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IMPLICIT ODEIVP METHODS 

Abstract 

In this contribution to the Proceedings of the "Interna­

tional Symposium on New Aspects of Numerical Analysis in 

the Light of Recent Technology" held at Stresa on 13 until 

18 September 1993, we give a survey of recent research at 

CWI for solving the implicit relations arising in ODEIVP 

methods on parallel computers. Starting with a General 

Linear method as introduced by Butcher, three forms of 

parallelism for solving the associated implicit equations are 

discussed, viz. (i) parallelism across the stages within a 

single step (stage parallelism), (ii) parallel precondition­

ers, and (iii) parallelism across the steps (step parallelism). 

The structure of these types of parallel methods will be de­

scribed. 
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1 Introduction 

Consider the initial value problem for ordinary differential equa­

tions 

d~~t) = f(y(t)), y(t0 ) = y0, y,f E ~d' to~ t ~ T. (1) 

The greater part of the numerical integration methods for solving 

this problem ( 0 D EIVP methods) can be presented in the form of a 

· k-dimensional General Linear Method (GL method) as introduced 

by Butcher [6] (see also [7]): 

Here, Y n is a block vector with k vectorial components (stages) 

Yn,i, i = 1, 2, ... , k, of dimension d which are assumed to present 

numerical approximations to the exact solution y(t) at the k points 

tn- l + Cj h, i = 1, 2, ... , k, where h denotes the stepsize and the Cj 

define the k-dimensional abscissa vector c. It will also be assumed 

that Ck = 1 and we define the step points tn by tn := tn-l + h. 

The block vector F(Y n) contains the k derivatives f(Y n,i) and the 

k-by-k matrices E and B contain the method parameters. Fi­

nally, the matrix Id is the d-by-d identity matrix, ® denotes the 

Kronecker product, and Y 0 contains the starting values for the nu­

merical method. 

The GL method (2) defines in each step a system of kd equations. 

Not all equations are necessarily implicit. Following Butcher ( 198 7, 

p.367), we shall assume that there are rd explicit and sd implicit 
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equations with r + s = k where s ~ k. For example, Runge-Kutta 

(RK) methods fit into (2) with 

0 0 1 

E ·-.- B := ( A 0), 
bT 0 

(3) 

0 0 1 

where A and b present the familiar arrays appearing in the Butcher 

tebleau representation of RK methods. Thus, RK methods have 

r = 1 and s = k - 1. It will be assumed that the equations are 

arranged such that the implicit equations correspond to the first s 

rows of the matrices E and B 

On sequential computers, one usually selects explicit GL methods 

(s = 0) for nonstiff problems and implicit GL methods, for stiff 

problems ( s > 0). If s = 0, than B is strictly lower triangular, so 

that the GL method (1) requires N(k - 1) righthand side evalua­

tions. Ifs > 0, then each step requires the solution of a system of sd 

equations. These equation are usually solved by means of Newton 

iteration. In order to reduce the computational costs, the matrix 

B is chosen to be lower triangular where the first s diagonal entries 

bii (corresponding to the implicit equations) equal some constant 

nonzero value. In analogy with the terminology used in RK meth­

ods, we shall call such GL methods diagonally implicit GL methods. 

This leads to a system of s equations, each of dimension d with the 

same Jacobian matrix. Taking this as a first indication of the com­

putational cost involved, we conclude that the computational costs 
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for solving stiff problems on sequential problems on sequential com­

puters by diagonally implicit GL methods are O(Niud3 ) arithmetic 

operations, where Niu denotes the number of updates of the Jaco­

bian matrix of the implicit equations (for general matrices B, this 

would be as much as O(Nius3d3 ) operations). Of course, both for 

stiff and nonstiff problems, the above restrictions on the matrix B 

have consequences for the accuracy and stability of the correspond­

ing G L method. 

On parallel computers, it is possible to iterate implicit GL methods 

with arbitrary matrix B and with an arbitrary number of stages 

without increasing the sequential cost of the method. Here, se­

quential costs means that all righthand side evaluations, LU de­

compositions, etc., that can be done in parallel are counted as just 

one righthand side evaluation 1 one LU de.composition, etc. Thus, 

parallel computers enables us to use the most accurate and stable 

GL methods possible, without restricting the matrices E and B to 

a special form. So far, the construction of such GL methods did not 

receive much attention and, at present, the classical RK methods 

of Butcher-Kuntzmann and the Radau IIA methods seem to offer 

the best starting point for parallel iteration (the definition of these 

classical RK methods can be found in Butcher [6]). 

This paper will survey various parallel iteration techniques for im­

plicit ODEIVP methods (of the GL form (2)), that have been in­

vestigated by the numerical group at CWI. Weshall distinguish 
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(i) parallelism across the stages within a single step (stage paral­

lelism) 

(ii) parallel precondi tioners 

(iii) parallelism across the steps (step parallelism). 

