
e> Pergamon
Computer8 Math. Applic. Vol. 30, No. 11, pp. 9-23, 1995

Copyright@1995 Elsevier Science Ltd
Printed in Great Britain. All rights reserved

0898-1221(95)001'0-3
0898-1221/95 $9.50 + 0.00

Step-Parallel Algorithms for
Stiff Initial Value Problems

W. A. VAN DER VEEN
CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

(Received May 1995; accepted June 1995)

Abstract-For the parallel integration of stiff initial value problems, three types of parallelism
can be employed: "parallelism across the problem," "parallelism across the method" and "parallelism
across the steps." Recently, methods based on Runge-Kutta schemes that use parallelism across the
method have been proposed in [1,2). These methods solve implicit Runge-Kutta schemes by means of
the so-called diagonally iteration scheme and are called PDIRK methods. The experiments described
in [l], show that the speedup factor of certain high-order PDIRK methods, is about 2 with respect
to a. good sequential code. However, a disadvantage of the high-order PDIRK methods is, tha.t a
relatively large number of iterations is needed for ea.eh step. This disadwntage can be compensated
by employing step-parallelism.

Step-parallel methods a.re methods in which a number of steps are treated simultaneously. This
form of parallelism can be applied to any predictor-corrector method. A common feature of this
approach is their poor convergence behaviour, unless the various strategies are carefully designed. In
this pa.per, we describe two strategies for the PDIRK across the steps method. Example problems
tested in this pa.per show for the best strategy, a speed-up factor ranging from 4 to 7 with respect to
the best sequential codes.

Keywords-Numerical analysis, Runge-Kutta methods, Parallelism.

1. INTRODUCTION

In the literature, several step-parallel methods for integrating stiff initial value problems of the
first-order form

y'(t) = f (y(t))' y(to) =Yo, y(t), f (y(t)) E Rd

have been proposed. Here, a step-parallel method is understood to be a method that computes
concurrently solution values at different points on the t-a.xis. Such methods are usually based on
the iterative solution of an implicit step-by-step method. The conventional approach iterates until
convergence at a particular point on the t-axis before advancing to the next point on the t-axis.
Step-parallel methods, however, already start the iteration process at the next point before the
iteration at the preceding point has converged. In a step-parallel method we distinguish three
main components:

(i) an implicit step-by-step method (the underlying corrector tha.t we want to solve),
(ii) an iteration process (the underlying iteration scheme) that is applied at each time point,

and
(iii) a strategy that determines when it is safe to advance to the next point on the t-a.xis, and

at the same time provides an initial guess (the advancing strategy).

The research in this pa.per was supported by the Technology Foundation (STW) in The Netherlands.
The author wishes to thank P.J. van der Houwen and B.P. Sommeijer for their help during the preparation of this
paper.

9

10 W. A. VAN DER VEEN

Step-parallel methods go back to Miranker and Liniger (3] in 1967 who based their method on
predictor-corrector iteration of Ada.ms-Moulton correctors. Since then, several of such methods
have been proposed. For example, one of the recent step-parallel methods that has been developed
is the method of Bellen and coworkers [4,5] which is based on Steffensen iteration (see also [6]).

A common feature of step-parallel methods is that they require a carefully designed advancing
strategy in order to ensure convergence, and if convergent, they often require an excessive number
of iterations per time point. So the challenge is to design an advancing strategy that is both
efficient and reliable with respect to convergence (robustness). Our purpose is to develop a
strategy that is sufficiently robust to integrate large problems arising from control engineering
and circuit analysis.

The step-parallel method developed in this paper uses the 4-stage Radau IIA method as its
corrector. This classical Runge-Kutta (RK) corrector has order p = 7 and is L-stable. For the
underlying iteration process, we have chosen the Parallel Diagonal-implicit Iterated Runge-Kutta
scheme (PDIRK scheme) proposed in [l]. The PDIRK scheme has a lot of intrinsic parallelism,
that is, it is a method-parallel scheme. It solves the Radau IIA corrector by means of a so
called diagonal iteration process which enables parallelism across the stages. In a performance
analysis given in (1], it was shown that already without step-parallelism, PDIRK based on the
4-stage Radau IIA corrector is a factor two faster than LSODE. The purpose of this paper is to
decrease the effective number of iterations per point by adding an advancing strategy to obtain a
step-parallel method. Consequently, we shall measure the performance in terms of these effective
iterations.

In [7], we already described a first version of an advancing strategy. This first version did not
include a stepsize mechanism and could only be applied to simple test problems. For a number
of sufficiently simple test problems we obtained speed-up factors with respect to LSODE ranging
from 4 to 7. Furthermore, in [8] we derived convergence results for the step-parallel iteration
process and we proved that it has the same stability and order properties as the underlying
PDIRK scheme.

In Section 2 of the present paper, we briefly describe the underlying PDIRK scheme and in
Section 3, we give an exposition of the parallelism-across-the-steps mechanism. In Sections 4
and 5, we specify two advancing strategies (including stepsize mechanisms), respectively based
on extrapolation of previous information and on backward differentiation formulas. Finally, in
Section 6, we shall examine the performance of these advancing strategies for various, relatively
difficult test problems. It turns out that the extrapolation-based advancing strategy is the most
robust and efficient one yielding speed-up factors ranging from 4 to 7 with respect to LSODE.

2. A BRIEF INTRODUCTION TO THE PDIRK METHOD
The PDIRK method is a parallel method for solving the implicit Runge-Kutta corrector equa~

tions, in the case of stiff initial value problems. We shall only consider PDIRK methods that are
based on the class of L-stable, stiffly accurate implicit Runge-Kutta methods. This class contains
methods of arbitrarily high order.

