to the Bernstein condition
with exponent β (Audibert, 2004; Bartlett and Mendelson, 2006) and thus generalize Tsybakov’s
margin condition (Tsybakov, 2004) to cases where f∗ is only optimal within F and not the Bayes
optimal decision. Yet, if F has unbounded excess loss then they become incomparable to Bernstein
(as they are one-sided, imposing restrictions on the lower tail of random variable `f − `f∗ but not
its upper tail, whereas Bernstein is two-sided, restricting both tails). If F has unbounded excess
risk then the Bernstein condition cannot hold any more, yet the PPC condition can still hold, under
polynomial tail decay assumptions.

We do need some minimal control over `f − `f∗ , however. For this we employ a second, new
assumption, the witness condition (see Definition 12), which automatically holds for bounded losses
and finite classes. There is some similarity between this assumption and the recently introduced
small-ball assumption of Mendelson (2014a), as discussed in Section 3.

A by-product of our analysis is Theorem 13 (Section 4) that implies a tight upper bound on
the ratio of the KL-divergence between two probability densities to their η-Hellinger divergence
(Liese and Vajda, 2006), generalizing previous results of Yang and Barron (1998) and Birgé and
Massart (1998). We now proceed to Section 2 to formalize the setting; Section 2.1 gives an ex-
tended overview of the paper. Section 3 discusses our conditions in detail, Section 4 presents the
main results Theorem 14 and Theorem 15 and discusses related work. After page 12 we provide a
short proof sketch (Section 5) and suggest future work. Most proofs, technical details concerning
infinities, and an extensive list of examples can be found in the appendix.

2. Setting and Goal of the Paper

Let `f(z) ∶= `(f, z) denote the loss of action f ∈ F̄ under outcome z ∈ Z . In the classical sta-
tistical learning problems of classification and regression with i.i.d. samples, we have Z = X × Y .
Classification (0-1 loss) is recovered by taking Y = {0,1} and `f(x, y) = ∣y − f(x)∣, and we obtain
regression with squared loss by taking Y = R and `f(x, y) = (y − f(x))2. In either case, F is some
subset of the set of all functions f ∶ X → Y , such as the set of decision trees of depth at most 5 for
classification. Our setting also includes conditional density estimation (see Example 1).

While in frequentist statistics one mostly considers learning algorithms (often called ‘estima-
tors’) that always output a single f ∈ F , we also will consider algorithms that output distribu-
tions on F . Such distributions can, but need not, be Bayesian or generalized Bayesian posteriors
as described below. Formally, a learning algorithm based on a set of predictors F is a function
Π∣ ∶ ⋃∞n=0Zn → ∆(F), where ∆ is the set of distributions on F . The output of algorithm Π∣ based
on sample Zn is written as Π ∣ Zn and abbreviated to Π∣n. Π∣n is a function of Zn and hence a ran-
dom variable under P . For fixed given zn, Π ∣ zn is a measure on F . We assume in the sequel that
this measure has a density π ∣ zn relative to a fixed background measure ρ. Whenever we consider
a distribution Π on F for a problem (P, `,F), we denote its outcome, a random variable, as f .

All random variables are assumed to be functions of Z,Z1, . . . , Zn which are i.i.d. ∼ P . If
we write `f we mean `f(Z). For loss functions that can be unbounded both above and below,
we must avoid undefined expectations and problems with interchanging order of expectations; the
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FAST RATES WITH UNBOUNDED LOSSES

only practically relevant loss function of this kind that we are aware of is the log loss (see below)
combined with densities on uncountable sample spaces. To avoid any such problems, we make two
additional, very mild requirements on the learning problems and on the learning algorithms that we
consider. These requirements, which automatically hold for all standard loss functions we are aware
of except log loss, are given in Appendix D as (28) and (29), where we explain in detail how we
deal with these infinity issues. From now on we tacitly only consider learning problems for which
they hold and which are nontrivial in the sense that for some f ∈ F , EZ∼P [`f(Z)] <∞.

Given (P, `,F), we say that comparator f∗ is optimal if E[`f − `f∗] ≥ 0 for all f ∈ F . We are
usually interested in comparing the performance of estimators to an optimal comparator; our main
measures of ‘easiness’ of a learning problem with comparator, the v-central and v-PPC conditions
(defined in the next section), both imply that the comparator is optimal. The only exception is
Proposition 4 on complexity (not risk) bounds, which holds for general comparators as long as
EZ∼P [`f∗(Z)] <∞.

Example 1 (Conditional Density Estimation) Let Z = X ×Y and let {pf ∣ f ∈ F} be a statistical
model of conditional densities for Y ∣ X , i.e. for each x ∈ X , p(⋅ ∣ x) is a density on Y relative
to a fixed underlying measure µ. Take log loss, defined on outcome z = (x, y) as `f(x, y) =
− log pf(y ∣ x). The excess risk, now E[`f − `f∗] = EZ∼P [log

pf∗(Y ∣X)

pf (Y ∣X)
], is formally equivalent

to the generalized KL divergence, as already defined in the original paper by Kullback and Leibler
(1951) that also introduced what is now the ‘standard’ KL divergence. Assuming that P has a
density p relative to the underlying measure, and denoting standard KL divergence by KL, we have
KL(p ∥pf) = EZ∼P [log

p(Y ∣X)

pf (Y ∣X)
], so that E[`f − `f∗] = KL(p ∥pf) − KL(p ∥pf∗). Thus, under

log loss our goal is equivalent to learning a distribution minimizing the KL divergence from P over
{pf ∶ f ∈ F}. We take an optimal comparator, with inff∈F KL(p ∥pf) = KL(p ∥pf∗) = ε ≥ 0,
where, if ε = 0, we deal with a standard well-specified density estimation problem, i.e. the model
{pf ∣ f ∈ F} is ‘correct’ and f∗ represents the true P . If ε > 0, we still have inff∈F E[`f − `f∗] = 0
and may view our problem as learning an f that is closest to f∗ in generalized KL divergence. ◻

Generalized (PAC-) Bayesian, Two-Part, and ERM Estimators Although our main results hold
for general estimators, they are most usefully applied to generalized Bayesian, two-part (MAP/MDL)
or empirical risk minimization (ERM) estimators, which we now define. Fix a distribution Π∣0 on
F with density π, henceforth called prior, and a learning rate η > 0. The η-generalized Bayesian
posterior based on F and sample z1, . . . , zn and prior Π∣0 is the distribution ΠB

∣n on f ∈ F , defined
by its density

πB∣n(f) = π
B(f ∣ z1, . . . , zn) ∶=

exp (−η∑ni=1 `f(zi)) ⋅ π(f)
∫F exp (−η∑ni=1 `f(zi)) ⋅ π(f)dρ(f)

. (1)

We will only consider priors Π∣0 satisfying the natural requirement that for all z ∈ Z , Π∣0(f ∈ F ∶
`f(z) <∞) > 0, so that (1) is guaranteed to be well-defined.

Now, given a learning problem as defined above, fix a countable subset F̈ of F , a distribution
Π∣0 with mass function π on F̈ and define the η-generalized two-part MDL estimator for prior Π at
sample size n as f̈ ∶= arg minf∈F̈ ∑

n
i=1 `f(Zi)+ 1

η ⋅(− logπ(f)), where, if the minimum is achieved

by more than one f ∈ F̈ , we take the smallest in the countable list, and if the minimum is not
achieved, we take the smallest f in the list that is within 1/n of the minimum. Note that the η-two
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part estimator is deterministic: it concentrates on a single function. ERM is recovered by setting the
prior Π to be uniform over F . Note that ERM can be applied without knowledge of η; however, for
general two-part and Bayesian estimators we need to know η — we return to this issue in Section 6.

2.1. Overview: Excess Risk Bounds and How We Prove Them

Here is an informal rendering of the type of statement we prove in our main results, Theorem 14
and 15 in Section 4, with all technical terms informally explained further below:

Theorem Template Let (P, `,F) be a learning problem with comparator f∗. Let Π be an arbi-
trary learning algorithm as defined above. Assume that (P, `,F) satisfies (a) the witness condition
and (b) a v-fast rate condition, where v ∶ R+

0 → R+
0 is a nonnegative increasing function. Then for

any 0 < η < v(ε)
2 , there are constants c2 > 0 and η′ ≍ η such that

Ef∼Π∣n [E[`f − `f∗]]⊴n⋅η′ c2 (ICn,η(f∗ ∥Π∣) + ε) . (2)

with information complexity IC defined as:

ICn,η(f∗ ∥Π∣) ∶= Ef∼Π∣n [ 1

n

n

∑
i=1

(`f(Zi) − `f∗(Zi))] +
KL(Π∣n ∥Π∣0)

η ⋅ n . (3)

Thus, we bound the expected excess risk we get by randomizing over Π∣n in terms of a complex-
ity term, which is just a variation of the term arising in standard PAC-Bayesian bounds (Catoni,
2003; McAllester, 2003), involving a KL divergence between ‘posterior’ and ‘prior’, which was
first presented in this exact form by Zhang (2006b). In case the estimator f̂ is deterministic, the
left-hand side of (2) simplifies to E[`f̂ − `f∗]. The nonstandard inequality ⊴ refers to inequality
both in expectation and with high probability over the sample Zn ∼ P , and will be further explained
below; if the weak version of our fast-rate condition holds, we only get inequality in expectation.
To make further sense of (2), we need to explain the information complexity ICn,η and the need for
and meaning of preconditions (a) and (b), which will be done below. We then devote Section 3 to
the preconditions and present the precise theorems in Section 4. There we also provide examples in
which the theorems yield fast rates when applied with an optimally balanced feasible pair (η, ε).

2.2. Exponential Stochastic Inequality ⊴
Both our results and the v-fast rate conditions may be expressed succinctly via the notion of expo-
nential stochastic inequality.

Definition 1 (Exponential Stochastic Inequality (ESI)) Let η > 0 and let U,U ′ be random vari-
ables on some probability space with probability measure P . We define

U ⊴Pη U ′ ⇔ EU,U ′∼P [eη(U−U ′)] ≤ 1. (4)

When clear from the context, we omit the distribution P from the notation. In particular, when U,U ′

are defined relative to a learning problem (P, `,F), then ⊴η stands for ⊴Pη . Also, if a distribution Π

on F is specified, it stands for ⊴P⊗Π
η , i.e. P in (4) is the product distribution of P and Π.

An ESI simultaneously captures “with (very) high probability” and “in expectation” results.
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Proposition 2 (ESI Implications) For all η > 0, if U ⊴η U ′ then, (i), E[U] ≤ E[U ′]; and, (ii), for
all K > 0, with P -probability at least 1 − e−K , U ≤ U ′ +K/η.

Proof Jensen’s inequality yields (i). Apply Markov’s inequality to e−η(U−U
′) for (ii).

The following proposition will be extremely convenient for our proofs:

Proposition 3 (Weak Transitivity) Let (U,V ) be a pair of random variables with joint distribu-
tion P . For all η > 0 and a, b ∈ R, if U ⊴η a and V ⊴η b, then U + V ⊴η/2 a + b.

Proof From Jensen’s inequality: E[e
η
2
((U−a)+(V −b))] ≤ 1

2 E[eη(U−a)] + 1
2 E[eη(V −b)].

2.3. Information Complexity

The present form of the information complexity is due to Zhang (2006b), with precursors from
Rissanen (1989) and Yamanishi (1998). It relates to covering numbers via the following proposition:

Proposition 4 Consider a learning problem (P, `,F) with comparator f∗ and let Z1, . . . , Zn sat-
isfy ∑ni=1 `f∗(Zi) <∞. Let Π∣ be an η-Bayesian posterior. We have for all η > 0 that

ICn,η(f∗ ∥ΠB
∣ ) = inf

Π∈RAND
ICn,η(f∗ ∥Π∣) ≤ inf

ḟ∈DET
ICn,η(f∗ ∥ ḟ) = ICn,η(f∗ ∥ f̈), (5)

where RAND is the set of all learning algorithms Π and DET the set of all deterministic estima-
tors that can be defined relative to (P, `,F). Furthermore, suppose F = ⋃j∈NFj is a countable
union of sub-models such that for δ > 0, F̈j,δ ⊂ Fj is a minimal δ-cover of F̈j in the `∞-norm
(i.e. supf∈Fj minḟ∈F̈j,δ ∥`f − `ḟ∥∞ ≤ δ). Define Γ ∶= {20,2−1, . . . ,2−K} for K ∶= ⌈log2(n)⌉.
Assume that for all j, ∣F̈j,δ ∣ = N (Fj , δ) < ∞, let πN be a probability mass function on N and
let Π∣0 be the prior on ⋃j∈N,δ∈Γ F̈j,δ with mass function π given by, for f ∈ F̈j,2−k , π(f) =
πN(j)/(K ⋅N (Fj ,2−k)). Then the right-hand side of (5) is further bounded as

inf
f ′∈F̈

⎧⎪⎪⎨⎪⎪⎩

1

n

n

∑
j=1

(`f ′(Zj) − `f∗(Zj)) +
− logπ(f ′)

η ⋅ n

⎫⎪⎪⎬⎪⎪⎭
≤ inf
j∈N,δ∈Γ

{δ + logN (Fj , δ) + log log2(2n) − logπN(j)
η ⋅ n } .

In the special case with singleton Fj’s, the right-hand side reduces to − logπN(j).

Zhang (2006a) showed (5) in the i.i.d. setting. The second inequality is an immediate consequence
of the definitions; we omit a detailed proof. Additionally, it is well known that the information com-
plexity of a generalized Bayesian posterior is equal to the generalized Bayesian marginal likelihood
(see e.g. equation (5) of Zhang (2006b)), which, in the special case of η = 1 and log loss recovers
the marginal likelihood of the data relative to f∗.

From Theorem 16 and this result, we see that we have three equivalent characterizations of
information complexity for η-Bayesian estimators. First, there is just the basic definition (3) with
Π∣n instantiated to the η-Bayes posterior. Second, there is the characterization as the minimizer
of (3) for the given data, over all distributions Π over λ, as given by (5). And third, there is the
characterization in terms of the generalized Bayesian marginal likelihood.

