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The dream of econometrics has metamorphosed
into a technical problem in system theory.
(R. E. Kalman)

This is a brief survey of some recent research trends in econometrics which make extensive use of
techniques developed in system theory. In particular, we pay attention to the following subjects:
cointegration, error correction, and the representation of systems; path controllability, system
inversion, and trackability; inputs, outputs, and errors-in-variables.

1 Introduction

System theory interacts with the theory of economics and econometrics in rather
diverse ways, and the past few decades have seen the arrival and sometimes
also the departure of a rich variety of research trends in the interface. The story
might begin with The Mechanism of Economic Systems [55], a book that was
published in 1953 although it was based on notes that the author, Arnold
Tustin, had written immediately after World War II. In this book, Tustin
proposed to model the workings of a national economy by analog simulation
using clever mechanical and electrical devices which he described in some detail.
Apparently his hope, as an electrical engineer, was to use such nonlinear models
to explain and remedy business cycles much in the same way as unwanted
oscillatory motions in servomechanisms can be suppressed by appropriate
controller design. As noted by Aoki [3], this approach doesn’t seem to have
had widespread influence among economists.

There have been other trends, however, which did acquire a status of
permanence in the economic and econometric literature. Optimal control theory,
in the style that emerged in the fifties, has found its way into the economic
realm and is well and alive there. This is evidenced in recent textbooks such as
[16] and [53]. Optimal stochastic control theory has found application in
financial management; a recent survey is provided in [31]. There are other areas
that are more or less allied to system theory and that are extensively used in
economics, such as the theory of differential games, but we will leave these out
of our discussion.

An example of a standard and full-fledged subject in system theory that has
had an undeniable influence in econometrics is, of course, the Kalman filter.
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Its importance was recognized in the standard reference [22], and the Kalman
filter can now be considered as one of the standard tools in the study of time
series and dynamic economic models (cf. [14,48]). Further interaction between
system theory and econometrics takes place in the field of identification. The
fundamental problems that are involved here were stirred up by R.E. Kalman
[30]. A recent detailed elaboration of some of the points raised by Kalman can
be found in [36,37]. At a more technical level, the recent book by Hannan and
Deistler [23] provides an excellent reference for the way that system theory
and statistics interact to solve identification problems.

In this paper, we shall attempt to highlight some of the newer research
trends in econometrics which make extensive use of ideas and techniques from
system theory. First, we shall discuss the issue of ‘cointegration” which has been
heavily debated in econometric circles during the past decade. One of the central
points in the discussion is a result known as the Granger representation theorem;
this is basically a theorem about alternative representations for linear dynamic
systems, which in system-theoretic terms would fall under the heading of
realization theory (or as some would perhaps prefer to say: the theory of system
representations and transformations). There is also an aspect of control in the
cointegration debate; in particular, the tracking of targets is involved. The ability
of a system to track a given target is a classical subject in system theory, and
recently there have been some efforts to extend this older work and to apply
it in specific economic contexts. We shall briefly discuss the results in this area
in Sect. 3. Our final topic will concern the selection of ‘inputs’ and ‘outputs’
(‘endogenous’ and ‘exogenous’ variables, in econometric terminology). This
subject allows a four-fold decomposition brought about by the two divisions
static/dynamic and deterministic/stochastic; we shall discuss all four cases, to
bring out some interesting analogies. The final Sect. 5 contains concluding
remarks.

In this paper we will not cover all of the impulses to the application of system-
theoretic ideas in economics that are due Aoki and his co-workers, such as the
ideas concerning aggregation and reduction by balancing; instead we refer to
Aoki’s recent book [4]. For additional material, we also refer to the special
issue of the Journal of Economic Dynamics and Control on Economic Time Series
with Random Walk and Other Nonstationary Components (Vol. 12-2/3 (1988),
edited by M. Aoki), the special issues of Computers & Mathematics with
Applications on System-Theoretic Methods in Economic Modeling (Vols. 17-8/9
(1989) and 18-6/7 (1989), edited by S. Mittnik), and the survey paper by E.J.
Moore [38].

2 Cointegration, Error Correction,
and the Representation of Systems

Many economic time-series show an apparent random drift, which may be
explained by a lack of forces which tend to drive the variable under study to
some preferred level. Since the traditional econometric methods of dealing with
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time-series are based on stationarity assumptions, it is standard practice
(recommended for instance in [5]) to pre-filter the data by taking differences.
Differencing once will reduce a ‘random walk -like behavior to stationarity. If
necessary, a time-series may be differenced several times in order to achieve
stationarity. A scalar time series is said to be integrated of order d if it reaches
stationary after differencing d times. Since there is loss of information involved
in taking difference (a differenced model can only describe relations between
changes of variables, not relations between the absolute levels), over-differencing
should be avoided.

