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ABSTRACT
Comma Separated Value (CSV) files are commonly used to repre-

sent data. CSV is a very simple format, yet we show that it gives

rise to a surprisingly large amount of ambiguities in its parsing and

interpretation. We summarize the state-of-the-art in CSV parsers,

which typically make a linear series of parsing and interpretation

decisions, such that any wrong decision at an earlier stage can

negatively affect all downstream decisions. Since computation time

is much less scarce than human time, we propose to turn CSV pars-

ing into a ranking problem. Our quality-oriented multi-hypothesis
CSV parsing approach generates several concurrent hypotheses

about dialect, table structure, etc. and ranks these hypotheses based

on quality features of the resulting table. This approach makes it

possible to create an advanced CSV parser that makes many differ-

ent decisions, yet keeps the overall parser code a simple plug-in

infrastructure. The complex interactions between these decisions

are taken care of by searching the hypothesis space rather than by

having to program these many interactions in code. We show that

our approach leads to better parsing results than the state of the art

and facilitates the parsing of large corpora of heterogeneous CSV

files.

CCS CONCEPTS
• Information systems→ Inconsistent data;
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1 INTRODUCTION
Data scientists typically lose much time in importing and cleaning

data, and large data repositories such as open government collec-

tions with tens of thousands of datasets remain under-exploited

due to the high human cost of discovering, accessing and cleaning

this data. CSV is the most commonly used data format in such

repositories. The lack of explicit information on the CSV dialect,

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SSDBM ’17, June 27-29, 2017, Chicago, IL, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-5282-6/17/06. . . $15.00

https://doi.org/http://dx.doi.org/10.1145/3085504.3085520

Figure 1: Ambiguous CSV file which is at risk to be parsed
incorrectly, because the number of commas and the number
of semi-colons per row are the same.

the table structure, and data types makes proper parsing tedious

and error-prone.

Tools currently popular among data scientists, such as R and

Python offer robust CSV parsing libraries, which try to address

parsing of messy CSV files with a number of practical heuristics.

These libraries makes a linear sequence of parsing and interpreta-

tion decisions, such that any wrong decision at an earlier stage (e.g.

determining the separator character) will negatively affect all down-

stream decisions. Interlinking different parsing steps (backtracking

on prior decisions) is not done, because if all parsing decisions

affect each other, the parsing code becomes very complex (code

size would need to grow quadratically in the amount of decisions

or even worse).

Since CPU-cycles are currently plentiful but human time is not,

this research pursues an approach where CSV parsing becomes an

computerized search problem. Our quality-oriented CSV parsing

approach generates several concurrent hypotheses about dialect,

table structure, etc. and in the end ranks these hypotheses based

on quality features of the resulting table, such that the top-1 would

be the automatic parsing result, or a top-K of parsed tables could

be presented to the user. A high absolute score from the quality

function can also be used to automatically parse large amounts of

files. Only ambigous cases would be presented to a user. This can

strongly reduce human data interpretation effort.

This very practical problem touches on various areas of related

work. In the extended version of this paper [6], we survey the

state-of-the art on this topic, which covers areas such as computer-

assisted data-cleaning (data-wrangling), table-interpretation (e.g.

on the web), automatic list extraction and even automated seman-

tic (web) enrichment; covered more briefly in the related work

Section 5.

Outline. In Section 2 we explaine CSV parsing problem by example,

and introduce our multi-hypothesis parsing framework in Section 3.

We demonstrate the improved parsing quality of our approach with

computed quality metrics on the full data.gov.uk dataset collection,

as well as on a sample of this collection using human ground truth

in Section 4. We summarize related work in Section 5 and describe

next steps in Section 6 before concluding in Section 7.

https://doi.org/http://dx.doi.org/10.1145/3085504.3085520
https://doi.org/http://dx.doi.org/10.1145/3085504.3085520
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2 COMMON CSV ISSUES
The UK Open Data portal, data.gov.uk, is one of the largest sources
for Open Government data on the web. It contains roughly 36,000

data sets on environment, towns & cities, government, society,

health, government spending, education, business & economy and

transport. The most common data formats are HTML (12,392),

geospatial formats (12,167), CSV (6,251), XLS (1,921), PDF (1,266),

XML (839) and RDF (233) (Numbers from August 2016). CSV is the

predominant tabular data format and expected to stay dominant,

as departments and associated organizations are encouraged to

publish data with at least Three Stars on the Five Star Deployment

Scheme introduced by Tim Berners Lee [13], which only allows

non-proprietary and easily accessible data formats such as CSV.

According to RFC 4180 [20] a CSV file is supposed to contain comma-

separated fields, one optional header row and succeeding data rows

of the same length which are optionally quoted by double quotes.

Fields which contain line breaks, delimiters or quotes have to be

escaped by double quotes.

For data analysis and integration purposes it is desired to au-

tomatically extract relational tables from CSV files. Ideally, the

resulting tables should only contain relational data, should have

named and specifically typed columns, and should be “tidy” which
means that every row contains one observation and every column

one specific variable [24]. A random sample of 80 CSV files from

the Open Government data hub data.gov.uk shows that a consider-

able amount of files is not in line with these requirements and that

current CSV parsers are not sufficiently capable of automatically

extracting relational tabular data from these CSV files. We will

describe and categorize the most frequently encountered issues in

the following:

CSV Syntax Issues. Although RFC 4180 [20] is not an official

standard, it can be considered as the main reference for CSV writer

and parser implementations. While a later specification of RFC

4180 [21] states that CSV files should be UTF-8 encoded, in practice

CSV exists in all character encodings and meta-data on that is

not part of the format. The encoding thus has to be inferred from

the input file itself, which is subject to uncertainties. Figure 2b

shows a table on which the encoding detection failed and the £ sign

was falsely interpreted as the Polish letter Ł. 31 of 80 sampled

CSVs were not UTF-8 encoded. Encoding issues are particularly

critical when they affect delimiters, line endings or quotes. RFC

4180 prescribes that a CSV file should use comma separators, CRLF

line endings and double quotes [20]. Other variants of the original

dialect are commonly used, however. Those dialects use different
delimiters, such as semicolons or tabs, different quotes, such as

single quotes or other typographic variants, or different line endings.

