
On the Power Series Algorithm
Ger Koole *

CW/

P.O. Box 94079

1090 GB Amsterdam, The Netherlands

The power series algorithm is a numerical procedure for s I · 1 o ving genera
Markov processes. This paper gives a practical introduction to the algorithm,
and pre~ents some n~w results. We start by showing how the algorithm can
be applied to_ a spec1~c problem, the fork-join queue. Then we prove that
the power series algorithm can _indeed be used to solve general Markov pro­
cesses. In t~e subsequent section _we deal with the convergence properties
of the algorithm. It behaves particularly well when applied to finite state
processes, which is illustrated with the analysis of a bounded Petri net. We
end with discussing the literature.

1 INTRODUCTION

139

Analytically obtaining performance measures of multi-dimensional queueing
systems is often very difficult. Explicit solutions are only available for some
very special models, like Jackson networks. Some specific two-dimensional
models can also be solved analytically, for example by showing that solving the
problem is equivalent to solving a well-studied complex analysis problem. Set'
Boxma et al. [16] for an overview. The drawbacks of the analytical methods
can be summarized as follows: the resulting problems are non-trivial to solve.
we are confined to two dimensions, and small changes in the model usually lead
to analytically intractable models.

On the other hand, simply numerically solving the steady state equations
usually does not work well either. Often the state space is countable, giving
need to truncate the state space at an appropriate level. These truncated
state spaces are very big, especially if the dimension grows large and if the
accuracy must be high, resulting in very long running times. Thus there is
a need for efficient numerical methods to solve large Markov processes. The
power series algorithm (psa) aims to be such a method. It was first developed
by Hooghiemstra et al. [17] for a model in which several queues share the same
servers, and later applied to several other queueing models in a seri:s of papers
by Blanc and co-authors (discussed in section 5). The examples m the next
sections show that the psa often works very well, although there are someo

theoretical gaps.

*Supported by the European Grant BRA-QMIPS of CEC DG XIII

140

In section 2 we introduce the psa by applying the method to a fork-join
queue, for which the algorithm works remarkably well. In section 3 it is shown
that the psa can (formally) be applied to any Markov process with a single
recurrent class. Formally, as there is no guarantee that the obtained power
series converge. However, in section 4 we study the €-algorithm which is capable
of finding a limit for a divergent series based on its partial sums. It is shown
that this works especially well for finite state processes. To illustrate this, the
psa with the €-algorithm is then applied to a bounded Petri net. The paper
ends with a section discussing the literature.

2 THE FORK-JOIN QUEUE

In this section we give a practical introduction to the power series algorithm by
applying it to a simple model with distributed processing, the fork-join queue.
The fork-join queue consists of two or more parallel queues. Jobs arrive at the
system according to a Poisson process with rate ,\, and on arrival they place
exactly one task in each queue (the fork primitive). This makes the arrival
processes of the different queues dependent. The processing of the tasks in
each queue however is independent of tasks in other queues, and is exponential
with rate µi at queue i. Thus the marginal behaviour of each queue is that of

· a simple MIMI! queue. A job leaves the system if all its tasks have finished
service (the join primitive). As performance measure one usually takes the
number of jobs in the system, which is equal to the maximum of the queue
lengths (assuming that each queue services its tasks in FIFO order). This
measure clearly depends on the simultaneous queue length distribution, giving
need for methods to calculate it.

Many papers study the fork-join model, by using analytical methods, or by
developing approximations or bounds. See section 3.1 of (16] for an overview.
In this section we use the power series algorithm to compute the steady state
distribution.

We use the following notation.
m - the number of queues
x = (x1 , ... , xm) - the state of the system

lxl = X1 + · · · + Xm

p,,, - the stationary probability of state x
(A) - the indicator function of the event A
e = (1, ... , 1)
ei = (0, ... , 0, 1, 0, ... , 0) with the 1 in ith position

First take p = ,\1/m. (The choice of p will be motivated in the next section.)
We try to write the stationary distribution as a power series of p. Thus we
write p., as

00

p., = Lak.,pk,
k=O

with ah the fixed coefficients of the power series. For the moment, assume
that these power series converge. In the next section we show that ah = 0 if
k < lxl. Therefore we prefer to write

141

00

Px = L bkxp/x/+k. (l)
k=O

The steady state equations are

m m

{pm+ L(X; > O)µ;}p,, = (x > O)pmPx-e + L µ,p,,+.,,·
i=! i=o I

Together with the normalizing equation

LPx = 1,

they uniquely determine the steady state probabilities (assuming that the sys­
tem is stable, i.e., that >. =pm < min; µ;).

Now we insert (1) in (2) and (3). Equating the terms with in

m

(k ~ m)bk-m,x + L(x; > O)µibkx = (x > O)bk,:r-e+
i=I

m

(k ~ 1) Lµibk-1,x+ei'
i=l

From (3) we get

bo,(O,O) = l; L bk-/x/,:r = 0, k > 0.
:z::lx/~k

The important observation is that we can compute the
with bo,(O,O) = 1, we can compute successively the b0 ,,

l, 2,. . .. (In practice, we compute these numbers up to a certain
until jxj :S K.) Subsequently, we compute the bl,(o,o) using the
equation, and we can compute b1,, for :r with = 1. 2, .. ., etc. This way all
coefficients with k + Ix! :S K are computed.

