
M.O. Ball et al., Eds., Handbooks in OR & MS, Vol. 7
© 1995 Elsevier Science B.V All rights reserved

Chapter 3

Matching

A.M.H. Gerards
CW/, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

1. Introduction

Matching is pairing: dividing a collection of objects into pairs. Typically the
objective is to maximize total profit (or minimize cost), where the profit of each
possible pair is known in advance.

For a more formal definition, let G be an undirected graph with node set V
and edge set E. A subset M of E such that no two edges in M are incident to
a common node is a matching. If M has exactly one edge incident to each node
v E V, we call M a perfect matching. The maximum weight matching problem with
respect to the weights w on the edges is:

Find a matching M with total weight LeEM We as large as possi-
ble. (1)

The minimum weight perfect matching problem is:

Find a perfect matching M with total weight LeEM We as small as
possible. (2)

A matching problem is defined by two parameters: the graph G and the weights
w. We classify matching problems by these different parameters:

The weights - cardinality or weighted matching. Finding a maximum cardinality
matching, i.e. considering all edges to have weight one, is easier than dealing with
more general weights. Moreover, an algorithm for finding a maximum cardinality
matching can be, and in our presentation is, used as a subroutine for solving
the general weighted problem. Therefore, we discuss the cardinality case first, in
Section 2, and study general weights later, in Section 6.

The graph - bipartite or non-bipartite matching. Matching problems are signifi­
cantly easier in bipartite graphs. So, we discuss several topics in bipartite matching
before venturing into the complications of the non-bipartite case.

Matching theory is one of the cornerstones of mathematical programming.
Yet, matchings are not as ubiquitous in practice as network flow problems (for
applications of network flows, see Ahuja, Magnanti & Orlin [1989]) and, when
they do arise in practice, it is most often in bipartite graphs where they can be

135

136 A.M.H. Gerards

modeled as network flow problems anyway (see Section 3.1). So, to what does
'Matching' owe its prominence?

First, there is the position of matching problems between the 'easier' problems
like network flows, and the hard (NP-hard) problems like general integer linear
programming. This position has been pointed out by Edmonds & Johnson [1970].
It is probably best expressed by the qualification: "Optimum matching problems
... constitute the only class of genuine integer programs for which a good solu­
tion is known" [Cunningham & Marsh, 1978]. In a footnote, Cunningham and
Marsh clarify this statement with: "... Every other class of well-solved combina­
torial problems is not 'genuine' because either: (a) No explicit formulation as an
integer program using a reasonable amount of data is known (example: minimum
spanning tree problems); or (b) When such a formulation is known, the resulting
linear program already has integer-valued optimal solutions (example: network flow
problems)."

Second, and perhaps more intrinsic to the importance of matching, there is
the intricate structure of matching theory. Just a glimpse in the excellent book
Matching Theory by Lovasz & Plummer [1986] should convince the reader of this.
For instance, there are the structural descriptions of the class of all maximum
cardinality matchings in a graph. In this chapter we see how one of these, the
Edmonds-Gallai structure (see Section 4.1), helps in understanding an algorithm
for finding a minimum weight perfect matching (see Section 6.2). Third, there
is the 'self-refining' property of matching theory: it contains a wide class of its
generalizations as special cases (see Sections 3 and 7).

1.1. Examples of matching problems

We begin with four examples of matching problems. A classic example is:

The assignment problem. Suppose n tasks are to be carried out and each must be
assigned to a single person. We have a staff of n people available and each person
can be assigned only one task. Moreover, we know for each person p and task
t a number Wp,t quantifying the productivity of p when carrying out t. Now, the
question is: How do we assign the tasks to the people, i.e. make task-person pairs,
so that the total productivity is as large as possible?

Clearly, this is a bipartite matching problem. An example of a non-bipartite
matching problem is:

The oil well drilling problem [Devine, 1973]. Suppose we are given the locations
of oil deposits. We want to exploit all the deposits at minimum drilling cost. It is
technically feasible to access two deposits with one well: drill a hole to the first
deposit, and then continue drilling from that same hole, possibly at a different
angle, to the second deposit. The oil is then brought up from both deposits via
concentric pipes. We know the savings possible from combined drilling operations
for each pair of deposits. The question is: How do we combine the drilling
operations so that the savings are as large as possible?

Ch. 3. Matching 137

In both of these cases, the matching character of the problem is immediately
obvious from the description. A more disguised matching problem is:

Plotting street maps [Iri & Taguchi, 1980; Iri, Murata & Matsui, 1983]. A pen­
plotter has to draw a street map of a city. Since the total length of the lines to be
drawn is fixed, this amounts to minimizing the total distance of the 'non-drawing'
moves, or shifts, the pen makes to change position. A natural assumption is that
the pen starts from some prescribed point and returns to it when the drawing is
finished. For simplicity, we assume that this common starting and ending point is
a point of the map to be drawn. Moreover, we assume that the graph of the map
(edges are streets, nodes are intersections) is connected, i.e., that you can travel
between any two intersections in the city along streets. The question is: In what
order should the edges be drawn to minimize the total drawing time?