A Runge-Kutta method approximates the solution in s points all in the interval (tn, tn+d·
These s point are given by

i = 1, ... , S, hn+I = tn+l - tn,

and are called stage points. The approximation in the stage point tn + cihn+l is denoted by
Yn+l,i and is called stage value. Using the s stage values, an approximation to the solution in
the step point tn+l is obtained. This step point value is denoted by Yn+l· In the case of stiffi.y
accurate methods, the step point value Yn+i is the last stage value Yn+I,s (c8 = 1). For compact
notation, the s stage values are combined in an sd-dimensional stage vector Yn+l = {Yn+l.i)· For
notational convenience only, we assume d = 1 in the formulas below, but in our discussion we

will take into a.ct·ount that we deal with nmMicalar equatwns. In terms of the stage vector Y,,+ i.
the is

H- + + fl :; 0, l," , \ 1\' - l, (1}

s matrices and F(r~,+d contains the derivatives f(Y,.+ Here A
parameten; and E is

With respert to the stage vector we remark that the
stage value is given = !Jo.

The non linear '"ll'"'"'u" (1) is solvt>d by a Newton-like metho<l,

Y,?+ 1 to be defined

y'-1 I n~ l = v:+ l - (

the predictor formula,

value is needed. This

(2)

(3)

In the iteration index J runs from l to m. In practice, m will be determined dynamically,
so that it depends on n, m = The matrix I is the s-dimensional identity matrix. A
reasonable choice for the predictor formula is an extrapolation formula of order s. The matrix
J,, represents an approximation to the Jacobian of f at Yn and the matrix D is a fixed diagonal
matrix, that is chosen such that the iteration errors of the stiff components in the numerical
solution are strongly damped [l where Dis chosen such that p(l - v- 1,4) ~ O). The
iteration scheme a.rises by replacing in the modified Newton method the matrix (I -
h,.+ 1 - 1 by (l - hn+nDJ,.)- 1. In this type of iteratkm scheme was called the diagonal
iteration scheme. Finally. we describe how m is determined dynamically. First we introduce the
defect defined by

a(u, (4)

Here uround and Toi denote the unit round off a.nd the limit for the local error estimate. respec
tively. The smallest value of J for which the inequality

.J - yJ
Yn+l - n+l,s•

is satisfied, is denoted m. The parameter Tolcorr is supplied by the user.

(5)

If d > 1, then D, E. A and J,. are replaced by the block matrices: D ®Id, E ©Id, A® la and
Is® J.,. Here, ®denotes the Kronecker product defined by A® B = (A;jB).

Let us consider the computational aspects of the iteration scheme (2),(3). Since Dis a diagonal
matrix, the s components Y~+i.i• a = 1, ... , s, can be computed independently from each other,
so that they become available simultaneously. We shall assume that these s components are
computed at the !Same time on s processors. This concurrent treatment of all s stage points is
an example of parallelism across the method, or more specifically, parallelism across the stages.
Moreover, we oo longer solve a linear system of order sd, but we solves linear systems of order d.
Obviously, they can be solved simultaneously using the s processors. These stage-parallel methods
are called parallel diagonally iterated Runge-Kutta (PDIRK) methods.

12

For PDIRK met.bods based on Rada.u HA with s = 11 2, 3, 4, it was shown in that their
o.vil'"'"""'"'"'" to the t£st y' ""' (using fixed M iteration process th11.t is
convergent for every A in the left half plane. these PDIRK methods and the corre-
ov•L•uuu•,.. Radau HA correct-Ors ha.~ the same accuracy and properties, provided that

sutnciently small. the PDIR.K methods tum out to be much than
the implicit Runge-Kutta. methods. This can be explained the fact that for PDIRK the
linear algebra c&kula.tions per iterl!l.tion are much Experiments reported in show
that PDIRK based on Rad.au HA (s = 4) is two times more efficient than RADAU5 same
spt>ed-up factor was found with respect LSODE). A disadvantage of PDIRK methods is that the
number of required diagonal iterations per interval is about the order of the method. Hence, for
a high-order PDIRK-method (such as PDIRK based on Ra.dau UA with 4 stages), a rela.tiveJy
large number of iteeratlons is necessary in ea.eh interval. This is where parallelism across the steps
can be exploited.

3. PDIRK ACROSS THE STEPS
We shall obtain a step-parallel scheme by modifying the PDIRK iteration scheme. In the

PDIRK methods, the iteration process in a point on the t-axis must be completed, before iter
ations are started in the next point. Instead, step-parallel methods start iterating at the next
point, before the iteration process in the preceding point has been completed. An advancing
strategy will determine for every point when the current iterate is good enough for providing an
initial guess and to start iterating in the next step point. As soon as this happens, the iterates
in these two subsequent step points are computed simultaneously. In this section, we shall de
scribe a step-parallel method based on PDIRK. This method is called PDIRK Across the Steps
(PDIRKAS). In Section 4 and 5, we shall discuss two advancing strategies.

In the following. we use the notation!.,.= (t,._1,tnl· In the PDIRK iteration scheme (2),(3),
step-parallelism cannot be used, bocause in order to calculate the iterates Y~+" j = 0, 1, ... ,
the finally accepted iterate r~ "'"' }';.,""{n) is needed. To enable the simultaneous computation of
iterates in the intervals I,,+ 1 and J,.., the ite.rations in the interval I.,,+ 1 are started as soon as the
iterl!l.te in interval I .. is good enough. Let this iterate be denoted by y{(n). For obtaining the
corresponding step-parallel iteration scheme, we replace in (3) Y,, by y[inl+;-I. The result of
these changes is

Y~+l to be defined by the predictor formula,

vJ _ vi-1 _(I_,,, DJ)-1 (y;-1 -· EY1"(nl+1-1 _ h . AF (y;-1)) In+1 - ~n+l '"n+l n n+l n n-;-1 n+I ·

(6)

(7)

Here j ranges from 1 tom, where m is the smallest iteration index j for which the inequality (5)
is satisfied. The iteration index j•(n) determines how many iterations must be done in the
interval In, before the computation of the iterates in InH is started. We have shown 18], that if j*
is independent of n, then the iteration process (6),(7) applied to the test problem 1/ = >.y, t E !O, TJ
converges, whenever the PDIRK iteration process (2),(3) converges. For a convergence analysis of
PDIRK methods v.-e refer to [2]. For small values of j", the convergence of PDIRKAS ca.n be quite
slow or there can be even initial divergence. This is partly due to the bad initial convergence
behaviour in PDIRK. In view of this, r will be determined dynamically. Consequently, j*
depends on n.