5
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2.4. The need for Conditions: from annealed to standard risk

For η > 0, f ∈ F̄ , we employ a generalization of excess risk that we call annealed excess risk (termi-
nology from statistical mechanics; see e.g. Haussler et al. (1996)), or generalized Rényi divergence
(terminology from information theory, see e.g. van Erven and Harremoës (2014)):

E
ANN(η)
Z∼P [`f − `f∗] = −

1

η
logEZ∼P [e−η(`f−`f∗)] , (6)

with log the natural logarithm. As shown by Zhang (2006b), the central result (2) holds with ε = 0
and under no further conditions if we replace the Π∣n-expected risk on the left by its annealed

version Ef∼Π∣n E
ANN(η)
Z∼P [`f − `f∗]. Thus, our strategy in proving our theorems will be to determine

conditions under which the η-annealed excess risk is similar enough to the standard risk for (2) to
hold. The excess risk does satisfy limη↓0 E

ANN(η)
Z∼P [`f − `f∗] = EZ∼P [`f − `f∗] (see Proposition 21),

but for η ↓ 0 the information complexity diverges to infinity, so a bound in terms of ICn,η becomes
useless. We provide two types of conditions, the v-fast rate conditions and the witness condition.
When both hold, EANN(η)

Z∼P [`f − `f∗] and EZ∼P [`f − `f∗] can be linked so that (2) holds. The
novelty of this paper is that these conditions are far less restrictive than those implicitly employed
in earlier works using similar proof strategies such as Zhang (2006a) and Audibert (2004).

E
ANN(η)
Z∼P [`f − `f∗] is decreasing in η and without further condition can become negative and

even −∞ for η > 0. The first v-fast rate conditions (van Erven et al., 2015), presented in Section 3,
ensure that the annealed excess risk is positive, or at least larger than −ε, for all η < v(ε) (the slack
term in (2) arises because it may still become slightly negative). The parameter v determines how
small we must make η to get sufficiently small ε to make (2) useful; the faster v grows, the better.

To see that we need a second condition, consider the density estimation Example 1 again.
If we assume a correct model, p = pf∗ , then the central condition holds automatically (van Er-
ven et al., 2015), for all η ≤ 1. E

ANN(η)
Z∼P [`f − `f∗] is now equal to the η-Rényi divergence be-

tween p and pf , which is an (often tight) upper bound of the η-Hellinger divergence Hη(p ∥pf) ∶=
η−1(1 − E∗

Z∼p[(pf /p)η]); note that H1/2 coincides with the standard squared Hellinger distance
2 − 2 ∫

√
p ⋅ pfdµ. To bound the risk in terms of the η-annealed excess risk it is now sufficient to

bound the KL divergence in terms of η-Hellinger divergence. Yet, the latter is immediately seen
to be bounded for η < 1, whereas in general we can have KL(p ∥pf) = ∞. We thus need an extra
condition. The simplest such condition is that the likelihood ratio of p to pf is bounded for all f ∈ F
(in terms of log loss this means that the loss is bounded). For that case, Birgé and Massart (1998)
and Yang and Barron (1998) proved a tight bound on the ratio between KL and standard (η = 1/2)
Hellinger. Theorem 13 in Section 4 represents a vast generalization of their result to arbitrary η,
misspecified F , and general loss functions under the witness condition (Section 3), which allows
unbounded losses. It is the cornerstone for proving our main results, Theorem 14 and Theorem 15.

3. Getting a Grip on the Conditions

We now turn to our fast rate conditions. The central and PPC conditions below were introduced by
van Erven et al. (2015), where they also were studied and compared to other conditions in detail.

6
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Definition 5 (Central Condition) Let η > 0 and ε ≥ 0. We say that (P, `,F) satisfies the η-central
condition up to ε if there exists some f∗ ∈ F such that

`f∗ − `f ⊴η ε for all f ∈ F , (7)

If it satisfies the η-central condition up to 0, we say that the strong η-central condition holds.

The condition thus expresses that f∗ is not just the risk minimizer in F but also that it provides an
exponential bound on the probability that `f∗−`f is large (both of which follow from Proposition 2).
This is clearly desirable for learning, because, for any fixed f ∈ F that is worse than f∗, the
condition makes the probability that f outperforms f∗ on the sample exponentially small.

The special case of this condition with η = 1 under log loss has appeared previously, often
implicitly, in works studying rates of convergence in density estimation (Barron and Cover, 1991; Li,
1999; Zhang, 2006a; Kleijn and van der Vaart, 2006; Grünwald, 2011). Space limitations preclude
doing justice to all the implications of the central condition and its equivalences to other conditions.
Here we merely note that the strong central condition holds for density estimation with log loss in
the well-specified setting and, under a convex model, in the misspecified setting (see Example 2.2
of van Erven et al. (2015)), as well as that, for classification and other bounded loss cases, it can
be related to the Bernstein condition (Audibert, 2004; Bartlett and Mendelson, 2006) (as discussed
immediately before Definition 9 below).

Although not all learning problems satisfy the strong η-central condition with respect to com-
parator f∗, it turns out that by adopting a different comparator g we always are guaranteed to have
`g − `f ⊴η 0 for all f ∈ F , and moreover, the performance of f∗ can be related to the performance
of g under conditions much weaker than the strong η-central condition. This comparator, formally
defined below, is an instance of what we call a generalized reversed information projection (GRIP),
a versatile generalization of the reversed information projection of Barron and Li (1999) (a major
inspiriation for this work). The original projection was used in the context of density estimation
under log loss; we extend it to general learning problems:

Definition 6 (GRIP) Let (P, `,F) be a learning problem. Define2 the set of pseudoprobability
densities EF ,η ∶= {e−η`f ∶ f ∈ F}. For Q ∈ ∆(F), define ξQ ∶= Ef∼Q[e−η`f ]. The generalized
reversed information projection of P onto conv(E) is defined as the pseudo-loss `g satisfying

E[`g] = inf
Q∈∆(F)

E [−1

η
logEf∼Q[e−η`f ]] = inf

ξQ∈conv(E)
E [−1

η
log ξQ] .

From the above definition, we see that a GRIP is only a pseudo-predictor, meaning that it may fail
to correspond to any actual prediction function; however, the corresponding loss for a GRIP is well-
defined, as shown in Appendix C. It will be convenient to call the quantity appearing in the center
expectation above a “mix-loss”, defined for a distribution Q ∈ ∆(F) as `Q ∶= − 1

η logEf∼Q[e−η`f ].
We defer showing that `g−`f ⊴η 0 for all f ∈ F until after Definition 10, as the proof is more natural
using that definition.

The next definition is a weakening of the strong η-central condition that relates ε to η.

Definition 7 (v-Central Condition) Let v ∶ [0,∞) → [0,∞] be a bounded, non-decreasing func-
tion satisfying v(ε) > 0 for all ε > 0. We say that (P, `,F) satisfies the v-central condition if, for all
ε > 0, there exists a function f∗ ∈ F such that (7) is satisfied with η = v(ε).

2. This transformation is known as entropification (Grünwald, 1999).

7
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When the v-central condition holds but the strong η-central condition does not, we may instead use
the GRIP comparator g and the following proposition, relating the random variables `f∗ and `g:

Proposition 8 Under the v-central condition, we have `f∗ − `g ⊴v(ε) ε .

Proof Let Q ∈ ∆(F) be arbitrary and let `Q be the mix-loss with respect to η = v(ε). Then

E [ev(ε)(`f∗−`Q)] = E [Ef∼Q [ev(ε)(`f∗−`f )]] ≤ ev(ε)ε.

Now, as we show in Appendix C, there exists a sequence {Qk} such that {`Qk} converges to `g in
L1(P ), and so we also have E [e−v(ε)(`f∗−`g)] ≤ ev(ε)ε.
This proposition in particular implies that the information complexity with respect to comparator g
is, with high probability, not much larger than the information complexity with respect to compara-
tor f∗, a crucial property in our transferring risk bounds with respect to the pseudo-predictor g to
risk bounds with respect to our actual comparator f∗.

One of the main results of van Erven et al. (2015) (in their Section 5) is that for bounded loss
functions, the v-central condition holds for some v with v(ε) ≍ ε1−β iff the Bernstein condition
below holds for exponent β and some B > 0. The Bernstein condition is known to characterize the
rates that can be obtained in bounded loss problems for proper learners, and the same thus holds for
the central condition.

Definition 9 (Bernstein Condition) For some B > 0 and β ∈ (0,1], we say (P, `,F) satisfies the
(β,B)-Bernstein condition if, for all f ∈ F , E[(`f − `f∗)2] ≤ C (E[`f − `f∗])

β
.

The best case of the Bernstein condition is exponent 1, corresponding to a v with v(0) > 0, i.e. to
the strong central condition.

The v-central condition, for v(ε) ≍ ε1−β , β ∈ [0,1], requires exponential tails of `f∗ − `f and
thus can fail to hold in the case of regression with squared loss under polynomially decaying tails.
A weakening of it, the v-PPC condition, may then still hold. For example, in bounded regression
(Example 6 in Appendix E.2), the v-central condition fails to hold but the v-PPC condition does
hold for v(ε) = √

ε under the assumption that the tails satisfy E[∣Y ∣4] < ∞. To prepare for the
condition, note that (7) really means that EZ∼P [exp(−η(`f(Z) − `f∗(Z)))] ≤ exp(ηε) and thus is
clearly equivalent to:

Ef∼QEZ∼P [e−η(`f (Z)−`f∗(Z))] ≤ eηε for all Q ∈ ∆(F). (8)

Using the mix-loss notation, the left-hand side can be rewritten as EZ∼P [e−η(`Q(Z)−`f∗(Z))], so
that (8) becomes

`f∗(Z) − `Q(Z)⊴η ε for all Q ∈ ∆(F), (9)

which is thus equivalent to the η-central condition (7). The PPC-condition is simply the strict
weakening of (9) to its in-expectation form:

Definition 10 (Pseudoprobability convexity condition) Let η > 0 and ε ≥ 0. We say that (P, `,F)
satisfies the η-pseudoprobability convexity condition up to ε if there exists some f∗ ∈ F such that

EZ∼P [`f∗(Z) − `Q(Z)] ≤ ε for all Q ∈ ∆(F). (10)

Taking v as in Definition 7, we say that (P, `,F) satisfies the v-PPC condition if, for all ε > 0, there
exists a function f∗ ∈ F such that (10) is satisfied with η = v(ε).
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The learning implications of the v-PPC condition are best viewed through the lens of the GRIP
pseudo-predictor g, which satisfies E[`g] = infQ∈∆(F)E [`Q]. The v-PPC condition can be re-
expressed as the condition that g has at most ε less risk than f∗, while from earlier we recall that g
itself satisfies the key property `g − `f ⊴η 0 for all f ∈ F (implying that `f − `g has an exponential
lower tail). The latter helps us guarantee that the excess risk with respect to g decays at a faster
rate, while the former helps us transfer this guarantee to the excess risk with respect to our actual
comparator f∗.

Finally, as promised, we show that:

Proposition 11 For all f ∈ F , we have `g − `f ⊴η 0.

Proof Consider the loss class `F ′ ∶= {`Q ∶ Q ∈ ∆(F)} ∪ {`g}. Observe that the PPC and central
conditions can be defined using a loss class and P rather than explicitly requiring a tuple (P, `,F).
Now, we have `g ∈ `F ′ , and (P, `F ′) clearly satisfies the (suitably reparametrized) strong η-PPC
condition. Theorem 3.10 of van Erven et al. (2015) then implies that the (suitably reparametrized)
strong η-central condition also holds, a fortiori implying the result (which need only hold for the
Dirac distributions Qf supported on some f ∈ F).

We now turn to the second condition needed to relate annealed to standard excess risk.

Definition 12 (Empirical Witness of Badness) We say that (P, `,F) with comparator f∗ satisfies
the empirical witness of badness condition (or witness condition) if there exist constants u > 0 and
c ∈ (0,1] such that for all f ∈ F

E [(`f − `f∗) ⋅ 1{`f−`f∗≤u}] ≥ cE[`f − `f∗]. (11)

More generally, for M > 1 we say that (P, `,F) with comparator f∗ satisfies the M -witness of
badness condition if there exist constants u > 0 and c ∈ (0,1] such that for all f ∈ F

E [(`f − `f∗) ⋅ 1{`f−`f∗≤u(1∨(M−1 E[`f−`f∗ ]))}] ≥ cE[`f − `f∗]. (12)

We see that the witness condition (11) is just the M -witness condition for M =∞, which is suitable
for the case where F has unbounded loss but bounded excess risk (Theorem 14). We need the more
complicated condition withM <∞ only to deal with the unbounded excess risk case (Theorem 15).
We also see that it trivially holds if F is finite or ` is bounded.

The intuitive reason for imposing this condition is to rule out situations in which learnability
simply does not hold. For instance, consider a setting where, with probability 1 − δ, we have `f = 0
and `f∗ = 1

1−δ , while with probability δ, we have `f = 2
δ and `f∗ = 0. Then E[`f − `f∗] = 1, but as δ

goes to zero, empirically we will never witness the badness of f as it almost surely achieves lower
loss than f∗. We now provide an example where the witness condition holds:

Example 2 (Heavy-tailed regression with bounded predictions) Consider a regression problem
with squared loss, so that Z = X ×Y . Further assume that E[Y 2] ≤ C, the function class F consists
of functions f for the predictions f(X) are bounded as ∣f(X)∣ ≤ r almost surely, and that the risk
minimizer f∗ over F continues to be a minimizer when taking the minimum risk over the convex
hull of F . This last assumption is implied, for example, when F is convex or when the model is

9
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well-specified in the sense that Y = f∗(X)+ξ for ξ a zero-mean random variable that is independent
of X .

