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Abstract 

A description is given of LiE, a specialised computer algebra package for 
computations concerning Lie groups and algebras, and their representations. The 
functionality of the package is demonstrated by sample computations, and the 
structure of the program and the algorithms implemented in it are discussed. 

1 Introduction 

LiE is a computer algebra package for computations with Lie groups and their 
representations, which has been developed at CWI, Amsterdam. The package offers an ex­
tensive library of functions implementing fundamental algorithms related to the theory of 
reductive Lie groups, in the following areas: root systems, the Wey! group and its action on the 
root and weight lattices, semisimple elements and their centralisers, highest weight modules, 
finite dimensional representations, characters, decompositions of tensor products, restrictions 
to subgroups (branching), symmetric group characters, symmetric and alternating tensor 
powers, and more general plethysms. The functions are available within an interactive pro­
gramming environment, which incorporates a programming language that provides variables, 
control structures and user-defined functions. This allows easy and flexible handling of input 
and output data, and enables customisation of the package by the user to particular 
applications. A collection of example programs is supplied, showing how LiE can be applied to 
various kinds of problems. LiE comes with an extensive manual [Lee] (a hard-cover book of 
over 100 pages) which not only gives an introduction to the use of LiE, but also background 
information about the mathematical field covered by the package, full documentation on the 
programming language as well as on all functions in the library, and a discussion of the example 
programs. In addition to this LiE provides on-line help on all its features, as well as theoretical 
information about Lie groups and related topics. 

83 



M.A. A. van Leeuwen CWI Postbus 4079 1009 AB Amsterdam The Netherlands 

2 A guided tour 

We will illustrate the possibilities and limitations of the package by running an example 
session. We shall assume that the reader is familiar with concepts from the theory of Lie 
groups (or algebras) and their representations, and which can be found for instance in [Hum]; 
the main purpose of the examples is to show what kind of questions arising in that theory can 
be handled computationally using LiE, and in what manner. 

After starting LiE the following is printed on the terminal screen. 

$ lie 

LiE version 2. 0 created at Tue May 26 10: 53: 37 MET DST 
1992 
Authors: Arjeh M. Cohen, Marc van Leeuwen, Bert Lisser. 

type '?help' for help information 
type '?' for a list of help entries. 
> 

Had this not been a guided tour, then it would at least have been immediately clear how 
to get some help. The '>' sign at the end is the prompt of LiE telling us that it is ready to 
accept commands; henceforth we shall print this prompt only before each line of user input, 
distinguishing it from lines of output. As this is our first encounter, let us start with 

> Hello 
Hello is not defined. 

So LiE does not return our greeting, but still we can learn something from this. First, 
typing <Return> was sufficient to get LiE's attention (by contrast some programs like 
Maple remain passive until a semicolon is entered). More importantly this shows that LiE is 
not a truly symbolic package, since most of such packages would accept 'He 11 o' as being 

a formal symbol, and with no further evaluation possible, return it unchanged as answer1 . 

On the other hand, like almost all Computer Algebra programs, you can use LiE for doing 
ordinary arithmetic. 

> 7* (3"2+2"2) 
91 

> 1993/25 
79 

> 31 "23 
20013311644049280264138724244295391 

As one sees, LiE only calculates with integral numbers (whence the remainder of the 
division is dropped), and (practically speaking) there is no bound on the magnitude of these 
numbers. LiE also has vector and matrices with integral entries 

> [3, -5, 21-13] 
[3,-5,8] 

> [[l,2,3],$,[4,5,6]] 
[ 
[1, 2,3], 
[3,-5,8], 

In addition, AXIOM would try to clarify its response by adding: "Type: Variable Hello". 
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> m=$ 

[4, 5,6] 
] 

> m[2,3] 
8 

> m[l] 
[l,2,3] 

The special symbol'$' stands for the previous result, and results can also be stored more 
permanently using variables, as the example shows. Besides stacking vectors of equal length 
to form the rows of a matrix, as is done above, we may also combine them formally, possibly 
with integer multiplicities (thus forming a multiset of vectors, except that the multiplicities 
might be negative) into what is called a polynomial in LiE. To this end we prefix each con­
stituent with an 'X' and possibly with a multiplicity, and add everything together. 

