
P.J. van der Houwen

Centrum voor Wiskunde en Informatica

Amsterdam, The N ederlands

PARALLEL ITERATION SCHEMES FOR

IMPLICIT ODEIVP METHODS

Abstract

In this contribution to the Proceedings of the "Interna­

tional Symposium on New Aspects of Numerical Analysis in

the Light of Recent Technology" held at Stresa on 13 until

18 September 1993, we give a survey of recent research at

CWI for solving the implicit relations arising in ODEIVP

methods on parallel computers. Starting with a General

Linear method as introduced by Butcher, three forms of

parallelism for solving the associated implicit equations are

discussed, viz. (i) parallelism across the stages within a

single step (stage parallelism), (ii) parallel precondition­

ers, and (iii) parallelism across the steps (step parallelism).

The structure of these types of parallel methods will be de­

scribed.

151

1 Introduction

Consider the initial value problem for ordinary differential equa­

tions

d~~t) = f(y(t)), y(t0) = y0, y,f E ~d' to~ t ~ T. (1)

The greater part of the numerical integration methods for solving

this problem (0 D EIVP methods) can be presented in the form of a

· k-dimensional General Linear Method (GL method) as introduced

by Butcher [6] (see also [7]):

Here, Y n is a block vector with k vectorial components (stages)

Yn,i, i = 1, 2, ... , k, of dimension d which are assumed to present

numerical approximations to the exact solution y(t) at the k points

tn- l + Cj h, i = 1, 2, ... , k, where h denotes the stepsize and the Cj

define the k-dimensional abscissa vector c. It will also be assumed

that Ck = 1 and we define the step points tn by tn := tn-l + h.

The block vector F(Y n) contains the k derivatives f(Y n,i) and the

k-by-k matrices E and B contain the method parameters. Fi­

nally, the matrix Id is the d-by-d identity matrix, ® denotes the

Kronecker product, and Y 0 contains the starting values for the nu­

merical method.

The GL method (2) defines in each step a system of kd equations.

Not all equations are necessarily implicit. Following Butcher (198 7,

p.367), we shall assume that there are rd explicit and sd implicit

152

equations with r + s = k where s ~ k. For example, Runge-Kutta

(RK) methods fit into (2) with

0 0 1

E ·-.- B := (A 0),
bT 0

(3)

0 0 1

where A and b present the familiar arrays appearing in the Butcher

tebleau representation of RK methods. Thus, RK methods have

r = 1 and s = k - 1. It will be assumed that the equations are

arranged such that the implicit equations correspond to the first s

rows of the matrices E and B

On sequential computers, one usually selects explicit GL methods

(s = 0) for nonstiff problems and implicit GL methods, for stiff

problems (s > 0). If s = 0, than B is strictly lower triangular, so

that the GL method (1) requires N(k - 1) righthand side evalua­

tions. Ifs > 0, then each step requires the solution of a system of sd

equations. These equation are usually solved by means of Newton

iteration. In order to reduce the computational costs, the matrix

B is chosen to be lower triangular where the first s diagonal entries

bii (corresponding to the implicit equations) equal some constant

nonzero value. In analogy with the terminology used in RK meth­

ods, we shall call such GL methods diagonally implicit GL methods.

This leads to a system of s equations, each of dimension d with the

same Jacobian matrix. Taking this as a first indication of the com­

putational cost involved, we conclude that the computational costs

153

for solving stiff problems on sequential problems on sequential com­

puters by diagonally implicit GL methods are O(Niud3) arithmetic

operations, where Niu denotes the number of updates of the Jaco­

bian matrix of the implicit equations (for general matrices B, this

would be as much as O(Nius3d3) operations). Of course, both for

stiff and nonstiff problems, the above restrictions on the matrix B

have consequences for the accuracy and stability of the correspond­

ing G L method.