An old and famous theorem of Euler's [1736] asserts that if all the nodes in a
connected graph have even degree, one can draw the graph without making any
shifts. However, when there are nodes with odd degree, shifts are unavoidable. In
this case, the problem amounts to adding edges to the graph, which will become
the shifts, so that every node in the resulting graph has even degree. Distances in
the city are Euclidean. So we may assume, by the triangle inequality, that no two
shifts have a common endpoint. Hence, finding the fastest way to draw the map
amounts to pairing up the nodes with odd degree so that the total length of the
line segments connecting the two nodes in each pair is as short as possible. This is
a minimum weight perfect matching problem.

The following application is even less obvious. Again, we solve this problem
as a matching problem, but now the resulting matching must be modified in a
non-trivial way to obtain a solution to the original problem.

Scheduling [Fujii, Kasami & Ninomiya, 1969]. Suppose, you and your partner
want to restore this lovely old house you just bought. You have divided the whole
project into a number of one-week jobs that must be carried out in accordance
with certain precedence relations. For example, it is difficult to paper a new
wall before putting it up. As the project puts already enough pressure on the
relationship, you have agreed not to work together on any job. You both have
about the same skills, however, so either of you can do each job equally well.
The question is: How do you allocate the jobs between you so you can finish the
project as early as possible?

We have a list of one-week jobs Ji, ... , h, together with a partial order -< on
them. The relation J; -< lj means that Ji should be carried out before lj and two
jobs are incomparable if neither must precede the other. Minimizing the project
duration amounts to scheduling the jobs, in accordance with the precedence
constraints, so that in as many weeks as possible you and your partner are both
assigned jobs. Clearly, if you and your partner are both working in a given week,
your jobs must be incomparable. Therefore, as a first attempt at finding an optimal
schedule, we look for a largest set of disjoint, incomparable pairs: a maximum
cardinality matching problem.

138 A.M.H. Gerards

If a largest matching P consists off, disjoint, incomparable pairs, then we know that the whole project will take at least k - e weeks. In fact, we can complete the project within that period. The idea is to schedule the jobs from each pair in P in a single week. Each of the remaining jobs, called the singleton jobs, is assigned to a week by itself. We might, however, have to change P to make this possi­ble.
The proof that we can complete the project in k - f, weeks is by induction on k, the number of jobs. Let £, denote the jobs that are minimal with respect to -<. If there is a pair, say (11, Ji) E P with both 11 and]z in &, we schedule these two jobs in the first week. P \ (11,]z) is still a largest collection of incomparable pairs among the remaining jobs. Hence the induction hypothesis assures us we can schedule the jobs in k - f, weeks. A similar argument applies if e contains a

singleton job.
Now suppose e contains neither a singleton job nor a pair in P. Among all pairs

(11,]z) E Pwith 11 Ee choose one with 12 minimal with respect to-<. As Jz <f. e there exists a h E £with h -<]z. Moreover, as h is not a singleton job, there exists a job 14 with (h 14) E P. As 13 -<]z,]z does not precede h Moreover, by the choice of]z, 14 does not precede]z. So jobs]z and 14 are incomparable. Hence, (P\ {(Ji,]z), (h 14)}) U{(J1, 1)), (]z, 14)} is also a largest collection of disjoint, incomparable pairs. As this collection does have pair in £, we can proceed as before, schedule that pair in the first week, and by the induction hypothesis the other jobs in the remaining k - e - 1 weeks.
For other applications of matching see Ball, Bodin & Dial [1983] and Murata [1993].

1.2. Generalizations of the matching problem

There are two obvious directions in which the matching problem can be generalized.

Degree-constrained optimization. Matchings are subgraphs in which each edge appears at most once and each node has degree at most one. This suggests extensions allowing more general degree constraints and allowing an edge to appear more than once in a feasible solution. These generalizations lead to so­
called 'b-factors' and 'b-matchings', and - if we limit the number of times an edge can appear - to 'capacitated' b-matchings. We can also impose lower bounds on the degrees of nodes and on the number of times edges appear. Thus we can extend the matching problem to a quite general degree-constrained (multi-)graph optimization problem. Surprisingly, many results for ordinary matchings extend to these generalizations. This phenomenon, which we explain in Section 7, is part of the self-refining nature of matching theory previously mentioned.

This self-refining nature persists even when we impose parity conditions on the degrees of nodes, e.g. demanding that feasible solutions have an odd number of edges incident to particular nodes (see Section 7.4).

Ch. 3. Matching 139

Set-packing problems. As matching is finding disjoint pairs, a natural generaliza­

tion of the matching problem is trying to find, in some sense optimal, collections
of disjoint triples, quadruples or otherwise structured sets. This gives rise to the

very general set-packing problem, which includes many combinatorial optimization

problems as special cases. Unfortunately the set-packing problem is too general,

it is NP-hard (even if we only consider packing triples [Karp, 1972]). Except for a

few lines on stable sets in perfect graphs (in Section 3.2), we do not study them
here but confine ourselves to matchings.

1.3. Other sources on matching

The number of publications concerning matching problems is enormous, the
references in this chapter constitute only a very limited part of them. There

are many good books on matching. We mentioned already Matching Theory
by Lovasz & Plummer [1986], which really is the most complete source on
matchings available at this moment. Other highly recommendable books that deal

(partly) with matchings are: Graphs by Berge [1985], Combinatorial Optimization:
Networks and Matroids by Lawler [1976], Graphs and Algorithms by Gondran
& Minoux [1984] and Programming in Networks and Graphs by Derigs [1988a].