Now the approximation is calculated by taking all other coefficients 0, which
is equivalent with omitting ail terms of order higher than K. Numerical results
for this model with m = 2, µ 1 = 1, 1i2 = 2 and varying ,\ can bt' found in
table l. For each combination of K and ,\ the approxiniation of p0o and of
L = Lx max{x1,x2}p.,, the mean number of jobs in the system, is given. The
exact values were calculated by truncating the state space at a sufficiently high
level, and then solving the steady state equations iteratively. '.'iote how well the
psa performs, even for very small values of/\., over the whole stability region of
the model (the stability condition is here,\< 1). Only for>. dose to 1, we have
to take K large to get a reasonable estimate of L. On the other hand, even for
,\ = 1, for which the system is unstable, the approximation of Poo converges
fast to 0. (Note that some computations were omitted in this case, indicated
with "-".)

142

)\ actual values K = 5 K = 20 K = 50 K = 100
.1 .8849, .1275 .8849, .1265 .8849, .1275 .8849, .1275 .8849, .1275
.5 .4578, 1.0688 .4568, .8279 .4578, 1.0678 .4578, 1.0688 .4578, 1.0688

.75 .2184, 3.0706 .2153, 1.4253 .2184, 2.9017 .2184, 3.0683 .2184, 3.0706
.9 .0849, 9.0419 .0800, 1.8425 .0849, 5.9041 .0849, 8.3959 .0849, 8.9956
1 0, 00 -.0062, - .0000, - .0000, - .0000, -

Table 1. Approximations of Poo and L for the fork-join queue with µ 1 = 1,
µ2 = 2

3 GENERAL MARKOV PROCESSES

In the previous section we applied the psa to the fork-join queue, showing
that the coefficients of the power series of the stationary probabilities can be
computed recursively, and using these to compute performance measures. In
this section we show that the coefficients of these power series can be computed
recursively for any Markov process, if the variable p of the power series is
incorporated in the model in a suitable way.

Thus we start with an arbitrary Markov process with state space X (possibly
countable) to which we want to apply the power series algorithm. We denote the
transition rate from x to y by q.,y (for ease of notation we assume throughout
that q.,., = 0). To use the psa, we consider an additional Markov process
with the same state space X, but with the transitions replaced by pf(z,y)q.,y·

The problem is how to choose f(x, y) such that the algorithm works for the
additional process. By inserting p = 1 afterwards, we get the results for the
original process. Of course, we can choose other values for p (as long as it
amounts to a useful model), like we did in the previous section for the fork-join
queue.

First we associate with every state x a level l(x) (l(x) E {O, 1, ... }). The idea
is to write the stationary probability p., as

Px = L bkxpl(x)+k,

k

assuming that these series converge.

(4)

We show that the right choice for f is f(x, y) = (l(y) - l(x))+, i.e., all
transitions are of the form p(l(y)-l(x))+ q.,y. Thus transitions to lower level
states are not changed, but transitions to higher levels get a factor p for each
level the next state is higher. To make the psa work we have to assume the
following.

ASSUMPTION 3.1 The stat-es can be classified in levels 0, 1, 2, ... such that:
{i) There is a single level 0 state {denoted by 0).
{ii) The states within each level can be ordered such that there are no transitions
to higher ordered states within that level.
{iii) l°:y:l(y)S:l(z) qzy > 0 for all x E X, i. e., transitions to lower level states are
possible in each state.

143

Because state 0 can be reached from every other state in a finite number of
steps it follows directly that there can only be a single recurrent class. This
is the only restriction implicated by assumption 3.1: at the end of the section
we will see that we can order the states of any Markov process with a single
recurrent class such that the assumption is satisfied. The choice of the ordering
however can have important implications for the speed of the algorithm.

Note that the assumption implies a partial ordering of the states: x -< y if
l(x) < l(y) or if l(x) = l(y) and there is no transition from x toy. We assume
that the states are numbered 0, 1, 2, ... such that if x -< y, then x < y.

As an illustration, consider the fork-join queue of the previous section. There
we took l(x) = lxl, and indeed, an arrival (which increases the level by m) has
a factor pm. Moreover, assumption 3.1 is satisfied: the empty state is the
single level 0 state, there are no transitions within each level, and in each state
(except 0) there is at least one non-empty queue, making transitions to lower
level states possible.

Another possible choice for l in the fork-join model is l(x) = max; x;. Then
every arrival just has a factor p. Now there are transitions possible within each
level, but it is easily seen that they can be ordered as required in assumption
3.l(ii). Note that if the maximum is attained by two or more queues there are
no transitions to strictly lower levels, but only within the same (and to higher)
levels. However, that is all that is required by assumption 3.l(iii). It is easily
seen that both choices of l(x) basically lead to the same approximations.