On parallel computers, it is possible to iterate implicit GL methods

with arbitrary matrix B and with an arbitrary number of stages

without increasing the sequential cost of the method. Here, se­

quential costs means that all righthand side evaluations, LU de­

compositions, etc., that can be done in parallel are counted as just

one righthand side evaluation 1 one LU de.composition, etc. Thus,

parallel computers enables us to use the most accurate and stable

GL methods possible, without restricting the matrices E and B to

a special form. So far, the construction of such GL methods did not

receive much attention and, at present, the classical RK methods

of Butcher-Kuntzmann and the Radau IIA methods seem to offer

the best starting point for parallel iteration (the definition of these

classical RK methods can be found in Butcher [6]).

This paper will survey various parallel iteration techniques for im­

plicit ODEIVP methods (of the GL form (2)), that have been in­

vestigated by the numerical group at CWI. Weshall distinguish

154

(i) parallelism across the stages within a single step (stage paral­

lelism)

(ii) parallel precondi tioners

(iii) parallelism across the steps (step parallelism).

The structure of the iteration schemes will be discussed in the fol­

lowing subsections. For numerical experiments we refer to the CWI

publications listed among the references.

2 Stage parallelism

We approximate the solution Y n of (2) by successive y~), j =

1, 2, ... , such that y~) -+ Y n as j -+ oo. The iteration scheme

relating the iterates consists of a predictor formula providing Y~1)

and a correction formula providing the subsequent iterates y~).

The method (2) itself will be referred to as the generating correc­

tor.

The most simple iteration scheme first iterate for n = 1 to obtain

Y 1 , then it iterates for n = 2 to obtain Y 2 , etc. Thus, representing

the iterates y~) by points in the (n, j)-plane, the order of compu­

tation is (necessarily) column wise.

We shall restrict out considerations to iteration schemes defined by

the formula pair

155

(4)

y~l-h(D0Jd)F(Yn(j)) =

(E 0 Id) Yn-1 + h ((B-D) 0 Id) F (y~- 1)),

j =2, ... ,m

where n = 1, 2, ... , N. D and D* are diagonal matrices of which

the last r diagonal entries are zero, and where the set of matrices

{ D*, E*, B*, G*} define the predictor formula. Possible options are

predictors based on the last step value, and on extrapolation or

backward differentiation of stage values from the preceding step.

Those predictors will be referred to as the LSV predictor, the

EXP predictor, and the BDF predictor, respectively, and can be

defined by matrix sets { D, E, B - D, E}, { D, E, B - D, E*}, and

{D, E*, 0, 0}, where E* is a free matrix to control accuracy and sta­

bility. Notice that the predictor and correction formula are equally

expansive. This feature will be useful when we adapt the iteration

scheme to achieve step parallelism (see Section 4). Evidently, if the

iterates y~l satisfying (4) con verge to fixed vectors V n as j -+ oo,

then V n = Y n. The integer m is assumed to be sufficiently large,

so that numerically y~m) = Y n·

For nonstiff problems, it is allowed to set D = D* = 0, by which the

iteration scheme reduces to fixed point iteration. The correspond­

ing integration method will be called a PIGL method (Parallel It­

erated GL method). For stiff problems, it is crucial that the first s

156

diagonal entries of D assume suitably chosen positive values (if B*

does not vanish, this also applies to D*). The resulting method will

be referring to as PDIGL methods (Parallel Diagonally Iterated GL

methods).