In the context of vector time series, clearly there may be different orders of
observation between the components of the vector; more generally, it can happen
that certain linear combinations of the components have lower order of
integration than the components themselves, This may be seen as strong evidence
for the presence of economic forces which tend to keep a certain balance between
the components, and the discovery of such relations is therefore of considerable
interest. Examples are the relations between consumption and income and
between short-term and long-term interest rates [9, 13]. Generally speaking,
cointegration is found in so-called error correction models. Suppose that we
have two (vector) variables y, and z, which tend to satisfy a static ‘target’ relation

Ay, + Bz,=0

The presence of this target relation can be reconciled with the presence of
(first-order) nonstationary dynamics by specifying an ‘error correction’ model:

A(L)Ay, + B,(L)Az, + D(L)[Ayt—l + Bzr—l] = C(L)e,

(The notation here is the econometric one: L is the lag operator that maps (x,),
to (x,- ) A=1~ Lis the difference operator, which maps (x,), to (x, = x,_,);
Ay(z), By(z), D(z), and C(z) are polynomial matrices; (g), is white noise.) This
way of incorporating long-term dynamics into short-term dynamic models
originates in [9,47].

A precise formulation of the connection between cointegrated models and
error correction models has been proposed by C.W.J. Granger in an unpublished
manuscript [20] and in the paper [13]. Specifically, Granger calls a process
(x,), cointegrated of order d,b if all components are integrated to order d, and
if some nontrivial linear combination z, = «’x, is integrated of order d — b where
b>0. A process x, in R" that is cointegrated of order 1,1 is said to have
cointegrating rank r if «'x, is stationary for some r x n-matrix o of full row
rank, and if f'x, is nonstationary for any matrix " whose rank exceeds r The
Granger representation theorem gives the connection bgtween representations of
‘autoregressive’ and ‘moving-average’ type for time series that are cointegrated
of order 1, 1. The following version uses a formulation proposed by Johansen

[26].
The Granger Representation Theorem. Assume that the R"-valued process (x,),
satisfies

Ax, = C(L), ()
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where (&,), is zero-mean white noise of unit variance, and C(z) is an n x n matrix-
valued function that is holomorphic on the disk |z| < 1 + p and that is nonsingular
on the same disk except at 1, where C(1) has rank n—r. Let o and f be n xr
matrices of full column rank such that o/ C(1) = 0 and C(1) = 0. If the r x r matrix
o/'(dC/dz(1))B is nonsingular, then the process (x,), is cointegrated of order 1,1
with cointegrating rank r and satisfies the equation

ITox, + T (L)Ax, = ¢, )
where
I, = (o' (dC/dz(1))B) ™~ to!

The processes (Ax,), and («'x,), are stationary so that the representation (2) may
be seen as an error correction representation.

Conversely, suppose the process (x,), satisfies an equation (2) where (s,), is
white noise and where the matrix function I1(z)= Ily(z)+ (1 —2)I1,(z) is
holomorphic and nonsingular on the disk |z| <1+ p except at z=1 where
IT,=II(1) has rank r. Let o and f be n x (n—r)-matrices of full column rank
suchthat o'y =0and o = 0. If the (n — r) x (n — r)}-matrix o IT (1) is invertible,
then the process (x,), is cointegrated of order 1,1 with cointegrating rank r and
satisfies an equation (1) in which C(z) is holomorphic and nonsingular in the disk
|z| <1+ p except at the point z =1, where

C(1)= Pl I, (1)B) ™ e a

The proof of the Granger representation theorem in [13] is somewhat hard to
follow. Engle sketches a different proof, due to B.S. Yoo, in [12]. This proof is
based on what Engle calls the Smith-McMillan-Yoo form; it is actually a Smith
form with respect to the ring of causal stable rational functions. In [26], Johansen
uses the context of functions that are holomorphic on an open disk containing
the unit circle (which is more general than the rational context used by Yoo0),
and he provides a third proof. Apparently it hasn’t been noticed in this literature
that essentially a matrix generalization is involved here of the following simple
rule from complex function theory: if f(z) is holomorphic in a neighborhood
of z,, then f~1(z) has a simple pole at z, if and only if df/dz(z,) is nonzero,
and in that case the residue of f~!(z) at z, (i.e. the coefficient of (z —z,) ™' in
the Laurent series development of f ~*(z) around z,) is given by (df/dz(zo)) ™.
In the matrix case, one has to take directions into account, and the resulting
residue formula is given below. We shall say that a matrix function G(z) has a
simple pole at a point z, of the complex plane if G(z) has a pole at z, but
(z —2¢)G(zy) doesn’t have a pole there.