Meta-data on which dialect is used is not part of the CSV format,

so this also has to be inferred from the input file, which can lead to

ambiguous interpretations. Figure 1 shows a typical example where

commas and semi-colons could both be considered as legitimate

cell delimiters.

According to RFC 4180, each row is supposed to contain the same

amount of fields which is in practice not always the case. The last

row of the table in Figure 2c is a “ragged” row because it contains

only one field. While strict parsers fail reading such files, robust

parsers fill up the remaining space with empty fields. If a cell or

a delimiter between two fields is missing, however, this leads to a

wrong interpretation of the table.

To assess the syntactic quality of the 80 sampled CSV files we

used the strict native CSV parser implementation of the statis-

tical programming environment R [17], the robust CSV parsing

package readr [25] and the Python library messytables1 which
features automatic dialect detection. The strict CSV parser failed in

24/80 cases, while the robust parser readr failed only in 1/80 cases.

messytables also succeeded in the one case in which the CSV was

tab-separated and hence achieved a success rate of 100% . We there-

fore suspect that a considerable amount of files on the data.gov.uk
repository have syntax issues or use different CSV dialects. State-

of-the-art CSV parsers do appear to be capable of dealing with

syntax issues and different dialects at least to such an extent that

the parsing process does not fail.

CSVLint2 is a tool which checks the compliance of CSV files

with the RFC 4180 beyond the mere syntax. It checks whether,

e.g., the first row contains a header and if the columns contain

consistent values. A regular table, written according to RFC 4180,

should usually not produce any CSVLint issues. To check the quality

of parsing results from readr and messytables, we wrote the

parsing results back into a RFC 4180 format and checked them with

CSVLint. For 31 out of 79 parsing results from the readr package,
still CSVLint issues were observed. Themessytable library appeared
to produce better parsing results of which only 20 were still affected

by issues. These results suggest that a considerable amount of files

have not been parsed properly and presumably have issues which

were disregarded during the parsing process. These issues will be

discussed in the following paragraphs. Table 1 summarizes the

results.

Parser Success Rate
R native 56/80

R readr 79/80

Python messytables 80/80

Parser Files with CSVLint Issues
before parsing after parsing

R readr 56 31

Python messytables 56 20

Table 1: CSV parsing success and CSVLint issues

CSV File-level Issues. We observed that especially meta-data,
such as titles, comments and footnotes, occurs very commonly in

CSV files. 22 out of 80 sampled files contained some sort of meta-

data (see Figure 2c). State-of-the-art parsers feature header line

detection which skips meta-data rows at the beginning of the table

but do not remove meta-data at the end or on the sides of the table.

The table in Figure 2c contains a row which only consists of line-art
that is supposed to improve the human readability. Such elements

do not contain useful information and obstruct the data type de-

tection. Current CSV parsers do not account for that. Due to CSV

exports from spreadsheets, CSV files often contain empty rows or
columns which surround the actual table. 18 files of our sample

1
https://github.com/okfn/messytables

2
http://csvlint.io/

http://csvlint.io/
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Title

Multiple Header Rows Aggregated Column

Multiple Tables
Inconsistent Data Formatting Missing Value Qualifier

Units

(a) DFID non-executive directors: business expenses, gifts, travel and meetings, 2011 December Return

Summary Cell

Encoding Issue

(b) Purchase orders over £10,000 from Ordnance Survey, 2013 August
return

Line-Art

European Thousand Separator

Trailing Whitespace Empty Column

Ragged Row / Footnote

(c) The Natural History Museum expenditure over £500, 2011 Decem-
ber Return

Spanning Cells

(d) Spend over £25,000 in NHS Wiltshire, 2011 October Return

Wide Data

(e) DFID HQ buildings water and energy use

Figure 2: Tables from data.gov.uk illustrating a multitude of issues

contained entirely empty columns or rows. These rows/column

do not contain useful information and should not be considered

as part of the relational data. However, messytables, for example,

does not remove such rows and columns. We also encountered CSV

files which containedmultiple tables. One example is shown in

Figure 2a. Regular CSV parsers do not account for multiple tables

in one CSV file, which leads to problems with determining header

rows and column data types.

Table-level Issues. CSV is under-defined in the sense that the

presence of a header row is optional and not explicitly known.

Consequently the header row has to be inferred from the file con-

tent. Current CSV parsers use heuristics to detect the presence/non-

presence of column headers which are subject to uncertainties. The

RFC 4180 also prescribes that a CSV table should contain exactly

one header row. Current CSV parsers build on that assumption

but our sample contained at least 4 tables withmultiple header
rows (see Figure 2a). Ignoring multiple header rows either impedes

column-wise data type detection or leads to omitted header infor-

mation. The same holds for the table orientation. Usual parsers
assume a vertical table orientation and detect headers and column
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data types based on this assumption. Another issue is wide or nar-
row data. Figure 2e containswide data which means that the same

variable is spread over multiple columns and that the header con-

tains observation values, not variable names. This non-tidy data

arrangement hampers data analysis and integration. Two tables

in the sample contained wide data. Narrow data refers to a data

arrangement where different variables are stores in one column.

If the two variables are of a different data type, this hampers the

data type detection. 13 files of the sample contained columns, rows

or cells which are aggregates of other cells in the table. Those

columns/rows/cells contain redundant information which can be

easily reproduced. In addition, summary cells disturb the rectangu-

lar shape of the table as shown in Figure 2b.