Sources on general integer programming (including matching) are: Theory of
Linear and Integer Programming by Schrijver [1986] and Integer and Combinatorial
Optimization by Nemhauser & Wolsey [1988].

Excellent introductions to matchings are: Schrijver's [1983a] survey paper on

min-max relations in combinatorial optimization, with special emphasis on the
self-refining properties of matching and the paper by Pulleyblank [1995], with more

emphasis on structural results then one will find in this chapter. A very nice his­
torical overview of matching theory - from its birth to today's state of the art - is

the paper by Plummer [1992]. Recently, the same author gave an overview on how

'hard' or 'easy' various matching and vertex-packing problems are [Plummer, 1993].

As mentioned, bipartite matchings are really network flows. Network flows are

also discussed in most of the just mentioned publications. For extensive treatments

of network flows we refer to the surveys by Ahuja, Magnanti & Orlin [1989], by
Goldberg, Tardos & Tarjan [1990] and by Helgason & Kennington [1995, this

volume].

1.4. Outline

The first part of this chapter considers algorithms for finding maximum cardi­

nality as well as maximum weight matchings (Sections 2 and 6). We start with

the Hungarian method for finding a maximum cardinality matching in a bipartite
graph (Section 2.1). We then extend the method in two directions: to Edmonds'

blossom algorithm for finding a maximum cardinality matching in a general graph

(Section 2.2) and to the Hungarian method for finding a maximum weight match­
ing in a bipartite graph (Section 6.1). Finally, the ideas of these two methods
are combined in Edmonds' algorithm for the weighted matching problem in gen-

140 A.M.H Gerards

erai graphs (Section 6.2). From the insight provided by the Hungarian method
for maximum cardinality matching in bipartite graphs the classical theorems of
Frobenius and Konig on bipartite matchings easily follow (Section 3). Some of
the self-refining properties of matchings can be found in that section. Edmonds'
blossom algorithm for cardinality matching yields the theorems of Tutte and Berge
on matchings in general, non-bipartite, graphs and the Edmonds-Gallai structure
theorem (Section 4). This structure theorem facilitates the description and anal­
ysis of Edmonds' blossom algorithm for weighted matching. Because algorithms
for the weighted matching problem are closely related to the formulation of this
problem as a linear program, we discuss the matching polytope in Section 5. In
that section we also briefly mention stable matchings (Section 5.2). Together these
sections contain the basic algorithmic and structural aspects of matchings.

The second part of this chapter consists of four sections. In Section 7 we con­
sider general degree constraints and discuss some of the self-refining aspects of
matching. In Section 8 we present other algorithms for matching problems, includ­
ing randomized algorithms for maximum matching and for counting matchings. In
Section 9, we discuss applications of matchings to other combinatorial optimiza­
tion problems like the traveling salesman problem. This chapter concludes with a
(short) section on the computer implementation of matching algorithms and on
heuristics for matching problems.

We conclude this section with some notation and conventions.

1.5. Notation and conventions

I. 5.1. Graphs
Typically we denote the edge set of an undirected graph G by E and its node set

by V. When ambiguity might arise, we write E(G) and V(G). We write uv E E
to mean that uv is an edge with endpoints u and v. In case of parallel edges
this might seem a bit ambiguous, but generally it is not. Parallel edges are not
particularly relevant for matching problems and we can always assume that there
are none. Yet, parallel edges hardly complicate the problem. In fact, in solving
matching problems we construct graphs with parallel edges. So we do not explicitly
forbid them.

We assume the reader is familiar with the basic notions of graph theory [see
Bondy & Murty, 1976) and only discuss those most important for this chapter.
For each subset U s; V(G), we define: 8(U) := {uv E E(G) I u E U, v .;_ U}
and (U) := (uv E E(G) I u E U, v E U}. We let GiU denote the subgraph
of G induced by U, i.e., V(GIU) = U, E(GIU) = (U), and we let G \ U :=
Gi(V(G) \ U). For each node u E V(G), G \ u := G \ {u}, 8(u) := 8({u}) and
d~g(u) := !8(u)I, the degree of u. For each edge e E E(G), G \ e is the graph
with node set V(G) and edge set E(G) \ {e}. We use Gue to denote the graph
obtained by adding the new edge e <f. E(G) to G, i.e., V(G u e) = V(G) and
E(G U e) = E(G) U {e}. The notions of connected graphs, components, paths,
trees and forests are so standard that we omit their definitions here. Circuits
and Eulerian graphs are standard notions too, but there is a rather wide-spread

Ch. 3. Matching 141

babel as far as the terminology is concerned. We refer to a circuit (of length k)
as a graph C with k distinct nodes V(C) := {v1, ... , vk} and the k distinct edges
E(C) := {v1v2, v2v3, ... , Vk-IVk. vkvi}. A cycle is a graph with all degrees even. So
a cycle is an edge-disjoint union of circuits (in other writings one might find 'cycle'
where we use 'circuit'). A connected cycle is called an Eulerian graph. We often
identify a circuit C with its edge set E(C), and so write e EC, meaning e E E(C).
Similarly, we identify other subgraphs like paths or trees with their edge sets.

