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The law oflarge numbers, not really a law but a mathematical theorem, is at the same 
time a justification for application of statistics and an essential tool for the mathematical 
theory of probability. As such, it must be taught to many students. The traditional 
method for this, using independent and identically distributed random variables, was 
developed by Kolmogorov in the 1930's, and explains well what happens, and much 
more, at this level of generality. However, it has recently come to light that the reason 
for the validity of this theorem in its general setting, that of stationarity, is much simpler 
than was first thought. In this short article, I shall try to explain to the general audience 
towards whom this collection is directed, the essence of the law of large numbers. A 
complete treatment should certainly include many references and interesting historical 
comments, and I apologize for their absence here. 

Let me start with the basic law of large numbers by considering, very simply, a.n 

infinite sequence 

each of whose elements is either 0 or 1. Perhaps it will help (or hinder!) to think of 
Xn as the result of the nth trial of an uncertain experiment, with Xn = 1 designating 
success and Xn = 0 failure. Let 

XQ +.x1 + · • • t Xn-1 
an= n 

(n;::: 1) 

denote then the average numbers of successes \IP to time n. It is very easy to see 
mathematically that for some sequences x, 

lim a,. 
n-+oo 

exists, while for other sequences x, this is not the case. One can only affirm with 
certainty that 

lim (an+l - a,,)= 0, 
n->oo 
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but nothing impedes the averages an from oscillating more a.nd more slowly as n grows. 
Thus _it seems that further discussion is useless, and that uncertainty here must be 
accepted. 

Phenomenologically, however, we are faced with the fact that in certain situations, 
such limits seem to exist, and the society makes seemingly understandable statements 
concerning the percentage of smokers dying of cancer, the probability of rain tomorrow, 
or a.n industrial average yield. We a.re confronted with the question as to whether 
nature produces sequences whose averages do converge, and why. Of course, this is not 
a mathematical question, and in order to say something mathematically sensible, one 
must adopt a model. 

The currently accepted model, and it is difficult to see how it could be replaced 
by something else, is that for a given situation in which such sequences z appear, in 
principle all sequences are possible, but there is also a ma.ss distribution with total 
mass 1 over the set of sequences, which assigns to each "event" which might occur a. 
probability, this being the total mass of those sequences for which the event occurs. If 
an event, for instance the existence of J~ a,., has probability 1, then one says that the 
event will occur almost surely. 

The determination of such a. mass distribution in different practical situations is one of 
the most important tasks for probabilists, and requires a good mixture of mathematics, 
other sciences, and good old common sense. First principles are of utmost importance, 
as determining such an object by experimentation resembles very much a. cat chasing 
its own ta.ill One of the basic properties of such a mass distribution, already alluded. 
to briefly above, is that of stationarity. We say that the probability measure(= -mass 
distribution) is stationary if the events have time-homogeneous probabilities. That is, 
shifting any event forwards or backwards in time does not change its probability. 

Perhaps a brief remark on mass distributions is in order. There is a branch of mathe­
matics, measure theory, which deals extensively with the specification and manipulation 
of such objects. However, one can understand well most arguments and principles by 
using the intuitive notion, which is my intention here. 

Now we can state the 

BASIC LAW OF LARGE NUMBERS: 

If x = (x0 , x 1,. •• ) is a. stationary sequence of zeroes and ones, then lim,,,-+oo a,,, exists 
almost surely. 

Just to be sure that you are (mathematically) still with me: A unit mass distribution 
on sequences of zeroes and ones is given; it is stationary. Then the set of all sequences z 
for which lim a,. exists has total mass 1. The set of sequences for which this limit does 

n.-+OO 

not exist has mass 0. Remember, this is a theorem, and I want to explain the proof. 
To understand the proof will require the level of first-year university analysis, given 

the intuitive acceptance of the mass distribution notion. We begin by defining 

a:= limsup a,.; 
,._.oo 

this always exists, and 0 ~ a ~ 1. It is also clear that if we had started observing x at 
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a later time point, the value a would be the same: 

Xk + Xk+l + · • • + Xk+n-1 a = lim sup ---'------'---
n-+oo n 

for any k ~ 0 and any sequence x. 
Next, we need a way to measure how close we are to the lim sup, a. Thus, let€> 0 

be a fixed positive number, and for each k 2: 0, define 

N · { > l Xk + Xktl + ... + Xk+n-1 > _ } 
k := mm n : a - t . - n -

By the definition of Jim sup, the set on the right is non-empty and hence Nk is finite 
for each k. The crucial point we need to address concerns the size of the numbers N1c; 
to make our idea clear, let us examine the simplest case first. 