As we show in Appendix E.1, in this setup the Bernstein condition holds with exponent 1 and
multiplicative constant 8(

√
C+r)2. Moreover, as we also show, a Bernstein condition with exponent

1 and multiplicative constant B always implies that the witness condition holds if u ≥ B with
constant c = 1 − B

u . In particular, in the current setting the witness condition holds with u =
16(

√
C + r)2 and c = 1

2 . ◻

Intriguingly, on an intuitive level the witness condition bears some similarity to the recent small-
ball assumption of Mendelson (2014a). This assumption states that there exist constants κ > 0 and
ε ∈ (0,1) such that, for all f, h ∈ F , we have Pr (∣f − h∣ ≥ κ∥f − h∥L2) ≥ ε. Under this assumption,
Mendelson (2014a) established bounds on the L2-parameter estimation error ∥f̂ −f∗∥L2 in function
learning. For the special case that h = f∗, one can read the small-ball assumption as saying that
‘no f behaving very similarly to f∗ with high probability is very different from f∗ only with very
small probability so that it is still quite different on average.’ The witness condition reads as ‘there
should be no f that is no worse than f∗ with high probability and yet with very small probability
is much worse than f∗, so that on average it is still substantially worse’. Despite this similarity,
the details are quite different. In order to compare the approaches, we may consider regression
with squared loss in the well-specified setting as in the example above. Then the L2-estimation
error becomes equivalent to the excess risk, so both Mendelson’s and our results below bound the
same quantity. But in that setting one can easily construct an example where the witness and strong
central conditions hold (so Theorem 14 applies) yet the small-ball assumption does not (Example 9
in Appendix E.2); but it is also straightforward to construct examples of the opposite by noting that
small-ball assumption does not refer to Y whereas the witness condition does.

4. Main Results

We now present Theorem 13, underlying our two main results further below.

Theorem 13 Let η̄ > 0. Assume that E e−η̄(`f−`f∗) ≤ 1. Let u > 0 and c ∈ (0,1] be constants for
which E [(`f − `f∗) ⋅ 1{`f−`f∗≤u}] ≥ cE[`f − `f∗]. Then for all η ∈ (0, η̄), with c1 ∶= 1

c
ηu+1
1− η

η̄

,

E[`f − `f∗] ≤ c1 ⋅
1

η
E [1 − e−η(`f−`f∗)] ≤ c1 ⋅EANN(η) [`f − `f∗] . (13)

This result generalizes results of Birgé and Massart (1998, Lemma 5) and Yang and Barron (1998,
Lemma 4) that bound the ratio between the standard KL-divergence KL(P ∥Q) and the (standard)
1/2-Hellinger divergence Hη(P ∥Q) for distributions P and Q. To see this, take density estimation
under log loss in the well-specified setting with η < η̄ = 1, so that f∗ = p and f = q; then the LHS
becomes KL(P ∥Q) and 1

η E[1− e−η`f−`f∗ ] = 1
η (1 − 1E[(q/p)η]). Under a bounded density ratio

p/q ≤ V , we can take u = logV and c = 1 (the witness condition is then trivially satisfied), so that
c1 = η logV +1

1−η , which for η = 1/2 coincides with the Birgé-Massart-Yang-Barron-bound. Wong et al.
(1995, Theorem 5) also bound the ratio between the standard KL and Hellinger divergences, even
when the density ratio random variable p/q is unbounded, although with exponentially decaying
tails; we will compare a version of our result to their bound in future work. Lastly, in the general
learning setting but with excess loss bounded by some constant b, we may always take u = b and
c = 1 so that the witness condition is trivially satisfied.

10
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Example 3 (Example 2 and Theorem 13 in light of Birgé (2004)) Proposition 1 of Birgé (2004)
shows that, in the case of well-specified bounded regression with Gaussian noise ξ, the excess risk
is bounded by the 1/2-annealed excess risk times a constant proportional to r2, where r is the
bound on ∣f(X)∣ as in Example 2. This result thus gives an analogue of Theorem 13 for bounded
regression with Gaussian noise and also allows us to prove versions of our two main results below
for this model. Our earlier Example 2 extends Birgé’s result, since it shows that the excess risk
can be bounded by a constant times the annealed excess risk if the tail of the target Y has bounded
second moment, which, in the well-specified setting in particular, specializes to ξ having bounded
second moment rather than Gaussian tails. On the other hand, (Birgé, 2004, Section 2.2) also gives a
negative result for sets F that are not bounded (i.e. supx∈X ,f∈F ∣f(x)∣ =∞): even in the ‘nice’ case
of Gaussian regression, there exist such sets for which the ratio between excess risk and annealed
excess risk can be arbitrarily large, i.e. there exists no finite constant c1 for which (13) holds for all
f ∈ F . From this we infer, by using Theorem 13 in the contrapositive direction, that for such F the
witness condition also does not hold. ◻

Let (P, `,F) be a learning problem with comparator f∗. We now present our first main result,
an excess risk bound that holds under the witness condition, which allows unbounded losses but
requires bounded excess risk, i.e. supf∈F E[`f − `f∗] <∞. Let Π be a learning algorithm.

Theorem 14 (Excess Risk Bound - Bounded Excess Risk Case) Assume that (P, `,F) satisfies
the witness condition (11). Let c2 ∶= 1

c
2ηu+1

1− 2η
v(ε)

. Then, with information complexity IC as in (3), under

the v-central condition, for any η < v(ε)
2 :

Ef∼Π∣n [E[`f − `f∗]] ⊴ η⋅n
2c2

c2 (ICn,η(f∗ ∥Π∣) + ε) . (14)

whereas under the v-PPC condition, for any η < v(ε)
2 :

EZn1 [Ef∼Π∣n [E[`f − `f∗]]] ≤ c2 (EZn1 [ICn,η(f∗ ∥Π∣)] + ε) . (15)

The factor c2 explodes if η ↑ v(ε)/2. If the v-central or v-PPC condition holds for some v, it
clearly also holds for any smaller v, in particular for v′(ε) ∶= v(ε)∧1. Applying the theorem with
v′ (which will not affect the rates obtained), we may thus take η = v′(ε)/4, so that c2 is bounded by
1
c (u + 2). The ESI in the first result then implies that with probability at least 1 − e−K the left-hand
side exceeds the right-hand side by at most 2c2K

ηn for constant c2; it also implies (15). For the case
of bounded loss, we can further take u to be supf∈F ∥`f − `f∗∥∞ and c = 1. Finally, in the special
case when strong η̄-central holds, we can take ε = 0 and v(0) = η̄; then, as explained in the proof,
⊴ η⋅n

2c2

may be replaced by ⊴ η⋅n
c2

, yielding slightly better concentration.
While the theorem holds for arbitrary learning algorithms, good bounds on ICn,η are avail-

able mainly for Π∣n set to a η-generalized Bayes or two-part or ERM estimators. A very simple
such bound is given in Proposition 4. Applying the prior Π∣0 given there we see that for both
η-generalized Bayes and two-part estimators, (14) implies that with high probability and in expec-
tation, taking for simplicity η = v(ε)/4,

Ef∼Π∣n [E[`f − `f∗]] ≤ c2

⎛
⎜
⎝

inf
j∈N
δ

{δ + 4 ⋅ logN (Fj , δ) + log log2(2n) − logπN(j)
v(ε) ⋅ n } + ε

⎞
⎟
⎠
.

11
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where the infimum is over all δ of form 2−k that are larger than 1/n. If f∗ is contained in some
Fj with covering number polynomial in δ, we can take δ ≍ 1/n and then we get a bound of O(ε +
log(n)/(nv(ε))), which holds uniformly for all ε > 0 so we can optimize for ε.

Example 4 (Bounded Loss, Bernstein Condition) For bounded losses, the Bernstein condition is
automatically satisfied with exponent β = 0, implying that v-central automatically holds with v(ε) =
Cε1−β = Cε for some C > 0 (see Section 3). If the metric entropy logN (F , δ) is logarithmic in δ,
then in optimizing over ε we should take ε ≍ 1/√n, giving the well-known ‘slow rate’ bounds for
bounded losses, of Õ(1/√n) (suppressing log-factors). If the set of models Fj under consideration
is finite, we get the same result with ERM, which can be applied without knowledge of η; for finite
classes we can also get rid of the logn term. At the other extreme, if Bernstein holds with exponent
β = 1, then v-central holds with v(ε) = η̄ > 0 constant, and we get Õ(1/n) rates. ◻

We further remark that, for the case of log loss, Barron and Cover (1991) and Zhang (2006b) provide
extensive bounds on information complexity for nonparametric density estimation that lead to the
minimax convergence rates in many cases (with k-dimensional parametric F one gets the standard
(k/2) logn BIC term). If one is content with in-expectation results, one can use (15) and it is suffi-
cient to bound ICn,η in expectation rather than almost surely. One then gets sophisticated analogues
of Proposition 4 with (smaller) covering numbers defined directly in terms of excess risk rather than
the sup-norm. The main contribution of our work in this density-estimation context is that we ex-
tend such works to hold under (a) misspecification (the v-fast rate conditions are much weaker than
earlier conditions for Bayesian nonparametric density estimation under misspecification such as by
Kleijn and van der Vaart (2006)) and (b) in terms of KL divergence, under the witness condition —
earlier results are invariably geared towards Hellinger distance.

We now present a result for a learning problem (P, `,F) with unbounded excess risk.

Theorem 15 (Excess Risk Bound - Unbounded Excess Risk Case) Assume that (P, `,F) satis-
fies the M -witness condition (12). Let c2 ∶= 1

c
2ηu+1

1− 2η
v(ε)

. Let {bn} be a decreasing sequence. Then

under the v-central condition, for any η < v(ε)
2 :

Π∣n({f ∶ E[`f − `f∗] ≥ bn}) ⊴(bn ∧M)⋅
n⋅η
4c2

c2 (
1

M
+ 1

bn
) ⋅ (ICn,η(f∗ ∥Π∣) + ε) .

whereas under the v-PPC condition, if Π∣n is a selector concentrated on f̂n, for any η < v(ε)
2 :

P (E[`f̂n − `f∗] ≥ bn) ≤ c2 (
1

M
+ 1

bn
) ⋅ (EZn1 [ICn,η(f∗ ∥Π∣)] + ε) , (16)

where P is the distribution of Zn.

We note that, as can be seen from the first display in the proof in Appendix B, the first statement
implies the second, so that, as before, the result under the central condition is stronger than under
the PPC condition. This result is harder to interpret than the previous one, so for simplicity we will
focus on the case that Π∣n corresponds to a selector f̂n.

We can now take any sequence ηn and εn so that dn ∶= EZn1 [ICn,ηn(f∗ ∥Π∣)] + εn converges to
0 (we may take pairs ηn and εn that optimize the bound as this is sample-independent; e.g. in the
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setting of Example 4, if v(ε) = ε1−β then we get a rate of n−1/(2−β)), and further any nondecreasing
sequence an such that bn ∶= andn is decreasing. Plugging bn into (16) gives, for all n:

P (E[`f̂n − `f∗] ≥ an ⋅ (E[ICn,ηn(f∗ ∥Π∣)] + εn)) ≤ c2 (
dn
M

+ 1

an
) Ð→

n→∞
0,

and thus it implies E[`f̂n − `f∗] = OP (E[ICn,ηn(f∗ ∥Π∣) + εn]), so, while in this unbounded risk
case we have no ‘exponential in-probability’ results such as in (14), the risk still converges at rate
ICn,ηn + εn in the OP -sense often considered in statistics (see e.g. (Van de Geer, 2000)).

4.1. Related work

Proper vs. Improper There exist learning problems (P, `,F) on which no proper learner, that
always predicts inside F , can achieve a rate as good as an improper learner, that can select f̂n /∈ F
(Audibert, 2007; van Erven et al., 2015). Here we consider randomized proper estimators, to which
the same lower bounds apply; hence, they cannot in general compete with improper methods such as
exponential weighted forecasters and other aggregation methods. Such methods achieve fast rates
under conditions such as stochastic exp-concavity (Juditsky et al., 2008), which are very similar to
strong PPC, as explained by van Erven et al. (2015).

Empirical process vs Information-theoretic There also are approaches based on empirical pro-
cess theory (EPT) like (Bartlett et al., 2005; Bartlett and Mendelson, 2006; Koltchinskii, 2006;
Mendelson, 2014a; Liang et al., 2015), and information-theoretic approaches based on prior mea-
sures, change-of-measure arguments, and KL penalties such as PAC-Bayesian and MDL approaches
(Barron and Cover, 1991; Li, 1999; Catoni, 2003; Audibert, 2004; Grünwald, 2007; Audibert, 2009).
A great advantage of EPT approaches is that they often can achieve optimal rates of convergence
for ‘large’ models F with metric entropy logN (F , ε) that increases polynomially in 1/ε; prior-
based approaches (including ours) may yield suboptimal rates in such cases (see Audibert (2009)
for discussion and Audibert and Bousquet (2007) for a first step into combining both approaches).
On the other hand, an advantage of prior-based approaches is that they inherently penalize, so that,
whenever one has a countably infinite union of classes F = ⋃j∈NFj , the approaches automatically
adapt to the rate that can be obtained as if the best Fj containing f∗ were known in advance, as can
be seen from the final display in Proposition 4. This happens even if for every n, there is a j and
f ∈ Fj with empirical error 0; in such a case unpenalized methods as often used in EPT methods
would overfit.

As for unbounded losses and EPT methods, Mendelson (2014a,b) provides bounds on the L2-
estimation error ∥f̂ − f∗∥2

L2
and Liang et al. (2015) on the related squared loss risk: for other loss

functions not much seems to be known (Mendelson (2014b) shows that improved L2-estimation
error rates may be obtained by using other, proxy loss functions during training; but the target
remains L2-estimation). In contrast, our approach allows for general loss functions `f including
density estimation, but we do not specially study proxy training losses. As explained in Section 3,
in situations in which L2-estimation error and excess squared risk coincide, the bounds remain
incomparable due to incomparability of the small-ball assumption and the witness condition.

These last three EPT-based works can deal with (P, `,F) with unbounded excess (squared loss)
risk. This is in contrast to the prior-based methods; as far as we know, our work is the first one
that allows one to prove excess risk convergence rates in the unbounded risk case (Theorem 15)
for general models including countable infinite unions of models as in Proposition 4. Previous
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works dealing with unbounded loss all rely on a Bernstein condition — we are aware of (Zhang,
2006a), requiring β = 1, (Audibert, 2004), for the transductive setting rather than our inductive
setting, and, the most general, (Audibert, 2009). However, for convex or linear losses, a Bernstein
condition can never hold if the excess risk supf∈F E[`f−`f∗] =∞ is unbounded, as follows trivially
from inspecting Definition 9, whereas the v-central and PPC-conditions can hold. See for instance
Example 8 in Appendix E.2, where F is just the densities of the normal location family without any
bounds on the mean: here the Bernstein condition must fail, yet the strong central condition and the
witness condition both hold and thus Theorem 15 applies (for some moderate M ).