For the predictor formula we have considered t\llt"Q cases: in Section 4, we discuss a predictor
that is based on extrapolation of recent iteration results, i.e., r:?+i == Extrapolation (n·(nl).
Another option is to generate predictions by means of a separate stiff solver; this case will be
discUlSBed in Section 5. In both cases these predictions are almost for free. This is obvious for
the extrapolation predictor, whereas the stand alone integrator can calculate its predictions on s
processors concurrently with the iterations in the interval In.

Step-Parallel Algorithms 13

Suppose that the iterate y[(n) has just been calculated. In the next period the following
iterates are computed concurrently

Y{(n)+l = Y{(n) - (J - hnDJn-1)-1 (Y{(n) - EY~~~n-I)+r(n) - hnAF (Y{(n))),

and
y;+I = Y,?+l - (I - hn+IDJ.,..)- 1 (Yr?+l - EY[<n) - hn+IAF (Y,?+l)).

Notice that both computations use y{{n). Hereafter, for j = 2, ... , m, the iterates

Y{(n)+j = Y{(n)+j-I - (I - hnDJn_i)-1

x (yF(n)+j-1 - EYj*(n-l)+j"(n)+j-1 - h AF (y/(n)+j-1)) n n-1 n n ,

Y J - Y 1- 1 (I h DJ)- 1 (yj-l EYJ°(n)+j-l h AF (Y1- 1)) n+I - n+l - - n+I n n+l - n - n+l n+l '

are calculated concurrently until the iterate in In satisfies (5). Note, that both calculations use
y[(n)+j-l. Similarly, y[<n)+i and the iterate Y~~\n-I)+j'{n)+j a.re computed concurrently in
ea.eh period. Applying this several times we see that the iterates y[<n)+J, Y1~\n-I)+j'(n)+J, ... ,
are also computed simultaneously with YJ. Notice that as j*(n), n = 1,2, ... ,N, is smaller,
more intervals are treated simultaneously. The average number of intervals that are being treated
simultaneously depends on the number of iterations needed by PD IRK. The number of iterations
per interval needed by PDIRKAS is higher than that for PDIRK. However, for PDIRKAS many
iterations in an interval are done simultaneously with iterations in other intervals, resulting in
significantly lower effective costs.

In the PDIRKAS iteration process each interval under treatment requires the use of s proces
sors, for calculating the s stage values at the same time. If in an interval, the current iterate
satisfies (5), then the s processors corresponding to that interval are assigned to the first interval
at the right where the iteration process has not been started yet. Note, that PDIRKAS uses both
parallelism across the stages and parallelism across the steps.

The choice of the mechanism for determining j*(n) and the predictor formula compose the
advancing strategy. Furthermore, these choices determine whether PDIRKAS is robust and
efficient. For instance, if j*(n) is small, then PDIRKAS may become divergent. This can be due
to bad initial guesses. Moreover, the stepsize mechanism will be bad if it uses the initial guesses.
If the predictor does not depend on y[<n) or if the initial guess is good then divergence can still
occur in PDIRKAS by the amplification of iteration errors as was shown in [8]. Nevertheless,
a lot of step-parallelism is used. On the other hand, if j*(n) is relatively large, then we have a
robust method, using step-parallelism only modestly. In order to develop efficient step-parallel
methods the underlying strategy must be designed carefully.

The predictor to be discussed in Section 4 uses Y{ (n). An appropriate advancing strategy
has to ensure fast convergence of the PDIRKAS iteration process as well as to yield a good,
high-order local error estimate (the corrector we solve is an high-order method). In this case the
iteration index j*(n) will be the smallest j for which the iterate YJ is sufficiently accurate. The
predictor to be discussed in Section 5 is given by a stand-alone stiff ODE solver. Here the ma.in
purpose is to ensure a good convergence of the PDIRKAS iteration process. In the last case, the
initial guess Yr?+I no longer depends on iterates in the interval In. So, we have much freedom
in choosing a criterion for j*(n). For instance, j*(n) can be based on the iteration process in
interval In-k, with k a small positive integer.

We have selected the following two predictor formulas:
• Y,?+1 is the extrapolation of orders using y[(n)
• Y,?+ 1 is the result of the application in the stage points of the 2-step Backward Differentia

tion Formula (BDF) using EY,? and EY:;_ 1. The computation of Y:;+ 1 is done concurrently
with the first j*(n) iterations in interval In·

14 '~'. A VAN DFA VEEN

With these two choices for the predictor, along with their definitions of r(n), we have two
PDIRKAS strategies. In the next two sections we will give the complete description of these two
strategies.

In this paper, we shall restrict our considerations to the oomputational complexity of the method
on a parallel computer. Communication issues will be subject of a future paper. The computa
tional complexity will be referred to as "the effective costs", and will be expressed in terms of
d-dimensional diagonal iterations (see (3)). In calculating the effective costs, all d-dimensiona.I
iterations that can be done simultaneously are counted as one. In particular, the effective costs of

t . yi vJ"(n)+j y;•(n-l)+]ln)'J · · · f a: · o · compu mg n+pin , n-I , ... , is JUSt one umt o euectlve costs. ror measuring
the effective costs we have run an implementation of our step-parallel method on a sequential
computer while keeping track of the computational complexity as if it had been executed on
a parallel computer. In a forthcoming pa.per we shall report on the performance of an actual
implementation of our step-parallel method on a parallel computer, including communication
effects.

Having described the step-parallel method, we shall discuss what type of parallel computer is
most suitable for implementing PDIRKAS. We can exploit two kinds of parallelism: parallelism
across the stages, and across the steps. For parallelism across the stages, s processors are needed
to compute in every iteration step Y~+l,i• i ""' 1, ... , s. After each iteration, the new stage values
must be broadcasted to the other s -1 processors. Because of the many communications, a sha.red
memory system is appropriate. For using step-parallelism, we can employ a. cluster of such shared
memory systems. In this type of parallelism, each system has to communicate information to
only one other system.