Column/Cell-level Issues.CSV does not support spanning cells.
When tables with spanning cells are exported from spreadsheets,

only the first cell gets filled with values and the succeeding fields

are left empty (see Figure 2d). For further data processing it would

make sense to infer the original extent of the spanning cell and

to duplicate the respective value to this extent. Another issue is

that cells often contain leading or trailing whitespace, either
by mistake or to visually align the cell content. The whitespace

impedes data type detection, is most likely not intended and should

be removed as well. Numerous files in the sample also contained

numerics with units. Regular CSV parsers do not identify those

values as numerics but as strings. This hampers possibilities for

subsequent data analysis and requires additional manual prepa-

ration steps. There is also no standard data type encoding for

CSV. Depending on the used CSV writer implementation or the

system’s locale, the data type formatting can differ. For the data

consumer neither the data type not the format is known and has to

be inferred from the data itself. Especially dates (dd-mm-yyyy vs.

mm-dd-yyyy) and numerics (European vs. American thousand and

decimal separators) can be ambiguously interpreted. When data

was entered manually it can even be inconsistently formatted.
Regular CSV parsers, if they detect data types, usually assume that

the entire column is consistently formatted which makes the data

type parsing fail on inconsistently formatted columns. Missing
values, i.e. NA values, are often times denoted by special char-

acters such as “-”, by expressions like “NA”, “NaN”, or by special

numerics like “-999” or “-1”. It can be challenging to distinguish

them from valid cell content. CSV parsers usually have a fixed or

configurable set of expressions which will be interpreted as NA

values. If NA values are not properly detected, they can interfere

with the data type detection. On the other hand, valid cell content

should not be accidentally discarded by being classified as missing

values.

Summary. We showed that a host of issues stand between a CSV

file and a proper tidy relational table, and that current CSV parsers

do not sufficiently address those issues. The issues touch different

problem areas, reaching from solving ambiguities in broken or

non-standard CSV syntax to table interpretation and normalization

tasks and robust data type parsing. “Robust” CSV parsers tackle

syntax issues and data type parsing to a certain extent, but miss the

table interpretation/normalization aspect. Related work on table

interpretation and normalization is largely focused on other input

formats such as spreadsheets and HTML because they provide a

larger set of hints for table interpretation tasks than CSV, such as

different font types, cell formulas and spanning (see Section 5). One

solution which aims at normalization of table structures in CSV is

the application DeExcelerator [7], which does on the other hand

not tackle CSV syntax issues. An existing solution which aims at

integrating these different aspects does to our knowledge not exist,

and this is what we set out to create.

3 MULTI-HYPOTHESIS PARSING
The parsing process of regular CSV parsers consists of a linear

chain of detection and parsing steps reaching from encoding, di-

alect and header detection to determination of column-specific data

types. Since certain properties of the input data format, such as

the dialect, are not explicitly known, they have to be inferred from

the data itself which is subject to uncertainties. However, “linear”

CSV parsers do only pursue one single hypothesis about the file

format and the correct way of parsing it. This is computationally

efficient and may lead to correct parsing results but if one of the

assumptions made is not correct, the parsing process is likely to

lead to a wrong interpretation of the input or fails completely. As

we have shown in the previous section, current CSV parsers lack

important table normalization steps which prevents proper header

and data type detection. Adding those additional steps, which also

involve uncertainties, to a linear process chain would only increase

the likelihood that the parsing result contains a false interpretation

of the input. We propose to regard the problem from a more holistic

point of view and provide a solution which makes it possible to

integrate different solutions for specific sub-problems and on the

other hand creates synergies from considering them together. The

proposed multi-hypothesis parsing approach circumvents the prob-

lem of uncertainties in linear CSV parsing by allowing each parsing

step to pursue multiple parsing hypotheses and passing all possible

outcomes of the different hypotheses on to the next parsing step.

In that way, a tree of parsing hypotheses and intermediate results

is created, of which at least one leaf node is expected to lead to a

correct interpretation of the input. This, as we will show, can be

determined based on different data quality features.

I0

I1a

H1a

I0

I1a I
1b

H1a H
1b

I0

I1a

I2a

I
1b

I
2b I2c I

2d

H1a

H2a

H
1b

H2a H
2b H2c

Figure 3: Three different stages of the growing hypothesis
tree while it is being traversedwith breadth-first search. Red
nodes are the currently active ones.
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3.1 Framework
The core of the multi-hypothesis parser is a tree data structure

in which each level represents a parsing step, each node an in-

termediate result and each branch a parsing hypothesis. The root

node is typically an input file and the successive steps are intended

to gradually process the input towards the desired output. It is

not prescribed which parsing steps are being implemented as long

as they implement two methods: Each parsing step has to imple-

ment a detect()-method which creates hypotheses and respective

confidence values and a parse()-method which processes the in-

put according to one of the previously generated hypotheses and

returns a new intermediate result. Intermediate results can be re-

garded as a contract between two succeeding parsing steps. An

orientation detection step, e.g., promises the next step that the re-

turned intermediate is a vertically oriented table. The succeeding

parsing step can therefore focus on its specific sub-task based on a

fixed assumption about the input. The previous parsing steps do,

of course, not always actually deliver the intermediate result in

the promised shape but because the previous steps considered all

possible permutations of parsing hypotheses one can expect that

at least one of the intermediate results is actually in the promised

shape. The second assumption is that the path in the hypothesis

tree in which all contracts are fulfilled also ultimately leads to better

parsing results, which can be identified based on quality features.

The hypothesis tree is built on-the-fly while it is being traversed

(see Figure 3 and Algorithm 1). Therefore, the tree traversal has to

be either performed in pre-order or with breadth-first search.

Algorithm 1 Hypothesis Tree Traversal

1: function дenerate_parsinд_tree(path)
2: tree ← create_root_node(path)
3: hypo ← parsinд_step[1].detect (path)
4: tree .add_new_node(for each hypo)
5: while not all nodes evaluated, traverse tree do
6: if node .conf < prune_level then continue
7: level ← node .parent .level + 1
8: parent ← node .parent .inter
9: hypo ← node .hypo
10: inter ← parsinд_steps[level].parse (parent ,hypo)
11: if inter is null then continue
12: node .add_node(inter )
13: if level is lenдth(parsinд_steps ) then continue
14: hypo ← parsinд_steps[level + 1].detect (inter )
15: node .add_new_node(for each hypo)
16: end while
17: return tree
18: end function

The prune-level (see line 6 in Algorithm 1) is an optional pa-

rameter which can be set to filter our hypotheses with a very low

confidence. In that way the user can control the amount of created

hypotheses per step, regardless of the concrete implementation of

the detection steps.