In the unbounded-loss-yet-bounded-risk case, the difference between these works and ours
opaques, as there are cases where the Bernstein condition holds for some β but the v-PPC con-
dition does not hold for v(ε) ≍ ε1−β , but also the opposite can happen. In Appendix E.2 we provide
examples of both: the first example, Example 6, is a well-specified estimation of means problem
with heavy tails. If the second moment is finite, the Bernstein condition holds with exponent β = 1
and Corollary 6.2 of Audibert (2009) implies a fast rate of Õ(1/n). On the other hand, the v-central
condition fails to hold for any non-trivial v, and only the v-PPC condition holds for v(ε) = O(ε2/s),
provided that E[∣Y ∣s] < ∞ for some s ≥ 2. If E[∣Y ∣2] < ∞, the witness condition also holds.
Theorem 14 then implies a suboptimal rate of Õ(n−s/(s+2)). In the second example, Example 7,
the excess risk is bounded but its second moment is not, whence the Bernstein condition fails to
hold for any positive exponent, while both the strong central condition and the witness condition
hold. Theorem 14 therefore applies whereas the results of Audibert (2009) and Zhang (2006b) do
not. Finally we note that Audibert (2009) proves his bounds for a specialized, ingenious learning
algorithm, whereas Zhang’s and our bounds hold for general estimators.

5. Proof Sketch of Theorem 14

We develop the results of Theorem 14 through a certain chain of information-theoretic relationships.
Establishing the theorem will take an additional level of generality afforded by using a dynamic
comparator function φ ∶ F → F̄ in place of f∗. We use the notation KL(f∗ ∥ f) = E[`f − `f∗],
Rη(φ(f) ∥ f) = EANN(η)[`f − `φ(f)], and Hη(φ(f) ∥ f) = 1

η E [1 − e−η(`f−`φ(f))]. Take some fixed
ε ≥ 0 and define η̄ ∶= v(ε). All inequalities in the following chain hold in expectation with respect
to f drawn from the posterior Π∣n:

(a) Lemma 17 + Theorem 18 (c) 1−x≤− logx (e) `f∗ ⊴η̄ `g+ε

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ ³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ ³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
KL(f∗ ∥ f) ≲ H2η(gf ∥ f) ≤ Hη(g ∥ f) ≤ Rη(g ∥ f)⊴n,η̄ ICn,η(g ∥Π∣)⊴n,η̄ ICn,η(f∗ ∥Π∣) + ε.

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶ ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(b) Lemma 19 (d) Theorem 16

Here, ≲ denotes inequality up to a constant. Before sketching the ideas above, we address the new
character gf ; it is an instance of a GRIP. The (full) GRIP `g was defined in Definition 6, and for each
f ∈ F the mini-grip `gf is the GRIP defined by replacing F with the dyad {f∗, f} in Definition 6.

Now, onwards with grasping the links in the chain. Our analysis begins with the ESI (d); this
result is essentially due to Zhang (2006b), though we note that our application of that result using
comparator g is non-standard.

(1) Consider first the case when f∗ satisfies the strong central condition. Then g = gf = f∗,
so that (e) is no longer necessary. Inequality (c) is always true, and, since gf = f∗, it turns out
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that rather than showing (a) and (b) we instead directly can show, for fixed f , that KL(f∗ ∥ f) ≲
Hη(f∗ ∥ f). This inequality constitutes all the real work in the case of the strong central condition
and is given by Theorem 18 with static comparator φ(f) = f∗ (Lemma 19 is not necessary); we
remark that Theorem 13 was merely a special case of Theorem 18. The proof of Theorem 18
navigates very carefully to control the KL-divergence by using a key lemma, Lemma 23, to handle
what happens on the event {`f − `f∗ ≤ u}, while leveraging the witness condition to handle what
happens on the complementary event {`f − `f∗ > u}.

(2) When only the v-central condition holds for non-constant v, we do not have g = f∗ and can
fail to have gf = f∗. As the strong central condition fails, we cannot apply Theorem 18 with com-
parator φ(f) = f∗. Fortunately, the excess loss with respect to either φ(f) = g or φ(f) = gf does

satisfy E [e−η(`f−`φ(f)] ≤ 1 (by Proposition 11), and moreover, due to a property related to GRIPs,
in either case the v-central condition implies for fixed f that `f∗ ⊴v(ε) `φ(f) + ε (by Proposition 8).

However, using solely either g or gf is problematic. If we use only comparator g, then Theorem
18 with φ(f) = g requires a weak form of the witness condition with respect to comparator g; we so
far have been unable to prove that the witness condition with comparator f∗ implies a weak witness
condition with comparator g. On the other hand, if we use only comparator gf , such a weak witness
condition is implied by the Witness Protection Lemma (Lemma 17), but now (e) with gf in place
of g fails to hold because gf depends on the sample (unlike the fixed function g). Fortunately, we
can circumvent the pitfalls of both comparators while still enjoying their respective advantages. The
critical link (b) lets us achieve the best of both worlds by way of Lemma 19, which links a Hellinger
divergence with respect to gf to a Hellinger divergence with respect to g. Applying Theorem 18
with φ(f) = gf for (a) and applying `f∗ ⊴v(ε) `g + ε for (e) then yields the desired result.

(3) Under the v-PPC condition, everything works as in the case of the v-central condition except
that the ESI’s are replaced by inequalities in expectation over the sample Z1, . . . , Zn.

6. Future Work

We have seen that while in the bounded loss case the β-Bernstein and v(ε) ≍ ε1−β-PPC conditions
are equivalent, in the unbounded loss case there is a strange discrepancy between them; a main
goal for future work is to extend our bounds to cover faster rates under a weaker condition implied
by either of Bernstein and PPC. A second goal is simply to establish whether or not the witness
condition holds for commonly used classes (such as misspecified regression, common probability
models with density estimation, etc.). A third goal is to extend our results to the case of VC-type
classes, for which it seems any analysis must proceed via some sort of symmetrization. A key work
along this direction is that of Audibert and Bousquet (2007), but the results in the inductive setting
there still require some additional work before becoming fully inductive bounds. Another goal is to
extend our ideas to the realm of empirical process-type methods, where optimal convergence rates
for large models can be obtained. Finally, our bounds become useful mostly for ERM, two-part,
and generalized Bayesian estimators. To apply the latter two, Learner must know the optimal η.
In previous works (Audibert (2009) and many others) it is suggested to do this using e.g. cross-
validation, but recent works such as Grünwald (2011) and Grünwald (2012) present ‘safe Bayesian’
methods for doing this which provably select the right η under Bernstein conditions and bounded
losses. To apply these methods here, they should be generalized to unbounded losses, which, it
seems, is feasible.
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GRÜNWALD MEHTA

References

Jean-Yves Audibert. PAC-Bayesian statistical learning theory. These de doctorat de lUniversité
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Lucien Birgé and Pascal Massart. Minimum contrast estimators on sieves: exponential bounds and
rates of convergence. Bernoulli, 4(3):329–375, 1998.

Olivier Catoni. A PAC-Bayesian approach to adaptive classification. preprint, 2003.

Imre Csiszar. I-divergence geometry of probability distributions and minimization problems. The
Annals of Probability, 3(1):146–158, 1975.

Peter D. Grünwald. Viewing all models as probabilistic. In Proceedings of the twelfth annual
conference on Computational learning theory, pages 171–182. ACM, 1999.

Peter D. Grünwald. The Minimum Description Length Principle. MIT Press, Cambridge, MA,
2007.

Peter D. Grünwald. Safe learning: bridging the gap between bayes, mdl and statistical learning
theory via empirical convexity. In COLT, pages 397–420, 2011.

Peter D. Grünwald. The safe Bayesian: learning the learning rate via the mixability gap. In Pro-
ceedings 23rd International Conference on Algorithmic Learning Theory (ALT ’12). Springer,
2012.

Peter D. Grünwald and A. Philip Dawid. Game theory, maximum entropy, minimum discrepancy
and robust Bayesian decision theory. The Annals of Statistics, 32(4):1367–1433, 2004.

David Haussler, Michael Kearns, H. Sebastian Seung, and Naftali Tishby. Rigorous learning curve
bounds from statistical mechanics. Machine Learning, 25(2-3):195–236, 1996.

16



FAST RATES WITH UNBOUNDED LOSSES

Anatoli Juditsky, Philippe Rigollet, and Alexandre B. Tsybakov. Learning by mirror averaging. The
Annals of Statistics, 36(5):2183–2206, 2008.

B.J.K. Kleijn and A.W. van der Vaart. Misspecification in infinite-dimensional Bayesian statistics.
The Annals of Statistics, 34(2):837–877, 2006.

Vladimir Koltchinskii. Local rademacher complexities and oracle inequalities in risk minimization.
The Annals of Statistics, 34(6):2593–2656, 2006.

S. Kullback and R.A. Leibler. On information and sufficiency. The Annals of Mathematical Statis-
tics, 22(1):79–86, 1951.

Jonathan Qiang Li. Estimation of mixture models. PhD thesis, Yale University, 1999.

Tengyuan Liang, Alexander Rakhlin, and Karthik Sridharan. Learning with square loss: localization
through offset Rademacher complexity. In Proceedings of The 27th Conference on Learning
Theory (COLT 2015), pages 1260–1285, 2015.

Friedrich Liese and Igor Vajda. On divergences and informations in statistics and information the-
ory. Information Theory, IEEE Transactions on, 52(10):4394–4412, 2006.

David McAllester. PAC-Bayesian stochastic model selection. Machine Learning, 51(1):5–21, 2003.

Nishant A. Mehta and Robert C. Williamson. From stochastic mixability to fast rates. In Advances
in Neural Information Processing Systems, pages 1197–1205, 2014.

Shahar Mendelson. Learning without concentration. In Proceedings of The 27th Conference on
Learning Theory, pages 25–39, 2014a.

Shahar Mendelson. Learning without concentration for general loss functions. arXiv preprint
arXiv:1410.3192, 2014b.

Shahar Mendelson. On aggregation for heavy-tailed classes. arXiv preprint arXiv:1502.07097,
2015.

Jorma Rissanen. Stochastic Complexity in Statistical Inquiry. World Scientific, Hackensack, NJ,
1989.

R. Tyrrell Rockafellar. Convex Analysis. Princeton University Press, Princeton, NJ, 1970.

Alexander B. Tsybakov. Optimal aggregation of classifiers in statistical learning. The Annals of
Statistics, 32(1):135–166, 2004.

Sara Van de Geer. Empirical Processes in M-estimation, volume 6. Cambridge university press,
2000.
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Appendix A. Proof of Theorem 14 and Supporting Results

This section assembles the machinery for proving Theorem 14 and concludes with the proof thereof.
We begin by working towards presenting Theorem 18, which goes most of the way in proving
Theorem 14. To this end, we first sculpt a modified version of the witness condition for use only in
the proofs (no additional assumptions are made). The proof of Theorem 18 itself navigates carefully
around issues with unboundedness by way of this modified witness condition, and it further uses
a critical lemma, Lemma 23, to suitably control the bounded part. Finally, we prove Theorem 14.
As we will see, the key to making the proof work is to use instances of a generalized reversed
information projection in just the right way.

A.1. PAC-Bayesian inequality

The following is a slight restatement of Theorem 2.1 of Zhang (2006b).

Theorem 16 Let (P, `,F) represent a learning problem. Let Π∣ be a learning algorithm for this
learning problem that outputs distributions on F . Let φ ∶ F → F̄ be any deterministic function
mapping the predictor f ∼ Π∣n to a set of nontrivial comparators. Then for all η > 0, we have:

Ef∼Π∣n [EANN(η)
Z∼P [`f − `φ(f)]]⊴η⋅n ICn,η (φ(f) ∥Π∣) . (17)

where ICη is the (generalized) information complexity, defined as

ICn,η (φ(f) ∥Π∣) ∶= Ef∼Π∣n [ 1

n

n

∑
i=1

(`f(Zi) − `φ(f)(Zi))] +
KL(Π∣n ∥Π∣0)

η ⋅ n . (18)

By the finiteness considerations of Appendix D, ICn,η(φ(f) ∥Π∣) is always well-defined but may
in some cases be equal to −∞ or ∞.

The explicit use above of a comparator function φ differs from Zhang’s statement, in which the
ability to use such a mapping was left quite implicit; comparator functions will be critical to our
application of Theorem 16. This theorem, in various forms, is folklore (see e.g. Zhang (2006a)).
The result generalizes earlier in-expectation results by Barron and Li (1999) for deterministic es-
timators rather than (randomized) learning algorithms; these in-expectation results further refine
in-probability results of Barron and Cover (1991), arguably the starting point of this research.

A.2. Proof of Theorem 14

Theorem 18 below represents a pivotal generalization of its special case Theorem 13 from the main
text. We now work towards stating and proving this more general result.

For f ∈ F , we work with the excess loss `f − `φ(f), where φ ∶ F → L1(P ) is a comparator map
which, for a given f , yields some φ(f) satisfying E[`φ(f)] ≤ E[`f ].

Assumption 1 (Advanced Empirical Witness of Badness) Let M ≥ 1 be a parameter of the as-
sumption. We say that (P, `,F) satisfies the empirical witness of badness condition (abbreviated as
witness condition) with respect to dynamic comparator φ if there exist constants u > 0 and c ∈ (0,1]
such that for all f ∈ F ,

E [(`f − `φ(f)) ⋅ 1{`f−`φ(f)≤u(1∨(M−1 E[`f−`f∗ ]))}] ≥ cE[`f − `φ(f)]. (19)
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If we modify the RHS of (19) so that the term E[`f − `φ(f)] is replaced by the potentially smaller
E[`f − `f∗]], then we call the condition the weak empirical witness of badness condition (abbrevi-
ated as weak witness condition).