When using predictor formulas the (sequential) costs of which equal

those of one correction iteration (like the LSV, EXP, and BDF

predictor defined above), the total cost of the P(D)IGL method

consists of Nm iterations. Each iteration of the P(D)IGL method

possesses parallelism across the stages, because all derivative com­

ponents of the block vectors F (G*Yn-i) and F (v~-1)) can be

computed in parallel, resulting in m sequential righthand sides per

step. In the case of non vanishing D* and D, we also have to solve a

system of the s equations of dimension din each iteration. However,

by virtue of the diagonal structure of the matrices D" and D, these

s equations are uncopuled, so that they can be solved in parallel. In

particular, the expansive LU decompositions corresponding to the

s equations can be obtained concurrently, resulting in 0 (NLud3)

sequential arithmetic operations, where NLu denotes the number

of updates of the Jacobian matrix of the implicit equation that

needs the most updates. The sequential costs of the PIGL method

and the explicit GL method and in the diagonally implicit method

mentioned in Section 1 are comparable. Likewise, the sequential

costs of the PDIGL method and the diagonally implicit method

GL method of Section 1 are comparable if the number NLu of LU

updates are comparable.

157

In the case where the GL method (2) is an RK method, the iter­

ation scheme (4) has been extensively studied. For D = D* = 0,

convergence and stability results and performance evaluation can

be found in Lie [23], N (ilrsett & Simonsen [26], Jackson & N (ilrsett

[20, 21], Burrage (3, 4, 5], Jackson, Kvrern0& N0rsett (22], and in

Van der Houwen & Sommerijer [11]. The methods arising for non­

vanishing D and D* have been investigates in [12, 13, 14, 27].

We present a few results for the scalar test equation

dyd~) = >..y(t), (5)

where>.. runs through the spectrum of the Jacobian matrix Bf/ 8y.

Theorem 2.1 With respect to the test equation (5) the correction ,

formula (4) is convergent if

p (Z(z)) < 1, Z(z) := z (I - zD)-1 (B - D) , z := >.h,

where p (Z) denotes the spectral radius of the iteration matrix Z. D

The region in the complex z-plane where the convergence condition

is satisfied will be called convergence region. If the convergence

region contains the whole lefthand plane, the iteration scheme will

be called A-convergent. Evidently, if D = 0, then the convergence

region is given by the disk

1
lzl < P (B)' (6)

158

so that we only have A-convergence if p (B) vanishes.

Example 2.1: Let the generating corrector (2) be the s-stage

RK method of Butcher-Kuntzmann and let D = 0 in (4). Then

the radius of the convergence region of (4) is given by

s=l s=2 s=3 s=4 s=5

2.00 3.48 4.54 5.88 7.14

If D =f. 0, then a necessary condition for A-convergence is that the

spectral radius of Z (z) is less that 1 at infinity, i.e.,

p (Z (oo)) = p (n-1 B - I) < 1 (7)

This observation suggest choosing D such that p (Z (oo)) is mini­

mized. In [12, 27] it was shown that for the 2-stage, 3-stage, 4-

stage Radau IIA cor~ector, this approach does lead to A-convergent

iteration schemes.

Theorem 2.2 With respect to the rest equation (5), the stability

region of the P(D)IGL method is the intersection of the convergence

region of the correction formula in (4) and the stability region of

the corrector (2). D

159

3 Parallel preconditioners

Let us define the residual function associated with the corrector (2):

Then the correction formula in the P(D)IGL method (4) can be

written in the form

y~) - h(D @Id)F (y~)) =

y~-1 l - h(D@ Id)F (v~- 1)) - Rn (v~- 1)) ,j = 2, ... , m

The convergence of the iteration scheme can be accelerated by intro­

ducing a preconditioning matrix P in front of the residual function:

y~l - h(D ® ld)F (v~l) =

y~-IJ - h(D ® Id)F (v~-1 l) - PRn (v~-1 l) ,j = 2, ... ,m

(9)

The choice of the preconditioner can be based on the following ana­

logue of theorem 2.1:

Theorem 3.1 With respect to the test equation (5) the correction

formula in (9) is convergent if

p(Z(z)) < 1, Z(z) := z(I-zD(1(I-P+zPB-zD), z := >.h,

where p(Z) denotes the spectral radius of the iteration matrix Z. D

160

For RK corrector, the constructions of preconditioners yielding suit­

able iteration matrices Z(z) has been investigated in (10, 15, 16].