Residue Formula. Let F(z) be n x n matrix function that is holomorphic in a
neighborhood of z,, and suppose that F(z) is nonsingular in a neighborhood
of z, except at z itself. Let the rank of F(z,) be n —r; let o« and  be n x r-matrices
of full column rark such that o' F(z,) = 0 and F(z,)B = 0. Under these conditions,
the matrix function F~'(z) has a simple pole at z, if and only if the constant
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matrix o'(dF/dz(z4))f is invertible, and in that case the residue of F~!(z) at z,
has rank r and is given by

Res(F™}(z);2) = Blo'(dF/dz(z,))B) "o

The formula is given by Lancaster for the case in which F(z) is a polynomial
matrix [35, pp. 60-65]; the holomorphic version is formula (4.18) in [50]. The
proof is based on a suitable (‘local’) version of the Smith form. To see how the
residue formula applies to the Granger representation theorem, we note that
IT(L) and C(L) should be related by

II(L)C(Ly=4

This means that
C Y2)=IHu(l —2)~* + I,(2),

so that IT, is the residue of C~*(z) at 1, and of course we also have
Iz =C()(1 =27 +(C(2) — CHAL ~2)

so that C(1) is the residue of 1T ~'(z) at 1.

Aside from the technicalities, a more fundamental point that might be
brought up in connection with the Granger representation theorem is the
following. The theorem purports to be a statement about different representations
of the same thing, but it is actually not too clear what it is that is being represent-
ed. Statements about equivalence of representations are traditionally formulated
in situations in which there is a unique stationary solution associated with each
representation, and in this case there is of course no problem—what is represent-
ed is that stationary solution. If one leaves the domain of stationary series, how-
ever (as one is forced to do in order to discuss phenomena such as cointegration),
then this obvious answer is no longer applicable. The difficulty is noted by
Davidson, who writes: “In fact, because of missing constants of integration a
process such as [one given by a vector autoregressive equation IT(L)x, = ¢,, with
I1(1) singular] cannot give a complete description of the generation process of
the variables; it must be understood as representing a stationary process in the
differences” [8, p. 8/9]. A more satisfactory approach, however, should address
the problem of nonunique solutions directly. The idea of considering sets of
solutions rather than individual solutions is a key point in the work of J.C.
Willems [57, 587, which already has given rise to an extensive theory of equivalent
representations for linear deterministic systems (cf. the survey [S1]). It would
seem that a similar theory will have to be developed for the stochastic case in
order to allow for an exact and complete formulation of results such as the
Granger representation theorem.

Now, let us consider briefly the general situation of higher-order cointegra-
tion. If (x,), is a process that is integrated of order d >0, then the Wold
decomposition implies a representation of the form

A’x, = C(L),
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We shall continue to assume that the matrix function C(z) is holomorphic on
an open disk containing the unit circle and that C(z) is nonsingular on the same
disk except at z = 1. It is natural to define the cointegration space of order k as
the set of all vectors a such that A*«'x, is stationary. If we denote the dimension
of this space by n,, then we may call the indices (ng,ny,..., 1) the cointegration
indices of the process (x,),. In this terminology, an R"-valued process is integrated
or order 1,1 with cointegrating rank r if and only if its cointegration indices
are (r,n). The cointegration indices can be easily expressed in terms of the
coefficients of the power series development of C(z) around z = 1: writing

O

Cl)= Y, Ot =2V,

j=0
we have

ng_;=dimker[C, C;-CioyY

The important point to note is that the cointegration indices are not in any
one-one relation with the orders of the zeros at 1 of the matrix function C(z).
(We recall that a nonsingular meromorphic matrix function F(z) allows, with
respect to a given z,eC, a ‘local’ Smith form

F(z)= U(z) diag((z — 2o)".... (z— 20)") V(2) (&)

where U(z) and V(z) are holomorphic in a neighborhood of z, and invertible
at z,. The integers k,, ..., k, are called the order of the zeros of F(z) at the point
z,.) This is seen most clearly by comparing the formula

ng— ;= dim{«|(1 — 2)/C'(z)xe H(1)},

in which we use the notation H(1) for the space of vector functions that are holo-
morphic in a neighborhood of 1, with the following formula (adapted from
[41]) for the number v; of zeros at 1 of C(z) of order 2 :

v;=dim{a(1)|a(z)e H(1),(1 - z)TIC(2)af(z)e H(1)} (4)
Clearly we have
Hg-j S V; (5)

but equality does not hold in general, as can be seen from simple examples.
The most important exception to this is, of course, the case of first-order
integration.