3.2 Parsing Steps
We have created a R package for multi-hypothesis CSV parsing,

hypoparsr, which is available from the Comprehensive R Archive

Network (CRAN)
3
. This section will describe the implemented

parsing steps (see Figure 4).

Figure 4: Parsing steps of hypoparsr. Table structure detec-
tion summarizes the detection of row and column functions.

These parsing steps aim at covering the most frequently oc-

curring issues in CSV files, such as unknown file encodings, dif-

ferent dialects, (multiple) header rows, contained meta-data and

non-standardized and inconsistent data types. The proposed detec-

tion steps use heuristics to determine a set of reasonable hypotheses

and respective confidence values. Additionally, one default hypoth-

esis always is created, which assumes that the input is conforming

to RFC 4180, to assure that this possibility is never disregarded. The

generated hypotheses are as explicit as possible and the parsing

steps as strict as possible, in order to rule out wrong hypotheses

at an early stage and confirm hypotheses most precisely. Each

detection and parsing step has access to a utility function which

determines the type of cell content, such as empty, numeric, date,

and time, based on regular expressions. More details on the imple-

mentation are provided in [6], but we will describe the implemented

parsing steps in the following:

For encoding detection we used the guess_encoding() function

of the readr [25] package. This function provides a set of potential

character encodings along with respective confidence values. The

parsing step reads the file with the respective encoding and returns

a text as intermediate result.

In the dialect detection step all combinations of 10 different de-

limiters, 15 different quotes in including typographic variances, 3

different line endings and two different escaping styles are checked

for plausibility. The plausibility check is very simple in order to al-

low also unlikely interpretations to be considered for further steps.

If a delimiter occurs at least once in the file it will be considered as a

candidate. Quoting signs are considered as candidates if they occur

3
https://cran.r-project.org/web/packages/hypoparsr/

https://cran.r-project.org/web/packages/hypoparsr/
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at least once directly before or after a delimiter. In the parsing step

the robust CSV parsing library readr [25] is used to parse the file.

If the library encounters parsing issues it either fails, which leads

to a dead branch in the parsing tree, or it emits a warning, which

gets logged and taken into account by the final quality assessment.

In the table area detection step the outer boundaries of the actual

table are determined. All empty columns left/right and empty rows

above/below the table are removed in this parsing step. For future

work we plan to extend this step towards detection of multiple

tables. The table orientation step was inspired by the work of Pivk

et al. [16]. The orientation is determined based on the column/row-

wise consistency of data types. If the columns are more consistent

than the rows, then a horizontal orientation hypothesis is created.

A vertical orientation hypothesis gets always created by default. In

the parsing step, the table either gets transposed or not.

File

UTF-8

RFC 4180

1 Table

Header Row 1

Normal

Col 1,2: String
Col 3: Date
Col 4,5: Num
Col 6-8: String

Metadata
Column 7-8

Col 1,2: String
Col 3: Date
Col 4,5: Num
Col 6: String

No
Header

Normal

Col 1-8: 
String

Tab

Latin-1
Encoding

Dialect

Table Area

Row Functions

Column Functions

Data Type

Quality Assessment

80% 20%

90% 10%

60% 40%

30%70%

Input

Figure 5: Exemplary Multi-Hypothesis parsing process us-
ing the proposed parsing steps.

The table structure detection step consists of row- and column-

function detection. Row function detection is inspired by the work

of Adelfio and Samet [1], which aims at classification of rows into

different functional categories such as titles, headers and data. The

approach of [1] is based on conditional random fields and requires

a considerable amount of manually annotated training data. As this

data was not available to us, we created a simpler heuristic solution

which performs a similar classification and is able to produce a set

of maximum 8 different hypotheses about header row location etc.

In the parsing step, multiple header rows are aggregated to one,

empty rows are removed and meta-data is removed from the table

and saved separately.

The column function detection step uses heuristics to detect

columns with spanning cells, columns with meta-data and empty

columns and creates a maximum of 3 different hypotheses about

their location. In the parsing step, spanning columns are expanded

to their assumed original extension, empty columns are removed

and meta-data is removed and saved separately.

The data type detection step is the last parsing step, which al-

lows to locally optimize the parsing result. In the detection step we

determine the column data types and potential data type formats,

i.e. numeric separators and date formats, based on regular expres-

sions. We support detection of numerics with different decimal and

thousand separator styles and attached units, detection of dates

in various formats, detection of times and logicals. In the parsing

step we iteratively try to parse the column content according to

the generated format hypotheses until all values were successfully

parsed. If not all cells can be successfully, the column is per default

considered as string column.

Figure 5 shows an exemplary hypothesis tree based on the pro-

posed parsing steps. Theoretically, 30 different hypotheses on en-

coding could be created, 450 different hypotheses one dialect, one

on the table area, 8 different row function hypotheses, 3 column

function hypotheses and one data type hypothesis. This leads to a

theoretical maximum of 324,000 parsing hypotheses:

30 ∗ 450 ∗ 1 ∗ 8 ∗ 3 ∗ 1 = 324, 000

In the hypoparsr implementation we defined a default pruning-level

of 0.1, which means that parsing hypotheses with a confidence

lower than 10% are disregarded. Because the confidence values of

each detection step always add up to 100%, this means that the

number of created hypotheses per step is in worst case 10. In that

way the number of maximum possible parsing hypotheses can be

limited to 2,400:

10 ∗ 10 ∗ 1 ∗ 8 ∗ 3 ∗ 1 = 2, 400

However, in practice we observed far lower numbers of hypotheses.