We denote a bipartite graph by G =(Vi U V2, E) where Vi and V2 are the color
classes (so each edge has one endpoint in V1 and one in V2).

Given a directed graph D, V(D) denotes the node set, A(D) denotes the arc
--+ --+

set, and uv denotes an arc from u to v. For each subset Uc V, 8-(U) := {uvE
--> -

A(G) I u €/. U, v EU} and 8+(U) := {uvE A(G) I u EU, v €/. U}. Again, for each
node u E V(D), we abbreviate 8-({u}) as s-(u) and 8+({u}) as s+(u).

1.5.2. Numbers, vectors, polytopes and polyhedra
For a E JR, LaJ denotes the largest integer not greater than a. Similarly !al

denotes the smallest integer not smaller than a.
Given a set R and a finite set S, Rs denotes the collection of vectors indexed

over S with components in R. So, for example, JRs is the collection of real vectors
and zs is the collection of integral vectors with components indexed by S. We
use lR+ to denote the set of non-negative reals and Z+ to denote the set of non­
negative integers. For each subset T 5; S, xT E {O, l}s denotes the characteristic
vector of T as a subset of S, i.e., (xT)1 = 1 if t E T and (xT)1 = 0 if t 'f. T. Given
x E JRs and T s; S, we frequently use x(T) to denote LteT x,.

The node-edge incidence matrix N = (Nu,e) of an undirected graph G is the
V(G) x E(G) matrix with Nu,e = 1 if u is an endpoint of edge e and Nu,e = 0
otherwise.

Let x1, ... , xk E JRs. Any vector of the form L:~=l J..1x1 with L~=I J..1 = 1 and
J..1 ~ 0 for each i E { 1, ... , k}, is called a convex combination of x 1, ... , xk. The
convex hull of a set X is the collection of all convex combinations of finite subsets
of X. A polytope is the convex hull of a finite set. A polyhedron is the solution set
of a finite system of linear inequalities, i.e., a set of the form {x E JRn I Ax :::: b}
for some matrix A and vector b.

1.5.3. Algorithms
One measure of the running time of an algorithm is the number of arithmetic

steps it requires. Here, an arithmetic step is the addition, multiplication, division
or comparison of two numbers. We report the running time of an algorithm by
giving its asymptotic behavior as a function of the size of the input. So, we say
for instance that the running time is O(n) meaning that there exists a constant y
so that given input of size n the algorithm takes no more than yn steps before it
produces the output. An algorithm is polynomial if its running time is 0 (nP) for
some p E Z+·

The input for matching problems is in the form of graphs and rational numbers.
We assume that the graph G is represented by its adjacency lists, i.e., for each

142 A.M.H. Gerards

node v we have a list of the nodes adjacent to v. Thus, the size of the input of
a graph is proportional to IV(G)\ + \E(G)\. (Note that every edge is represented
twice in this way.)

Because we measure the running time of algorithms with respect to the number
of arithmetic steps, we can consider the input size of a rational number to be l.
However, when implementing the algorithms on a computer, rationals take more
space to encode. A rational number p / q, where p and q are integers, can be
represented with log(\pl + 1) + log(\ql + 1) binary bits. On the other hand, an
arithmetic operation on two rationals can be carried out in a number of binary
operations that is polynomial in the number of binary bits required to encode the
two rationals. So, if the number of arithmetic operations an algorithm requires
is polynomial in the number of input rationals, the number of binary operations
it requires will be polynomial in the number of binary digits needed to encode
those rationals; that is, provided the numbers that are calculated in the process
do not become too big! Though not true in general, in this chapter the numbers
computed do not become too large and so, it is enough to argue that the number
of arithmetic operations an algorithm requires is polynomial in the size of the
graph considered.

2. Finding a matching of maximum cardinality

The maximum cardinality of a matching in an undirected graph G = (V, E)
is denoted by v(G). The main question of this section is: How do we find
- in polynomial time - a maximum matching, that is, a matching of maximum
cardinality? We consider this problem separately from the more general weighted
problem because it is easier and it contains the main ideas and notions of the
weighted problem: 'alternating paths' and 'shrinking'.

2.1. Alternating paths and forests

A path P in a graph G = (V, E) is said to be alternating with respect to a
matching M, or M-alternating, if the edges of P are alternately in M and not in

M':=P6.M

(a) (b)

Fig. 1. The bold edges are in the matchings M, respectively M'

Ch. 3. Matching 143

M (see Figure la; for instance, the paths {e4 , e7 , e6) and {e1, e2 , e3 , e4 , e5 , e6} are
M-alternating). So, every node in an M-alternating path P, except possibly its end
nodes, is incident to an edge in Mn E(P).