> 3X[4,-l,O]+X[3,3,2]-5X m[3] 
1X[3, 3,2] + 3X[4,-l,0] - SX[4, 5,6] 

As the notation suggests, polynomials are considered as a sum of terms, and arithmetic 
operations are accordingly defined for polynomials, where individual terms are multiplied by 
adding their vectors (''exponents'') and multiplying their coefficients. 

> $*(-X[0,2,1]+3X[l,-2,-1]) 
-1X[3, 5, 3] + 5X[4, 7, 7] + 9X[5,-3,-1] - 15X[5, 3, 5] 

This completes the list of the main data types used in LiE, except for the type used to 
indicate the type of Lie group for which computations are desired. To this end the standard 
classification of simple Lie groups is used, so for instance 'A2' and 'F4' denote simple 
groups of types A2 and F4 respectively (the first of which is also known as SL(3, C)); to re-

solve a possible ambiguity, only simply connected simple groups are considered (since they 
admit the most representations), whence 'A2' does not denote PSL(3, C). Semisimple 
groups may be formed by concatenation (e.g., 'B4B4 E7') and reductive groups by adding an 
n-dimensional complex torus Tn. As a trivial example of a library function taking a group as 
parameter, we can request the Dynkin diagram to be drawn: 

> diagram(E6B3T2) 

0 2 
I 
I 

0---0---0---0---0 
1 3 4 5 6 
E6 

0---0=>=0 
7 8 9 
B3 

With 2-dimensional central torus. 

The most important aspect of this function is that it provides the standard numbering of 
the fundamental roots associated with the node of the Dynkin diagram (the program follows 
Bourbaki' s labeling). As a matter of fact, nearly all library functions take a group as final pa­
rameter, and since most of the time this is likely to be the same group, a defaulting mechanism 

85 



M.A. A. van Leeuwen CWI Postbus 4079 1009 AB Amsterdam The Netherlands 

for these parameters is provided. As group to work in we choose the simple group of type 
D 4 , i.e., Spin(S, C) which covers SO(S, C), and we display its diagram: 

> setdefault D4 
> diagram 

0 3 

I 
I 

0---0---0 
1 2 4 
D4 

First we ask its dimension, the set of positive roots (each expressed as integer vector on 
the basis of fundamental roots) and the order of its Weyl group 

> dim 
28 

> pos_roots 
[ 
[1,0,0,0], 
[0,l,0,0], 
[0,0,l,O], 
[0,0,0,l], 
[l,l,0,0], 
[O,l,l,O], 
[0,l,O,l], 
[l,l,l,O], 
[l,1,0,1], 
[O,l,l,l], 
[1,1,l,l], 
[l,2,1,1] 
] 

> W_order 
192 

Each pair of opposite roots {a, -a} is the root system of a subgroup of type A1, whose 
maximal torus is a one-dimensional subtorus of the maximal torus T of the full group; we will 
now determine the roots of the centraliser of this subtorus, taking for a the third fundamen­
tal root a 3 =[0, 0, 1, 0]. The subtorus can then be expressed as { exp(t hcx)I tE C} where ha is 
the Lie algebra element which is the coroot of a; expressed on the basis of fundamental 
coroots, ha is again [O, 0, 1, O]. The function cent _roots which we shall use can compute 

centralisers of elements of the form exp( Zni ha) as well as those of entire subtori; to indicate 
n 

that we want the latter we append a 0 to the vector expressing ha; we also compute the type 
of the centraliser subgroup. 