We evaluated the number of created hypotheses on a set of 14,844

files from the data.gov.uk corpus. Table 2 shows that in median

only 8 and in mean 13.4 different parsing hypotheses reached the

last level of the hypothesis tree. Only in rare cases, the number of

intermediates grew much larger. This was especially the case when

the input contained multiple tables. In only 22 out of 14,844 cases

more than 10 dialect hypotheses were created.

Variant No. Hypotheses in Last Level
Min Max Median Mean

Hypo 2 188 8 13.4

Table 2: Hypotheses created on data.gov.uk corpus.

3.3 Hypothesis Ranking
We propose a ranking approach which allows the user to not only

retrieve the best hypothesis but optionally also a ranked set of pars-

ing results. The key question for the ranking is which measurable

criteria are suitable to capture the quality of the parsing result. A

starting point for these considerations was the ISO/IEC 25012 Data

Quality Model [11] and complementary work by Rafique et al. [18].

Out of the 15 quality characteristics of the standard model, we con-

sidered accuracy/correctness, completeness, consistency, precision,

and understandability as characteristics which should be distinctive

for a good parsing result. Additionally, we considered representa-

tional adequacy, as introduced by [18], as a desirable strength of

the parsing result. The characteristics credibility, currentness/time-

liness, accessibility, compliance, confidentiality, efficiency/speed,

traceability, availability, portability, and recoverability were not
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considered as distinctive because they are not under control of the

parsing process. We now provide an overview of how the different

quality characteristics are defined and which respective measure-

ments we propose:

Accuracy/Correctness. “The degree to which data has attributes

that correctly represent the true value of the intended attribute of

a concept or event in a specific context of use” [11]. Because we

do not know the original intent of the data, we can only assume

that the original content is the intended content. The encoding

and dialect steps should preferably not produce any warnings. The

number of edits and moves of cells content should be as low as

possible. Furthermore, we can assume that the confidence of each

parsing step is a signal for the correctness of the parsing result.

Results with a high underlying confidence should be preferred over

results with low confidence.

Completeness. “The degree to which subject data associated with

an entity has values for all expected attributes and related entity

instances in a specific context or use” [11]. We cannot know if the

given data is really complete, we can again only assume that the

provided data is as complete as possible. To ensure that as much

as possible data from the original input is preserved, tables with

higher number of total cells should be preferred.

Consistency. “The degree to which data has attributes that are free
from contradiction and are coherent with other data in a specific

context of use” [11]. Although we cannot measure the external

consistency with other sources, we can measure the internal consis-

tency. The consistency of values within columns can be determined

based on the specificness of the data type. Tables with a high num-

ber of typed cells (other than text) should be preferred.

Precision. “The degree to which data has attributes that are exact

or that provide discrimination in a specific context of use” [11]. The

precision of values can not be higher than provided in the original

file. However, the more specifically a column is typed, the closer it

potentially is to the intended precision. In terms of precision, tables

with a high number of specifically typed cells should be preferred.

Understandability. “The degree to which data has attributes that

enable it to be read and interpreted by users, and are expressed

in appropriate languages, symbols and units in a specific context

of use” [11]. The understandability of a table depends strongly on

whether column headers are given or not. Tables with a low amount

of empty headers should thus be preferred. Since we often observed

encoding issues, which also reduce the understandability of the

table content, tables with more characters in the latin character

set should be preferred. Naturally, this only applies to tables from

western origin.

Representational Adequacy. “The extent to which data or in-

formation is represented in a concise, flexible and organized way

with due relevancy to the users’ goals to help user to achieve their

specified goals” [18]. The conciseness of the table gets improved if

unnecessary columns or rows are not contained in the table. Tables

with a low amount of empty cells should thus be preferred. Further-

more, vertically oriented tables are easier to read for the user and

thus better organized. Since vertically oriented tables tend to have

more rows than columns, tables with a higher row-column ration

should preferred.

Table 3 summarizes the proposed mapping of quality metrics to

quality characteristics.

Data Quality Characteristics Quality Metrics

Accuracy/Correctness Parser Warnings,

Edits,

Moves,

Confidence

Completeness Total Cells

Consistency Typed Cells

Precision Typed Cells

Understandability Empty Header,

Non-Latin Characters

Representational Adequacy Empty Cells,

Row/Column Ratio

Table 3: Data quality characteristics mapped to quality met-
rics.

We used a Ranking SVM algorithm [12] with a linear kernel

function to determine a ranking model using the previously de-

scribed quality criteria as features. Ranking SVM’s are, e.g., used

to rank query results in search engines and are well suited for the

problem because they aim at creating a ranking with a minimum

number of swapped pairs compared to the optimal ranking. This

has the benefit over simple linear regression, that deviations from

the model are only then penalized if they lead to a change in the

ranking. We chose a linear kernel function, because the resulting

model parameters are easily interpretable and can be manually

checked for plausibility. The training dataset for the Ranking SVM

was gathered as follows: the multi-hypothesis parser was used to

create different parsing hypotheses for 64 randomly sampled tables

from data.gov.uk. We also cleaned the same tables manually and

compared the result of each parsing hypothesis to the manually

cleaned tables by using a string-based distance measure which is

described in Section 4.1. The normalized quality features of each

parsing result were used as features and the rank as target value.

The feature values were scaled to a range between 0 and 1 among

all permutations of the same input table. Figure 6 illustrates the

training data generation process.

We used Monte Carlo cross validation [26] with 10 different

randomly sampled training and test sets with a size ratio of 3/1 to

tune the c parameter (0.01). The Ranking SVM ultimately lead to

the feature weights shown in Table 4.

The table shows that the signs of the weights were generally in

line with our expectations. Warnings, edits, moves, empty header,

empty cells and non-Latin characters get penalized and confidence,

total cells, typed cells and a high row/column ratio get rewarded.

Moves and warnings appear to have the highest negative impact on

the ranking and empty header and non-Latin characters the lowest.

The number of typed cells appears to be themost distinctive positive

feature.

However, Figure 7 shows that the success of the trained method

is only marginally better than with equally weighted features. The
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Figure 6: Schematic diagram of the training data generation
process.