[t can easily be seen that the vector functions a(z) which appear in (4) may
be restricted to be vector polynomials, without impairing the validity of the
statement. Therefore, if we allow cointegrating vectors to be polynomial rather
than constant and change the definition of ‘cointegration indices” accordingly,
we do obtain a one—one relation between cointegration indices and orders of
zeros at 1. The importance of polynomial cointegrating vectors (PCIV’s) has
been emphasized by Yoo (cf. [12]). A slightly different approach is taken by
Johansen [24]. He introduces what we have called the ‘cointegration indices’,
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and notes that their sum can at most be equal to the order r of the zero of
det C(z) at 1. The case in which equality holds is referred to by Johansen as the
‘balanced’ case; since it is easily verified that

we can see that this case is the one in which equality holds in (5) for each
Jj=1,....d and, moreover, v; = 0 for j < d. Johansen proceeds to show that, after
constant row transformations which are summarized in a nonsingular matrix
T, we can write

TC(z) =

(1 = 21 Co(2)

where, in the balanced case, the matrix C(z) = [55(2)---5;(2)]’ is nonsingular
at 1. We may also write this is a slightly different way:

C(z)= T~ 'diag((1 — 2)*,...,(1 — 2" C(2)

Comparing this with (3), we see that the balanced case is characterized by the
fact that the local Smith form around z = | can be obtained using only a constant
transforming matrix on the left side. In general, one will have to use a non-
constant transformation; although the local Smith form in principle calls for
holomorphic transformations, Johansen proves by a direct argument that a poly-
nomial transformation on the left hand side will suffice. (In the rational case,
one might appeal to the Smith—-McMillan form to prove this; in fact, this is
what Yoo does.) The polynomial transformation can then be interpreted as a
transformation of the variables in which linear combinations are taken of
contemporaneous and lagged components.

So, either by introduction of polynomial cointegrating vectors or by poly-
nomial transformations of the variables, the structure of cointegrated systems
can be studied through the zero structure of an associated matrix function at
z = 1. This may help to solve remaining problems, such as the formulation of
analogs of the Granger representation theorem for higher-order cointegrated
series (partial results on this can be found in [24] and [8]). Another important
question is, to what extent polynomial cointegrating vectors (or polynomial
transformations of the variables) are unique; the answer to this is of course
critical to the discovery of ‘target relations’.

In the above, we have emphasized what might be called the ‘structural
aspect of cointegration. There is of course also a ‘statistical’ side to the matter,
which is concerned with the testing of hypotheses about the cointegration
structure and with the estimation of cointegrating vectors, and most of the
journal literature in fact concentrates on this aspect (see for instance [13,25,42]).
Virtually all of this work is concerned with first-order cointegrated systems. It
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seems, however, that even in this context there are some basic questions that
remain to be answered, in particular in connection with hypothesis testing.
Engle notes: “The null hypothesis of cointegration would be far more useful in
empirical research than the natural null of non-cointegration. The selection of
a 5% test of the non-cointegration null is very arbitrary and many researchers
are assuming cointegration when these tests are only rejected at larger
significance levels” [12, p. 26/27]. One may argue about what is natural; in a
sense, the hypothesis of cointegration is the more highly structured one, and is
therefore simpler and more natural. From a certain point of view, the
cointegrated situation is also the more singular one, which may explain the
difficulties that classical statistical methods have with adopting cointegration
as the null hypothesis. Possibly the theory of zeros of matrix functions may
also be of help here to unravel the singularities.

3 The Tracking of Targets

Although cointegration can be caused by the presence of ‘common trends’,
another explanation that is sometimes plausible is presence of steering action.
Davidson and Hendry [10] even use the word ‘servo-mechanism’ to describe
the economic forces that keep certain variables together; Arnold Tustin would
have appreciated this terminology. Error correction models are placed explicitly
in a context of target following by Kloek [32]. It may then be expected that
the extensive theory of tracking which has been developed in mathematical
control theory should have some relevance.

There is a sizable economic literature with a clear system-theoretic motiva-
tion on the problem of exactly following a prescribed path, the so-called ‘path
controllability’. The problem is customarily posed in a deterministic setting and
bears a mathematical-economic flavor rather than an econometric one. Path
controllability can be seen as an extension of Tinbergen’s concept of achievability
of targets in static models [54]. When the targets are solved in terms of the
instruments in a static linear model, so that we have

y=_Gu

where y is a vector of targets, G is a constant matrix, and u is a vector of
instruments, then the obvious criterion for achievability of each given vector y
by a suitable choice of instruments u is that the matrix G should have full row
rank. A necessary condition for this to hold is of course that the number of ~
targets should not exceed the number of instruments; this is sometimes called
the ‘Tinbergen policy condition’. The dynamic version of target achievability
was introduced in economics by Preston [44] and Aoki [2], after essentially
the same idea had been introduced into system theory (under the name of
‘functional reproducibility’) by Brockett and Mesarovi¢ [6]. In the discrete-time
case, path controllability is defined to mean that, after a certain ‘adjustment
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time’ or ‘policy lead’, any given path of the target variables can be tracked
exactly by proper choice of the instrument variables. The definition in the
continuous-time case is slightly different, but the criterion (at least in the linear
constant-parameter case) is the same: path controllability holds if and only if
the transfer matrix G(z) from instruments to targets has full row rank as a
rational matrix [6, p. 559]. This is a rather attractive generalization of the static
rule of Tinbergen.