In practice, we will assume only that the witness condition holds for the static comparator
ψ ∶ f ↦ f∗, as can already be handled through the simpler witness condition of Definition 12.
However, because the central condition may not necessarily be satisfied with comparator f∗, it
is beneficial if a witness condition holds for a suitably-related comparator for which the central
condition does hold. The ideal candidate for this comparator turns out to be an f -dependent pseudo-
loss, `gf , an instance of a GRIP (see Definition 6).

The main motivation for our introducing the GRIP is that (P, `,F) with comparator `g satisfies
the η-central condition (from Proposition 11). The GRIP arises as a generalization of the reversed
information projection of Li (1999), which is the special case of the above with η = 1, log loss, andF
a class of probability distributions. In this case, the GRIP, now a reversed information projection, is
the (limiting) distribution P ∗ which minimizes the KL-divergence KL(P ∥P ∗) over the convex hull
of P; note that P ∗ is not necessarily in conv(P). Li (1999, Theorem 4.3) proved the existence of
the reversed information projection; for completeness, in Appendix C we present a lightly modified
proof of the existence of the GRIP.

As mentioned above, in our technical results exploiting both the central and witness conditions,
we will need not only the “full” GRIP but also a “mini-grip” `gf , for each f , defined by replacing
F with {f∗, f} in Definition 6. The mini-grip with respect to f then has the simple, characterizing
property of satisfying

E[`gf ] = inf
α∈[0,1]

E [−1

η
log ((1 − α)e−η`f∗ + αe−η`f )] .

Also, as will be used to critical effect in the application of Theorem 18, for each f the learning
problem (P,{f∗, f}, `) with comparator `gf satisfies the η-central condition.

We now show that if the witness condition holds with respect to the static comparator ψ ∶ f ↦
f∗, then the weak witness condition holds with respect to the comparator φ ∶ f ↦ gf .3

Lemma 17 (Witness Protection Lemma) Assume that (P, `,F) satisfies the witness condition
with static comparator ψ ∶ f ↦ f∗ and constants (M,u, c). Then (P, `,F) satisfies the weak
witness condition with dynamic comparator φ ∶ f ↦ gf with the same constants (M,u, c).

The above result and the next are proved in Appendix F.

Theorem 18 Let η̄ > 0. For dynamic comparator φ, assume that E [e−η̄(`f−`φ(f))] ≤ 1. Let u > 0

and c ∈ (0,1] be constants for which E[(`f − `φ(f)) ⋅ 1{`f−`φ(f)≤u}] ≥ cE[`f − `f∗]. Then for all
η ∈ (0, η̄)

E[`f − `f∗] ≤ c1 ⋅
1

η
E [1 − e−η(`f−`φ(f))] ≤ c1 ⋅EANN(η) [`f − `φ(f)] ,

with c1 ∶= 1
c
ηu+1
1− η

η̄

.

3. Technically, gf need not be well-defined, but we will always use gf only via `gf , which is well-defined.
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Hellinger mini-grip to GRIP Theorem 18 already is enough to obtain the implication of Theorem
14 under the strong central condition. However, we need to do a bit more work to obtain the results
under the v-central condition and the PPC and v-PPC conditions.

Lemma 19 Let gf be the mini-grip with respect to η and f , and let g be the GRIP with respect to
η.

1

η
(1 −E [e−η(`f−`gf )]) ≤ 1

η/2 (1 −E [e−
η
2
(`f−`g)]) (20)

Proof Observe that

1

η/2 (1 −E [e−
η
2
(`f−`g)]) = 1

η/2 (1 −E [e−
η
2
(`f−`gf +`gf −`g)])

≥ 1

η/2 (1 − 1

2
E [e−η(`f−`gf )] − 1

2
E [e−η(`gf −`g)])

≥ 1

η/2 (1

2
− 1

2
E [e−η(`f−`gf )])

= 1

η
(1 −E [e−η(`f−`gf )]) ,

where the first inequality follows from Jensen’s and for the second inequality we use the to-be-
proved inequality

E [e−η(`gf −`g)] ≤ 1. (21)

We now prove (21). First, recall that gf = − 1
η log ((1 − α)e−η`f∗ + αe−η`f ). Using this representa-

tion:

E [e−η(`gf −`g)] = (1 − α)E [e−η(`
∗
f−`g)] + αE [αe−η(`f−`g)] ≤ 1.

Next, we chain 1 − x ≤ − logx, Lemma 19, and Theorem 18 to obtain a bound that we will use
in the proofs of Theorems 14 and 15.

Corollary 20 Let f ∈ F . Let g be the GRIP with respect to η̄. Let u > 0 and c ∈ (0,1] be constants
for which E [(`f − `f∗) ⋅ 1{`f−`f∗≤u}] ≥ cE[`f − `f∗]. Then for all η ∈ (0, η̄2)

E[`f − `f∗] ≤ c2E
ANN(η) [`f − `g] ,

with c2 ∶= 1
c

2ηu+1

1− 2η
η̄

.

Proof Since 1 − x ≤ − logx, it holds that EANN(η) [`f − `g] is lower bounded as

EANN(η) [`f − `g] ≥
1

η
(1 −E [e−η(`f−`g)]) ,
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which, from Lemma 19, is further lower bounded by

1

2η
(1 −E [e−2η(`f−`gf )]) .

Finally, Lemma 17 establishes the weak witness condition with respect to comparator gf (defined
using η̄), and from Proposition 11 this comparator further satisfies E [e−η̄(`f−`gf )] ≤ 1, so that we

may apply Theorem 18 with φ(f) = gf to further lower bound the above by 1
c2
E[`f − `f∗].

Everything is now in place to prove Theorem 14.

Proof (of Theorem 14) Fix some ε ≥ 0. We define g and gf (for each f ∈ F) using v(ε). First,
Theorem 16 states for our particular choice of η that

Ef∼Π∣n [−1

η
logE [e−η(`f−`g)]]⊴η⋅nEf∼Π∣n

⎡⎢⎢⎢⎢⎣

1

n

n

∑
j=1

(`f(Zj) − `g(Zj))
⎤⎥⎥⎥⎥⎦
+

KL(Π∣n ∥Π∣0)
ηn

. (22)

Next, Corollary 20 implies that, for c2 ∶= 1
c

2ηu+1

1− 2η
v(ε)

,

Ef∼Π∣n [E[`f − `f∗]]⊴ η⋅n
c2

c2 ⋅
⎛
⎝
Ef∼Π∣n

⎡⎢⎢⎢⎢⎣

1

n

n

∑
j=1

(`f(Zj) − `g(Zj))
⎤⎥⎥⎥⎥⎦
+

KL(Π∣n ∥Π∣0)
ηn

⎞
⎠
. (23)

Starting from (23), we now prove the results in the theorem statement. For completeness, we
first prove a slight strengthening of part 1 when the strong η̄-central condition holds. In this case,
for all f ∈ F we have that g = f∗, we have v(ε) = η̄ for all ε ≥ 0, we actually may take any η < η̄,
we can apply Theorem 18 (with φ(f) = f∗) rather than Corollary 20, and we hence can improve c2

to the value c1. Taking ε = 0, (14) holds with ⊴ η⋅n
2

replaced by ⊴η⋅n.
Part 1 - When the v-central condition holds. First, Proposition 8 implies that `f∗ − `g ⊴v(ε) ε.

This fact, taken together with Z1, . . . , Zn being i.i.d. and η < v(ε), implies that

1

n

n

∑
j=1

(`f∗(Zj) − `g(Zj))⊴η⋅n ε.

By the weak-transitivity property of ⊴ (Proposition 3), we can add the above display (after multi-
plying the LHS and RHS by c2 and replacing ⊴η⋅n by ⊴ η⋅n

c2

) to (23), yielding (14).
Part 2 - When the v-PPC condition holds. The exponential stochastic inequality in (23), taken

together with part (i) of Proposition 2, implies the following in-expectation bound:

EZn1 [Ef∼Π∣n [E[`f − `f∗]]] ≤ c2 EZn1

⎡⎢⎢⎢⎢⎣
Ef∼Π∣n

⎡⎢⎢⎢⎢⎣

1

n

n

∑
j=1

(`f(Zj) − `g(Zj))
⎤⎥⎥⎥⎥⎦
+

KL(Π∣n ∥Π∣0)
ηn

⎤⎥⎥⎥⎥⎦
.

Now, from the v-PPC condition combined the convergence argument in the proof of Proposition 11
(i.e. there exists a sequence {`Qk} converging to `g in L1(P )) implies that E[`f∗] ≤ E[`g] + ε,
implying the result (15).
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Appendix B. Proof of Theorem 15

Proof (of Theorem 15) We only prove the result in the case of the v-central condition. For the
bound under the v-PPC condition, replace all ESI’s in the proof below with inequalities in expecta-
tion over Zn1 , and observe that for a selector Π∣n concentrated on f̂n:

E [Π∣n ({f ∶ E[`f − `f∗] ≥ bn})] = E [1{E[`
f̂n
−`f∗ ]≥bn}] = Pr (E[`f̂n − `f∗] ≥ bn) .

We now prove the first result (under the v-central condition). Recall that c2 is defined as c2 ∶=
1
c

2ηu+1

1− 2η
η̄

. Fix some ε > 0 and take η̄ ∶= v(ε) and some η < η̄
2 .

Observe that

Π∣n({f ∶ E[`f − `f∗] ≥ bn})
≤ Π∣n({f ∶ E[`f − `f∗] >M}) (24)

+Π∣n({f ∶ bn ≤ E[`f − `f∗] ≤M}). (25)

We bound each part in turn. To proceed, we will shift the analysis to the GRIP `g with respect
to F and η̄.

To bound (24), for functions with excess risk larger thanM we establish a constant lower bound
on the Hellinger divergence with respect to the comparator `gf . This lower bound is a simple

consequence of Corollary 20 with the u from that result taken to be u
E[`f−`f∗ ]

M , yielding:

M

c2
≤ EANN(η) [`f − `g] . (26)

Now, (24) may be bounded by making use of (26):

Π∣n({f ∶ E[`f − `f∗] > 1})) ≤ Π∣n({f ∶ EANN(η) [`f − `g] >
M

c2
}))

≤ c2

M
Ef∼Π∣n[E

ANN(η) [`f − `g]]

⊴M
c2
⋅n⋅η

c2

M
ICn,η(g ∥Π∣),

where we employed the generalized notion of information complexity from (18).
Under the v-central condition, Proposition 8 implies that

`f∗ − `g ⊴v(ε) ε, (27)

which in turn implies that

c2

M
ICn,η(f∗ ∥Π∣) −

c2

M
ICn,η(g ∥Π∣)⊴M

c2
n⋅η

c2

M
ε.

Thus, we have

Π∣n({f ∶ E[`f − `f∗] > 1}) ⊴M
c2
⋅
n⋅η
2

c2

M
(ICn,η(f∗ ∥Π∣) + ε) .
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We proceed to bound (25). Observe that if bn > M , then the measure is zero. Thus, this case
can also be handled by any nonnegative upper bound developed in the case of bn ≤M ; assume we
are in this latter case. Now, for any f satisfying E[`f − `f∗] ≤ M , the threshold in Definition 12
simplifies to u. Thus, for such f , we may apply Corollary 20 (with the same u and c) to yield

E[`f − `f∗] ≤ c2 ⋅EANN(η) [`f − `g] .

Leveraging this inequality, we have

Π∣n({f ∶ bn ≤ E[`f − `f∗] ≤ 1}) ≤ Π∣n({f ∶ EANN(η) [`f − `g] ≥
bn
c2

}).

Now, Proposition 11 implies that `g − `f ⊴η 0, and hence the random variable EANN(η) [`f − `g] is
nonnegative. We therefore may apply Markov’s inequality, yielding the upper bound

Π∣n({f ∶ EANN(η) [`f − `g] ≥
bn
c2

}) ≤ c2

bn
Ef∼Π∣n [EANN(η) [`f − `g]]

⊴ bn
c2
⋅n⋅η

c2

bn
ICn,η(g ∥Π∣),

where the first inequality holds for all samples Zn1 and the ESI follows from Theorem 16.
Using (27) as before, we have c2

bn
ICn,η(g ∥Π∣)⊴ bn

c2
⋅n⋅η

c2
bn

ICn,η(f∗ ∥Π∣)+ c2
bn
ε, and so we finally

get

Π∣n({f ∶ bn ≤ E[`f − `f∗] ≤ 1})⊴ bn
c2
⋅
n⋅η
2

c2

bn
(ICn,η(f∗ ∥Π∣) + ε) .

The result follows by combining the two ESI’s using the weak-transitivity property of ⊴ (Propo-
sition 3, with the η there taken as (bn ∧M) ⋅ n⋅η4c2

).

Appendix C. The Existence of the Generalized Reversed Information Projection

Recall that EF ,η is the the entropification-induced set {e−η`f ∶ f ∈ F}. In this section, we prove the
existence of the generalized reversed information projection `g of P onto conv(EF ,η). Because F
and η are fixed throughout, we adopt the notation E ∶= EF ,η and C ∶= conv(EF ,η).

Formally, we will show that there exists q∗ (not necessarily in C) satisfying

E[− log q∗(Z)] = inf
q∈C

E[− log q(Z)].

Let us rewrite the above in the language of information geometry. To provide easier comparison
to Li (1999) we use the following modified KL notation here for a generalized KL divergence,
which in particular makes the underlying distribution P explicit:

KL(p; q0 ∥ q) ∶= EZ∼P [log
q0(Z)
q(Z) ] ,

where q0 and q are nonnegative but neither need be a normalized probability density. Then the
existence question above is equivalent to the existence of q∗ such that

KL(p; q0 ∥ q∗) = inf
q∈C

KL(p; q0 ∥ q);
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here, the only restriction on q0 is that EZ∼P [log q0] be finite.
Now, Li (1999) already showed the above in the case of density estimation with log loss, η = 1,

and q0 = p; in that setting, we have e−η`f = f , and so mixtures of elements of E correspond to
mixtures of probability distributions in F . Hence, our setting is more general, yet Li’s argument
(with minor adaptations) still works. To be sure, we go through his argument step-by-step and show
that it all still works in our setting.