4. PDIRKAS USING THE EXTRAPOLATION PREDICTOR
In this section, we describe the strategy for the PDIRKAS method, that uses for the predictor

the extrapolation formula of orders. This strategy will be referred to as PDIRKAS(EXT). First,
we shall give the predictor formula, followed by the mechanism for determining j*(n).

The initial guess Y~+ 1 is given for n 2'. 1 by the extrapolation formula of order s

.,-o _ E y;"(n) r..;:+1 - n+l n ,

where En+I satisfies the order conditions

hn+l
rn = -h-,

n
k = 0, 1, .. . ,s - 1.

Here c = (c1, •.• , c8) T and e is the s-dimensional vector with unit entries. This gives

En+1 = vu- 1 , U := (e,c-e, ... ,(c-ey- 1), V :=: (e,r,..c, ... ,(rnc)'- 1).

To calculate Y.?+i •the steplength hn+ 1 and j*(n) are needed. Having given the predictor formula.
for Y:+ 1 , there remains the mechanism for determining j• and hn+l ·

First, we shall describe how p(n) is determined using the iterates in the interval In and in
the previous intervals. Because the iteration process in interval. 11 is a PDIRK iteration process,
the definition for j*(l) differs from the general case. Unless mentioned otherwise, we assume
that n 2:: 2. Since the initial guess Y~+l depends on y{(nl, the iteration index j*(n) will be the
smallest value of j for which Y.t is "sufficiently accurate". More precisely, the iteration index
j*(n) is the smallest value of j, for which YJ satisfies a number of criteria. The first criterion is
that YJ approximately solves equation (1) and reads

res(Y,?, n, j) < Pab<i Tol,

15

with Pai:... a parameter. denotes the residue of with respect to (l)
at time n and iteration level j and is

B, 1 + h,,e~ AF(B)) .

Here, tht\ defect ,6.(·, ·) is

simultaneously with
by and B is some a1>proximation for Y,, that is computed

1l. We need an a.dditlona.1 criterion, because the first one does oot
lead to good local error estimates.

For the choice of the second criterion we make use of the following observations. It is very
possible that the initial iteratt~ in an interval are com-erging too slowly, or that there i.s a slight
initial growth of the iteration error. This last phenomenon already occurs for the test problem
y' = for certain values of). in the left half plane [7,8]. Therefore, in the beginning of the
iteration process in interval 111 , the information in the interval J11 _ 1, (e.g., YE\n-ll+j) is much
more reliable than information in the interval I,. (e.g., Y,:f).

In order to decide whether r';f is good enough, we compare it with an alternative a.pproximation
for Y,.. Considering the observation just a suitable alternative (or reference) approximation
to Yn is provided a very cheap separate method, that only uses the most recent information in
the interval I~,. 1 . We have taken as a reference solution the st.h order extrapolation of the iterate
in the interval 1 that is calculated simultaneously with Y,i. This updated initial guess for Y,.
will be denoted by G~, and is defined by E,..}·~:\" l)i-J, and will be computed for j = 1, .. .,j•(n}.

AB long as YJ yields a larger residue than G{, the iterate Y,i is not sufficiently accurate and
the iteration process in 1,,+1 is not started. So the second criterion is given by

res{Y~,n,j) < Pretres(G;,,n,j),

where p,..,1 E l) and res(G~, denotes the residue of c;, given by

In conclusion, we take j*(n) to be the smallest iteration index j satisfying

(8)

with ')' = l and as a precaution we impose in the interval In-l a similar condition with "f = 0.5.
There are situations where it takes a lot of iterations to satisfy these criteria, while the con

vergence is good. This happens, for instance, if the defect il(yJ, yi- 1) is small and res(YJ, n,j)
is large. To deal with these cases, Y,{ is also considered to he sufficiently accurate if the defect
,6.(ilf,,y~- 1) is less than min(10-<>, 10-31bl).

The role of the parameters Prel and Pa.bs is discussed below.
If n = 1, then we take Y~ .• = vo for i = 1, ... , s, and we define j*(l) to be the smallest value

of j ~ 2 for which
. l

D.(y{, y{-) < Toh

holds. Here Tul1 is a method parameter with default value 10-4 . From now on we assume that
n 2: 1.

Let us consider step rejection in PDIRKAS(EXT). Although several intervals a.re treated simul
taneously, we shall only reject steps in that interval, where the iteration index j does not exceed
j*. Assume that this is the interval I.,.. The step h,.. is rejected if either the local error estimate is
larger than Tol or if the convergence is too slow. If the step is accepted then the iteration process
in interva.l InH is started, and this is the step that can be rejected. The local error estimate is
only calculated when the iterate is sufficiently accurate. Therefore, step rejection due to a too
large local error can only occur for j = j*(n). On the other hand, it may happen that there is

16 W. A. VAN DER VEEN

slow convergence. To avoid this, we shall halve the step in the interval In when a.t least one of
the following conditions is violated in the interval In:

• r(n)::; maxj*,
• res(Y~,n,j) < reslim, for j > jconv,
• ~(y~,y~- 1) < 1, for j ~ 2.

Here j assumes a.11 values for which YJ is not sufficiently accurate. Furthermore, maxj*, res lim
and jconv are method parameters (see Section 6 for their values). In view of the possible initial
growth, the integer valued para.meter jconv should not be too small.