Further work within the system theory community on this subject has con-
centrated on finding simple conditions for right invertibility in terms of the
state space representation

x(k + 1)= Ax(k) + Bu(k), x(k)eX,u(k)eU
y(k) = Cx(k)+ Du(k), yk)eY

A condition for right invertibility in terms of the parameters 4, B, C, and D was
already given by Brockett and Mesarovic, but this involved a rather big matrix
formed from the parameter matrices. The following compact method for
determining whether or not a system is right invertible is essentially due to
Morse and Wonham [39]. Define recursively a sequence of subspaces of the
state space X by

T°= {0}
T**! = {xeX|x= A%+ Buforsome xe T¥and usuch that C% + Du =0}

It is easily seen that the sequence (T*), is nondecreasing, and so the sequence
must have a limit which is denoted by T*. The system given by the parameters
(4,B,C,D) is right invertible (in the sense that the transfer matrix G(z)=
C(zI — A)"'B + D is right invertible as a rational matrix) if and only if

CT*4+imD=Y

The state space framework suggests extensions to the non-constant-
parameter case and the nonlinear case. A characterization of path controllabi-
lity for linear systems with time-varying parameters has been given by Engwerda
[15]; necessarily the condition is more involved than in the constant-parameter
case, but an analogy with the Morse—~Wonham result can still be drawn.
Necessary and sufficient conditions for (local) path controllability of discrete-
time nonlinear systems have been given by Nijmeijer [40], who also establishes
the close relation that exists between path controllability and decouplability
(the possibility of introducing a control policy in which each target is influenced
by only one instrument). Recently, state space algorithms have become available
to decide on the right invertibility of systems that are given in implicit form,
rather than in solved form [33]. This is a return to the original formulation by
Tinbergen, who starts in [54] with implicit equations rather than with a ‘final
form’.

One may reasonably argue that the invertibility of dynamic systems should
play an important role in dynamic economic theory, simply because invertibility
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is such a basic concept; so the study of system invertibility is well-motivated.
However, it is also clear that exact path following is not a realistic goal in a
world full of disturbances. Alternative formulations of tracking problems can
be obtained by introducing assumptions on the variables to be tracked, and a
stochastic setting can be accommodated by relaxing the condition of exact
tracking. For instance, Kloek in [32] assumes that the target is integrated of
order 2 and requires that the tracking error should be zero-mean and weakly
stationary. Situations in which some information is available about the dynamics
of the signal to be followed have been studied extensively in system and control
theory; in fact, this branch of control theory has its roots in the design of certain
servomechanisms that were used in World War II and that took the notion of
‘target’ quite literally. We refer to [34, Ch. 5], [60, Ch. 6-8], [49], and [18] for
a sample of the modern literature on the subject. Basically, the conclusion of
these studies is that, for trackability of constants and linear trends in discrete-
time systems, the transfer matrix from instruments to targets should have full
row rank at the point 1 of the complex plane. Moreover, if the action of the
controlling mechanism is based purely on the tracking error, then it can be
shown that the controller must contain what is called an ‘internal model’ of
the signal that is to be followed.

A few remarks can be made here. Firstly, we see that again the zero structure
at 1 is of importance. Secondly, a somewhat surprising conclusion is that the
trackability condition is stronger than the condition for path controllability;
indeed, if the transfer matrix has full row rank at some given point of the
complex plane then it will certainly have full row rank as a rational matrix.
This may be explained by the fact that path controllability is achieved by open-
loop control, whereas in the case of the trackability problem the solution is
sought in the form of a closed-loop controller, which automatically adjusts the
control action to changes in the signal to be followed. Thirdly, the presence of
an ‘internal model’ might be an interesting hypothesis in situations in which
control action is suspected, such as when time series are cointegrated. Structural
constraints such as the one implied by the internal model principle may also
be used in model specification. We note that the internal model principle has
been mentioned recently by Salmon [46], who however seems to use the term
to indicate compatibility between models; this is certainly a subject of interest,
but not one that is related directly to the tracking problem.

The role of ideas from control theory in mathematical economics can now
almost be called classical; this is true for optimal control, but also for a number
of other ideas in which optimization is not necessarily involved, such as path
controllability. Developments that may be expected here include further elabora-
tion of the relation between path controllability and decoupling, and study of
the structure of control policies when the instruments are in the hands of various
different agents. The application of control ideas in econometric modeling is
more recent and, to a considerable extent, this subject still has to take shape.
In many situations in which several variables of interest are studied there is a
great need for structural information to be incorporated in the specification of
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models, and the results of control theory may help to provide such information
in the form of constraints that must be satisfied for control action to be effective.