C.1. Proving q∗ exists

Throughout, we will need to assume the existence of a certain sequence {qn} in C such that
KL(p; q0 ∥ qn) < ∞ for all n. This is not problematic, as we now explain. Recall the definition
of the mix-loss `Q = − 1

η logEf∼Q[e−η`f ] for any distributionQ over F . Under the η-PPC condition
up to ε (and hence a fortiori under the η-central condition up to ε),4 it holds that

E [`f∗(Z)] ≤ inf
Q∈∆(F)

E[`Q] + ε,

and hence

−ε ≤ inf
Q∈∆(F)

E[`Q] −E [`f∗(Z)] ≤ 0.

Also, from the property of the infimum, for any δ > 0, there exists Qδ for which

inf
Q∈∆(F)

E[`Q] ≤ E[`Qδ] ≤ inf
Q∈∆(F)

E[`Q] + δ,

and so the same Qδ satisfies

−ε ≤ E[`Qδ] −E [`f∗(Z)] ≤ δ.

It therefore follows that for any sequence {δn} there exists a corresponding sequence {Qn} for
which E[`Qn − `f∗]→ infQ∈∆(F)E[`Q − `f∗] and E[`Qn − `f∗] ∈ [−ε, δn].

STEP 1: EXISTENCE OF MINIMIZER q̄n IN CONVEX HULL OF FINITE SEQUENCE

Let {qn} be a sequence in C for which KL(p; q0 ∥ qn) → infq∈C KL(p; q0 ∥ q). Taking q0 = e−`f∗ ,
from the argument above we may restrict the sequence to one for which KL(p; q0 ∥ qn) is finite for
all n. Take Cn to be conv({q1, . . . , qn}).

We introduce the representation D(t) ∶ ∆n−1 → R+, where D(t) = KL(p; q0 ∥ qt) with qt =
∑nj=1 tjqj .

The first claim is that t ↦ D(t) is a continuous function. Li’s Lemma 4.2 proves continuity
of D when q0 = p, KL(p ∥ qi) < ∞ for i ∈ [n] and each qi is a probability distribution. However,
inspection of the proof reveals that the result still holds for general q0 and when both q0 and qi are
only pseudoprobability densities, as long as we still have KL(p; q0 ∥ qi) < ∞ for i ∈ [n]. But we
already have established the latter requirement, and so D is indeed continuous. Since D also has
compact domain, it follows that D is globally minimized by an element in Cn. Call this element q̄n.

4. It might not be necessary to appeal to the PPC or central conditions, but doing so makes proving finiteness much
easier. Since all our results rely on these conditions, we are free to exploit them here.
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STEP 2: BENEFICIAL PROPERTIES OF MINIMIZER q̄n

We claim for all q ∈ Cn that ∫ p q
q̄n

≤ 1. This follows from a suitably adapted version of Li’s
Lemma 4.1. First, we observe that even though Li’s Lemma 4.1 is for the case of the KL-divergence
KL(p ∥ q) = ∫ p log p

q , changing the log p term to log q0 has no effect on the proof. Therefore, this
result also works for KL(p; q0 ∥ q). Next, the proof works without modification even when its q∗ and
q are only pseudoprobability densities. To apply Li’s Lemma 4.1, mutatis mutandis, we instantiate
its C as Cn, its p as p, its q as q, and its q∗ as q̄n.

STEP 3: (log q̄n)n IS CAUCHY SEQUENCE IN L1(P )
We can find a sequence {q̄n} such that {KL(p; q0 ∥ q̄n)} both is non-increasing and converges to
infq∈C KL(p ∥ q).

Next, let n ≤m throughout the rest of this step and observe that

KL(p; q0 ∥ q̄n) − KL(p; q0 ∥ q̄m) = ∫ p log
p

pq̄n
q̄m

/cm,n
+ log

1

cm,n

with cm,n ∶= ∫ pq̄n
q̄m

.
Now, due to the normalization by cm,n the first term on the RHS is a KL-divergence and hence

nonnegative. Also, since cm,n ≤ 1, the second term also is nonnegative.
Next, observe that KL(p; q0 ∥ q̄n) − KL(p; q0 ∥ q̄m)→ 0 as n,m→∞, and so we have

∫ p log
p

pq̄n
q̄m

/cm,n
= KL (p ∥ pq̄n

q̄m
/cm,n)→ 0

as well as

log
1

cm,n
→ 0 ⇒ cm,n → 1.

Next, we apply the following inequality due to Barron/Pinsker, holding for any probability
distributions p1 and p2:

∫ p1∣ log(p1) − log(p2)∣ ≤ KL(p1 ∥p2)
√

2KL(p1 ∥p2).

This yields

∫ p

RRRRRRRRRRRR
log

p
pq̄n
q̄m

/cm,n

RRRRRRRRRRRR
→ 0.

Since cm,n → 1, it therefore follows that

∫ p∣ log(q̄n) − log(q̄m)∣→ 0.

Therefore log(q̄n) is a Cauchy sequence in L1(P ), and from the completeness of this space,
log(q̄n) converges to some log(q∗) ∈ L1(P ).

Finally, we observe that KL(p; q0 ∥ q∗) = limn→∞ KL(p; q0 ∥ q̄n) since

KL(p; q0 ∥ q∗) − lim
n→∞

KL(p; q0 ∥ q̄n) = lim
n→∞

∫ p(log q̄n − log q∗)

≤ lim
n→∞

∫ p∣ log q̄n − log q∗∣

= 0.
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Appendix D. Details on Infinity, Affinity and Exponential Stochastic Inequality

D.1. Definitions and conventions concerning ∞ and −∞
Since we allow loss functions to take on the value ∞ and to be unbounded both from above and
from below, we need to take care to avoid ambiguous expressions such as ∞−∞; here we follow
the approach of Grünwald and Dawid (2004). We generally permit operations on the extended real
line [−∞,∞], with definitions and exceptions as in (Rockafellar, 1970, Section 4). For a given
distribution P on some space U with associated σ-algebra, we define the extended random variable
U as any measurable function f ∶ U → R ∪ {−∞,∞}. We say that U is well-defined if either
P (U = ∞) = 0 or P (U = −∞) = 0. Now let U be a well-defined extended random variable. For
any function f ∶ [−∞,∞]→ [−∞,∞], we say that f(U) is well-defined if either P (f(U) =∞) = 0
or P (f(U) = −∞) = 0 and we abbreviate the expectation EU∼P [f(U)] to E[f], hence we think of
f as an extended random variable itself. If f is bounded from below and above E[f] is defined in
the usual manner. Otherwise we interpret E[f] as E[f+] +E[f−] where f+(u) ∶= max{f(u),0}
and f−(u) ∶= min{f(u),0}, allowing either E[f+] =∞ or E[f−] = −∞, but not both. In the first
case, we say that E[f] is well-defined; in the latter case, E[f] is undefined. In the remainder of
this section we introduce conditions under which all extended random variables and all expectations
occurring in the main text are always well-defined.

To ensure well-defined expectations, we need two conditions. First, we restrict ourselves to
learning problems with distribution P and loss function ` such that for all f ∈ F̄ , we have:

EZ∼P [(`f(Z))−] > −∞. (28)

Whenever in the main text we refer to a learning problem, we automatically assume that (28) holds.
This is a very mild requirement: it will automatically hold if the loss is bounded from below, which
is the case for all loss functions we usually encounter except for the log loss, and even for the log
loss it is always the case except if we have continuous sample spaces Y . Example 5 below shows
that even then it is a natural requirement.

The second condition needed for well-defined expectations is similar: we also require, relative
to given learning problem with model F , for every distribution Π on F , that for all z ∈ Z ,

Ef∼Π[(`f(z))−] > −∞. (29)

Again, whenever in the main text we write ‘a distribution on F’, we mean a distribution for which
(29) holds; whenever we refer to a learning algorithm Π∣ relative to a given learning problem, we
assume that it is designed such that, for all z1, . . . , zn ∈ Zn, for all 0 ≤ i ≤ n, (29) holds with Π
set to Π∣zi. Again, this condition holds automatically for all the usual loss functions (since they are
bounded below) except for log loss with continuous Y . For that case, (29) is a real restriction. For
the case of η-Bayesian estimators with η ≤ 1 (our primary interest with log loss) we can conveniently
enforce it by imposing a natural condition on the prior Π: Ef∼Π[exp(−`f(z))] = ∫ pf(z)dΠ(f) <
∞. Then the requirement holds for Π and for η-Bayesian estimators as defined underneath (1) it
will then automatically hold for Π∣i, for all 0 ≤ i ≤ n as well.

Example 5 (Density Estimation) When the observed data has zero density according to some
pf with f ∈ F , the log loss becomes infinite; such cases are easily handled by the definitions
above. However, if (and only if) the space Y = Rk is uncountable, there is another complication
for log loss: while for each fixed z and f , − log pf(z) > −∞, we may have that E[(`f(Z))−] =

27
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E[(− log pf(Z))−] = −∞, where either f ∈ F is fixed and the expectation is over Z ∼ P ; or Z is a
fixed z ∈ Z and the expectation is over f = f ∼ Π, Π being the output of some learning algorithm.
If we allowed this, viz. the definitions above, the expected loss could become undefined. We will
prevent this from happening by requiring (28) and (29). The first is a natural requirement, since for
all likelihood-based estimators it will automatically hold if P itself has a density p relative to the
given underlying measure µ. For in that case, we can replace each density pf by density p′f ∶= pf /p.
Since p(Z) > 0 almost surely, − log p′f(Z) is well-defined and > −∞ and hence is a well-defined
extended random variable, and we have (Csiszar, 1975) EZ∼P [− log p′f ] = KL(P ∥Pf) ≥ 0, KL
denoting KL-divergence. Hence, if we worked with densities p′f rather than pf then (28) would hold
automatically as long as P has a density. Now if we work with a learning algorithm whose output
is a function of the likelihood and a prior Π (as it is for, e.g., Bayesian, 2-part MDL, and maximum
likelihood estimators), then the output (a distribution overF) given data zn remains unaffected if we
base inference on pf or p′f — in the latter case we are merely dividing the likelihood by a constant
which is the same for all f ∈ F , hence the relative likelihood remains unchanged.

To see how the second requirement (29) pans out, consider the Gaussian scale family with
Z = Y = R and {pf ∣ f ∈ F} where F = R+ and pf(y) ∝ exp(−y2/f), i.e. pf represents the
normal distribution with mean 0 and variance σ2 ∶= f . Then under log loss we have `f(y) = y2

f +
1
2 log(πf). Now, if the prior places sufficient mass around 0, for instance via a prior π(j−1) ∝ j−2

for j = 1,2, . . ., and if moreover, P places a point mass at 0, then (29) can fail to hold. Hence, our
requirement prohibits this sort of prior here. ◻

Extended Fubini and well-defined stochastic inequalities Under the assumption that (28) and
(29) hold, we can apply Lemma 3.1. of Grünwald and Dawid (2004), essentially an extension of
Fubini’s theorem, which gives that

EZ∼P [Ef∼Π[`f(Z)]] = Ef∼Π[EZ∼P [`f(Z)]] = E(Z,f)∼P⊗Π[`f(Z)],

the final expectation being over the product distribution of P and Π. This allows us to exchange
expectations relative to P and Π whenever convenient, and we will do so in the main text without
explicitly mentioning it.

Moreover, as long as f̃ is a nontrivial comparator, the quantity `f̃(Z) − `f(Z) is a well-defined
extended random variable under Z ∼ P . If Z = z for a fixed z with `f̃(z) < ∞, it is also a well-
defined extended random variable under all distributions Π on F satisfying (29). Since throughout
the text we only use nontrivial comparators and invariably assume (29), this ensures that `f̃(Z) −
`f(Z) and hence also exp(η(`f̃(Z)− `f(Z))) are well-defined extended random variables, so that
our exponential-stochastic-inequality statements in the main text are all well-defined.

Finally, using again that exp(η(`f̃(Z)−`f(Z))) is well-defined we can now apply Lemma 3.1.
of Grünwald and Dawid (2004) again to give us that, for all η > 0,

EZ∼P [Ef∼Π [eη(`f̃−`f )]] = Ef∼Π [EZ∼P [eη(`f̃−`f )]] = E(Z,f)∼P⊗Π [eη(`f̃−`f )] ∈ [0,∞],

which implies that we can again exchange expectations over f and Z if we so desire; we will again
do so in the text without explicit mention.

D.2. Affinity

Proposition 21
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(a) If E[e−ηX] <∞, we have

lim
η↓0

EANN(η)[X] = lim
η↓0

1

η
E [1 − e−ηX] = E[X].

(b) η ↦ EANN(η)[X] is non-increasing.

Before proceeding to the proof, we remark that the condition E[e−ηX] will always hold when
we invoke part (a) of the above proposition, as the central condition will hold whenever we use (a);
in fact even the v-central condition is sufficient.
Proof First, we prove (a), i.e. limη↓0 − 1

η logE[e−ηX] = limη↓0
1
η
(1 −E[e−ηX]) = E[X].

Define yη ∶= E[e−ηX]; we will use the fact that limη↓0 E[e−ηX] = 1 (from Fatou’s Lemma,
using the nonnegativity of e−ηx).

Now, from Lemma 2 of van Erven and Harremoës (2014), for y ≥ 1
2 we have

(y − 1) (1 + 1 − y
2

) ≤ log y ≤ y − 1.

Hence,

lim
η↓0

−1

η
logE[eηX] = lim

η↓0
−1

η
log yη = lim

η↓0
−1

η
(yη − 1) = lim

η↓0

1

η
E[1 − e−ηX],

which completes the proof of the first equality.
Now, for all x the function η → 1

η (1 − e
−ηx) is non-increasing, as may be verified since

sign(xe−ηx − 1−e−ηx
η ) = − sign(eηx − (ηx + 1)) ≤ 0.

Next, we rewrite the following Hellinger-divergence-like quantity:

E [ 1

αη̄
(1 − e−αη̄X)] = E [ 1

αη̄
(1 − e−αη̄X) − 1

η̄
(1 − e−η̄X)] + 1

η̄
E [1 − e−η̄X] .