The next theorem states that we can indeed write p,,, in the form (4), that
is, that p,,, = O(p1(=>).

THEOREM 3.2 Under assumption 3.1, p,,, = O(p1<=>).

Proof. We are going to use the idea of the equivalent proof given in [18] for
the BM APIP HII queue studied there. We use induction, first considering Po·
Because Po= 1 if p = 0 it is clear that Po= 0(1). Define L, = {xjx ~ z}.
Assume that p,,, = O(p1<=>) for all x E L,. We complete the induction step by
looking at the balance equation between states in L. and states in X\L.:

2::: 2::: p'(y)-l(zlq.,11Pz = 2::: 2::: Q:r11P:r•

zEL. yflL, zflL, yEL,

Now we show that z1 = z + 1 is of the required order. Using the induction
hypothesis, and the structure of the transitions, it is clear that the left hand
side of the equation is of order O(p1(•'l). For z' we have that l:yeL. q.• 11 > 0,

and thus (using that all coefficients are non-negative) Pz' = O(p'(•'l). o

Next we derive the equations for which we can recursively compute the b1o:r:.
The equilibrium equations are:

2::: p(l(11)-l(z))+ Q:z:11P:o = 2::: p(l(:r:)-1(11))+ qyzP11·

!I II

144

I: p(l(y)-l(z))+ q.,y/(z) I: /bkz = I:P(l(z)-l(y))+ qyxPl(y) I: lbky·

y k y k

Consider for fixed x the terms with p1(z)+k:

I: q.,,ybkz + I: q.,ybk-l(y)+l(z),z =
y:l(y):$1(z) y:l(y)>I("')

I: qy.,bky + I: qy.,,bk-l(y)+l(z),y· (5)
y:l(y):$1(z) y:l(y)>l(:c)

From this equation we can derive bkx, for x =f. 0, assuming we have already
calculated bky for y < x and b1y for l < k and sufficiently many y (depending
on the model at hand). This can only be done if the coefficient of bk., is
positive (which is guaranteed by assumption 3.l(iii)) and if qy., = 0 if y > x
and l(y) = l(x) (guaranteed by assumption 3.l(ii)). This procedure can be
repeated until all coefficients which are needed have been calculated.

The bko can be determined from 2:., p., = 1: it easily follows that boo = 1 (if
p = 0 this is the only recurrent state, by assumption 3.l(i)) and that for k > 0

I: bk-l(z),z = 0.
z:l(z)~k

If there is more than one level 0 state (which is the case with multiple recur­
rent classes) each recurrent class should be handled separately.

An important aspect of the method is the choice of l. We already saw that
for specific models l could be chosen in some smart way. However, to show
that the psa is applicable to general Markov processes with a single recurrent
class we have to specify a choice of l which always satisfies assumption 3.1. To
do so, number the states 0,1,2, ... , such that from state n there is a transition
possible to one or more states in {O, 1, ... ,n - 1}. This can be done easily, as
long as state 0 is taken to be recurrent. Now take l(x) = x for each state, and
assumption 3.1 is satisfied.

So far, we have only talked about continuous time Markov processes, and
not about discrete time Markov chains. They can be solved as well, simply by
taking p = 1 in a model with 2:Y q.,y = 1 for each x. The only complication
is that we cannot assume q.,., = 0. However, it is readily seen that the term
q.,,,,bk., cancels on both sides of (5).

3.1 Examples

In this subsection we discuss the choice of l for several well known queueing
models. Note however that for the applicability of the method the actual
transition rate is not important, but just whether it is positive or not. This gives
the possibility to change the models considerably without choosing another l.

Birth-death processes. Let us first consider a class of models which comprise
the models discussed so far, the m-dimensional birth-death processes. Such a

145

process can be seen as consisting of m queues, where arrival and departure
rates depend on the state, and can occur in batches (in different queues simul­
taneously), but in which no arrivals and departures can occur simultaneously,
avoiding transitions between queues. Thus the possible transitions out of x an.•
of the form x -t x+y or x-+ x-y, with y;::: 0 (and x-y;::: 0). We assume that
for each x :f:. 0 there is a y :f:. 0 such that Q:r,z-y > 0. If we take l(.r) = Jxl, it is
easily seen that these m-dimensional birth-death processes satisfy assumption
3.1. It is also a rich class. Not only the examples of section 2, the fork-join
queue and the shortest queue model fall into it, but also the model of [5, 17] and
numerous other models, like single server queues with batch arrivals, belong to
it. Note that in some cases the levels can be chosen more economically, as we
saw for the fork-join model.

Networks of queues. A tandem of queues is an example of a model which
does not fall in the class of problems described above, but where we can take
l(x) = lxl. Indeed, if customers enter queue 1, and join after service queue
2, ... , up to m, then the possible transitions within each level are all of the
form x-+ x - ei + ei+1, giving an ordering within level k: (k, 0, ... , O) -< ... -<
(0,. .. ,0,k).