Quality Metric Weighting
Equally Trained

Warnings -1 -2.38

Edits -1 -1.50

Moves -1 -4.11

Confidence 1 1.57

Total Cells 1 1.42

Typed Cells 1 3.20

Empty Header -1 -0.52

Empty Cells -1 -1.04

Non Latin Chars -1 -0.56

Row/Column Ratio 1 0.93

Table 4: Quality metrics, equally weighted and weights de-
termined by the Ranking SVM.

trained ranking method outperforms the untrained method by only

3% in terms of correctly highest ranked results. In 77% and 80% of

all cases, respectively, the best parsing result is ranked highest. And

in 86% and 91% of all cases, respectively, the best parsing result

can be found among the three highest ranked results. The naïve

method, which follows the path of highest confidence, is only about

1/3 better than the random baseline. This supports our hypothesis

that parsing decisions, only based on high local confidence, do not

lead to good overall parsing results.

Because the ranking with equal weights leads to good ranking

decisions and the trained ranking only performs slightly better, we

ultimately decided to use equal weights in the hypoparsr imple-

mentation by default. This also prevents a bias from the training

data on the evaluation results (overfitting).

4 EVALUATION
We evaluated the hypoparsr against a strict RFC 4180-conform

CSV parser as implemented in the R base library [17] and the state-

of-the-art CSV parser messytables which was especially designed

to read messy CSV data. Furthermore, we included the applica-

tion DeExcelerator [7] in the evaluation, which aims at normal-

izing table structures in tabular data. Because messytables and

DeExcelerator have complementary features (see Tables 5), we
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Figure 7: Comparison of different ranking methods.

created a pipeline which first parses the CSV files with messytables

to solve CSV syntax issues and subsequently uses DeExcelerator
to normalize the contained table structures and to determine data

types.
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R base - - - - - - - -

messytables x x - - x - - x

DeExcelerator - - x x x x x x

hypoparsr x x x x x x x x

Table 5: Feature comparison of the evaluated parsers.

4.1 Ground Truth
Evaluating the correctness of parsing results is challenging because

to our knowledge no common test sets or ground truths for CSV

parsing evaluation exist. We therefore first established a ground

truth by manually cleaning a random sample of 64 CSV files from

the open government data portal data.gov.uk. The tables were read
with a robust and manually configured CSV parser. Subsequently,

header rows were manually identified, meta-data was removed,

spanning cells were expanded, and NA (Not Available) markers

identified and replaced with empty strings. If tables were not hori-

zontally oriented they were transposed and if narrow or wide data

was identified the tables were reshaped accordingly. Column data

types for dates, times, logicals and numerics were identified and the

column content was converted accordingly. If units were attached

to numeric values, the unit was removed from the data cells and

moved to the header row. The created ground truth is available

online
4
.

In order to fuzzy-match two tables and to automatically assess

the deviation between two tables, we established a string-based

table distance measure. To determine the distance between two

tables, each table is converted into a (long) string-representation.

The table is converted by appending all cells column-wise and

4
https://github.com/tdoehmen/hypoparsr/tree/master/tests/data/cleaned

https://github.com/tdoehmen/hypoparsr/tree/master/tests/data/cleaned
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Figure 8: Comparison of parsing results to ground truth with RFC 4180 conform parser, DeExcelerator, messytables,
messytables combined with DeExcelerator, and the Multi-Hypothesis parser hypoparsr.

subsequently appending the column strings to one long string to

which the header row is prepended (see Figure 9). The distance

between two tables is measured based on the Levenshtein distance

between the two table strings, which determines the minimum

required amount of insertions, deletions and edits to turn one given

string into another [14]. In that way we can assess the distance

between tables in terms of missing, added and edited content. If

systematic errors occur, such as not properly parsed data columns,

the Levenshtein distance grows with the number of rows and over-

penalizes those errors. The Table Distance measure is therefore the

Log10-scaled Levenshtein distance. For failed parsing attempts we

counted the distance from an empty string to the ground truth.
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Figure 9: String-based table distance measure.

Figure 8a shows the number of matches between the ground

truth and the parsing results of hypoparsr and the compared solu-

tions. None of the parsing results of the RFC 4180 conform parser

were in line with the manually cleaned tables. This underlines

how error-prone the CSV files are and the necessity for more so-

phisticated CSV parsing solutions. The highest ranked result of the

hypoparsrwas in 35 out of 64 files in linewith themanually cleaned

tables, compared to 13, 25 and 29, when using DeExcelerator,
messytables or the combination of both, respectively. The pre-

vious section showed that the ranking of the hypoparsr is not

100% accurate. We thus also searched for matches among all pars-

ing hypotheses created by hypoparsr and not only the highest

ranked (HypoAll). Two additional matches could be identified in

non top-ranked positions, which confirms that the ranking could

be optimized in future work.

Figure 8b shows the mean table distance between parsing results

of the described parsers and the ground truth. The hypoparsr re-
sults are thus not only most often matching with the ground truth

but are also in average closer to the ground truth which reflects the

robustness of the solution. Even though our solution leads on the

test set to better results that the state-of-the-art, the results show

that there is room for improvement. Manual analysis of highly

deviating parsing results showed that especially improving the

normalization of complex table structures and a higher variety of

row/column function hypotheses could further improve the results.

4.2 Parsing Success
We specifically aimed at creating a solution which is suited for

unsupervised processing of large corpora of heterogeneous CSV

data sources. We therefore evaluated the parsing success of the

hypoparsr on a test set of 14,844 files from the open government

portal, which make up approx. 90% of all CSV files on the portal

data.gov.uk in August 2015. This corpus was reduced by only keep-

ing files smaller than 200kB and was superficially cleaned from

non-CSV and empty files. On the test set, with 99.55% the parsing

success rate of hypoparsr was the highest of the tested systems.

The remaining fraction of not successfully parsed files can further-

more mainly be attributed to non-CSV files which should have been

removed from the test set. Table 6 summarizes the parsing success

of hypoparsr and the compared systems. The low rate of the RFC

4180 conform parser shows again the poor quality of the CSV files

on the data portal.