> cent_roots([O,O,l,0,0]) 
[ 
[l,0,0,0], 
[0,0,0,l], 
[l,2,1,l] 
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] 
> Cartan_type($) 

AlAlAlTl 

So the first and fourth fundamental roots are in the centraliser (indeed their nodes are not 
connected with the third in the diagram), as well as the highest root. If we make the similar 

computation for the central element exp( 2ni ha) of the type A1 subgroup instead of the 
2 

whole subtorus, we also get the root a itself in the centraliser: 

> cent_roots([0,0,1,0,2]) 
[ 
[l,0,0,0], 
[0,0,l,0], 
[0,0,0,l], 
[l,2,1,1] 
] 

> Cartan_type($) 
AlAlAlAl 

We can also ask how this toral element acts on any representation of D4 by means of 
the function spectrum. An element of finite ordern will have eigenvalues of the form e21atUn 
only, and spectrum records the multiplicity of this eigenvalue as the coefficient of X[k] in a 
polynomial. Doing the computation for the adjoint representation confirms the centraliser in­
formation just computed. 

> spectrum(adjoint, [0,0,l,0,2]) 
12X[O] +16X[l] 

> dirn(AlAlAlAl) 
12 

So this element acts with eigenvalue 1 precisely on the Lie algebra of its centraliser, and 
with eigenvalue- I on a 16-dimensional complement of this subalgebra within the full Lie 
algebra. 

To work with arbitrary weights rather than just roots we need to use the basis of fun­
damental weights instead of the fundamental roots. The Cartan matrix produced by the 
function Cartan expresses the fundamental roots on the weight basis, and matrix multipli­
cation by it can be used for coordinate transformation; for instance to express all positive roots 
on the weight basis we can say 

> pos_ roots*Cartan 
[ 
[ 2,-1, 0 I 0], 
[-1, 2,-1,-1], 
[ 0,-1, 2 I OJ, 
[ 0,-1, 0 I 2], 
[ l, 1,-1,-1], 
[-1, l, l, -1] , 
[-1, 1,-1, 1], 
[ l, 0, 1, -1], 
[ 1, 0,-1, 1] , 
[-1, 0, 1, 1], 
[ 1,-1, 1, 1], 
[ 0 I 1, 0, O] 
] 
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The fact that each row of this result except the last has at least one negative entry 
reflects the fact that among the positive roots only the highest root is dominant. LiE also 
knows about the Wey 1 group and how it acts on the weight lattice. For instance, putting 
v= [2, -1, 0, 0] and calling W _orbit(v) produces a 24-row matrix whose rows consist of those 
of the previous result together with their negatives. We can also find the dominant weight in 
the orbit of v directly, and a Weyl word (a product of simple reflections in the Weyl group) that 
will send v to this dominant representative. 

> v=[2,-l,0,0] 
> dominant {v) 

[O,l,0,0) 
> w_word{v) 

[2,3,4,2) 
> w_action{v,$) 

[O,l,0,0) 

Next let us find the matrix for the reflection in the before-last positive root on the weight 
lattice, express it as a Weyl word, and check that its square equals the identity element in 
w. 
> reflection {pos_roots [11)) 

[ 
[ 0,1,-1,-1], 
[-1,2,-1,-1], 
[-1,l, 0,-1], 
[-1,1,-1, OJ 
] 

> w_word($) 
[3,l,2,4,2,3,1] 

> $A$ 
[3,l,2,4,2,3,l,3,l,2,4,2,3,l] 

> reduce ( $) 
[ l 

Apart from reducing Weyl words to minimal expressions, we can also obtain 
a canonical reduced expression, namely the lexicographically first reduced expression: 

> canonical ( [ 4, 3 , 1, 2, 3 , 4] ) 
[l,3,2,4,2,3] 

LiE provides many other useful functions for dealing with Weyl groups, amongst other 
for computing the Bruhat order and Kazhdan-Lusztig polynomials; for instance 

> KL_poly { [ 3] , [ 3, 2, 1, 4, 2, 3] ) 
1X[2] +2X[1] +lX[O] 

The most powerful algorithms of LiE are those that deal with representations of Lie 
groups. Irreducible representations can be specified by their highest weight, and by combining 
several dominant weights into a polynomial we may also describe reducible representations; 
such a polynomial is called a decomposition polynomial. One important quantity attached to 
such a representation is its character, i.e., the set of all occurring weights with their 
respective multiplicities; the polynomial describing this multiset is called the character 
polynomial of the representation. Since characters are usually quite large and also symmetric 
under the Weyl group, it is sufficient and more efficient to record only the dominant terms in 
the character polynomial, and it is this dominant character polynomial that is computed by the 
function dom_char. For the irreducible representation with highest weight [2, 1, 1, 0] we 
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now compute the dimension, the dominant character, the number of terms in the dominant and 

full character, and we check that the coefficients of character polynomial add up to the di­
mension. 