One of the main results derived in these papers immediately carries

over to the case of GL corrector.

Theorem 3.2 Let J denote the Jacobian matrix of the righthand

side Junction of the !VP and define

P := (I - hD ® Jt1 (I - 2hD ® J + hB l8l J). (10)

Then, with respect to the test equation (5), the iteration matrix is

given by

0

We shall call the method defined by the correction formula (9)

with preconditioner (10) a preconditioned P(D)IGL method. This

method requires the evaluation (or update) of the Jacobian J. How­

ever, since the computational work involved can be done in parallel

with the other computational tasks, the sequential costs are not in­

creased (note that for D =/:- 0, the LU decomposition of I - hD ® J

needed for applying P is already available).

Evidently, if D = 0, then the convergence condition of the precondi­

tioned P(D)IGL method is identical with (6). However, because of

the factor z2 in the iteration matrix, the rate of convergence is much

161

better. If D f. 0, we are again led to consider the iteration matrix

at infinity leading to a necessary condition for A-convergence:

As before, this suggest choosing D such that p(Z (oo)) is minimized.

In Van der Houwen & Sommaijer [16] it was shown that for the 2-

stage, 3-stage and 4-stage Radau IIA corrector, this approach does

lead to A-convergent iteration schemes.

Theorem 3.3 With respect to the test equation (5), the stability

region of the preconditioned P(D)IGL method is the intersection of

the convergence region of the correction formula { {9), {10) } and

the stability region of the corrector (2). 0

4 Step parallelism

In the preceding sections, the first iterate Y~1) of the nth step is

only computed if the iterates Y~21 corresponding to the (n - 1)st

step have converged to Yn-l· Hence, the solutions Y 11 of the cor­

rector (2) are computed sequentially, that is, the iterates y~), when

represented by points in the (n, j)-plane, are computed necessarily

column-wise, so that there is no parallelism across the steps. In

this section, we consider iteration schemes that allows simultane­

ous iteration at a number of step point resulting in step-parallel

methods.

162

4.1 Jacobi-type correction formula

The most simple approach, and at the same time the most effec­

tive with regard to parallelism, in getting step-parallel methods

computes the iterates y~) row-wise. Correction formulas allowing

row-wise orderings have been investigated by the Trieste group.

Steffenson correction formulas were analyzed in Bellen et al. [l, 2],

and an extension to Newton-type iteration in Chartier [8]. Let us

consider the related Jacobi-type correction formula

y~) - h(D 0 ld)F (v~)) =
(E 0 Id)Y~:!) + h((B - d) 0 Id)F (v~-1)) ,

(12)

where for each j = 2, ... , m, the time index n runs from 1 until N.

It is easily seen that this formula allows row-wise computation of

the iterates. The total sequential cost of (12) consists of the cost

needed to compute the sequence {Y~) : n = 1, ... , N} and the cost

of m - 1 corrector. Hence, if the costs of computing the sequence

{Y~1) : n = 1, ... , N} can be ignored, for example, by using for­

mulas like Y~1) = y0 0 e, e being the vector unit entries, then the

total sequential costs are about the number of iterations m. This

seems to be considerably less than the total costs of the P(D)IGL

of the preceding sections which required Nm iterations. However,

the drawback of this approach is the need of rather accurate first

iterates {Y~1) : n = 1, ... , N} and the poor convergence factors

associated with (12). If the initial iterates are not sufficiently ac­

curate, and that seems to be likely when their computational costs

are to be negligible, than the iteration process easily diverges and

163

if it does converge, then the number of iterations may be extremely

large.