If an edge uv is in a matching M, we say that the node u is matched by M and
that the two nodes u and v are matched. We also write uM to denote v. Nodes
not matched by M are called exposed and we denote the set of exposed nodes
by exp(M). We define the deficiency of G as def(G) := IV(G)J - 2v(G). So the
deficiency is minimum cardinality of exp(M). An alternating path P is augmenting,
or more precisely M -augmenting, if both its end nodes are exposed (see Figure la;
the dotted line indicates an M-augmenting path). Augmenting paths obviously
yield larger matchings (we refer to the operation described in (3) and illustrated
in Figure 1, as AUGMENT):

If P is an augmenting path with respect to a matching M, then the
symmetric difference M' := P L M is a matching too. Moreover,
JM'I = IMJ + 1. (3)

In fact, the converse is also true: if there is no augmenting path, there is no larger
matching.

Theorem 1 [Berge, 1957; Norman & Rabin, 1959]. A matching Min a graph G is
a maximum matching if and only if there is no M-augmenting path in G.

Proof. Let M' be a matching in G with JM'J > IMI. The graph consisting of the
edges in M' L M has maximum degree 2. Hence, each of its components is either
a path or a circuit in which the edges are alternately in M' and in M. Clearly one
of these components must contain more edges from M' than from M and that
component must be an augmenting path with respect to M. The converse is (3). o

Mulder [1992] pointed out that this result was in fact already known by Julius
Petersen [1891], probably the first to study matchings in graphs.

So, searching for maximum matchings amounts to searching for augmenting
paths. We search for augmenting paths by 'growing alternating forests'.

Let M be a matching in a graph G = (V, E).A tree Tin G is called alternating
if the following hold (see Figure 2):

- T contains exactly one exposed node, denoted by rr,

0----p_
,

, v'"
Q
I

'~--' ----6
u' v'

Fig. 2. The solid edges form an alternating tree. The bold edges, dashed or not, are in the matching.
Open square nodes are odd; filled square nodes are even.

144 A.M.H. Gerards

- for each node v E V (T), the path from rT to v in T is alternating, and
- for each node v of degree one in T, other than rT, the matching-edge VVM is

in T.
An alternating forest is a node-disjoint union of alternating trees such that each

exposed node is in one of the trees. So, the forest consisting only of the exposed
nodes without any edges is alternating. For each node v in an alternating forest
F, Fv denotes the alternating tree in F containing v and rv,F denotes the unique
exposed node in Fv. We call a node v in F even (odd) if the unique path in F
from rv,F to v contains an even (odd) number of edges. We denote the set of even
nodes of an alternating forest F by even(F) and the set of odd nodes by odd(F).

The following procedure uses alternating forests to search for augmenting
paths.

GROW: Either (1) or (2) below applies:
(1) If there is a node u E even(F) adjacent to a node v fj. odd(F), then exactly
one of the following occurs:

v fj. even(F). In this case, we extend F to a larger alternating forest by adding
the edges uv and VVM (vis matched). We refer to this as 'GROWING the
alternating forest'. (See Figure 2; u = u', v = v'.)

v E even(F) and Fu ¥- Fv. In this case, we have FOUND an AUGMENTING

PATH, namely the union of: the path in Fu from ru,F to u, the edge uv, and
the path in Fv from v to rv,F· (See Figure 2; u = u", v = v".)

v E even(F) and Fu = Fv. In this case, the procedure HALTS. (See Figure 2;
u = u', v = v'".)

(2) If no node u E even(F) is adjacent to a node v fj. odd(F), the procedure
TERMINATES. In this case, the forest F is called Hungarian.

Lemma 2. Let M be a matching in a graph G = (V, E) and let F be an alternating
forest with respect to M. If F is Hungarian, then Mis a maximum matching.

Proof. Since F is Hungarian, nodes in even(F) are adjacent only to nodes
in odd(F). So, each matching in G has at least jeven(F)I - jodd(F)I exposed
nodes. On the other hand, from the definition of alternating forest it follows that
I exp(M)I = jeven(F)I - lodd(F)j. So Mis a maximum matching. o

Lemma 2 implies that GROW either finds an augmenting path, terminates
with a maximum matching, or HALTS. When G is bipartite, each even node v
is in the same color class of G as rv,F· So, no two adjacent even nodes can
be in the same component of F and GROW cannot HALT. Thus, we can find
a maximum matching in a bipartite graph by iteratively applying GROW and
AUGMENT. This algorithm has been introduced by Kuhn [1955], in the context
of matchings in bipartite graphs, and Hall [1956], in the context of 'systems of
distinct representatives' (see Section 3). Kuhn called it the Hungarian method in
recognition of Konig and Egervary's contributions to the theory of matchings. The
Hungarian method is easy to implement.

Ch. 3. Matching 145

Theorem 3. The Hungarian method finds a matching of maximum cardinality in a
bipartite graph in O(IEI min(I Vil, IV2I)) time.

Proof. It takes O(IEI) time for GROW to find an augmenting path or construct a
Hungarian alternating forest. Each augmentation takes O(IEI) time as well. Since
we AUGMENT v(G) S min(IVil, IVil) times, the theorem follows. (Note that we
apply GROW v(G) + 1 times.) D

Hopcroft & Karp [1971, 1973] improved on this running time by searching for
a collection of disjoint, shortest augmenting paths and then augmenting along all
the paths simultaneously.

Given a matching M, we define £(M) to be the number of edges in a shortest
M -augmenting path. A collection of node-disjoint, shortest augmenting paths
P1, ... , Pi is called maximal if there is no shortest augmenting path in G node­
disjoint from each of the paths P1, ... , Pi. Hopcroft and Karp's algorithm is based
on the following two observations.