4 Inputs, Outputs, and Errors-In-Variables

It is a generally recognized fact among econometricians that the distinction
between endogenous and exogeneous variables is often debatable. For this
reason (and for other reasons as well) it has been argued by J.C. Willems [56]
that in a general theory of systems one should start with a notion of ‘observables’
or ‘external variables’ without imposing a priori a division between inputs and
outputs. This implies that one should describe the relations between the variables
in a nondiscriminating way. Having done this, one may ask which choices of
inputs and outputs would be reasonable; of course, exactly what is ‘reasonable’
in a given situation may depend on the availability of extra information which
is not expressed in the system description. We shall discuss the problem of
selecting inputs and outputs in four cases, corresponding to the divisions static/
dynamic and deterministic/stochastic. The discussion will be limited to linear
systems, however.

The deterministic static case would perhaps be considered trivial, but let us
discuss it anyway for purposes of comparison. Suppose a linear relation between
external variables w; is given by

Rw=0 (6)

where we may assume that the matrix R has full row rank. If we believe that
it is reasonable to require that the inputs are not restricted by the equations
and that the outputs are completely determined by the inputs and by the
equations, then the standard procedure applies: select output variables by finding
a maximal set of independent columns among the columns of R, name the
associated components y, name the remaining components u, rewrite (6) as
R,y + R,u=0 and, noting that R, is invertible by construction, obtain

y=—R['Ryu

which clearly has the desired characteristics. In general, the choice of inputs is
not unique; however, the number of inputs is determined by the data (6). Any
selection of this number of variables will ‘generically’ be valid as a choice of
inputs.

There is a certain asymmetry in the selection procedure based on (6) since
we first select the outputs and then simply let the inputs be what is left. However,
if we would have represented the subspace ker R which effectively appears in
(6) as the image rather than as the kernel of some matrix, then we would have
selected the inputs first by taking a maximal set of independent rows of the
representing matrix. So the seeming priority of outputs over inputs in the
selection procedure above is just a consequence of the chosen representation.
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In the linear deterministic dynamic case, the problem of selecting inputs
and outputs has been considered by Willems in [57]. In this case, the condition
for an admissible selection of inputs and outputs might be that the transfer
matrix from inputs to outputs should exist and should be proper rational. (This
can be formulated more intrinsically: see [59].) The solution given in [57, 58]
may be described as follows. Let a set of difference equations with constant
coefficients in the variable w(k)eR? be given by

R(o)w =0,

where ¢ denotes the (forward) shift and R(z) is a polynomial matrix which we
may assume to have full row rank. The basic technique is to write R(z) in the
form T(z)B(z) where T(z) is an invertible rational matrix and B(z) is ‘right
bicausal’, ie. B(z) is proper rational and has full row rank at infinity. This
factorization may be achieved by the reduction of R(z) to row reduced form
[27, p. 386]; indeed, note that this procedure factorizes R(z) as U(z)A(z)B(z)
where U(z) is unimodular, A(z) is diagonal with diagonal elements of the form
z*, and B(z) is right bicausal. A proposed selection of inputs and outputs will
induce a partitioning of R(z) as [R,(z) R,(z)] (after possible reordering of the
columns), and a corresponding partitioning of B(z) as [B,(z) B,(z)]. Now, R,(z)
will be invertible if and only if B, (z) is invertible, and R ' (z)R,(z) = B '(z)B,(z)
will be proper rational if and only if B,(z) doesn’t have a zero at infinity. (The
‘only if” holds because B,(z) and B,(z) are coprime as matrices over the ring
of proper rational functions, so there can’t be a pole-zero cancellation.) The
result is that the proposed selection of inputs and outputs is admissible if and
only if the matrix B,(c0) is non-singular. In other words, what we have to do
is to select a maximal number of independent columns from the full row rank
matrix B(oco)—we might say that the problem is reduced to the static case.

Of course, this solution is hardly surprising to the econometrician, who is
used to representing transfer matrices as quotients of matrices of polynomials
in z~! (the backward shift). In models of the form

B(c™Y)y=A(c" ")

where A(z) and B(z) are polynomial matrices, the condition that B(0) should
be invertible is known as the ‘causality condition’; in fact, such models are often
specified with the condition B(0) = I (see for instance [22, p. 13]).

In order to make a comparison with the stochastic situation that will be
discussed below, let us see how much more difficult the problem becomes when
we require that that the transfer matrix from inputs to outputs should not only
be proper, but also stable. In principle, the same technique as above applies: if
we can write R(z) in the form T(z)B(z) where T(z) is an invertible rational matrix
and B(z) is now a proper stable rational matrix having full row rank for all z
with |z| = 1, then a selection of inputs and outputs will be admissible if and
only if the corresponding matrix B,(z) is nonsingular for all z with |z| = 1. The
desired factorization of R(z) can be obtained by a Wiener—Hopf factorization
with respect to the unit circle [7] (cf. the interpretation of the reduction to row
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reduced form as a Wiener-Hopf factorization with respect to the point at infinity
in [19]). So in this case, the input-output selection problem is essentially the
following: given a matrix that is ‘right unimodular over the ring of proper
stable functions, find a square submatrix that is unimodular. Obviously, this is
not always possible. The simplest example would be that of a system with two
variables in which neither the transfer matrix from the first to the second variable
nor its inverse is stable.