Finally, we describe how hn+l is obtained. As an indicator for the behaviour of the local error
in the corrector we take

err = { ~(yfCn>,e;Gf(n))
n (··c1) 1) ~ Yl ,Y1

if n > l

if n = 1,

which is of order s. If errn <Toi, then the step is accepted a.nd hn+l is given by

hn
hn+1 = (()) . max 0.6, min 3.0, (1/0.8) y'(errn/Tol)

(9)

Conversely, if errn ;?:: To! then the step is rejected and (9) is used as the new steplength. Having
described PDIRKAS(EXT) we discuss the role of Pre! and Pa.bs. These parameters determine j* (n)
and, therefore, the stepsize a.nd the convergence of the PDIRKAS iteration process. For sma.11
values of Pre! and Pabs• j*(n) will be relatively large. Consequently, the local error estimator is of
good quality resulting in a relatively small number of steps. However, less intervals are treated
simultaneously. Hence, small values of the parameters leads to inefficient strategies. On the
other hand, if these two values are large and, therefore, causing j*(n) to be small, PDIRKAS
may become divergent, because the initial guesses steadily deteriorate. Furthermore, the local
error estimate gets worse as the parameters become larger, with the effect that more steps are
needed to achieve a certain accuracy. However, the amount of step-parallelism is relatively high.
So there are optimal values of the two parameters, that give the required accuracy at a minimal
effective cost. Experiments show that the performance is not sensitive to small changes in the
two parameters. Moreover, the optimal values are more or less problem independent. In our
implementation with the Rad.au IIA corrector, we have taken Pabs = Pret = 0.5.

Experiments show that the number of intervals that a.re treated concurrently may become
large (up to 30) temporarily. However, most of the time the number of intervals under concur
rent treatment is only a fraction of this. We will describe a bound K for this number. As a
consequence, the conditions (8) may be satisfied while the number of processors in use equals
the number K. This forces the method to continue the iteration, thus increasing j*(n). The
resulting PDIRKAS(EXT) algorithm is denoted by PDIRKAS(EXT,K). Only for small K (say
between 1 and 8) this restriction alters the value of j* significantly.

Next, consider the effective costs. A straightforward implementation on a parallel computer
yields an effective cost of j*(n) + 1 units in the interval In. Assume that Y~~\n-l) and Y~ have
just been calculated. First, the iterates Y~,j = 1, ... ,j*(n) are computed. When this has been
done, the PDIRKAS method has to verify that the iterate Y[(n) satisfies (8). For this verification
we need F (y.(<nl) and F (cf<n>). After these function evaluations, we advance to the interval

In+l and compute Y~+I· Hence, F (y[(n)) is calculated before F (Y~+l) can be calculated.

Because F (Y{ (n)) is the first part of the computations for y,((n)+l, a substantial part of the

calculation of y[(n)+l is completed, before Y,:+l can be computed.

W'e can reduce the effectrve t~>st:s m J,, as foilows, Assume that the iterations
been stfili:(~d in ;nt~rval lri, whi:P tht• lt,erations m interval 1 have not been
Whmi an iterate m has been we as if this iterate hi accurate

't:U\JUJ'0U in order to advance to the iJl'll.efVl_il ln•l We C:l'l.kula.tl~ Y~+J "° and
1) sinmlta.nool!Sly with F) . when satisfies condition (8), we really advance

the iteration proce&S to interval I,,,+1, otherwise we F (Y~4 and compute a new 1

based on }'i[·H and ref*i11 th<' describ€<l once more. These additional calculations
• J"t' ' l h' f sh" L' F (s vJ"(n)) s tu:1«JI .1onru processors .• n t Is.~ ion, £" :::: . ·n+l x,.. are

Because theS€ function evaluations are the first parts oft.he calculation
of 1, 1, these iterates are also is almost for
In view of this. the effecth"l2 costs in interval

The total effective roists tire \'"I-!
l...J111.;:m;: l plus the eff1,,>ctive c.osts of all iterations

carried out in The number of processors needt:>d PDIRKAS(EXT,K)
Herr, 2s processors are used for

with F
F) = F

" !
YJ) and F

5. PDIRKAS USING THE
BACKWARD DIFFERENTIATION FORMULA

We ha.>10 implemented several strategies using BDF, the best of which will be presented here.
This strategy uses for the initial guess Yr?+ 1 the L-stable, two-step BDF and we shall refer to it
as the PDIRKAS(BDF) strategy. This predictor has to yield an initial guess for }~•+l,i in every
stage These initial guesses are calculated concurrently ons processors. The implicit BDF
equations are solv'E:'d using the modified Newton method. This method is stopped as soon as the
defect (4) between two subsequent iterations is less than min(l0-5 , 10-3Toi). Here Tol is the
upper bound for the local error estimate. If after 5 iterations this criterion is not satisfied, then
the step is halved and new BDF approximations are calculated.

The local error. which is only controlled in the step points, is given by the defect (4), where
u and t• correspond to the approximations obtained by the two-step and three-step BDF and
is denoted by err,.. This local error estimate is of order 3. The three-step BDF approximation
is computed concurrently with the other s BDF approximations. The step hn is accepted if
err,... < Toi. In that case, the initial guess for the steplength is given by

h,.
1- -~-r-~~---,;,-~~~-:--;::==:==::=\\

- max (0.66, min (5.0, (1/0.8) yi'(err,.,/Tol))).

Otherwise, the step is rejected and the new steplength for h,.. is given by the right hand side of
the preceding formula.

We have taken as definition for j•(n): j*(n) is the smallest iteration index j of Y,., such that
the residue of the iterate in interval In-k. that is computed concurrently with YJ, is a factor ak

smaller than res n - k, o)'

Here y::_~2 denotes the iterate in interval In-k that is computed simultaneously with YJ, and k
is a small positive integer. In addition we require that:

and

l.8

These two last criteria prevent the propagation of instabilities. F<>r TI :5 k the value of r(n) is
the smallest value of J for which

fl I}<

with Toh = . Optimal values of the parameters k and ai. have to be determined experimen.-
:show that they are more or less problem-independent. We use the parameter

values k = 3 and 0:11: = 0.01.
As in the PDIRKAS(EXT) case we shall describe a bound K for the number of intervals tha.t

are treated The resulting method is denoted by PDIRKAS(BDF,K). An apparent
is that the local error estimate is inde~mdent of the number of

stages of the corrector and, consequently, independent of its order.
fa the PDIRKAS(BDF) process it happens that Y,J+I has to be be calculated, while the calcu

lations for Y,!1+ 1 are not completed This situation rarely arises because the maximal number
of BDF' iterations is limited to 5 (the average number of iterations per point turns out to be
between 2 and 3).