We can find a maximal collection of node-disjoint shortest aug-
menting paths in 0 (I EI) time. (4)

Indeed, breadth-first search starting from exp(M) n Vi accomplishes this.

If Pi, ... , P1 is a maximal collection of shortest M-augmenting
paths, then l(M D. P1 D. · · · D. Pi) > £(M). (5)

To see this, let Q be an augmenting path with respect to M' := ML P1 6 · · · 6 P1•

Now, observe that in proving Theorem 1 we actually proved:

Let M 1 and Mz be two matchings with k := IM2l - IM1I > 0. Then
there exists a collection of k mutually node-disjoint M 1-augmenting

~~~~/:::,,.~ ~ 

Applying (6) to Mand M' L Q, we get t + 1 node-disjoint M-augmenting paths 
Q 1, ... , Q 1+1 in ML M' D. Q. Now one easily verifies: 

Hence 

£(M)(t + 1) s IQ1I + .. · + IQ1+1I s IM D. M' 6 QI= 
= I P1 L · · · L P1 L QI 

= I (Pi u · · · u Pr) L QI = I P1 u · · · u Pi I + IQ I -
-21(P1LJ ... LJP1)nQI 

= £(M)t + IQI - 21(P1 u · · · u Pi) n QI. (7) 

I QI ::: l(M) + 21(?1 u · · · U Pi) n QI. (8) 

So I QI ::=: £(M). Suppose IQI = £(M). Then Q has no edge in common with any 
of P1, ••• , P1 Hence, since Q is augmenting with respect to M L P1 D. · · · 6 PI> it 
must also have no node in common with any of P1, ... , P1• This contradicts the 



146 A.M.H. Gerards 

maximality of the collection Pi, ... , P1• So we conclude that IQ I > e (M), which 

proves (5). . 
This is the algorithm of Hopcroft and Karp. In each phase we are given 

an (initially empty) matching M. We find a maximal collection of node-disjoint 
shortest M-augmenting paths Pi, ... , Pi and augment along all of them to obtain 
the larger matching M' := M !:i.. Pi !:i..··· !:i.. P1• We iteratively repeat this procedure 
using as input to each successive phase the matching M' constructed in the 

previous phase. 

The algorithm of Hopcroft and Karp finds a maximum cardinality 
matching in a bipartite graph in 0(1£1.JfVi) time. (9) 

Since each phase can be carried out in 0(1£1) time, it suffices to prove that we 
need only O(JTVi) phases. Let Mi be the matching found after .JTVi phases. By 
(5), .e(Mi) ::=:: JfVi. So there can be at most IV II .JfVi = .JTVi mutually edge­
disjoint M1-augmenting paths. Applying (6) to M1 and some maximum matching 
M2, we see that !Mi I ::=:: v(G) - JIVT. Hence, after at most .JTVi further phases 
we obtain a maximum cardinality matching. 

~---

Improvements on (9) are the O(IVll.SJIEl/loglVI) algorithm by Alt, Blum, 
Mehlhorn & Paul [1991 ], which is faster for dense graphs, and the 0 (I EI .JWi 
logiv 1(1Vi2 / E)) algorithm by Feder & Motwani [1991]. 

In Section 3.1 we show how to find a maximum cardinality matching by solving 
a max-fl.ow problem. In fact, Even & Tarjan [1975] observed that we can interpret 
Hopcroft and Karp's algorithm as Dinic's max-fl.ow algorithm [Dinic, 1970] applied 
to matchings in bipartite graphs. Recently, Balinski & Gonzalez [ 1991] developed 
an O(IEllVD algorithm for finding maximum matchings in bipartite graphs that is 
not based on augmenting path methods. 

2.2. Non-bipartite graphs - shrinking blossoms 

In non-bipartite graphs the procedure GROW may HALT even when there are 
augmenting paths. Indeed, consider the example in Figure 3. Nodes u and v are 
even, adjacent and belong to the same alternating tree. Clearly, we cannot grow 
the tree any further. On the other hand, there is an augmenting path (in this case 
it is unique) and it contains edge uv. So, we must modify our procedure for finding 
augmenting paths. 

2.2.1. Alternating circuits and blossoms 
A circuit C is said to be alternating with respect to a matching M if Mn E(C) 

is a maximum matching in C. So, when C is an alternating odd circuit with respect 
to a matching M, exactly one node in C is exposed with respect to Mn E(C). We 
call this node the tip of the alternating odd circuit C. If the tip t of an alternating 
odd circuit C is connected to an exposed node by an even alternating path P with 
V(P) n V(C) = {t}, then C is called a blossom and P is called a stem of C. 



Ch. 3. Matching 147 

0 - {) 
' 

q- - p 

U---<l---< I- - ~.7'~0 - - - -0 

Fig. 3. Solid edges are in the alternating forest; bold edges, dashed or not, are in the matching. 
The shaded region indicates a blossom. 

0 - {) 
' 

o---6---e: :_­
s 

Fig. 4. 

0 
' 

. -. -6 - - - -o 

q- - p 
' , 
' ' --o----o 

When the procedure GROW HALTS, G contains a blossom. (10) 

Indeed, suppose we have two adjacent even nodes u and v in an alternating forest 
F, both belonging to the same alternating tree T of F (see Figure 3). Consider 
the paths Pu from rT to u and Pv from rr to v in F. Then E(Pu) 6 E(Pv) together 
with uv forms a blossom and the intersection of Pu and Pv is one of its stems. 