Next, let us consider the stochastic case. If we suppose that both the observa-
tions and the additive noise are generated by mechanisms that can be modeled

as zero-mean normally distributed variables, then the general linear model can
be written as

w=Nx+¢ (7)

where x generates the observations and ¢ is noise. The observed vector w will
be normally distributed with zero mean and covariance matrix Q, and so all
observational data are summarized in Q. In the model (7), we could select
independent rows from the matrix N (which may be assumed to be of full
column rank) and we might convert the model to an input-output form just as
in the deterministic case. However, without further assumptions on the noise,
the model (7) is hopelessly non-unique. Not even the number of inputs is
well-defined; it may vary from rk Q (no noise) to 0 (all noise).

One possible constraint on the noise covariance matrix X, which is well-
motivated when the observation space R? is considered as the Cartesian product
of ¢ different one-dimensional spaces, is to require that £ should be diagonal.
This, of course, leads to the factor analysis model, which has experienced
renewed interest following Kalman’s critique of the concept of identifiability in
econometrics [28,29]. What we called ‘the number of inputs’ becomes ‘the
number of common factors’ in the context of factor analysis, and it is natural
to define this number as the minimal length of the vector x for which a representa-
tion of the form (7) (with cov(ec?) diagonal) is possible. In contrast to the
unconstrained case, this number is now well-determined, but unfortunately its
determination is an open problem.

From the point of view of selecting inputs and outputs, it may be more
natural to think of R? not as the product of g one-dimensional spaces, but as
the product of an input space and an output space (yet to be determined). A
possible constraint to impose would be that the noise covariance matrix should
be block diagonal corresponding to this decomposition. This leads to an alter-
native interpretation of the vector x, since it can be shown that the model

() Gy () ®
u H, €,
(with x,&,, and ¢, independent) holds if and only if y and u are conditionally

independent given x. The conditional independence property is also used to
define the notion of ‘state’ in stochastic systems (see for instance [52]), and so
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the problem of constructing a model of the form (8) for a given decomposition
of winto components u and y is sometimes called a realization problem [17,45].

Let us say that a decomposition of w into inputs u and outputs y is
‘admissible’ if there is a model of the form (8) in which x has minimal length
among all models of the same type corresponding to the same decomposition,
and in which the matrix H, is invertible. The invertibility of H, will allow the
model to be rewritten in an input—output form:

p=HH;'4
y=Jy+¢
u=12+82

This is the errors-in-variables form (see for instance [11]). The decomposition
of w into y and u leads to a partitioning of the covariance matrix Q,,,,:

ww
Qu Qu
We claim: the decomposition of w into inputs u and outputs y is admissible if
and only if the matrix Q,, has full column rank. To see this, assume first that
we do have an admissible decomposition and let (8) be a corresponding model.
Because x has minimum length, the covariance matrix Q. of x must be non-
singular. We have H; =0,,0_' since obviously H,x is the least-squares
estimate of y given x, and likewise H,=Q,.0_'. Because of the mutual
independence of x,¢,, and ¢,, one has

Qyu = HlE[XXT]Hg‘ = nyQ;x1 qu

Now, it is shown in [17] that the length of x in a minimal representation of
the form (8) is equal to the rank of Q,,. From the formula above, we see that
this implies that Q, is surjective (and hence invertible) and that Q, is injective.
But then Q,, is injective too, by the same formula. Conversely, if it is given that
Q,, has full column rank, then the construction of [17] immediately leads to a
representation of the desired form.

The conclusion must be that imposing that the error covariance matrix
should be block diagonal doesn’t help very much in the selection of inputs and
outputs. In particular, it doesn’t rule out the possibility of attributing all observed
variation to noise.

Before turning to the dynamic case, let us note that the error-in-variables
model is not uniquely determined even if we fix the choice of inputs and outputs.
It is easy to see that all possible solutions can be parametrized in terms of the
‘true’ input covariance matrix @, and that all symmetric positive definite matrices
Q will qualify that satisfy the two inequalities

0=0Qu

and

QyuQ h 1Quy é ny
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Using the singular value decomposition, one can easily show that the latter
inequality can be rewritten as a lower bound on Q, of the form Q = Q.. The
corresponding (non-unique) ‘true’ linear relation between the latent variables §
and 4 is given by Q,,0 ..

In the static case, several proposals have been formulated to reduce the non-
uniqueness of the errors-in-variables model by bringing in some extra informa-
tion; see for instance [1]. Let us see what the dynamic case has to offer. We
follow the development in [21] and [43].