6. PERFORl\1ANCE EVALUATION
OF PDIRKAS

6.1. Numerical Experiments

In our experiments v.re rn;e the four-stage Radau HA method as the underlying corrector. Since
we shall iterate this corrector until convergence, PDIRKAS has the same order and stability
properties, that is, it has step point order 7, stage order 4 and it is £-stable.

We distinguish four types of para.meters:

(i) problem parameters like initial values, integration interval, etc., to be specified in Section
6.2,

(ii) input parameters to monitor the integration process and to be specified by the user,
(iii) strategy paramet.ers that are part of the code, and

output parameters, that will be specified in Section 6.3.

The input para.meters are Tol, Tol.::om K and h0 . Toi is the upper bound for the local error
estimate, and Tol,orr determines when the iteration process in the successive intervals can be
terminated Since a relatively small value of Tolcorr only slightly increases the number of
intervals treated simultaneously, while the effective costs remain approximately the same, we have
chosen Tolcorr = rn- 12 , unless mentioned otherwise. Furthermore, K is the maximum number of
intervals that the user allows to be treated simultaneously, and ho is the initial stepsize.

PDIRKAS(EXT) contains the strategy parameters maxj•, jconv, and re.slim, which are re
spectively chosen 20, 7 and 0.1. The strategy parameters for PDIRKAS(BDF) are given in
Section 5.

For the calculations, 15-<ligits arithmetic was used. For a number of test problems we shall give
results obtained by PDIRKAS(EXT) and PDIRKAS(BDF). In order to appreciate these results,
we compare them with PSODE. PSODE (Parallel Software for ODEs) has been developed in [9j
and is, like PDIRKAS, based on PDIRK iteration of the four-stage Radau IIA corrector. This
facilitates an easy mutual comparison in terms of effective numbers of diagonal iterations.

Finally, we remark that in both PDIRKAS strategies we have refrained from introducing a
mechanism for updating the Jacobian. Since our present implementation of PDIRKAS updates
the Jacobian in each step, PSODE was modified accordingly.

6.2. Test Problems

The first test problem is the electric ring modulator [10], which contains 15 differential equa
tions. Some of them are highly nonlinear. This set of equations contains a parameter c., by
ll.'hich a DAE or ODE can be realized. We have chosen C$ = 10-9 , resulting in a stiff ODE.

which

and with t E

We a.lso include two van dPr Pol "'l'~•~c1v1J.::-.

Yi

on j0,83] as the third test problem and

dy1
dt - = !J'J

d!h ('1 2) dt = \ -y1 Y2
(12)

= (2, -0.66) T

on f0,2J as the fourth. These ODEs have changes in their components in an almost discontinuous
way (especially (12)).

Our fifth test problem is the linear Prothero-Robert.son problem:

- cos(!f;!)) sin(y2)

d"'' If~ -· l
dt -

(13)

= (1,

on !O,lOj and with t:"" 10-3 . The exact solution is given by y(t) :::::: cos(t).
The last one is the electric inverter [llj:

dy, 5 - y, K
dt= RC -Cg(Yi-llY•), i=l, ... ,4,

R=5ooo, c~o.2-10·- 12 , K=2-10- 4 , (14)
g(u,v) = {ma:x{u ·· 1,0))2 - {max(u -v,0))2,

y(O) = 0.5, 5, 0.5} T,

{

0 ift $0.5·10-8 Vt~ 1.75·1Q·-S

109t - 5 if t E !0.5 · 10-s, l · 10-8]

= 5 if t E {1 · 10-s, 1.5 · 10-s1

-2 -109t + 35 if t E p.5 -10-s. l.75 · 10-8]

on [O, 2.5 · 10-8].

20 W. A. VAN DER VEEN

6.3. Numerical Results

For the experiments we recorded the following quantities:
• Tol: the upper bound for the local error estimate.
• N: the number of accepted steps.
• nsd; the relative accuracy in significant digits of the approximation in the endpoint, given

by the minimum of
10 IYfx - yf PPI

- log max(lyfxl, 10-6),

where i runs from 1 to d. Here yex and yapp respectively denote the exact solution and its
approximation in the endpoint. Components with absolute values smaller than 10-6 are
treated differently because this is also done in the defect (4).

• Kmax: the maximal number of intervals that are treated simultaneously.
• Kav: the average number of intervals that are treated simultaneously.
• Cetr; effective costs, the number of diagonal iterations (including iterations in rejected

steps). Here all diagonal iterations, that can be done concurrently are counted as one
unit.

• j;v: the average value of j*.
• Nreject: the total number of rejected steps (due to convergence failure or local error con

trol).
• mav: the average number of iterations performed in an interval (including iterations done

in a step rejection).

First, we shall consider how the parameter K in the PDIRKAS(EXT,K) method affects the
performance. Because the maximal number of intervals that are treated concurrently is at most K,
unnecessary continuation of the iteration process should be avoided for small K-values. Therefore,
we have used here Toi.corr = 10-9 . In Table 1 (see appendix), the influence of K is shown for
the first test problem. For this small value of Tolcom PDIRKAS(EXT,2) is about two times
cheaper than PDIRKAS(EXT,l). Comparing the average number of iteration per step, given
by mav• we see that in an interval the PDIRKAS(EXT,2) iteration process closely resembles the
PDIRK-iteration process. For larger values of K the performance does not get better any more
and becomes more or less independent of K.

In Tables 2 to 7, (see appendix) we give the results of PDIRKAS(EXT) and PDIRKAS(BDF)
when applied to the various test examples; for evaluating the performance we give the results
obtained with PSODE as well. For PDIRKAS(EXT,4) we used Tolcorr = 10-9 instead of
Tolcorr = 10- 12 • As can be seen from these tables, PDIRKAS(EXT,4) is almost as good as
PDIRKAS(EXT,10). If the parameter Tolcorr used in PDIRKAS(EXT,4) is smaller than io-9 ,

this is no longer true. Comparing PDIRKAS(EXT,10) and PDIRKAS(EXT,30), it turns out that
the performance of the stepsize mechanism in PDIRKAS(EXT,10) is slightly better than that of
PDIRKAS(EXT,30), because of a better convergence behaviour (see mav). Assuming that there
are sufficiently many processors, PDIRKAS(EXT,10) is the best of the three PDIRKAS(EXT)
methods.