The structure of the iteration schemes will be discussed in the fol­

lowing subsections. For numerical experiments we refer to the CWI 

publications listed among the references. 

2 Stage parallelism 

We approximate the solution Y n of (2) by successive y~), j = 

1, 2, ... , such that y~) -+ Y n as j -+ oo. The iteration scheme 

relating the iterates consists of a predictor formula providing Y~1 ) 

and a correction formula providing the subsequent iterates y~). 

The method (2) itself will be referred to as the generating correc­

tor. 

The most simple iteration scheme first iterate for n = 1 to obtain 

Y 1 , then it iterates for n = 2 to obtain Y 2 , etc. Thus, representing 

the iterates y~) by points in the ( n, j)-plane, the order of compu­

tation is (necessarily) column wise. 

We shall restrict out considerations to iteration schemes defined by 

the formula pair 
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(4) 

y~l-h(D0Jd)F(Yn(j)) = 

(E 0 Id) Yn-1 + h ((B-D) 0 Id) F (y~- 1)), 

j =2, ... ,m 

where n = 1, 2, ... , N. D and D* are diagonal matrices of which 

the last r diagonal entries are zero, and where the set of matrices 

{ D*, E*, B*, G*} define the predictor formula. Possible options are 

predictors based on the last step value, and on extrapolation or 

backward differentiation of stage values from the preceding step. 

Those predictors will be referred to as the LSV predictor, the 

EXP predictor, and the BDF predictor, respectively, and can be 

defined by matrix sets { D, E, B - D, E}, { D, E, B - D, E*}, and 

{D, E*, 0, 0}, where E* is a free matrix to control accuracy and sta­

bility. Notice that the predictor and correction formula are equally 

expansive. This feature will be useful when we adapt the iteration 

scheme to achieve step parallelism (see Section 4). Evidently, if the 

iterates y~l satisfying ( 4) con verge to fixed vectors V n as j -+ oo, 

then V n = Y n. The integer m is assumed to be sufficiently large, 

so that numerically y~m) = Y n· 

For nonstiff problems, it is allowed to set D = D* = 0, by which the 

iteration scheme reduces to fixed point iteration. The correspond­

ing integration method will be called a PIGL method (Parallel It­

erated GL method). For stiff problems, it is crucial that the first s 
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diagonal entries of D assume suitably chosen positive values (if B* 

does not vanish, this also applies to D*). The resulting method will 

be referring to as PDIGL methods (Parallel Diagonally Iterated GL 

methods). 

When using predictor formulas the (sequential) costs of which equal 

those of one correction iteration (like the LSV, EXP, and BDF 

predictor defined above), the total cost of the P(D)IGL method 

consists of Nm iterations. Each iteration of the P(D)IGL method 

possesses parallelism across the stages, because all derivative com­

ponents of the block vectors F (G*Yn-i) and F (v~-1 )) can be 

computed in parallel, resulting in m sequential righthand sides per 

step. In the case of non vanishing D* and D, we also have to solve a 

system of the s equations of dimension din each iteration. However, 

by virtue of the diagonal structure of the matrices D" and D, these 

s equations are uncopuled, so that they can be solved in parallel. In 

particular, the expansive LU decompositions corresponding to the 

s equations can be obtained concurrently, resulting in 0 (NLud3) 

sequential arithmetic operations, where NLu denotes the number 

of updates of the Jacobian matrix of the implicit equation that 

needs the most updates. The sequential costs of the PIGL method 

and the explicit GL method and in the diagonally implicit method 

mentioned in Section 1 are comparable. Likewise, the sequential 

costs of the PDIGL method and the diagonally implicit method 

GL method of Section 1 are comparable if the number NLu of LU 

updates are comparable. 
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In the case where the GL method (2) is an RK method, the iter­

ation scheme (4) has been extensively studied. For D = D* = 0, 

convergence and stability results and performance evaluation can 

be found in Lie [23], N (ilrsett & Simonsen [26], Jackson & N (ilrsett 

[20, 21], Burrage (3, 4, 5], Jackson, Kvrern0& N0rsett (22], and in 

Van der Houwen & Sommerijer [11]. The methods arising for non­

vanishing D and D* have been investigates in [12, 13, 14, 27]. 

We present a few results for the scalar test equation 

dyd~) = >..y(t), (5) 

where>.. runs through the spectrum of the Jacobian matrix Bf/ 8y. 