> dim ( [ 2 I 1 I 1 I 0 l ) 
2800 

> dom_char( [2,1,1,0]) 

33X[0,0,l,0] + 6X[O,O,l,2] + 3X[0,0,3,0] +12X[O,l,l,O] + 

lX[0,2,1,0] +21X[l,0,0,l] + 2X[l,0,2,l] + 4X[l,l,0,1] + 

9X [ 2, 0, l, 0] + lX [ 2, l, 1, 0] + 2X [ 3, 0, 0, 1] 

> length ( $) , length (W_orbi t ( $) ) , dim (W_orbi t ( $) , T4) 

[11,528,2800] 

Note that for the last computation we specified that the character polynomial should be 

considered as a decomposition polynomial for the maximal torus T4, thereby overriding the 

default group D 4 as argument to dim. LiE has various ways of computing representations 

from other ones, in which case they are always described by their decomposition polynomials 

(which is the most economic form); an important example is formation of tensor products. Here 

we compute the tensor product of the representation above with the ad joint representation; 

we also check the dimension, which should be 28 times (namely dim( D4 )) the dimension of 

the original representation. 

> tensor(X[2,1,l,0],adjoint) 

lX [ 0, 2, 1, 0] + lX [ 1, 0, 2, l] + lX [ 1, 1, 0, l] 

lX [ 2, 0 , 1, 0] + lX [ 2 , 0 , l, 2 ] + lX [ 2 , 0, 3 , 0] 

lX [ 3, 0, 0, 1] + lX [ 3, 0, 2, 1] + lX [ 3, l, 0, 1 J 

> [ 2 8 *dim ( [ 2 , l , 1 , 0 ] ) , dim ( $ ) l 
[78400,78400] 

+ lX [ 1, l , 2 I 1 J + lX [ 1 ' 2 ' 0 ' 1] + 
+3X[2,l,l,0] +1X[2,2,l,0] + 
+1X[4,0,l,0] 

Another important operation is branching, i.e., viewing a representation of a group as a 

representation of another group via a group morphism, usually the embedding of a subgroup. 

To this end LiE requires a description of the group morphism, in the form of a matrix describing 

to which weights for the subgroup the fundamental weights of the original group correspond. 

If the subgroup is given by a subset of the root system, then LiE can compute this restriction 

matrix for you. Suppose for instance we are interested in the subgroup with roots [0, 0, 0, 1], 

[O, 1, 1, 1] and [l, 2, l, 1]. We first compute a basis for the subset of roots spanned by these, 

then the type of the subsystem and its restriction matrix, and finally proceed to compute the 

restriction of the irreducible representation considered before. 

> closure([[0,0,0,l], [0,1,1,1], [l,2,1,1]]) 

[ 
[0,1,l,O], 
[0,0,0,l], 
[1,1,0,0] 

l 
> h=Cartan_type ( $) ; r=res_mat ( $) ; print (r) ; h 

[ 
[0,0,l,l], 
[1,0,l,0], 
[1,0,0,l], 
[0,1,0,0] 
] 
A3Tl 

> branch([2,l,l,OJ,h,r) 
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lX [ 0 I 0 I 3 I 1] + lX [ 0 I l, 1, 1] + lX [ 0 I l, 3 I -1] + lX [ 0 I l, 3 , 3] + 
lX [ 0 , 2 , 1, -1] + lX [ 0 , 2 I l , 3 ] + lX [ 1, 0 I 2 , -1] + lX [ 1, 0 , 2 I 3 ] + 
lX[l,0,4, 1] +lX[l,l,0,-1] +lX[l,1,2,-3] +2X[l,1,2, 1] + 
lX[l,1,2, 5] +lX[l,2,0,-3] +lX[l,2,0, 1) +1X[2,0,1,-3] + 
lX ( 2 / 0 / 1 1 1 ) + 1X [ 2 1 Q / 3 t -1] + 1X [ 2 1 0 t 3 t 3 ) + lX ( 2 / 1, 1 , - 5 ] + 
2X[2,1,l,-1] +1X[2,1,1, 3] +1X[3,0,0,-1] +1X[3,0,2,-3] + 
lX [ 3 / 0 / 2 1 1 ) + 1X [ 3 1 l , Q t - 3 ] + lX [ 3 t l , 0 / 1 ) + 1X ( 4 / Q 1 l , -1 ] 