4.2 Gauss-Seided-type correction formula

·with respect to convergence speed, the conventional PC correction

formula in (4) and the Jacobi-type correction formula (12) are ex­

treme cases. Again referring to the representation of the iterates

y~) by points in the (n, J)-plane, we see that in both cases the cor­

rection formula for y~l needs a "lefthand neighbor" and a "lower

neighbor". However, the accuracy of these "neighbouring" iterates

differs greatly. In the conventional PC correction formula the ac­

curacy is the best possible, whereas in the Jacobi-type correction

formula, the accuracy is worst. Therefore, we now consider an "in­

termediate" ordering in which the iterates are computed diagonal­

wise leading to the Gauss-Seidel-type correction formula

y~J - h(D 0 Id)F (y~l) =

(E 0 Id)Y~2 1 + h((B - d) 0 Jd)F (y~-i)) ,
(13)

where j = 2, ... , m and n = 1, ... , N. It is easily seen that all

iterates with with j + n = constant can be computed concurrently.

Assuming that the predictor formula is equally expansive as one

correction, we conclude that the diagonal ordering requires N + m

sequential iterations. The advantage is that the accuracy of the

"lefthand neighbor" and "lower neighbor" is much better than in

the Jacobi-type correction formula (12), but at the cost of less

164

massive parallelism. Diagonal computation of iterates has already

been used by Miranker and Liniger [24] where the iterates produced

by Adams-type PECE methods were computed in parallel along

diagonals.

4.3 Dynamic Gauss-Seidel-type correction for­

mula

Still, the Gauss-Seidel correction formula (13) may also fail in prac­

tice. A remedy is offered by the dynamic Gauss-Seidel correction

formula

y~l - h(D 0 Id)F (v~l) =

(E 0 Id)Y~q~~-l,i)) + h((B - D) 0 Id)F (v~- 1l), (14)

q(n,j):=j+j*(tn)-l, j=2, ... ,m; n=l, ... ,N

where the value of j*(tn) is determined dynamically during the

integration process. For example, by using predictor formulas of

the form

y~l - h(D* 0 Id)F (v~1 l) =
(E* 0 /d)Y~i~-i,i)) + h(B* ® Id)F (G*Y~qi~-i,i))),

(15)

and by the condition that the iterate Y~qi~-l,l)) is sufficiently accu­

rate to obtain a reliable first iterate Y~1).

We remark that the other correction formulas discussed in this pa­

per can also be represented in the form (14) by an appropriate def­

inition of the ordering function q(n,j). Ignoring the Jacobi-type

165

Correction formula q(nj) Predictor Seq. iterations

P(D)IGL (cf. (4)) m B* I 0 1V1n

Gauss-Seidel (d. (13)) J B* I 0 N+m-l

Dynamic Gauss-Seidel j + j*(n) - 1 B* I 0 2=n j''(tn) + m

Table l: Number of sequential iterations associated with {(14),

(15)}

correction formula (12) which is too unreliable, Table 1 lists these

q-functions together with the sequential costs associated with the

predictor-correction formula pair.

For RK-based correction formulas, a convergence analysis of step­

parallel methods described above can .be found in [17, 18].

References

[1] A. Bellen, M. Zennaro Parallel algorithms for initial-value

problems for difference and differential equations, J. Comput.

Appl. Math. 25 (1989), pp. 3·1l 350.

[2] A. Bellen, R. Vermiglio, M. Zennaro Parallel ODE-solvers with

stepsize control, J. Comput. Appl. Numer. Math. 31 (1990), pp.

277-293.

[3] K. Burrage The error behavior of a general class of predictor­

corrector methods, Appl. Numer. Math. 8 (1991), pp.201-216.

166

[4] K. Burrage The search for the Holy Grail, or Predictor Cor­

rector methods for solving ODEIVPs, Appl. Numer. Math. 11

(1993), pp. 125-141.

[5] K. Burrage Efficient block predictor-corrector methods with

small number of iterations, J. Comput. Appl. Math. 45 (1993),

pp. 139-150.

[6] J.C. Butcher On the convergence of numerical solution to or­

dinary differential equations, Math. Comp. 20, pp. 1-10.

[7] J.C. Butcher The numerical analysis of ordinary differential

equations, Runge-Kutta and general linear methods, Wiley

1987, New York.