For models with a more general routing structure, as in Jackson networks,
this does not work any more; cycles within a level become possible. A solution
is to take as state space (x1 + ... +xm,X2 + .. . +xm, ... ,xm), or, equivalently,
to take l (x) = x1 + 2x2 + ... + mxm. For this choice of l we can allow transitions
from one queue to another, i.e., transitions of the form x -+ x - e; + e1 (for
x with Xi > 0), in addition to the batch arrivals and departures from the
m-dimensional birth-death process.

Another approach, which does not fit into the framework of this section, is
when we take again l(x) = lxl, but a transition of the form x -+ x - e; + e;
with i > j gets a factor p. Thus we have given a transition from queue i to
queue j a factor p, although the states lie within the same level. For the other
transitions the factors are taken normally, including the transitions from queue
i to j if i < j. The psa works again in this case, and the ordering within a level
is the same as for the tandem model.

Now we study models where the state of the system is not completely de­
scribed by the queue lengths only: we consider polling models, where the posi­
tion of the server belongs to the state, and models with an additional Markov
process representing the environment (generalizing the arrival or service pro­
cesses).

Markov arrival processes. First consider a single queue with arrivals ac­
cording to a Markov arrival process (MAP). Assume that the states y of the
MAP are numbered, such that the psa can be applied to the Markov process
underlying the MAP, with levels l(y) = y (which gives the restriction that there
must be a single recurrent class). The states are of the form (x, y), with y the
state of the MAP and x the number of customers in the queue. State (x, y)
has level x + y. The only possible transitions within a level are of the form

146

(x, y) -+ (x + 1, y - 1), thus assumption 3.l(ii) is easily satisfied. The same
holds for assumption 3.l(iii), assuring that the psa works for this model. Note
that the rates at which arrivals occur do not necessarily have a factor pin it (as
in the transition above), because the state of the MAP changes also. Only if
the state of the MAP remains the same at arrival instants (the special case of a
Markov modulated Poisson process), then each arrival has factor p. The term
MAP is somewhat misleading, as it suggests that the transition rates within
the Markov process governing the arrivals must be independent of x. As this
is not true, it is perhaps better to speak of an auxiliary Markov process.

General service times. Such an auxiliary Markov process (AMP) can also
be used to model (potential) departures from a queue with Poisson arrivals.
However, when modeling departures, it is more natural to freeze the AMP
(i.e., keep it in the same state until a customer arrives) when the queue is
empty, instead of letting it make transitions without having customers in the
queue to serve. But, as transitions to lower level states must be possible from
each state except 0, it can only be frozen in state 0, which is therefore of the
form (0, 0). Thus the AMP can only be frozen if the transition in the AMP
generating the departure is of the form y -+ 0. If we want to be able to freeze
the AMP in different states, a less obvious choice of levels has to be made.

Polling models. An interesting generalization of an auxiliary Markov process
governing departures (and possibly also arrivals) is to multiple queues. As
Blanc [ID] shows, an important class of models which can then be modeled
are the polling models. In its simplest form, the state of the AMP denotes
the position of the server (i.e., at or between which queues the server is), but
generalizations in different directions are possible, like the AMP denoting the
service phase, or even the number of customers already served at the current
queue, to be able to model for example the limited service discipline. When
the server in a polling system finds an empty queue, the server usually moves
to the next server; therefore the problem with freezing the departure process
occurs only in the single queue case.

3. 2 Memory management

At first sight it seems that what we gain by faster computations is lost again by
the extra memory use, because we increased the dimension with 1. Although
we need some more memory than simple iterative methods, this is usually not
true. If we want to compute the stationary distribution for fixed p or if we want
to compute a function of this distribution (like the moments of the stationary
number of customers) for varying p, we need not keep all bkx in memory.

We approximate the stationary distribution using all terms with coefficients
pk, with k :::; K. Let N = #{xjl(x) :::; K}, the number of states with level
equal to or smaller than K. Assume that the maximum number of levels a
transition can go up is k. It is best to compute the coefficients bkx for constant
value of k + l(x) together. (This has the advantage that the partial sums,
needed for the normalizing equation, can directly be computed and need not

147

be kept in memory separately.) It is clear from (5) that to compute the bk.,
with k + l(x) = n, only the coefficients bk'm' with k' + l(x') = n - k, ... , n - 1
need to be kept in memory. As soon as a coefficient is computed, it is used to
update the partial sums approximating Pm· For example, in the fork-join queue
only two levels are needed, while in the shortest queue model even I level is
sufficient. In total, N(k + 2) numbers need to be kept in memory: Nk for the
already computed coefficients, N for the coefficients now to be computed, and
N for the approximations of the stationary probabilities. (Note that if k > K,
all coefficients need to be kept in memory.)

Now consider the situation that we want to compute a certain performance
measure 1Ef = L:::z: f(x)p:z:, say for various values of p. Instead of having
approximations for each P:z:, we keep in memory the coefficients of the power
series expansion of 1E/. If a coefficient bk:z: is computed, it is added to the
(k + l(x))th coefficient of the expansion of 1Ef. Now, N(k +I)+ K numbers
are necessary. Note that the same performance measure can be computed for
several p. Using this, the coefficients bkx need only to be computed once to
supply the results produced by the psa for the examples of section 2. If we are
only interested in 1Ef for a specific value of p, then N(k + 1) + 1 numbers are
sufficient.