> dim($,A3Tl) 
2800 

This computation concludes our tour. There are many more functions that have not been 
discussed (such as computing symmetric group characters, symmetric and alternating tensor 
powers of representations, and plethyms) but at least we have seen examples of functions in all 
the main areas covered by the library of Lill. 

3 The structure of LiE 

Lill consists of a library of built-in functions, a user programming language which makes 
the functions available, and some other components such as a help system. We will now 
briefly discuss these components and how they fit together. 

3.1 The library of algorithms 

We have seen many examples of functions that are built into LiE. All these are written in 
the implementation language of Lill, which is 'C', and compiled into the program, and this 
library forms a major part of the program (about half of all the code). The basic core of LiE 
provides general support routines, such as memory management and support of the basic data 
types (e.g., integer and polynomial arithmetic); the specific Lie group algorithms are 
implemented as ordinary functions in C ~ased on these basic facilities. This approach was 
chosen because it enables high efficiency (certainly compared with algorithms written in an 
interpreted language, such as that of many Computer Algebra systems) which is of vital 
importance for practical applicability of many of the algorithms involved, while most 
algorithms and the data types they use are sufficiently straightforward that an ordinary pro­
gramming language can be used without great difficulty. 

To give an idea of the efficiency considerations involved, certain basic algorithms such as 
character computation have also been implemented in Maple, and were found to run at least 
10 times, but often about 100 times slower than the LiE routines. More concretely, the 
examples above, which involve a modest size group and modest weights, deliver their answers 
almost instantaneously on a fast workstation, and at most within seconds (for the tensoring and 
branching) on my slow and outdated home computer; had they been computed in a general 
purpose system the more complex computations would probably have taken minutes even on a 
fast machine (we can't be sure since we know ofno package in any such system implementing 
the more complex algorithms). 

3.1.1 Root systems and the Weyl group 

We mention the particular algorithms used for the most crucial computations. In most 
cases the group dependent parts are based directly on the Cartan matrix, which is computed 
once and stored for each simple group used. The system of positive roots is generated 
straightforwardly from the fundamental roots and also stored since they are needed for in­
stance for character computations. For working with subsystems of roots some original 
algorithms were developed, for instance for closure, which takes a set of roots spanning a 
subsystem and repeatedly makes it a ''more fundamental'' system by adjusting individual pairs 
of roots. 
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The ~ction of simple reflections on either the root or weight lattice can be easily 
expressed m terms of the Cartan matrix; however only a few entries of root or weight vectors 
~e affected by any one reflection, due to the sparseness of the Cartan matrix, and special code 
is used to exploit this fact. Since simple reflections are so easily performed and it is trivial to 
find out for any weight on which side of the hyperplane of any fundamental reflection it lies, 
most Wey! group operations are computed internally with the help of the action on weight 
vectors. This has an additional advantage over the use of Wey l words that the size of the data 
(the image of a single vector suffices) does not vary with the Wey! group element. 

3.1.2 Highest weight representations 

Dimensions of irreducible representations are computed by Weyl's dimension formula, 
which is astonishingly efficient: it is almost the only operation you can expect to be able to 
perform for arbitrarily high weights. Dominant characters are computed in two steps: first the 
set of dominant weights occurring is determined by a process of repeated subtraction of pos­
itive roots, then the individual multiplicities of these weights are determined byFreudenthal's 
recursion formula (working from the highest weight downwards). This method is much more 
efficient (especially for large groups) than Weyl's character formula, which involves a 
summation over the Wey! group. (This incidentally shows that asymptotic analysis can be 
very deceptive, since it tells you that Wey I's formula must be more efficient in the limit of high 
weights. The reason is that it involves only a constant number of arithmetic operations for 
each multiplicity computed, whereas Freudenthal's formula involves increasingly many pre­
vious results the further down one gets; the mentioned constant however involves the order of 
the Wey! group, which for E8 for instance is 696729600.) 