[8] P. Chartier Parallelism in the numerical solution of the initial

value problems for ODEs and DAEs, Thesis (1993), Universit

de Rennes I, France.

[9] E. Hairer, G. Winner Solving ordinary differential equations,

II. Stiff and differential-algebraic problems, Springer-Verlag

1991, Berlin.

[10] J.P. van der Houwen Preconditioning in implicit initial value

problem methods on parallel computers, Advances in Compu­

tational Mathematics 1 (1993), pp. 39-60.

167

[11] J.P. van der Houwen, B.P. Sommeijer Parallel iterations

of high-order Runge-Kutta methods with stepsize control, J.

Comput. Appl. Math. 29 (1990), pp. 111-127

[12] J.P. van der Houwen, B.P. Sommeijer Iterate Runge-Kutta

methods on parallel computers, SIAM J. Sci. Stat. Comput.

12 (1991), pp. 1000-1028.

[13] J.P: van der Houwen, B.P. Sommeijer, W. Couzy Embedded

diagonally implicit Runge-Kutta algorithms on parallel com­

puters, Math. Comp. 58 (1992), pp. 135-139.

[14] J.P. van der Houwen, B.P. Sommeijer Analysis of parallel diag­

onal implicit iteration of Runge-Kutta methods, Appl. Numer.

Math. 11 (1992) pp. 169-188.

[15] J.P. van der Houwen, B.P. Sommeijer Butcher-Kuntzmann

methods for nonstiff problems on parallel computers, to appear

in Numerical Algorithms.

[16] J.P. van der Houwen, B.P. Sommeijer Preconditioning in par­

allel Runge-/(utta methods for nonstiff initial value problems,

to appear in Comp. Math. Applic.

[17) J.P. van der Houwen, B.P. Sommeijer, W.A. van der Veen

Parallel iterations across the steps of high order Runge-K utta

methods for nonstiff initial value problems, submitted for pub­

lication.

168

[18] J.P. van der Houwen, B.P. Sommeijer, W.A. van der Veen

Parallelism Across the Steps in Iterated Runge-I< utta Methods

for Stiff Initial Value Problems, submitted for publication.

[19] A. Iserles, S.P. N 0rsett On the theory of parallel Runge-K utta

methods, IMA J. Numer. Anal. 10 (1990), pp. 463-448.

[20] K.R. Jackson, S.P. N0rsett Parallel Runge-Kutta methods

(manuscript).

[21] K.R. Jackson, S.P. N0rsett The potential for parallelism in

Runge-I< u.tta methods, Part !: Rf(formulas in standard form,

Technical Report No. 239/90 (1990), Department of Computer

Science, University of Toronto.

[22] K.R Jackson, A. Kvcern0, S.P. N0rsett Order of Runge-Kutta

methods when using Newton-type iteration, Technical Report

No. 1/92 (1992), Division of Math. Sciences, University of

Trondheim.

[23] I. Lie Some aspects of parallel Runge-Kutta methods, Report

3/87 (1987), Dept. of Mathematics, University of Trondheim.

[24] W.L. Miranker, \V. Liniger Parallel methods for the numerical

integration of ordinary differential equation, Math. Comp. 21

(1967), pp. 303-320.

(25] J. Nievergelt Parallel methods for integrating ordinary differ­

ential equations, Comm. ACM, vol. 7 (1964), pp. 731-733.

169

[26] S.P. N0rsett, R.H. Simonsen Aspects of parallel Runge-Kutta

methods, in A. Ballen, C.W. Gear, E. Russo (Eds): Numeri­

cal Methods for Ordinary Differential Equations, Proceedings

L'Aquila 1987, LMN 1386, Springer-Verlag, Berlin.

[27] B.P. Sommeijer Parallelism in the numerical integration of ini­

tial value problems, Thesis defended at the University of Am­

sterdam (1992).

170