4 CONVERGENCE

In section 2 we saw that the power series expansions of Poo and L in the fork­
join queue converge for all values of p for which the system is stable. However,
in general this need not be the case. This is not surprising: the psa develops
each stationary probability as a power series around p = 0, and the radius of
convergence of such a series is in general unknown. This section is devoted to
the study of the convergence properties.

To illustrate the problems, we consider the shortest queue model in section
4.1, and show that the power series involved do not converge for certain values
of p. To improve the convergence properties we make use of an algorithm
applicable to arbitrary power series, the €-algorithm, which was first used by
Blanc in conjunction with the psa. The €-algorithm is the subject of section
4.2.

In section 4.3 we take a closer look at finite state Markov processes. The€­
algorithm is particularly well suited to deal with this type of processes. Finally
in section 4.4 we use the results to analyze a bounded Petri net.

4 .1 The shortest queue model

In the shortest queue model, we have a Poisson(.\) stream of jobs arriving at
m parallel queues. Each job consists of a single task which is routed to the
shortest queue. In case of a tie, each queue is selected with equal probability.
The server at queue i again has service rate µi. Simply choosing p =). makes
the psa work here. We will not go into all details of the balance equations, but
we just give the equation from which the bkx are derived (for m = 2):

148

(k > O)bk-1,::c + 2: (xi > O)µibk::c =
i=l,2

((x1 >O)(x1 ~x2)+!(x1 =x2+1))bk,:z:-e1 +

((x2 > O)(x2 ~ xi) + !(x2 = X1 + l))bk,::c-e2 +

(k > 0) 2: µibk-1,:.+w
i=l,2

The numerical results for µ 1 = 1, µ2 = 2 and K = 50 can be found in table 2.
For different values of..\, Poo and L = L::c(x1 +x2)P::c, the mean number of jobs
in the system, are computed. Clearly, the power series expansions for ..\ = 1.5
do not converge; in this case the power series expansion of the P::c converges
only if ,\ ~ 1. Note that the stability condition here is ,\ < µ 1 + µ2, thus
the psa does not always give satisfactory answers in the whole stability region.
Elaborate numerical experiments with this model can be found in [4, 11].

,\ actual values K=50
.1 .9279, .0746 .9279, .0746
.5 .6859, .3824 .6859, .3825
1 .4551, .9523 .4550, .8526

1.5 .2806, 1.5401 -29.5875, 30.8450

Table 2. Approximations of Poo and L for the shortest queue model
with µ1 = 1, µ2 = 2

4.2 Thee-algorithm

The e-algorithm was introduced by Wynn (see e.g. [20]) to accelerate the con­
vergence of power series. Given the partial sums Sm = 2:;;'=0 CkPk, a two­

dimensional array with entries e~m) is computed, using the formula

€(m) = €(m+l) + (e(m+l) _ f(m))-1
r+l r-1 r r '

with initial conditions

e~";) = 0, m = 1, 2, ... ,

and

Ebm) = Sm, m = 0, 1,

Now e~m) with r even is used instead of Sm to approximate the limit S 00 • The
numbers e~m) with r odd are only used as intermediate results.

The idea behind the €-algorithm is that e~;') approximates S 00 by a quotient
of polynomials, the numerator of degree m + r, the denominator of degree r,
which are completely determined by the first 2r + m coefficients of the power
series to be approximated. In the cases considered in this paper, the zeros of the

149

denominator apparently converge to the singularities of 800 , thereby extending
the region of convergence.

Although thee-algorithm involves repeated subtraction and division, Wynn
[20] states that it is often remarkably stable. This is in compliance with our
findings.

We applied the psa with the e-algorithm to the shortest queue model of
section 2. The results can be found in table 3. We see that the psa together
with the €-algorithm gives the correct answers for all values of A.

A actual values K = 50
.1 .9279, .0746 .9279, .0746
.5 .6859, .3824 .6859, .3825
1 .4551, .9523 .4550, .8526

1.5 .2806, 1.5401 .2805, 1.5415
2 .1509, 2.7628 .1506, 2.7751
3 0, 00 .0000, 2.28 x 106

Table 3. Approximations of p00 and L for the shortest queue model
with µ 1 = 1, µ2 = 2, using the e-algorithm

· For the models we studied the €-algorithm works very well. However, if
e~rn+l) = e~m) for some values of r and m, problems may arise, because€~~{
cannot be computed any more. A simple example is (1 - p3)-1 , for which
the power series expansion has coefficients 1, 0, 0, 1, 0, 0, Application of the
e-algorithm easily shows what goes wrong. On the other hand, sometimes we
fi d (rn+l) (rn) .r all / Th (rn') · 1 '°'00 k S n e2r = e2r iOr m 2'.: m . en e2r is exact y L.,k=O CkP • ome
special cases for which this occurs are identified in the next subsection.
Remark. Apart from the e-algorithm, a method using conformal mappings
can be applied to improve the convergence properties. It is based on putting
p = 8/(1 + G - GfJ) (with Ga positive constant), and then calculating p,,, as a
power series in 8. Using the notation

00

Px. = 2..::: Uk:z:fJl(x)+k,

k=O

it can be shown that the Uk:z can be computed recursively if the bk:z can be
computed recursively. Moreover, all singularities of the expansion of Px inside
the unit disk (causing the power series not to converge for p = 1) but outside
the disk with center p = 1/2 and radius 1/2, can be removed with such a
conformal mapping. Thus, the psa can again be applied, and the convergence
properties are considerably improved. For more details, see for example [5].