3.1.3 Weyl orbit traversal 

Although iteration over the Wey! group is generally to be avoided due to its potentially 
immense size, we know no general algorithms for tensor product decomposition and branching 
that do not at least involve traversal of Wey! group orbits. In any case it is vital to use a method 
that exploits the stabiliser subgroup of the weight if non-trivial, since most small weights for 
large groups do in fact have substantial stabilisers and therefore orbits of acceptable size. Also 
one should avoid storing the whole orbit at once since cancellations in the result are common, 
and contrary to time, memory is fundamentally bounded. 

In LiE a general method for traversing Weyl orbits is implemented which satisfies these 
requirements, and which has as fundamental ingredient a routine that generates all distinct 
permutations of a sequence of not necessarily distinct numbers. For groups of classical type 
this routine, or a simple generalisation of it, suffices, after applying a coordinate transformation 
to the so-called £-basis. For the exceptional groups the largest subgroup of classical type is 
used, and the cosets for this subgroup are generated by a method which uses a Coxeter ele­
ment in the Weyl group, but is also partially ad hoe; the classical subgroups used are A2 in 
G2 (index 2), B4 in F 4 (index 3), D5 inE6 (index 27), A, in E7 (index 72), and D8 inE8 (index 

135). 
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3.1.4 Tensor products and branching 

For tensor product computations Klymik' s formula is used, generating the full character 
only for the smaller factor as determined by dimension comparison. For the special case of 
groups of type An however, a fast algorithm based on the Littlewood-Richardson rule is 

implemented as an alternative means to compute tensor product decompositions; it is 
especially useful when the rank of the group is high. For branching, the full character of the 
representation is generated and transformed by the restriction matrix; any weights which are 
dominant after restriction are collected and the result is decomposed by repeated subtraction 
of the dominant character of the highest remaining weight. 

3.1.5 Weight collection 

One interesting experience we had during the construction of LiE is the dramatic impact 
that improvements to rather mundane routines can have, such as the one for collecting 
weights with multiplicities into a polynomial, as they are produced by various algorithms. For 
instance, we originally used a quicksort routine for ordering the terms of a polynomial, but this 
routine far from fulfilled its pretentious name, since in practice its argument was often already 
almost sorted, making quicksort quite slow; this problem was remedied by using a heapsort 
routine instead. 

Even more important was the decision when to sort: sorting frequently is quite inefficient, 
whereas gathering all terms before sorting may require an unacceptably large amount of 
memory. The method implemented in LiE is a hybrid one which uses both a sorted and an 
unsorted accumulator: every new term is quickly looked up in the sorted part to see if it can be 
incorporated by simply adjusting a coefficient; if not, it is added at the end of the unsorted part. 
Whenever the unsorted part grows to exceed the sorted part in size, it is sorted and merged to 
form a new sorted part. 

3.2 The language of LiE 

In the examples above we mainly used the interactive interface of LiE to call various 
built-in routines and pass results from one as input to another. In fact this uses only a small part 
of the language understood by the interpreter, which is a full-fledged programming language 
with variables, control structures and user defined functions. Now, as the reader who is fa­
miliar with other Computer Algebra packages will probably know, these usually proudly 
present their own unique idiosyncratic programming language; one might expect that the 
same holds for LiE. In fact however, although the language supported by LiE is certainly 
unique (this could hardly have been avoided), its structure is fairly regular, and it certainly 
takes no pride in any peculiarities that may still be present. It must however be admitted that 
the language has a rather limited scope, and is not well suited for the formulation of many 
algorithms in areas remote from that where the built-in functions operate; this is mostly due to 
the very restricted set of data types currently supported. 