Taking a sequence of α = αj ∈ {αi}i going to zero, starting at some α1 < 1, we have that for all
j that x ↦ 1

αj η̄
(1 − e−αj η̄x) − 1

η̄ (1 − e
−η̄x) is a positive function, and the corresponding sequence

with respect to j is non-decreasing. Hence, the monotone convergence theorem applies and we may
interchange the limit and expectation, yielding

lim
α↓0

E [ 1

αη̄
(1 − e−αη̄X) − 1

η̄
(1 − e−η̄X)] + 1

η̄
E [1 − e−η̄X]

= E [lim
α↓0

1

αη̄
(1 − e−αη̄X) − 1

η̄
(1 − e−η̄X)] + 1

η̄
E [1 − e−η̄X]

= E [lim
η↓0

1 − e−ηX
η

]

= E [ limη↓0Xe
−ηX

1
]

= E[X],

where the penultimate equality follows from L’Hôpital’s rule. This concludes the proof of the
second part of (a).
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Next, we show (b). Observe that for any η′ ≤ η, the concavity of x ↦ xη
′/η together with

Jensen’s inequality implies that

− 1

η′
logE [e−η′X] = − 1

η′
logE [(e−ηX)η

′/η]

≥ − 1

η′
log (E [e−ηX])η

′/η = −1

η
logE [e−ηX] .

Appendix E. Examples

E.1. Proof for heavy-tailed regression with bounded predictions example

Proof (of claims in Example 2) The excess loss is of the form

`f − `f∗ = (f(X) − f∗(X)) ⋅ (−2Y + f(X) + f∗(X)).

To see that a Bernstein condition holds, observe that

(`f − `f∗)2 ≤ (f(X) − f∗(X))2 ⋅ 4 max{(f(X) − Y )2, (f∗(X) − Y )2}
≤ 4(f(X) − f∗(X))2 ⋅max{(Y − r)2, (Y + r)2} ,

and so

E [(`f − `f∗)2] ≤ 4E [E [(f(X) − f∗(X))2 ⋅max{(Y − r)2, (Y + r)2} ∣X]]
= 4E [(f(X) − f∗(X))2 E [max{(Y − r)2, (Y + r)2} ∣X]]
≤ 8(

√
C + r)2 E [(f(X) − f∗(X))2] ,

where in the last step we summed the terms in the maximum and applied Hölder’s inequality.
Next, if it holds that

E (f∗(X) − Y )(f(X) − f∗(X))] ≥ 0, (30)

then it is easy to verify that

E [(f(X) − f∗(X))2] ≤ E[`f − `f∗].

The condition (30) holds for all f ∈ F under our assumption that the risk minimizer f∗ over F
continues to be a minimizer when taking the minimum risk over the convex hull of F . To see this,
we observe that if we instead consider the function class conv(F), then f∗ is still a minimizer and
(30) holds for all f ∈ conv(F) from Mendelson (2015) (see the text around equation (1.3) therein).

Putting the above together, we see a Bernstein condition does indeed hold:

E [(`f − `f∗)2] ≤ 8(
√
C + r)2 E[`f − `f∗].
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Next, we show that the Bernstein condition with exponent 1 and multiplicative constant A im-
plies the witness condition. Let u > 0 be a to-be-determined constant. Then

E [(`f − `f∗) ⋅ 1{`f−`f∗>u}] ≤ E [(`f − `f∗) ⋅
`f − `f∗

u
⋅ 1{`f−`f∗≥0}]

= 1

u
E [`f − `2f∗ ⋅ 1{`f−`f∗≥0}]

≤ 1

u
E [`f − `2f∗]

≤ A
u
E [`f − `f∗] .

It follows that for any choice u ≥ A, the witness condition holds with constant c = 1 − A
u .

E.2. Comparative examples

Example 6 (Estimation of means with second moment) LetZ = Y , let the model beF = [µ0, µ1],
and take Y to have mean µ ∈ [µ0, µ1]. Take squared loss, `ν(Y ) = (ν − Y )2. Then we are in the
well-specified setting and f∗ = µ. Assume for some s ≥ 2 that we have E[∣Y ∣s] <∞; in particular,
the variance σ2 is then finite. Then, for any ν ∈ F , we have

E[(ν − Y )2 − (µ − Y )2] = (ν − µ)2

and (from tedious algebra)

E[((ν − Y )2 − (µ − Y )2)2] = ((ν − µ)2 + 4σ2) (ν − µ)2

Thus, the Bernstein condition holds with exponent 1 and constant B = ((µ1 − µ0)2 + 4σ2)−1
. Ap-

plying Corollary 6.2 of Audibert (2009) then implies (after discretization) a rate of Õ ( logn
n ) in

expectation using the SeqRand algorithm. The Õ notation here hides an at most logn factor due to
a (purely theoretical) discretization argument using a uniform ε-net.

On the other hand, without subexponential tail decay, the v-central condition fails to hold for
any non-trivial v, but, as shown by van Erven et al. (2015, Example 5.10), the v-PPC condition
holds for v(ε) = O(ε2/s).5 As we showed in Example 2, the witness condition holds if E[∣Y ∣2] <∞
(i.e. s = 2). Thus, for s ≥ 2, Theorem 14 implies a rate of Õ(n−s/(s+2)) in expectation, where,
similar to before, the notation hides an at most (logn)s/(s+2) factor due to discretization.

Notably, the SeqRand algorithm incorporates a second-order loss-difference term that appears
to be the key to its superior performance in this example. ◻

Example 7 (Bernstein condition does not hold, bounded excess risk) Consider regression with
squared loss, so that Z = X × Y . Select P such that X and Y are independent. Let X follow
the law P such that P (X = 0) = P (X = 1) = a

2 , for a ∶= 2 − π2

6 ∈ (0,1), and, for j = 2,3, . . .,
P (X = j) = 1

j2
. Let Y = 0 surely. Take as F the countable class {f1, f2, . . .} such that f1(1) = 0.5

and f1 is identically 0 for all other values of x ∈ X ; for each j = 2,3, . . ., the function fj is defined
as fj(0) = 1, fj(j) = j, and fj takes the value 0 otherwise.

5. What is actually shown there is that a property called v-stochastic exp-concavity holds, but, the results of that paper
imply then that v-stochastic mixability holds which in turn implies that the v-PPC condition holds.
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It follows that f∗ = f1, and for every j > 1 we have E[`fj −`f∗] = 3a
8 +1. Thus, the excess risk is

bounded for all fj . The witness condition holds because for all j > 1 we have Pr(`fj − `f∗ = 1) = a
and E[(`fj − `f∗) ⋅ 1{`fj−`f∗≤1}] ≥ 3a

8 . Also, it is easy to verify that the strong central condition
holds with η = 2. On the other hand, the Bernstein condition fails to hold in this example because
E[(`fj − `f∗)2] = a + j2 → ∞ as j → ∞, while the excess risk is finite. In fact, even the variance
of the excess risk is unbounded as j →∞, precluding the use of a weaker variance-based Bernstein
condition as in equation (5.3) of Koltchinskii (2006). Therefore, Theorem 14 still applies while
e.g. the results of Zhang (2006b) and Audibert (2009) do not (see Section 4.1). ◻

Example 8 (Bernstein condition does not hold, unbounded excess risk I) The setup of this ex-
ample was presented in Example 5.7 of van Erven et al. (2015) and is reproduced here for con-
venience. For fµ the univariate normal density with mean µ and variance 1, let P be the normal
location family and let F = {fµ ∶ µ ∈ R} be the set of densities of the distributions in P . Then,
since the model is well-specified, for any P ∈ P with density fν we have f∗ = fν . As shown in van
Erven et al. (2015), the Bernstein condition does not hold in this example, although we note that
the weaker, variance-based Bernstein condition of (Koltchinskii, 2006, equation (5.3)) does hold.
However, we are not aware of any analyses that make use of the variance-based Bernstein condition
in the unbounded losses regime.

Since the model is well-specified, the strong central condition holds with η = 1. Next, we show

that the witness condition holds with M = 2, u = 4, and c = 1 −
√

2
π . From location-invariance, we

assume ν > µ = 0 without loss of generality.
First, observe that the excess risk is equal to E[`fµ − `f∗] = 1

2ν
2.

As M = 2 < ∞, the witness condition has two cases: the case of excess risk at least 2 and the
case of excess risk below 2. We begin with the first case, in which ν ≥ 1. Then the contribution to
the excess risk from the upper tail is

E [(`fµ − `f∗) ⋅ 1{`fµ−`f∗>uE[`fµ−`f∗ ]}] = E [(−ν
2

2
+Xν) ⋅ 1

{− ν
2

2
+Xν>u ν

2

2
}
]

= E [(−ν
2

2
+Xν) ⋅ 1{X>uν

2
+ ν

2
}]

≤ νE [X ⋅ 1{X>uν
2

}] ,

which is at most

νE [X ⋅ 1{X−ν>(u
2
−1)ν}] = ν ∫

∞

0
Pr(X ⋅ 1{X−ν>(u

2
−1)ν} > t)dt

≤ ν 1√
2π

e−(
u
2
−1)2ν2/2

(u2 − 1)ν

= 1√
2π

e−(
u
2
−1)2ν2/2

(u2 − 1) .

Since u = 4, the above is at most 1√
2π

and so, in this regime, the witness condition indeed is

satisfied with c = 1 −
√

2/π.
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Consider now the case of ν < 1. In this case, the threshold simplifies to the constant u and the
upper tail’s contribution to the excess risk is

E [(`fµ − `f∗) ⋅ 1{`fµ−`f∗>u}] = E [(−ν
2

2
+Xν) ⋅ 1

{− ν
2

2
+Xν>u}

]

= E [(−ν
2

2
+Xν) ⋅ 1{X>u

ν
+ ν

2
}]

≤ νE [X ⋅ 1{X>u
ν
}] ,

which is at most

νE [X ⋅ 1{X−ν>u
ν
−ν}] = ν ∫

∞

0
Pr(X ⋅ 1{X−ν>u

ν
−ν} > t)dt

≤ ν 1√
2π

e−(
u
ν
−ν)2/2

u
ν − ν

= ν2 1√
2π

e−(
u
ν
−ν)2/2

u − ν2
.

Since u = 4 and ν < 1, the above is at most ν2
√

18π
, and so the value of c from before still works and

the witness condition holds in this regime as well. ◻

Example 9 (Small-ball assumption violated) To properly compare to the small-ball assumption
of Mendelson (2014a), we consider regression with squared loss in the well-specified setting, so that
the parameter estimation error bounds of Mendelson (2014a) directly transfer to excess loss bounds
for squared loss. TakeX and Y be independent. The distribution ofX is defined as, for j = 1,2, . . .,
P (X = j) = pj ∶= 1

a ⋅
1
j2

for a = π2

6 . Let the distribution of Y be zero-mean Gaussian with unit
variance. For the class F , we take the following countable class of indicator functions: for each
j = 0,1,2, . . ., define fj(i) = 1{i=j}, for any positive integer i. Since f0(x) = E[Y ∣ X = x] = 0 for
all x ∈ {1,2, . . .}, we have f∗ = f0.

The small-ball assumption fails in this setting, since, for any constant κ > 0 and for all j =
1,2, . . .:

Pr (∣fj − f∗∣ > κ∥fj − f∗∥L2(P )) ≤ Pr (∣fj − f∗∣ > 0) = pj =
1

aj2
→ 0 as j →∞.

On the other hand, the strong central condition holds with η = 1
2 , since, for all j = 1,2, . . . and

all x:

E [e−η(`fj−`f∗)] = E
⎡⎢⎢⎢⎣
e−η(fj(x)−Y )2

e−ηY 2

⎤⎥⎥⎥⎦
= ∫

1√
2πη−1

e−η(fj(x)−Y )2

1√
2πη−1

e−ηY 2
p(Y )dy

which is equal to 1 for η = 1
2 , since Y ∼ N (0,1).

It remains to check the witness condition. Observe that, for each j, we have E[`fj − `f∗] = pj .
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Next, we study how much of the excess risk comes from the upper tail, above some threshold u:

E [(`fj(Z) − `f∗(Z)) ⋅ 1{`fj (Z)−`f∗(Z)>u}]

= E [(f2
j (X) − 2fj(X)Y ) ⋅ 1{f2

j (X)−2fj(X)Y >u}]

= pj E [(1 − 2Y ) ⋅ 1{1−2Y >u}]

= pj (Pr(Y < 1 − u
2

) − 2E [Y ⋅ 1{Y < 1−u
2

}]) . (31)

Now, let K ∶= u−1
2 . It is easy to show that

Pr (Y >K) ≤ 1√
2π

e−K
2/2

K
.

In addition, for u ≥ 3 (and hence K ≥ 1), we have

E [Y ⋅ 1{Y >K}] = ∫
∞

0
Pr(Y ⋅ 1{Y >K} > t)dt

= ∫
∞

K
Pr(Y > t)dt

≤ ∫
∞

K

1√
2π

e−t
2/2

t
dt

≤ ∫
∞

K

1√
2π
e−t

2/2dt

≤ 1√
2π

e−K
2/2

K
dt.

Thus, taking u = 3, we see that (31) is at most pj
√

2
πe

−1/2 ≤ pj
2 , the witness condition therefore

holds, and so we may apply the first part of Theorem 14. ◻

Appendix F. Proofs

Proof (of Lemma 17 (Witness Protection Lemma)) Let f be arbitrary. For brevity we define
u′ ∶= u(1∨(M−1 E[`f − `f∗])). Observe that

E [(`f − `gf ) ⋅ 1{`f−`gf >u
′}] ≤ E [(`f − `f∗) ⋅ 1{`f−`f∗>u′}] .