4.3 Finite State Processes

In this section we study Markov processes which have a finite state space, with
N elements. This will allow us to write the stationary probabilities as quotients
of polynomials in p. From this we conclude that the €-algorithm, if applicable,
produces exact results.

150

Let G be the infinitesimal generator of the Markov process, i.e., 9ij = qij if
i =f. j, and 9ii = - I:; % . Construct G' from G by replacing the last column by
e. Then the steady state vector is the unique solution of the equation pG' = eN,
if we assume that the process consists of a single recurrent class. Note that all
elements of G' are polynomials of p.

To compute the stationary probabilities p,,, we can apply Cramer's rule, that
is,

IG~I
p., = IG'I'

where G~ is obtained from G' by replacing the xth row by eN, and where we
denote by I · I the determinant of a matrix. As all entries of both matrices are
polynomials in p, we conclude that p., is a quotient of polynomials in p, i.e., it
is a rational function.

Again, assume that the maximum number of levels a transition can go up is
k. Then all entries are of order S k, and as the last column consists of 1 's, both
determinants are of order S (N - l)k. As it is useless to have more levels than
states, and thus k SN -1, we can assume in general that each determinant is
of order S (N -1)2 •

From [20] we know that e~~) approximates 8 00 with a uniquely determined
rational function where both the numerator and the denominator are of order r.
Thus to compute the stationary probabilities exactly it is sufficient to compute

e;~~-i)'k' If k is small (in most examples we had k = 1), this can often be done,
even for reasonably sized models.

Another interesting implication of p,,, being a rational function is that p., is
analytic in p = 0. Indeed, Pz has a finite number of poles, each of which is
unequal to 0, as Pz = (x = 0) for p = 0. Thus, for p small enough, the power
series converge, without applying the €-algorithm. If p is the traffic intensity
(as it was in most queueing examples), this leads to a light traffic result.

151

Pa

ta

Ps

Figure 1. A stochastic Petri net

4.4 Petri Net Example
To illustrate the ideas from the previous subsection, we analyze the simple
stochastic Petri net depicted in figure 1. We denote its markings with (xi, ... , x5),
where Xi is the number of tokens at place Pi. As initial markings we take
(n, 0, 0, 0, 0), for various n. This marked graph is live and bounded, and
to represent its reachability set we can restrict ourselves to (x1, x2, xa), as
x4 = n - x 1 - x2 and x5 = n - x 1 - X3. Transition ti has an exponential firing
time with rate >.;.

Note that this Petri net is strongly related to the fork-join queue. Indeed,
transition t 1 corresponds to the fork primitive. Transitions t 2 and ta correspond
to the distributed processing of the tasks, and transition t 4 is only enabled if
there is both a token at P4 and at Ps, that is, if a job has finished service in
the fork-join queue. Thus, in queueing terms, the Petri net exists of a closed
cycle of three centers, one of which is a fork-join queue, and two of them are
simple single server queues.

To apply the psa, we have to partition the state space into levels. We took
as levels l(x1, x2, xa) = n - x1. Consequently, transition t1 gets a term p, thus
>.1 is replaced by p.A1 . Equation (5) becomes:

bk:t{.A2(x2 > 0) + ,\3(X3 > 0) + ,\4(X1 + X2 < n, X1 + X3 < n)}+

bk-1,.,>.1 (x1 > 0, k > 0) =
bk,(o: 1 +1,xrl,o:s-l),\l(x2 > O,x3 > 0)+

bk,(o:i,o: 2+1,,,3)A2(x1 + x2 < n) + bk,(o:i.o:2 ,., 3 +i)Aa(x1 + X3 < n)+

152

bk-1,(:c1 -1,:c2 ,:c3)A4(x1 > 0, k > 0).

We are interested in the throughput of the system, i.e., the average number
of firings of t 1 per unit of time. This is equivalent to computing the stationary
probability of having 0 tokens in P1 (denoted by p), as the throughput is equal
to (1 - p)A1.

First we computed the coefficients of the power series of p. Asp= 2:., +:c <n 2 3_

P(O,:z:2,:z:3), this is the sum of the stationary probabilities of all level n states.
Thus, the first n coefficients of this power series are 0. There are no transitions
2 or more levels up, and therefore only 2 arrays the size of the state space
(which is N = 12 + 22 + ... + (n + 1)2 = (n + l)(n + 2)(2n + 3)/6) and 1
array with the coefficients of p need to be kept in memory, according to section
3.2. After computing all coefficients of p up to a certain K, we applied the
i:-algorithm, after omitting the trailing zeros. To apply this algorithm, 3 arrays
of size K have to be stored.