Parser R base Messy DeEx Me.DeEx Hypo

No. Files 11,619 14,762 14,621 14,706 14,777

% Files 78.27 99.45 98.49 99.07 99.55

Table 6: Number of successfully parsed files of the Multi-
Hypothesis parser, compared to others.

Not only the parsing success but also the amount of recovered

cells is an important indicator for the quality of the parsing results.

Recovering a high amount of data from the original files is essential

for subsequent integration and analysis processes. It would not be

desirable if the parsing succeeds but a large part of the input data

is disregarded. We used three simple measures, namely non-empty

cells, cells with column header (Named Cells), and non-string cells

(Typed Cells), to evaluate the amount of recovered data from the

data.gov.uk corpus. Figure 10 shows the aggregated amount of cells
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which could be recovered from the data.gov.uk corpus by the re-

spective parsers. It shows that the amount of recovered non-empty

cells and names cells of all solutions but the R base implementa-

tion are roughly in line. The hypoparsr recovered slightly fewer

non-empty cells than messytables which can be attributed to re-

moved meta-data, but the slightly lower amount of names cells

indicates that there is room for improvement of header detection.

Figure 10c reveals the true strength of the hypoparsr, which is the

column-wise consistency of values and thus the ability to determine

column-specific data types in which it outperforms all other sys-

tems we compared with. Since the CSV files are expected to contain

tabular data, which typically have consistently typed columns, this

is a strong indicator that many tables were correctly extracted from

the input data.
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Figure 10: Amount of recovered data cells from data.gov.uk
corpus with hypoparsr and compared solutions.

Because the amount of tables in the greatly exceeds the amount

we can manually assess, we used the CSV validation tool CSVLint
to evaluate the quality of the parsing results. CSVLint showed to

be well in line with manual evaluation, with a precision of 91% and

accuracy of 78% in terms of files identified as affected by issues,

based on the previously used sample from data.gov.uk. Figure 11
shows the amount and distribution of CSVLint issues in the original
files from data.gov.uk.

By writing back the respective parsing results into a RFC 4180

conform file with UTF-8 encoding, many issues can be automati-

cally resolved, but issues such as Title Row, Inconsistent Values and
Check Option, which is triggered if the parsing result has only one

column, will remain regardless. They indicate that either the input

file did not contain a proper table or that the table was not prop-

erly parsed. Figure 12 shows the amount of issues in the results

of the compared parsers. Our solution leads to the lowest amount

of remaining CSVLint issues and reduced the number of issues to
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Figure 11: CSVLint issues in the data.gov.uk corpus.

less then a half of the original amount of issues. The unresolved

issues of hypoparsr and the combined solution of messytables
and DeExcelerator have an overlap of approx. 85% of which the

majority is related to inconsistent values. Some tables might simply

contain columns with inconsistent values, which is not necessarily

an issue which can and should be solved by CSV parsers, but rather

at the data source. Remaining issues which could be solved by the

compared solutions, but not by the hypoparsr, are mostly related

to title rows, thus not properly detected column header, which is in

line with previous observations. Of 2,936 original Title Row issues,

messytables could solve 2,515 and hypoparsr 2,114.

10091
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Figure 12: CSVLint issues after parsing and writing back to
RFC4180-conform CSV.

5 RELATEDWORK
Data-wrangling or cleaning solutions such as OpenRefine

5
, Tri-

facta Wrangler [9] are well suited for manual cleaning of individual

tables and provide functionality for, e.g., merging and splitting of

rows and columns, mass renaming of cell content and for reviewing

of value distributions, in order to identify spelling mistakes and

outlier values. Techniques such as predictive user interaction [9]

aim at reducing the manual effort per table but do not yield full

5
https://github.com/OpenRefine/OpenRefine

https://github.com/OpenRefine/OpenRefine
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automation which makes them unsuited for cleaning of large cor-

pora of heterogeneous tables. Furthermore, the tabular data has to

be loaded in the first place which might, given the variety of CSV

dialects and syntax issues, not always succeed.

The discussed issues in CSVfiles are often related to non-normalized

table structures. The problem of table normalization is closely re-

lated to table interpretation which lies at the intersection of doc-

ument analysis, information retrieval and information extraction.

However, end-to-end table interpretation solutions, as proposed by

Hurst [10] and Pivk et al. [16], have a large margin of uncertainty

and make use of background knowledge from the Semantic Web.

As shown by Chu et al. [4], the performance of an approach using

background knowledge significantly decreases for non-public data

sets such as corporate datasets. For those data sets the syntactical

structure of the content is more important, as also shown by Cortez

et al. [5]. Seth et al. [19] proposed a reliable approach for table

normalization based on sequential circuit analysis, which does not

require background knowledge, but only succeeds on tables with

unique access path to data cells.

Google’s WebTables [3] project applied table interpretation tech-

niques at web-scale, on a corpus of 154M tables. WebTables, how-

ever, disregards not-normalized tables and assumes that every table

contains one header row and succeeding data rows. The approach of

Adelfio and Samet [1], which is based on conditional random fields,
aims at improving such processes with row-wise classification of

table content into categories such as meta-data, header and data.

The approach focuses on HTML and spreadsheets and makes use of

features like spanning cells and font types which are not available

in CSV and furthermore requires a considerable amount of manu-

ally annotated training data. Still, these approaches do not achieve

human level performance. Table interpretation and normalization

at human level performance is still an unsolved problem.

CSV is not often considered as input format for automatic table

interpretation tasks, presumably because CSV is already considered

tabular and the issues in CSV parsing and interpretation are often

underestimated. The DeExcelerator proposed by Eberius et al. [7]
was the only practical solution for table normalization we could

identify which supports CSV as input format. However, Seth et al.

state in a later publication that CSV contains sufficient information

for their approach to work [15].