Rewriting, we have

E[`f − `gf ] −E [(`f − `gf ) ⋅ 1{`f−`gf ≤u
′}] ≤ E[`f − `f∗] −E [(`f − `f∗) ⋅ 1{`f−`f∗≤u′}] ,

which we rearrange as

E [(`f − `gf ) ⋅ 1{`f−`gf ≤u
′}] ≥ E [(`f − `f∗) ⋅ 1{`f−`f∗≤u′}] +E[`f − `gf ] −E[`f − `f∗]

= E [(`f − `f∗) ⋅ 1{`f−`f∗≤u′}] +E[`f∗ − `gf ]

≥ E [(`f − `f∗) ⋅ 1{`f−`f∗≤u′}] .
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From the assumed witness condition with static comparator ψ ∶ f ↦ f∗, the RHS is lower bounded
by cE[`f − `f∗], and so we have established the weak witness condition with dynamic comparator
φ and the same constants (M,u, c).

Proof (of Theorem 18) For any η ∈ [0, η̄], define:

hf,η ∶=
1

η
(1 − e−η(`f−`φ(f))) Sf,η ∶= hf,η − hf,η̄ Hη,f ∶= E[hf,η].

Note that E[`f − `φ(f)] = E[hf,0] from part (a) of Proposition 21. Therefore, we may rewrite the
excess risk of f as

E[`f − `φ(f)] = E[hf,0 − hf,η̄ + hf,η̄]
= E[Sf,0] + Hη̄,f .

Splitting up the expectation into two components, we have

E[Sf,0 ⋅ 1{`f−`φ(f)≤u}] +E[Sf,0 ⋅ 1{`f−`φ(f)>u}] + Hη̄,f .

Now, from Lemma 22 (stated and proved immediately after this proof) and using C̄ ∶= Cη̄,η,u to
avoid cluttering notation, we have

E[`f − `φ(f)] ≤ C̄E[Sf,η ⋅ 1{`f−`φ(f)≤u}] +E[Sf,0 ⋅ 1{`f−`φ(f)>u}] + Hη̄,f

≤ C̄E[Sf,η] +E[Sf,0 ⋅ 1{`f−`φ(f)>u}] + Hη̄,f

= C̄ (Hη,f − Hη̄,f) +E[Sf,0 ⋅ 1{`f−`φ(f)>u}] + Hη̄,f

= C̄Hη,f − (C̄ − 1)Hη̄,f +E[Sf,0 ⋅ 1{`f−`φ(f)>u}].

We observe that Hη̄,f ≥ 0 since Hη̄,f = 1
η̄ E [1 − e−η̄(`f−`φ(f))] ≥ 0, where the inequality is

implied by the strong η̄-central condition (i.e. E [e−η̄(`f−`φ(f))] ≤ 1). Therefore, since it always
holds that C̄ ≥ 1 we have

E[`f − `φ(f)] ≤ C̄Hη,f +E[Sf,0 ⋅ 1{`f−`φ(f)>u}].

Next, we claim that E[Sf,0 ⋅1{`f−`φ(f)>u}] ≤ E[(`f −`φ(f)) ⋅1{`f−`φ(f)>u}]. To see this, observe

that Sf,0 = `f − `φ(f) + 1
η̄
(e−η̄(`f−`φ(f)) − 1), and that the second term is negative on the event

`f − `φ(f) > u. We thus have

E[`f − `φ(f)] −E[(`f − `φ(f)) ⋅ 1{`f−`φ(f)>u}] ≤ C̄Hη,f ,

which can be rewritten as

E[(`f − `φ(f)) ⋅ 1{`f−`φ(f)≤u}] ≤ C̄Hη,f ,

Now, since we assume that

cE[`f − `f∗] ≤ E[(`f − `φ(f)) ⋅ 1{`f−`φ(f)≤u}],

the first inequality is proved:

E[`f − `f∗] ≤
C̄

c
Hη,f .

Finally, 1 − x ≤ − logx yields the second inequality.
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Lemma 22 (“Bounded Part” Lemma) For u, η̄ > 0 and η ∈ [0, η̄), we have

E[Sf,0 ⋅ 1{`f−`φ(f)≤u}] ≤ Cη̄,η,uE[Sf,η ⋅ 1{`f−`φ(f)≤u}],

where Cη̄,η,u ∶= ηu+1
1− η

η̄

.

Proof It is sufficient to show that on the set {`f − `φ(f) ≤ u}, it holds that Sf,0 ≤ CSf,η for some
constant C. This may be rewritten as wanting to show, for η0 → 0:

1

η0
(1 − e−η0(`f−`φ(f))) − 1

η̄
(1 − e−η̄(`f−`φ(f))) ≤ C (1

η
(1 − e−η(`f−`φ(f))) − 1

η̄
(1 − e−η̄(`f−`φ(f)))) .

Letting r = e−η̄(`f−`φ(f)), this is equivalent to showing that

1

η̄
( 1

η0/η̄
(1 − rη0/η̄) − (1 − r)) ≤ C

η̄
( 1

η/η̄ (1 − r
η/η̄) − (1 − r)) .

Now, for any η ≥ 0, define gη as gη(r) = 1
η (1 − r

η) − (1 − r). From Lemma 23, for any η′ ≥ 0, if
r ≥ 1

V for some V > 1 then g0(r) ≤ 1
1−η′ (η

′ logV + 1)gη′(r).
Applying this inequality, taking η0 → 0 and η′ ∶= η

η̄ , and observing that on the set {`f−`φ(f) ≤ u}
we may take V = eη̄u > 1, we see that whenever `f − `φ(f) ≤ u,

( 1

η0
(1 − rη0) − (1 − r)) ≤ 1

1 − η′ (η
′η̄u + 1) ( 1

η′
(1 − rη′) − (1 − r)) .

Thus, Sf,0 ≤ Cη̄,η,uSf,η indeed holds for Cη̄,η,u = ηu+1
1− η

η̄

.

Lemma 23 Let 0 ≤ η′ < η < 1 and 1 < V < ∞. Define gη(r) ∶= η−1 (1 − rη) − (1 − r), a positive
function. Then for η′ > 0 and r ≥ 1

V :

gη′(r) ≤ Cη′←η(V )gη(r),

where Cη′←η(V ) ≤ ((η′)−1 − 1)/(η−1 − 1), and

lim
η′↓0

gη′(r) ≤ C0←η(V )gη(r),

where C0←η(V ) = logV −(1−V −1)
1
η
(1−V −η)−(1−V −1)

≤ η
1−η logV + 1

1−η .

Proof Let 0 ≤ η′ < η. We will prove that, for all r ≥ 1
V , we have gη′(r) ≤ C ⋅ gη(r) for some

constant C. Hence it suffices to bound

hη′,η(r) ∶=
gη′(r)
gη(r)

= (η′)−1(1 − rη′) − (1 − r)
η−1(1 − rη) − (1 − r) .

We can extend the definition of this function to η′ = 0 and r = 1 so that it becomes well-defined for
all r > 0, 0 ≤ η′ < η < 1: (0)−1(1 − r0) is defined as limη′↓0(η′)−1(1 − rη′) = − log r. hη′,η(1) is set
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Figure 1: The function r ∶→ η−1(1 − rη) for various values of r. gη(r) is the difference of the line
for η at r and the line for η = 1 at r, which is always positive.

to limr↑1 hη′,η(r) = limr↓1 hη′,η(r) which is calculated using L’Hôpital’s rule twice, together with
the fact that for 0 ≤ η ≤ 1 (note η = 0 is allowed), g′η(r) = −rη−1 + 1, g′′η (r) = (1 − η)rη−2. Then,
because gη(1) = g0(1) = g′η(1) = g′0(1) = 0, we get:

hη′,η(1) ∶= lim
r↓1

gη′(r)/gη(r) = lim
r↓1

g′η′(r)/g′η(r) = lim
r↓1

g′′η′(r)/g′′η (r) =
1 − η′
1 − η .

We have limr→∞ hη′,η(r) = 1, and we show below that hη′,η(r) is strictly decreasing in r for each
0 ≤ η′ < η < 1, so the maximum value is achieved for the minimum r = 1/V . We have hη′,η(1/V ) ≤
hη′,η(0) = (η′−1 − 1)/(η−1 − 1) and h0,η(1/V ) = (logV − (1−V −1))/(η−1(1−V −η)− (1−V −1)).
The result follows by defining Cη′←η(V ) = hη′,η(1/V ). It only remains to show that hη′,η(r) is
decreasing in r and that the upper bound on C0←η(V ) stated in the lemma holds.

Proof that h decreases: The derivative of h ≡ hη′,η for fixed 0 ≤ η′ < η < 1 is given by
h′η′,η(r) = r−1 ⋅ s(r), where

s(r) = (−rη′ + r) ⋅ gη(r) + (rη − r) ⋅ gη′(r)
gη(r)2

. (32)

Although we tried hard, we found neither a direct argument that h′ ≤ 0 or that h′′ > 0 (which would
also imply the result in a straightforward manner). We resolve the issue by relating h to a function f
which is a easier to analyze. (32) shows that for r > 0, r ≠ 1, h′(r) = 0, i.e. h reaches an extremum,

iff s(r) = 0, i.e. iff the numerator in (32) is 0, i.e. iff
gη′(r)
gη(r)

= rη
′
−r

rη−r , i.e. iff

h(r) = f(r), where f(r) ∶= r
η′−1 − 1

rη−1 − 1
.
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We can extend f to its discontinuity point r = 1 by using L’Hôpital’s rule similar to its use above,
and then we find that f(1) = h(1); similarly, we find that the discontinuities of f ′(r) and h′(r) at
r = 1 are also removable, again by aggressively using L’Hôpital, which gives

f ′(1) = 1

2
⋅ 1 − η′

1 − η
(η′ − η) , h′(1) = 1

3
⋅ 1 − η′

1 − η
(η′ − η) , (33)

and we note that both derivatives are < 0 and also that there is L < 1,R > 1 such that

h < f on (L,1) ; h > f on (1,R). (34)

Below we show that f is strictly decreasing on (0,∞). But then h cannot have an extremum on
(0,1); for if it had, there would be a point 0 < r0 < 1 with h′(r0) = 0 and therefore h(r0) = f(r0),
so that, since f ′(r0) < 0, h lies under f in an open interval to the left of r0 and above f to the
right of r0. But by (34), this means that there is another point r1 with r0 < r1 < 1 at which h and
f intersect such that h lies above f directly to the left of r1. But we already showed that at any
intersection, in particular at r1, h′(r1) = 0. Since f ′(r1) < 0, this implies that h must lie below f
directly to the left of r1, and we have reached a contradiction. It follows that h has no extrema on
(0,1); entirely analogously, one shows that h cannot have any extrema on (1,∞). By (33), h′(r)
is negative in an open interval containing 1, so it follows that h is decreasing on (0,∞).

It thus only remains to be shown that f is strictly decreasing on (0,∞). To this end we consider
a monotonic variable transformation, setting y = rη−1 so that rη

′−1 = y(1−η′)/(1−η) and, for a > 1,
define fa(y) = (ya − 1)/(y − 1). Note that with a = (1 − η′)/(1 − η), fa(rη−1) = f(r). Since
0 < η < 1, y is strictly decreasing in r, so it is sufficient to prove that, for all a corresponding to
some choice of 0 ≤ η′ < η < 1, i.e. for all a > 1, fa is strictly increasing on y > 0. Differentiation
with respect to y gives that fa is strictly increasing on interval (a, b) if, for all y ∈ (a, b),

ua(y) ≡ aya − ya + 1 − aya−1 > 0.

Straightforward differentiation and simplification gives that u′a(y) = aya−1(a − 1)(1 − y−1) which
is strictly negative for all y < 1 and strictly positive for y > 1. Since trivially, ua(1) = 0, it follows
that ua(y) > 0 on (0,1) and ua(y) > 0 on (1,∞), so that fa is strictly increasing on (0,1) and on
(1,∞). But then fa must also be strictly increasing at r = 1, so fa is strictly increasing on (0,∞),
which is what we had to prove.

Proof of upper bound on C0←η(V ): The right term in s(r) as given by (32) is positive for r < 1,
and gη′(x) > gη(x), so setting t(r) to s(r), but with gη′(r) in the right term in the numerator
replaced by gη(r), i.e.,

t(r) ∶= (−rη′ + r) ⋅ gη(r) + (rη − r) ⋅ gη(r)
gη(r)2

= −rη′ + rη
gη(r)

,

we have t(r) ≤ s(r) for all r ≤ 1. We already know that hη′,η is decreasing, so that s(r) ≤ 0 for all
r, so we have t(r) ≤ s(r) ≤ 0 for all r ≤ 1. In particular, this holds for the case η′ = 0, for which
t(r) simplifies to t(r) = (−1+ rη)/gη(r) = −(1− rη)/(η−1(1− rη)− (1− r)). A simple calculation
shows that (a) limr↓0 t(r) = −1/(η−1 − 1) = −η/(1 − η) and (b) t(r) is increasing on 0 < r < 1 for
all 0 < η < 1.

Now define h̃ by setting h̃(r) = (1/(1 − η)) ⋅ (1 − η log r) for 0 < r ≤ 1. Then h̃′(r) =
−(η/(1−η))r−1 ≤ t(r)r−1 ≤ s(r)r−1 = h′0,η(r) ≤ 0 by all the above together. Since h̃(1) = h0,η(1),
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and for r < 1, h0,η is decreasing but h̃ is decreasing even faster, we must have h̃(r) ≥ h0,η(r) for
0 < r < 1. We can thus bound h0,η(1/V ) by h̃(1/V ), and the result follows.

39


	1 Introduction
	2 Setting and Goal of the Paper
	2.1 Overview: Excess Risk Bounds and How We Prove Them
	2.2 Exponential Stochastic Inequality `39`42`"613A``45`47`"603A
	2.3 Information Complexity
	2.4 The need for Conditions: from annealed to standard risk

	3 Getting a Grip on the Conditions
	4 Main Results
	4.1 Related work

	5 Proof Sketch of Theorem 14
	6 Future Work
	A Proof of Theorem 14 and Supporting Results
	A.1 PAC-Bayesian inequality
	A.2 Proof of Theorem 14

	B Proof of Theorem 15
	C The Existence of the Generalized Reversed Information Projection
	C.1 Proving q* exists

	D Details on Infinity, Affinity and Exponential Stochastic Inequality
	D.1 Definitions and conventions concerning  and - 
	D.2 Affinity

	E Examples
	E.1 Proof for heavy-tailed regression with bounded predictions example
	E.2 Comparative examples

	F Proofs