Theorem 2.1 With respect to the test equation (5) the correction , 

formula (4) is convergent if 

p (Z(z)) < 1, Z(z) := z (I - zD)-1 (B - D) , z := >.h, 

where p ( Z) denotes the spectral radius of the iteration matrix Z. D 

The region in the complex z-plane where the convergence condition 

is satisfied will be called convergence region. If the convergence 

region contains the whole lefthand plane, the iteration scheme will 

be called A-convergent. Evidently, if D = 0, then the convergence 

region is given by the disk 

1 
lzl < P (B)' (6) 
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so that we only have A-convergence if p (B) vanishes. 

Example 2.1: Let the generating corrector (2) be the s-stage 

RK method of Butcher-Kuntzmann and let D = 0 in (4). Then 

the radius of the convergence region of (4) is given by 

s=l s=2 s=3 s=4 s=5 

2.00 3.48 4.54 5.88 7.14 

If D =f. 0, then a necessary condition for A-convergence is that the 

spectral radius of Z ( z) is less that 1 at infinity, i.e., 

p ( Z ( oo)) = p ( n-1 B - I) < 1 (7) 

This observation suggest choosing D such that p ( Z ( oo)) is mini­

mized. In [12, 27] it was shown that for the 2-stage, 3-stage, 4-

stage Radau IIA cor~ector, this approach does lead to A-convergent 

iteration schemes. 

Theorem 2.2 With respect to the rest equation (5), the stability 

region of the P(D)IGL method is the intersection of the convergence 

region of the correction formula in (4) and the stability region of 

the corrector (2). D 
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3 Parallel preconditioners 

Let us define the residual function associated with the corrector (2): 

Then the correction formula in the P(D)IGL method (4) can be 

written in the form 

y~) - h(D @Id)F (y~)) = 

y~-1 l - h(D@ Id)F (v~- 1 )) - Rn (v~- 1 )) ,j = 2, ... , m 

The convergence of the iteration scheme can be accelerated by intro­

ducing a preconditioning matrix P in front of the residual function: 

y~l - h(D ® ld)F (v~l) = 

y~-IJ - h(D ® Id)F (v~-1 l) - PRn (v~-1 l) ,j = 2, ... ,m 

(9) 

The choice of the preconditioner can be based on the following ana­

logue of theorem 2.1: 

Theorem 3.1 With respect to the test equation (5) the correction 

formula in (9) is convergent if 

p(Z(z)) < 1, Z(z) := z(I-zD(1(I-P+zPB-zD), z := >.h, 

where p( Z) denotes the spectral radius of the iteration matrix Z. D 
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For RK corrector, the constructions of preconditioners yielding suit­

able iteration matrices Z(z) has been investigated in (10, 15, 16]. 

One of the main results derived in these papers immediately carries 

over to the case of GL corrector. 

Theorem 3.2 Let J denote the Jacobian matrix of the righthand 

side Junction of the !VP and define 

P := (I - hD ® Jt1 (I - 2hD ® J + hB l8l J). (10) 

Then, with respect to the test equation (5), the iteration matrix is 

given by 

0 

We shall call the method defined by the correction formula (9) 

with preconditioner (10) a preconditioned P(D)IGL method. This 

method requires the evaluation (or update) of the Jacobian J. How­

ever, since the computational work involved can be done in parallel 

with the other computational tasks, the sequential costs are not in­

creased (note that for D =/:- 0, the LU decomposition of I - hD ® J 

needed for applying P is already available). 

Evidently, if D = 0, then the convergence condition of the precondi­

tioned P(D)IGL method is identical with (6). However, because of 

the factor z2 in the iteration matrix, the rate of convergence is much 
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better. If D f. 0, we are again led to consider the iteration matrix 

at infinity leading to a necessary condition for A-convergence: 

As before, this suggest choosing D such that p( Z ( oo)) is minimized. 

In Van der Houwen & Sommaijer [16] it was shown that for the 2-

stage, 3-stage and 4-stage Radau IIA corrector, this approach does 

lead to A-convergent iteration schemes. 

Theorem 3.3 With respect to the test equation (5), the stability 

region of the preconditioned P(D)IGL method is the intersection of 

the convergence region of the correction formula { {9), {10) } and 

the stability region of the corrector (2). 0 

4 Step parallelism 

In the preceding sections, the first iterate Y~1 ) of the nth step is 

only computed if the iterates Y~21 corresponding to the ( n - 1 )st 

step have converged to Yn-l· Hence, the solutions Y 11 of the cor­

rector (2) are computed sequentially, that is, the iterates y~), when 

represented by points in the ( n, j )-plane, are computed necessarily 

column-wise, so that there is no parallelism across the steps. In 

this section, we consider iteration schemes that allows simultane­

ous iteration at a number of step point resulting in step-parallel 

methods. 
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4.1 Jacobi-type correction formula 

The most simple approach, and at the same time the most effec­

tive with regard to parallelism, in getting step-parallel methods 

computes the iterates y~) row-wise. Correction formulas allowing 

row-wise orderings have been investigated by the Trieste group. 