Approaches dealing with automated semantic enrichment of

tabular data, amongst other open government data, often make use

of CSV as input format but appear to ignore the underlying issues

(see, e.g., Sharma et al [22]). Ermilov et al. [8] who worked on data

from the open government data portal publicdata.eu recognized

the necessity for a cleaning process of the CSV input, especially to

remove leading and trailing meta-data which was occurred in ap-

proximately 20% of their files. However, in the end they reported: “In

such cases [leading/trailing meta-data], the location of the header is

currently not properly determined” [8]. The lack of suitable clean-

ing/normalization solutions for CSV data thus significantly reduces

the amount of usable data or, if issues are ignored, leads to high

noise for any kind of downstream process.

The related work mentioned so far mainly focuses on the data

consumer side, because the original data lacks meta-information on

its structure and content in the first place. TheW3C CSV on the Web

Standard [23] targets exactly this problem and proposes a JSON

schema for CSV meta-information. The JSON contains information

about the used CSV dialect, the position of the header row, con-

tained entities and their data types. Additional meta-information on

CSV files would certainly facilitate the parsing of CSV files, but for

data which has already been published without meta-information,

which holds for the vast majority of data in the data.gov.uk corpus,

it is of no use.

Another type of issues occurring in CSV files are inconsistent

use of dialects or syntax errors. In cases of such errors our cur-

rent solution still relies on the robustness of the underlying CSV

parsing library readr [25]. List extraction solutions such as the

system TEGRA by Chu et al. [4] aim at extracting tabular data

from lists. The approach is able to recover tabular data from lists

which contain values that are not or only inconsistently delimited

by optimizing the column-wise coherence of values. The approach

achieves encouraging results on lists from the Web. In future work,

list extraction approaches could potentially be used to recover tab-

ular data from CSV files which are syntactially broken.

6 FUTUREWORK
In practical terms, regarding our hypoparsr project, we propose to
add new plug-ins and extend/improve the existing ones. Based on

the observed issues in the data.gov.uk corpus, we propose to add

support for multiple tables, table orientation detection, wide and

narrow data detection, and removal of duplicated columns. Existing

modules such as the row function and column function detection

could be improved by creating better hypotheses, especially for

header rows, which were shown to not always be correctly identi-

fied. Alternatively, more sophisticated row function classification

methods, as proposed by Adelfio and Samet [1] could be considered.

The more plug-ins are added the larger the parsing tree poten-

tially grows. In future work, different pruning methods and the

effect on the result quality should be evaluated. A larger set of

parsing hypotheses also calls for more reliable quality assessment.

The Ranking SVM performance could be improved by repeating

the described training process with a larger set of manually cleaned

tables. Alternatively, a set of highest ranked solutions could be pre-

sented to the user, letting the user choose the preferred table. In that

way, the user input could also be used to train the internal Ranking

SVM and improve future rankings according to the users’ choice.

However, on a large set of files manual validation of results is not

feasible. In order to automatically detect and filter out unfavourable

tables, an absolute measure of table quality should be established.

Since data type consistency is an important quality factor, we pro-

pose a better support of different data types, such as date-times,

geo-coordinates, and ZIP codes etc., as a simple way to improve the

ranking accuracy. Furthermore, the measure of consistency could

be improved by calculating the numeric consistency on numeric,

date and time columns. In order to assess the consistency of text,

different text features, such as the text length could be taken into

account.

With the current hypoparsr, the user receives a parsing report

alongside the resulting table, stating which parsing decisions were

made. Such parsing descriptions can currently not be fed back into

the parsing process. Using the CSV on the Web standard, as formal
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language to describe parsing results, has the limitation that it does

not cover all tasks performed by the multi-hypothesis parser, and

cannot easily capture inconsistent CSV files. A new description

language would be required e.g. along the lines of Arenas et al. [2].

Many different CSV files from the same source may have the same

kind of issues, and the formal descriptions created by hypoparsr on
large dataset collections might be clustered to group similarly struc-

tured CSV files. Further, user feedback (e.g. using a data wrangling
user interface that starts at the initial hypoparsr output), resulting

in a fine-tuned formal parsing description, might thus be applied

to all CSV files in the same cluster, creating a feedback loop for

bulk-parsing large CSV corpora.

CSV files which are actually syntactically broken, are currently

handled by the readr library, which provisionally fixes those issues

without taking consistency of values or other criteria into account.

In future work, the record alignment approach of Chu et al. [4]

could be utilized to improve the automatic fixing procedure of

syntactically broken CSV files. In our test set of very diverse files

from data.gov.uk, serious syntactical issues which would require a

re-alignment of values were, however, seldomly observed.

In our current implementation of hypoparsr, we did not focus

on optimizing the runtime of the parsing process. Parsing of files

from the data.gov.uk corpus took 45s on average (on a single core

machine). In future work, the runtime performance should be fur-

ther evaluated and improved, especially on larger files. We note

that larger files typically are quite consistent such that taking a

sample of the data likely will allow to determine a good parsing

strategy.

So far, the performance of the hypoparsr was only evaluated

on the data.gov.uk corpus, which is diverse, but does certainly not

contain all possible variations of CSV data. In future work the

proposed solution should also be evaluated on other corpora. We

hope that a variety of R users will pick up hypoparsr and contribute
experiences and plug-ins that will further improve the package.

7 CONCLUSION
We have shown that CSV files in the UK open government data

portal suffer from various issues which pose a major hurdle for

data analysis and integration. Related work confirms that those

kinds of issues are not limited to CSV’s on data.gov.uk only. We

have proposed our modular multi-hypothesis parsing framework

which aims at regarding the separate issues and challenges of pars-

ing a CSV from a more holistic and data-quality oriented point of

view than current CSV parsers do. We have created an R package
for multi-hypothesis CSV parsing, hypoparsr, which is available

from the Comprehensive R Archive Network (CRAN) and evalu-

ated the solution on a large sample of files from data.gov.uk against

other CSV parsing solution. On this data set collection, our solu-

tion leads to improved parsing results than the state-of-the-art.

The de-coupling of different parsing steps and the quality-based

result ranking substantially reduces the implementation effort and

facilitates the re-use of existing algorithm implementations for the

various parsing steps.
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