Having detected a blossom C, we 'shrink' it. That is, we apply the procedure 
SHRINK to V(C). Figure 4 illustrates the effect of shrinking V(C) in Figure 3. 

SHRINK: The graph G x S obtained from G by shrinking S s; V is constructed as 
follows. Remove S from V and add the new nodes, called a pseudo-node. Remove 
(S) from E and replace each edge uv with one endpoint, v, in S with an edge us. 
We denote by M x S the edges of Min G x S, i.e., M x S = (M \ {S)) U {us I 
UV E Mn o(S) and v E S}. Similarly, F x s denotes the edges of Fin G x s. If 
no confusion is likely, we write Mand F in place of the more cumbersome M x S 
and F x S. 

When we apply SHRINK to a blossom C with node set S, M x S is a matching 
and F x Sis an M x S-alternating forest in G x S. In fact, we can continue our 
search for an augmenting path in the shrunken graph. 

Each augmenting path Q in G x S can be extended to an augment-
ing path Q' in G. (11) 

Indeed, ifs rt V (Q) then take Q' = Q. Otherwise, there is a unique even path P 
in C with the tip as one of the endpoints, such that adding P to Q yields a path 
Q' in G. It is easy to see that Q' is an augmenting path in G. 



148 A.M.H. Gerards 

So, finding an augmenting path in G x S, amounts to finding one in G. We can 
EXPAND the blossom to extend the alternating path Q in G x S to an alternating 
path Q' in G, and augment the matching in G. Therefor, when GROW HALTS we 
SHRINK. 

The next theorem shows that alternately applying GROW and SHRINK finds an 
augmenting path, if one exists. 

Theorem 4. Let S be a blossom with respect to the matching M in the graph G. 
Then M is a maximum cardinality matching in G if and only if M x S is a maximum 
cardinality matching in G x S. 

Proof. By (11), Mis a maximum cardinality matching only if M x Sis. To prove 
the converse, we assume that M is not maximum in G. 

We may assume that the tip t of S and the pseudo-node s corresponding to S 
are exposed nodes. Indeed, if this is not the case, we simply take the stem P of S 
and replace Mand M x S with the matchings M 6 P and (M x S) !':::. P having the 
same cardinalities. 

0 

0-0 

/ 
I ShnnkS' 

\ 
0 
' 

0-0 
S" ..... ······ ,. ........ 

s" 
s' 

····· ............ . 

. o 

augment 

s" 
s" 

Fig. 5. 



Ch. 3. Matching 149 

Let Q be an augmenting path in G with endpoints u and v, where u =fat. If Q is 
disjoint from S, it is augmenting in G x S. Otherwise, Q x S contains a unique us­
path P. Clearly, P is augmenting in G x S, so M x Sis not maximum in G x S. o 

Thus we have an algorithm for finding a largest matching in a non-bipartite 
graph. This algorithm, called the blossom algorithm has been developed by 
Edmonds (1965c] (Figure 5 continues the examples in Figures 3 and 4). Witzgall & 
Zahn [1965] developed an 0(1Vi3) algorithm for general non-bipartite matching 
that does not rely on shrinking. 

Clearly, the blossom algorithm can be implemented to run in polynomial time. 
Edmonds' implementation runs in 0(IV14). Balinski [1969], Gabow [1973, 1976], 
and Lawler [1976] developed O(iVi3 ) versions (but only the latter two authors 
explicitly state the running time). Developing an O(iVi3) version requires careful 
implementation of SHRINK. 

2.2.2. Implementation of the blossom algorithm 
Assume that during the search for an augmenting path, the blossom algorithm 

successively generates the graphs G =Go, G1, ... , Gk. i.e., GROW identifies the 
blossom Si in G 1 and SHRINK produces the graph Gi+l = G, x Si by shrinking 
Si to the pseudo-node s1 (i = 0, ... , k - 1). We identify each node v in G1, not in 
S1, with the corresponding node in G1+1· Pseudo-nodes are considered to be new 
elements. (So, V(Gi+1) = (V(G1) \ S1) U {st} for i = 0, ... , k - 1.) 

We use the following notation to represent the relations between the pseudo­
node Si and the set Si of nodes and pseudo-nodes 'contained' in it. For each node 
s E uJ=o V(G1) (= V(G) U {so, ... , sk-1}) we define: 

SH [] ._ [to, ... , te] ifs= s1 (i = 0, ... , k -1), tot1, t1t2, ... , teto { 

0 ifs E V (G) 

ALLOW s .- · h 1 · dd · · d fi · h 1s t e a ternatmg o circmt e mng t e 
blossom S1, and to is the tip of S,, 

(so SHALLOW [s] is an ordered list) and 

BLOSSOM [s] ·-{ t ifsESHALLOW[t], tE{so, ... ,Sk-J} 
.- 0 otherwise. 

We define, recursively, the relations: 

DEEP[s] { s ifs E V (G) 
:= UrESHALLOW[sJDEEP [t] otherwise 

and 

OUTERi[s] := t ifs E DEEP[t], t E V(Gi). 

During the execution of the algorithm, we are mainly interested in the most re­
cently constructed graph Ck and so denote OUTERk by OUTER. Together with the 
adjacency lists representing G, OUTER represents the current shrunken graph Ck. 



150 A. M.H. Gerards 