Typical output for Ai = 1 and n = 3 (30 states) can be found in table 4,
where f~m) can be found for the series without trailing zeros. For reasons of
space we left out the E~m) with m > 7.

m = 0 6

,. = 0 6.125000 -8.593750 l.455729 0.643993 51.176851 -128.409830 99.173984

-0.067941 0.099508 -1.231927 0.019789 -0.005668 0.004394 -0.008778

-2.621754 0.704660 l.442896 11.740703 -28.031678 23.265298 75.427968

3 0.400132 0.122653 0.116897 -0.030711 0,023892 0.010389 -0.080896

4 -2.899217 -172.300284 4.966029 -9.717844 -50.802362 64.473330 76.329890

0.116750 0.122538 -0.098813 -0.000448 0.019064 0.003445 -0.009733

0.448322 0.448332 0.448334 0.448328 0.448333 0.448330 0.448332

1.03 x 106 6.14 x 105 -1. 73 x 105 l.78 x 105 -2.56 x 105 4.30 x to5

0.448334 0.448332 0.448331 0.448331 0.448331

-1.14 x 104 -7.77x105 2.38 x 106 -6.91 x 106

10 0.448331 0.448331 0.448331

11 -2.96 x 10 7 3.65 x 10 7

12 0.448331

Table 4. Approximations f~m) of p for the Petri net example
with Ai = 1 and n = 3

-14. 747156

0.002312

63.409885

-0.003497

-84.021912

0.002105

The table shows some interesting phenomena. As r gets large, for r even, the
approximation gets better. Note that as E~rn) gets close to E~m+l) for r even,

then €~~1 (which is only used as intermediate step, as r + 1 is odd) gets very
large. This does not lead to numerical instabilities (at least not in this case),
as can be seen from the table. Even if we take r very large, we find the correct
answer: e.g., €~~~ = 0.448331.

Note that, as k = 1 and the number of states is 30, €~~) should give the
correct answer (and it does: 0.448331).

In the following table results are given for various values of n. The first
column gives n, the second the total number of states N, the third the computed

153

value of p, and the fourth the 1 t al f .r • (O)
"th . . owes v ue o r wr which fr approximates p

wi a preciswn of 5 digits. Note that this value of r is considerably lower than

~(N_ - ~),the value for which i:J0 > = S00 • This is done again for..\; = l. A

mdicat1on that the approximation is close are the values of f:~ml for r if
they are big E(o) · 1 "' (o)

'. r+l is c ose. .i.o compute Er for n = 100 and for r up to 500
took ~ 15 mmutes on a fast workstation.

n N p r
1 5 .714286 2
2 14 .551546 6
3 30 .448331 8
5 91 .325768 16
10 506 .193286 30
25 6201 .087018 82
50 45526 .045405 198
100 348551 .023207 382

Table 5. Approximations of p for the Petri net example
with .X; == 1

For n = 1 the computation of the bkx can easily be done
we find (for general firing rates) that p = a - a 2 p + ... , with

>..1(.A.2 + A3 + 3>.4)/((>..2 + A3)A4). If we apply the f:-algorithm once,

compute E~m), we find that f:~rn.) = o:(l + np)- 1 for an m. Thus if

take A; = p = 1, we get p = ¥ ~ 0.714286, coinciding with our numerka.l
results.

5 LITERATURE

The psa was introduced in Hooghiemstra et aL , where it is a
pled processor model, which is a special case of tlw m-dimensional birth·d('ath

process discussed in section 3. l. (They assume arrivals and
and they have some restrictions on the summed transition rates.
model it is shown that the psa can be applied and that Jl:r is
giving a light traffic result (as p was taken to the arriw1.i

Next Blanc started to work on the psa, resulting in a series of µap1c 0 rs w1.t

various co-authors, [2, 4, 5, 6, 7, 8, 9, 10, 11, 12. 1:3. 1-t Th<' cu11v1:rgi·m·1·

properties being the main hurdle for the application of the
ious models, [5] proposes the use of conformal mappings \bas<,d un a
communication with Keane, Hooghiemstra &: Van de Ree), and 11. ~lK·

cessfully to a few models. More extensive computations nn mw nf these models ..

the shortest queue model, can be found in [4]. The coupled processor mod..! :-.

studied again in [6].
The i:-algorithm is first used in [7], for a type of multi-dinwnsional queut··

ing model in which the server cyclically visits all queues, sen·ing a
number of customers (if available) at each queue. This is called a Bernou!!i
schedule. There are no switching times, resulting in a single level 0 state. :\!so

the shortest queue model is studied again ([11]), now with the ~-algorithm.