CASE 1. Suppose that for each t > 0 there exists a (large) positive integer M such that 
for each k, Nk S M almost surely. (That is, the set of sequences x for which Nk S M 
has total mass 1.) 

REMARK: Note that by our assumption of stationa.rity the events Nk SM for different 
k all have the same probability. 

If now x is such a sequence that for each k, Nk S M, we claim that lim a,. exists. 
n-too 

The idea is that, as n gets larger, an can only change more a.nd more slowly, and that 
then wandering is impossible because the Jim sup is reached again and again within M 
steps. Formally, one proceeds as follows. Fix e > 0 and choose any n > M / €. Then 
starting at the beginning of x, break x up into pieces of lengths at most M such that 
the average of x over each piece is at least ii - e. Stop at the piece containing the 
coordinate n. Then it is clear that 

xo + X1 + ... + Xn-1 2 (n - M) (ii - e), 

so that 
- Xo + X1 + ... + Xn-1 > (1 ) c- ) > - 2 an - - - f a - f - a - € 

n 

for each n > M / c; it follows that Ji.,~ an == ii exists. 

REMARK: Note that only the last piece is of importance; it must not become too long. 

Actually, the same type of argument works in the general case, when combined with 
an idea coming originally from non-standard analysis. 

CASE 2: General case. By the remark after Case 1, it remains true that the events 
Nk ::; M all have Lhe same probability, for any k and fixed M. Since Nk is finite for 
each x, we may not be able to find an M, for e > 0 given, such that these events have 
probability 1, but we certainly can choose M so large that for any k, the probability of 
Nk ::; M is less than €. 

Fix now such an integer M, given c > 0. Next, we want to make the sa,me inequality 
work for us, but we are impeded whenever N; > M. So let us change x a,t those places 
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to insure quick arrival at the Jim sup. 
Namely, define 

if 

(k ?: 0) 

if 

Then clearly xk ?: Xk for each k, so that if we set 

• . { xj; + · · · Xk+n-1 } Nk := mm n ?: 1 : n ?: a - E 

(same a), then Nj; ~ Nk, and moreover if k is such tha.t 

then we have 
NZ =1, 

since setting xk = 1 insures immediate arrival above a - E < 1. 
Now we are almost ready. As above, breaking x· up into pieces yields for n > M/e. 

x~ + x~ + ... + x~_1 ?: (n - M) (a - ..:), 

but now we cannot conclude anything about the sequence x because we have replaced 
it by x•. 

Instead, we now need to use our mass distribution to calculate the average value 
of each side of the inequality over all sequences x, called by probability theory the 
expectation and denoted by IE(·). Let 

E (xo) =-: p 

and 
lE (x~) :::: p*; 

by stationarity, lE (x;) = p* for all k, and by the choice of M, we have 

p*:::; p+ e. 

Of course, p is just the probability that xk = 1, and p* the probability that x::; = 1, for 
any k. Now, taking expectations of each side of the inequality results in 

n(p + e) ?: np• ?: (n - M)(E (a) - e) (n?: M/t:). 

Now divide by n, send n to infinity and then e to zero, giving 

.,. (-) _ .,. (!' Xo + ... + Xn-1) < "" a - "" 1m sup _ p. 
n--oo n 

Finally, apply the entire argument above to the "mirrored" 0 - I-sequence Yk ::::: 1- x k; 
an easy calculation (exercise!) shows that 

E (lim inf Xo + .. · + Xn-l) ;::: p. 
n-o.oo n 
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But for any sequence x, certainly 

1. . f Xo + ... + Xn-1 < li Xo + ... + Xn-1 1mm _ msup ------
n.-+oo n n-..oo n 

it is an elementary fact of expectations or averaging tha.t the three inequalities then 
must be equalities, the last one almost surely. Hence lim sup = Jim inf for a set of 
sequences of total mass one, i.e. the limit exists almost everywhere. This concludes the 
proof of the basic law of large numbers. 

In concluding, we state without proof that this method ca.n be widely extended with 
minor, straight-forward modifications to the most general laws of large numbers based 
on stationarity. The above proof should, however, in my opinion be included in basic 
probability' courses, since it so clearly shows the nature of the interplay of stationa.rity 
assumptions and the existence of statistical limits. 
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