For PDIRKAS(BDF), the experiments show that PDIRKAS(BDF,4) is slightly less efficient
than PDIRKAS(BDF,10). From the tables it is apparent that PDIRKAS(BDF,30) is better than
PDIRKAS(BDF,10), although the differences are small. Therefore, taking into account the large
number of extra processors needed, PDIRKAS(BDF,10) is to be preferred. With respect to the
van der Pol equations (11),(12), we remark that PDIRKAS(BDF) can not handle this problem,
because the order of accuracy of BDF is too low.

6.4. Comparison of PDIRKAS(EXT) and PDIRKAS(BDF)

Comparing PDIRKAS(EXT,10) and PDIRKAS(BDF,10), we conclude that the first method is
more efficient and more reliable than PDIRKAS(BDF,10). Comparing PDIRKAS(EXT,10) with

PSODE sh011.'S fur a broad class of tei:."t problems that the speed-up factor ranges from 2 to 3.5.
Recall that PSODE is twice as efficient as LSODE. Consequently, PDIRKAS(EXT,10) is 4 to 7
times more efficient than LSODE.

REFERENCES

P J Vl\.n d®r Homimn and BP Somlll!liJer, iterated Ru11~Kmta maliod!s on parallel oomputff"S, SIAM J
Sci. Stet. CO'l'l't;put .. 12, IOOl}-!008(1991)

2 P J van der HnuWl!ln and B.P. Sommeijer, Analysis of parl!Jlel 1fa1gonAlly unp!icit iteration of Runge.Kutt&
methods, APNUM U, HKH88 (1993).

3. W.L. Minmker a.nd W Lmiger, P.vallel methods for th<" 11umer1eAl mtegration of ordinary differential
equa.t1oos, Math Comp. ::n, 303--320 (!967)

4. A. Bellen, R. v~~miglio ll.lld M. Zenmw:i, Para.lie! ODFrl'JOlvers with stepi>iZE' control, JCAM 81, 277--293
0990)

5. A. Beille11, Pll.r11.llellsm &Crn&\i the steps r-0r d1ffereoce 11..'ld diffi:.">fential equations, Ill Lecture Note!! Ul Mathe
matics, p. 1386, Springer-Vee~, (1987).

6. P. Chart1&, Pm-alltJ!il!ln in the num«ical solutions of initial vi!.lue problems for ODEii 3lld DAEB, The.sis,
Unive!"llite de Itennes I, Fr11J1.ce, (1993).

7. P.J. V!ln d~>r Hou'W'en, B.P. SommeiJ« a.nd W.A. van der Veen, P&ra!leli:sm acrO&S the steps m ite!1i<ted
Runge-Kut.ta methods for stiff initial value problems. Numern:al A.igonthms 8, 293--312 (1994).

8. W.A .. van der Veen, J.J.B. de Swart IUld P.J. van der Houwoo., Convergence aspects of step-parallel iteration
of Runge-Kutta methods, APN/JM (1995) (to appear)

9. 8.P. Sornmeiyer, Pa.ralllel-itera.ted Ru~E--l<ut.ta methoda for llt1ff ordinary differential equations, JCAM 45,
151-168 1993)

!O. E. Hairer, C Lubk:h ti.nd M. Rod1e, The numerical solution of diffenintiai-a.lgebraic systems by Runge-Kutta
method'!, Lecture No~es in Mathematics, p. 1400, Springer-Verlag, (1989}.

l L W Kampov;""SkL P. Rentrop and W. Schmidt, Cla$stficataon an<i Numeric.a! Si.rnu.latil:m of Electric Cin:llits,
Math. Inst T£>Ch., Univ. Munchen, (1991)

I
!

!
' I
I
l

I
I

APPENDIX

Table l. Results for the Ring modulator l.l!ling PDIRKAS(EXT,K). wit.h K=l,2,4,
8,10 and Tolcort = 10-9 _

K I Toi I

~ I
4 I

s I
lO I

001

OOI

0.01

o.m
OOl

!
I
l

I

N

3174

3166

3167
3100

3199

5.8

5.9

5.9

5.9

5.8

2(17)

4(3.4)

8(4.6)

10(4.8)

27561

14287

10825

10278

10245

2.7
2.6
2.5

Tuble 2 Results for th~ Ring modulator.

Method Toi iV nsd K,,..._.(Kavl Ccir

(EXT,4) 1 I 0.01 3167 5.9 4(3.4) 10825

I 0.002 4647 67 4(3.3) 15223

(EXT.lOJ I 0.01 3204 5.9 10(6.7) !0443

0.002 4707 6.7 10(6.61 15062

(EXT,30) I 0.01 3214 5.9 30(7.! 10275

0.1Xl2 ! 4750 6 ...

I
23(7.0) 15128

I
..

(BDF,Hl) 0.01 3556 2.9 10(8.l} 11092

l
0.005 4766 3.4 10(8.3_) 14762

PSODE 10-4 1978 4.3 J 12818

l
10-5 3017 5.7 I 18655
10-6 I 467! 72 l 28438

1(EXT,4l always uses Thlc.,rr = 10-9

j~v

2.7

2.8

2.6

2.7

2.5

2.7

3.l

3.1

788

760
765
741

765

N,.,.,.,t
765

798

738

778

749

868

1112

1333

453

675
974

85
88

12.7

15.9

162

'

m .. v

12.7

11.9

22.7

22.0

23.8

23.3

26.2

26.4

6.5

6.2
6.1

22 W. A. VAN DER. VEEN

Table 3. Results for the Robertson kinetics example (10).