154

In Blanc [10] a multi-dimensional queueing model is studied, where the ar­
rivals and departures (which occur one by one) are governed by an additional
state component. The transition rates are allowed to depend on the entire
state of the system, and arrivals and departures occur simultaneously with
state transitions of the extra component. Many polling models fall into this
framework. Denote, like we did for the polling model of section 3.1, the state
with (x, y). Blanc takes as levels l(x, y) = jxj. Because of the transitions in the
AMP, the bk,(:i:,y) cannot be solved recursively, but for each level there remains
a set of equations, as many as there are states in the AMP. By solving this
set of equations for each level, a solution is found. (Note the difference with
the method proposed for these types of models in section 3.1.) The method
proposed in [10] is applied to various polling models in Blanc [8, 9, 10], Blanc
& Van der Mei [13, 14, 15], Altman et al. [2] and Altman [l]. A model with
a single queue and batch arrivals is solved in a similar way in Van den Hout
& Blanc [18]. In [13] it is shown that the psa can also be used to compute
derivatives in addition to steady state probabilities. This is used to compute
optimal values for certain system parameters.

A recent and fairly complete overview of Blanc's work on the psa is [12].
Bavinck et al. [3] study the coupled processor model with 2 queues, equal

arrival rates in both queues, and a server that serves both queues with rate
µ/2 if x > O; if one queue is empty it serves the other queue with rate µ. For
this model the coefficients on the diagonal, i.e., the numbers bk., with x1 = x2,
are computed explicitly, and error bounds are derived.

In a way closely related to the psa Levine & Finkel [19] study the optimal
routing for a queueing model. They write the discounted costs under each
policy as a power series of the arrival rate to the system, and derive the first
few terms using the optimality equation for the system. This leads to optimal
policies under low (and in a similar way, high) traffic.
Acknowledgement. I like to thank Prof. J.W. Cohen for many interesting
discussions on this subject.

REFERENCES

1. E. Altman. Analysing timed-token ring protocols using the power series
algorithm. In Proceedings of the 14th International Teletraffic Conference,
1994.

2. E. Altman, J.P.C. Blanc, A. Khamisy, and U. Yechiali. Polling systems with
walking and switch-in times. To appear in Stochastic Models, 10, 1994.

3. H. Bavinck, G. Hooghiemstra, and E. de Waard. An application of Gegen­
bauer polynomials in queueing theory. Journal of Computational and Ap­
plied Mathematics, 49:l-10, 1993.

4. J.P.C. Blanc. A note on waiting times in systems with queues in parallel.
Journal of Applied Probability, 24:540-546, 1987.

5. J.P.C. Blanc. On a numerical method for calculating state probabilities for
queueing systems with more than one waiting line. Journal of Computa­
tional and Applied Mathematics, 20:119-125, 1987.

155

6. J .P.C. Blanc. A numerical study of a coupled processor model. In G.

olla, P.J. Courtois, and O.J. Boxma, editors, Computer reru1n1uu1N· and
Reliability, pages 289-303. North-Holland, 1988.

7. J.P.C. Blanc. A numerical approach to cyclic-service
Queueing Systems, 6:173-188, 1990.

8. J .P.C. Blanc. The power-series algorithm applied to
Stochastic Models, 7:527-545, 1991.

9. J .P.C. Blanc. An algorithmic solution of polling models with limit~'d
disciplines. IEEE Transactions on Communications, 40:11521155. Hl'fn.

10. J.P.C. Blanc. Performance evaluation of polling mettns

power-series algorithm. Annals of Operations Research, 35:155

11. J.P.C. Blanc. The power-series algorithm applied to the snciru:zi<·rrni·.'ne

model. Operations Research, 40:157-167, 1992.
12. J .P.C. Blanc. Performance analysis and optimization with the nnw<"l'·"'nu""

algorithm. In L. Donatiello and R. Nelson, editors, rFru'"'''i."'~""'
of Computer and Communication Systems, pages 53- 80.

1993. Lecture Notes in Computer Science 729.
13. J.P.C. Blanc and R.D. van der Mei. Optimization of

means of gradient methods and the power series
port FEW 575, Tilburg University, 1992.

14. J .P.C. Blanc and R.D. van der Mei. Optimization of
Bernoulli schedules. Technical Report FE\V 563,

15. J.P.C. Blanc and R.D. van der Mei. The power series
polling systems with a dormant server. In J. Labetoulle and J. W

editors, The Fundamental Role of Teletroffic in the Euolution
munications Networks, pages 865--874. Elsevier, 1994.

16. O.J. Boxma, G.M. Koole, and Z. Liu. Queueing-themet.ic S<)lutim1

for models of parallel and distributed systems. In: These nr.n•·•,..,1

17. G. Hooghiemstra, M. Keane, and S. van de Ree. Power series
ary distributions of coupled processor models. Sl.4.M Jourm:i.l

Mathematics, 48:1159-1166, 1988.
18. W.B. van den Hout and J.P.C. Blanc. The power-series

to the BM AP\PHll queue. Submitted for 19t13
19. A. Levine and D. Finkel. Load balancing in a multi-server

Computers and Operations Research, 17:17--25, 1990.

20. P. Wynn. On the convergence and stability of the
Journal on Numerical Analysis, 3:91-122. 1966.

Sill