The language is a pretty straightforward procedural language, with ordinary program­
ming variables (there can be no confusion with symbolic variables because of the absence of 
the latter), which can assume values of any of the six types available: integer, vector, matrix, 
polynomial, group and text, and which are always fully initialised. The repertoire of control 
structures is similar to that of Pascal or 'C', and there are functions with strict call-by-value 
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semantics. Importantly, values of composite types are handled with the same transparency as 

integers are: the size of the value accessed by a variable may vary arbitrarily, and there is no 

concept of pointers or sharing in the semantics (yet the system will prevent any unnecessary 
copies from being made internally). The language is in principal statically typed, allowing type 

errors to be caught before one is in the middle of a computation, but because of the interpreted 
nature of the language, typing proceeds in a somewhat special order. There are no type 

declarations (except for function parameters), and types of variables are deduced from the 
values assigned to them, but function bodies are not type-checked when they are defined, in 

order to allow mutually recursive functions; instead each function is type checked whenever 
a command is issued that will directly or indirectly invoke the function. Because of the typing 

regime the language can be liberal with respect to operator and function overloading: there 
may be many instances defined of an operator symbol or function name, as long as they can be 

distinguished by number and/or type of their arguments (the reader may have noticed that this 
is used already for the built-in operators and functions, such as '*' and dim). 

As has been pointed out before, the library of built-in functions are not written in the LiE 
programming language. However this language is well suited for writing programs to solve 

problems which are less basic than those addressed by the built-in functions, but which use 
them as computational building blocks. A large collection of such programs (often quite short 

and simple) to solve commonly encountered problems is provided with the package, and is 
explained in detail in the manual. There is also a growing collection of programs that have been 
developed by several users of LiE; information can be obtained from either the authors or the 

distributors of LiE (see below). Because the source code is provided with LiE, it is even 
possible to write particularly time-critical programs in 'C' and add them to the library of 
LiE. 

Although the fact that the data types of LiE are few and simple is certainly a limitation, it 
can also sometimes be an advantage. The data structures provided by the language are the 
same as those required by the basic algorithms, and they are stored very efficiently. Indeed, 
the vectors and matrices of the LiE language are basically just 'C' arrays and matrices of 

integers, with a little bit of wrapping to suit the programming language and memory 

management requirements. Therefore sometimes LiE can successfully tackle problems 
whose sheer size precludes application of many other packages, provided of course that the 
data required is representable in LiE; one particular example where we experienced this was 
Gaussian elimination of a large (non-sparse) system of linear equations over a prime field. 

3.3 Other components 

Apart from the library and the programming language there are a few more components 
that we mention for completeness. Of course there are useful utilities at a basic level which 
are needed to support the more visible features of the program, but which one seldomly has to 

deal with directly: for instance the memory management system, the type checking system 
and the system that binds the function calls written by the user to actual routines present in 

the library, resolving any overloading that may be present. 

More interestingly the interactive environment has a help system which provides two 
kinds of information: the help command explains the proper use of functions and program­
ming language, while the learn command gives theoretical background information on the 
subject of Lie groups and their representations, which can be helpful in understanding the 
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way to interpret the inputs and outputs of the functions mathematically. On certain systems 
an input line editor is provided to facilitate command re-entry. 

4 Availability 

The package is available on many platforms, and could moreover be easily ported to any 
computer system with a C-compiler. Platforms on which the program is directly available in­
clude a wide variety of workstations under UNIX-like operating systems, VAX/VMS, IBM PC 
compatibles, Apple Macintosh, Amiga and Atari ST. Since the distribution includes the 
source code, users may make local adaptations to the program should this be desired. The 
price of LiE depends on the desired platform and license, but as a very rough indication the 
price for a copy of LiE comes somewhere between $200 and $300 at the time of writing; this 
includes the manual and shipping costs. Distribution of LiE is performed by the CAN Exper­
tise Centre, which can also be contacted for more information and up-to-date details about 
availability and price, at 

CAN Expertise Centre Kruislaan 413, 

1098 SJ Amsterdam, 

The Netherlands 

Phone: +31 20 5926050, 

Fax: +31 20 5924199 
Email: lie@can.nl 
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