Steffenson correction formulas were analyzed in Bellen et al. [l, 2], 

and an extension to Newton-type iteration in Chartier [8]. Let us 

consider the related Jacobi-type correction formula 

y~) - h(D 0 ld)F (v~)) = 
(E 0 Id)Y~:!) + h((B - d) 0 Id)F (v~-1)) , 

(12) 

where for each j = 2, ... , m, the time index n runs from 1 until N. 

It is easily seen that this formula allows row-wise computation of 

the iterates. The total sequential cost of (12) consists of the cost 

needed to compute the sequence {Y~) : n = 1, ... , N} and the cost 

of m - 1 corrector. Hence, if the costs of computing the sequence 

{Y~1 ) : n = 1, ... , N} can be ignored, for example, by using for­

mulas like Y~1 ) = y0 0 e, e being the vector unit entries, then the 

total sequential costs are about the number of iterations m. This 

seems to be considerably less than the total costs of the P(D)IGL 

of the preceding sections which required Nm iterations. However, 

the drawback of this approach is the need of rather accurate first 

iterates {Y~1 ) : n = 1, ... , N} and the poor convergence factors 

associated with (12). If the initial iterates are not sufficiently ac­

curate, and that seems to be likely when their computational costs 

are to be negligible, than the iteration process easily diverges and 
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if it does converge, then the number of iterations may be extremely 

large. 

4.2 Gauss-Seided-type correction formula 

·with respect to convergence speed, the conventional PC correction 

formula in ( 4) and the Jacobi-type correction formula ( 12) are ex­

treme cases. Again referring to the representation of the iterates 

y~) by points in the ( n, J)-plane, we see that in both cases the cor­

rection formula for y~l needs a "lefthand neighbor" and a "lower 

neighbor". However, the accuracy of these "neighbouring" iterates 

differs greatly. In the conventional PC correction formula the ac­

curacy is the best possible, whereas in the Jacobi-type correction 

formula, the accuracy is worst. Therefore, we now consider an "in­

termediate" ordering in which the iterates are computed diagonal­

wise leading to the Gauss-Seidel-type correction formula 

y~J - h(D 0 Id)F (y~l) = 

(E 0 Id)Y~2 1 + h( (B - d) 0 Jd)F ( y~-i)) , 
(13) 

where j = 2, ... , m and n = 1, ... , N. It is easily seen that all 

iterates with with j + n = constant can be computed concurrently. 

Assuming that the predictor formula is equally expansive as one 

correction, we conclude that the diagonal ordering requires N + m 

sequential iterations. The advantage is that the accuracy of the 

"lefthand neighbor" and "lower neighbor" is much better than in 

the Jacobi-type correction formula (12), but at the cost of less 

164 



massive parallelism. Diagonal computation of iterates has already 

been used by Miranker and Liniger [24] where the iterates produced 

by Adams-type PECE methods were computed in parallel along 

diagonals. 

4.3 Dynamic Gauss-Seidel-type correction for­

mula 

Still, the Gauss-Seidel correction formula (13) may also fail in prac­

tice. A remedy is offered by the dynamic Gauss-Seidel correction 

formula 

y~l - h(D 0 Id)F (v~l) = 

(E 0 Id)Y~q~~-l,i)) + h((B - D) 0 Id)F (v~- 1l), (14) 

q(n,j):=j+j*(tn)-l, j=2, ... ,m; n=l, ... ,N 

where the value of j*(tn) is determined dynamically during the 

integration process. For example, by using predictor formulas of 

the form 

y~l - h(D* 0 Id)F (v~1 l) = 
(E* 0 /d)Y~i~-i,i)) + h(B* ® Id)F ( G*Y~qi~-i,i))), 

(15) 

and by the condition that the iterate Y~qi~-l,l)) is sufficiently accu­

rate to obtain a reliable first iterate Y~1 ). 

We remark that the other correction formulas discussed in this pa­

per can also be represented in the form ( 14) by an appropriate def­

inition of the ordering function q(n,j). Ignoring the Jacobi-type 
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Correction formula q(nj) Predictor Seq. iterations 

P(D)IGL (cf. (4)) m B* I 0 1V1n 

Gauss-Seidel (d. (13)) J B* I 0 N+m-l 

Dynamic Gauss-Seidel j + j*(n) - 1 B* I 0 2=n j''(tn) + m 

Table l: Number of sequential iterations associated with {(14), 

(15)} 

correction formula (12) which is too unreliable, Table 1 lists these 

q-functions together with the sequential costs associated with the 

predictor-correction formula pair. 

For RK-based correction formulas, a convergence analysis of step­

parallel methods described above can .be found in [17, 18]. 
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