Our goal will be to verify the admissibility of a given decomposition of w(z)
in inputs u(f) and outputs y(t). The observational data are supposed to be
summarized in a spectral density matrix Q. (z) for w, which is partitioned
according to the proposed decomposition as

0,,(2) Qyu(2)>
Quy(z) Quu(z)

We are looking for a ‘true’ transfer matrix G(z) and a ‘true’ input spectral density
Q(z) which should satisfy

G(2)Q(z) = 0,u(2)
0(2) = Qu(2), lzl=1
G(2)0(2)GT(z™ ) S Qyl2), |zl=1

Under suitable assumptions, the development in the static case can be followed
(replace the field R by the field R(z), the partial order ‘<’ by the partial order
‘< pointwise for |z|=1", and the involution MMT by the involution M(z)
MT(z71)). As in the static case, the set of all minimal solutions will be para-
metrized by the spectral density matrices Q(z) that fall between an upper and
a lower bound determined by the data, and the corresponding transfer matrices
are then given by

G(z)=0,,(2)07'(2)

However, we want to impose both causality and stationarity and so we require
G(z) to have all of its poles inside the unit disk. The problem is to find the
restrictions on Q(z) that will guarantee this property for G(z).

Again, the key tool to use is the Wiener-Hopf factorization. To avoid some
technical intricacies, we shall assume that both Q(z) and Q,,(z) have constant
rank on the unit circle. Then we can write

0,.(2) = F _(2)D(2)F ,(2)

QM‘“’(Z) = (

where

-

D(z)= <A((;)>, A(z) = diag(z™,...,z*)

and where F_(z)(F,(z)) is unimodular as a matrix over the ring R_(z)(R . (2))
of rational functions having all their poles inside (outside) the unit circle. (We
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also used the fact that Q,,(z) must have full column rank, as in the static case.)
For any rational matrix M(z), write M*(z)= M"(z™'); note that M* will be
R _(z)-unimodular if M is R, (z)-unimodular, and vice versa. Now, write

G=F_DF,Q '=F_DQ(F*)"!
where

Q—=F+Q_1F’-k«-

Do a spectral factorization to write Q = H, H* , where H , is R, (z)-unimodular.
We then have

G=[F_]DH,[H*(F*)™']

Because the factors between square brackets are R _(z)-unimodular, it follows
that G(z) will be causal and stable if and only if DH, is causal and stable,
which is the same as requiring that AH , should be causal and stable. Because
A(z) is diagonal, this requirement entails that all entries h;;(z) of the i-th row
of H ., (z), which are rational functions having all their poles outside the unit
circle, should be such that the functions z*'h;;(z) have all their poles inside the
unit circle. Since multiplication by a power of z can only move poles between
zero and infinity, we see that the x;’s should be nonpositive and that the h;j(z)’s
should be polynomials of degree no higher than — k;. This means that there
will be no solution if one of the Wiener~Hopf indices «; is positive, and that
otherwise the solution set is parametrized by at most x parameters, where

(Of course, we also have the requirement that H, should be unimodular, so
the parametrization is nontrivial.)

We see that imposing the requirements of causality and stationarity may
well cause a certain proposal for the selection of inputs and outputs to be
rejected; if the proposed selection turns out to be admissible, then it causes the
set of all possible models to be finitely parametrized. However, there is no
indication how to select inputs and outputs in such a way that the associated
Wiener—Hopf indices will be nonpositive; this problem was raised in [21] but
apparently the question is still open. Also, as in the scalar case, the number of
inputs is still undetermined and the possibility of attributing all variance to
noise is not ruled out. It may be worthwhile to try out the effect of other possible
constraints on the error spectral density, such as size constraints (proposed for
the static case in [1]).

5 Conclusions

An econometrician once told me that he was amazed that system theory is still
an active field, since he couldn’t imagine that the analysis of the Kalman filter
would not be completed by now. Apparently, the full variety of system-theoretic
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methods has as yet failed to disclose itself to the field of econometrics. System
theory provides a rich set of examples which illustrate the pitfalls of modeling,
and how to avoid these; Kalman has used such examples in his contributions
to the ongoing debate on the fundamentals of mathematical modeling and
identification. System theory also provides a large body of knowledge about
state space techniques, and the applicability of such techniques to econometric
problems has been shown in the work of Aoki and others. But the collection
of mathematical techniques that are familiar to and developed by system
theorists allows an even more intensive contact. As shown in this paper, matrix
factorizations and pole-zero considerations play an important role in
econometric problems, and system theorists have applied these for a long time.
There is an econometric interest in representation problems, which is something
about which system theory has a lot to say. The invertibility of systems is a
natural concept in dynamic economic analysis, destined to play a role similar
to the invertibility of matrices in static analysis; and again, system theory
provides the necessary tools. While some of the questions here are no doubt
more modest than the fundamental issues with which R.E. Kalman has con-
fronted the econometric profession, they may still be a worthwhile subject for
research and lead to results that will satisfy system theorists and econometricians
alike.
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