Method Toi N nsd Krnax(Kav) Ceff j:v Nreject fflav

(EXT,4) 0.1 91 7.3 4(2.0) 374 4.1 0 9.2
0.01 127 7.3 4(2.2) 438 3.5 0 8.7

(EXT,10) 0.1 93 7.3 10(3.3) 381 4.1 1 14.4
0.01 128 7.3 10(3.2) 446 3.5 0 12.0

(EXT,30) 0.1 93 7.3 10(3.3) 381 4.1 1 14.4
0.01 128 7.3 10(3.2) 446 3.5 0 12.0

(BDF,10) 0.1 85 7.3 10(5.1) 261 3.1 0 16.7
0.01 132 7.3 10(5.3) 338 2.6 0 14.5

(BDF,30) 0.01 132 7.3 26(8.0) 305 2.3 0 19.4

PSODE 10-4 94 5.9 1 616 0 6.5
10-s 127 7.4 1 829 0 6.5

Table 4. Results for the Va.n der Pol equation {11).

Method Toi N nsd Kmax(Kav) Cetr j:v Nreject mav

(EXT,4) 0.3 101 4.9 4(3.3) 410 2.9 49 14.4
0.1 119 6.0 4(3.1) 432 2.5 40 12.3
0.01 190 8.2 4(3.1) 514 2.0 43 9.4
0.001 322 10.0 4(3.0) 673 1.9 23 7.3

(EXT,10) 0.3 105 5.1 10(6.3) 431 2.8 49 26.6
0.1 126 6.3 10(5.6) 407 2.1 50 19.0
0.01 194 8.1 10(6.0) 484 1.8 42 16.0
0.001 324 10.0 10(6.7) 652 1.8 27 14.4

(EXT,30) 0.3 114 5.3 26(9.7) 425 2.2 60 36.9
O.I 128 6.2 15(6.0) 415 2.1 53 20.5
0.01 197 8.3 18(7.6) 476 1.6 48 19.3
0.001 330 10.0 25(9.0) 650 1.6 38 18.7

PS ODE 10-4 132 6.3 1 883 26 6.7
10-5 184 7.4 1 1193 32 6.5
10-7 421 8.1 1 2670 39 6.3
10-8 626 8.7 1 3738 43 5.9

Table 5. Results for the Van der Pol equation (12).

Method Toi N nsd Km.,,,(Kav) Cetf
..

Jav Nreject mav

(EXT,4) 0.1 191 6.3 4(2.6) 834 2.8 83 12.2
0.01 288 7.9 4(2.3) 945 2.3 72 10.2
0.001 471 9.8 4(2.6) 1264 2.4 36 7.9

(EXT,10) O.I 181 6.5 10(4.5) 734 2.6 89 19.2
0.01 289 7.7 10(4.8) 929 2.3 69 17.0
0.001 477 9.7 10(5.3) 1260 2.3 48 15.2

(EXT,30) 0.1 190 6.5 14(4.7) 783 2.6 93 20.5
0.01 294 7.8 19(6.0) 912 2.1 78 20.0
0.001 479 9.7 23(6.9) 1214 2.1 44 18.3

PSODE O.oI 112 3.9 1 852 6 7.6
10-4 206 5.6 l 1430 36 6.9
10-5 281 6.9 1 1880 52 6.7
10-6 420 6.0 l 2739 59 6.5
10-7 693 7.8 1 4721 50 6.8
10-8 969 10.7 I 6310 42 6.5

Step-Parallel Algorithms 23

Table 6. Results for the linear Prothero-Robertson problem (13).

Method Toi N nsd Kma.x(Kav) c.11 i;v Nreject mav

(EXT,4) 0.01 40 9.5 4(2.0) 141 2.9 6 7.8
(EXT,10) 0.01 40 9.5 9(3.6) 141 2.9 6 13.7
(EXT,30) 0.01 40 9.5 9(3.6) 141 2.9 6 13.7

(BDF,10) 10-4 69 8.8 10(7.5) 144 2.1 11 16.3
(BDF,30) 10-4 69 8.8 30(15.8) 125 1.8 11 28.3

PSODE 10-6 49 8.1 1 411 0 8.4
10-s 120 9.0 l 1066 0 8.9
10-9 176 10.2 I 1414 0 8.0

Table 7. Results for the electric inverter (14).

Method Toi N nsd Kmax(Ka.v) Ceff i~v Nreject mav

(EXT,4) 0.2 37 5.8 4(3.5) 169 3.5 13 17.0
0.1 44 6.3 4(3.0) 171 3.0 12 13.8
0.01 76 7.8 4(3.2) 206 2.2 17 9.7
0.001 125 8.3 4(3.2) 272 1.9 14 7.9
0.0001 217 9.6 4(3.1) 388 1.6 27 6.6

(EXT,10) 0.2 40 5.1 10(7.0) 160 2.5 22 28.6
0.1 47 7.1 10(6.3) 158 2.4 12 22.2
0.01 78 7.5 10(6.3) 186 2.0 16 16.0
0.001 130 9.0 10(6.9) 276 1.9 16 15.6
0.0001 223 9.7 10(7.0) 400 1.6 28 13.8

(EXT,30) 0.2 40 5.2 17(8. 7) 163 2.5 20 35.0
0.1 46 5.5 18(7. 7) 154 2.5 12 26.5
0.01 79 7.9 13(6.3) 196 1.9 16 16.5
0.001 129 8.6 16(8.2) 269 1.4 24 18.4
0.0001 224 9.8 20(9.5) 386 1.3 31 17.6

(BDF,10) 0.01 73 7.5 10(6.6) 172 2.4 16 16.6
0.001 137 8.6 10(7.8) 270 2.0 15 16.4
0.0001 287 10.3 10(8.8) 472 1.6 16 15.4

(BDF,30) 0.01 73 7.5 13(7.4) 169 2.3 16 18.2
0.001 137 8.6 26(10.4) 268 2.0 15 21.2
0.0001 287 10.3 25(13.8) 453 1.6 16 22.8

PSODE io- 4 57 6.0 1 377 14 6.6
10-6 131 8.8 1 795 29 6.0
10-7 186 9.5 1 1089 32 5.8