Implementation 1 - explicitly updating OUTER: We maintain the functions SHAL­
LOW, DEEP and OUTER as data structures. Each time we detect a blossom S, 
we introduce a new pseudo-node s. We can determine SHALLOW[s] and the 
nodes in S in 0 (\SI) time and we can determine DEEP [s] and update the array 
OUTER in O(LtESHALLOW[s] \DEEP[t]\) = 0(\V(G)\) time. So, since we shrink 
at most ~IV(G)I times between successive augmentations, we spend O(\V(G)\2) 

time updating SHALLOW, DEEP and OUTER between successive augmentations. 
It is easy to implement GROW with these data structures. We grow an alter­

nating forest F' in the current shrunken graph G' represented by OUTER by 
scanning the edges uv in G such that OUTER [u] E even(F'). Note that we can 
determine OUTER [ u] and OUTER [ v] in constant time. We keep track of the forest 
by creating a label FOREST[OUTER[v]]= u for the node OUTER[v] each time 
we decide to add the edge uv to F'. When we shrink a blossom S with tip t 
into a pseudo-node s, we easily create F' x S in the new graph G' x S by setting 
FOREST(s] := FOREST(t]. Implemented in this way, GROW takes 0(\E(G)\) 
time (disregarding the time spent on updating SHALLOW, DEEP and OUTER), 
just as in the Hungarian method. 

When we detect an augmenting path in G1, we can construct it using FOREST 
and expand it to an augmenting path in G using OUTER and the ordered list 
SHALLOW. This, and carrying out the augmentation, takes 0(\E(G)I) time plus 
O(!V(G)\2) time for updating OUTER (which is necessary each time we expand a 
blossom). 

As there are at most IV (G) I augmentations, we obtain the following result: 

The blossom algorithm can be implemented to run in O(!V(G)\ 3) 

time. (12) 

In sparse graphs, when I E ( G) I is significantly smaller than ( IV~G)I ), the running 
time is dominated by the time required to update DEEP and OUTER. The other 
operations take O(\V(G)\!E(G)\) time. So, to improve the running time one 
could economize on the implementation of the blossoms. This can be done by 
employing a more implicit method of updating OUTER. 

Implementation 2 - implicitly updating OUTER: To represent the blossoms, we 
maintain a single (dynamic) function IN, with the property that IN [ u] = 
OUTER;[u] for some (unspecified) i. Initially, IN[u] = u. When we shrink a 
blossom S to a pseudo-node s we update IN by resetting IN [u] := s for u E S 
and setting IN[s] := s. This takes 0(\S\) time. So, between two successive 
augmentations we spend, overall, O(\E(G)\) time updating IN. To determine 
OUTER[uo], we iterate u; := IN[u;_i] until, at some point Uk = IN[uk], then 
OUTER(uo] =Uk· This can take as many as 11V(G)\ iterations, but - in the hope 
that the next time we need OUTER[u0], we get it almost for free - we reset 
IN [u;] :=OUTER [uo](= Uk) for each i = 0, ... , k. 

The disadvantage of this approach is that we no longer have the data structure 
SHALLOW to help expand augmenting paths. We can, however, overcome this 
by extending the labels in FOREST to include labels on the nodes in a blossom 



Ch. 3. Matching 151 

indicating how to trace an augmenting path through the blossom. It is quite 
straightforward to find such labeling, but some care is needed to handle the tips of 
the blossoms properly. The labeling can be implemented so that finding the labels 
and using them to find an augmenting path can be carried out in O(IE(G)I) time 
per augmentation [see Lawler, 1976; Lovasz & Plummer, 1986; or Tarjan, 1983]. 

Implementing the blossoms with IN, the blossom algorithm uses 
'almost a constant' times IE(G)l IV ( G)i steps. (13) 

Gabow [1973, 1976) demonstrated this result. To make the statement (13) 
precise, 'almost a constant' refers to a function a(IE(G)I, IV(G)I) (the inverse of 
the Ackerman function) that grows very slowly. The procedure is in fact a standard 
implementation of the 'set union' problem: blossoms are sets, which are united 
into new sets every time we shrink. For a precise definition of a and a proof of 
(13), see Aho, Hopcroft & Ullman [1974) or Tarjan [1983]. Gabow & Tarjan [1983] 
developed a linear time algorithm for set union problems with special structure. 
As blossoms have that structure [ cf. Gabow & Tarjan, 1983], this implies: 

The blossom algorithm can be implemented in O(IE(G)liV(G)I) 
time. (14) 

The same time bound has been achieved by Kameda & Munro [1974], but in 
a different manner. Instead of fine tuning the implementation of the set union 
problem, they obtain the OCIVllEI) time bound by growing the alternating forest 
in a depth-first manner. 

The result (14) and the way it is achieved reflect the following perspective on 
Edmond's blossom algorithm: The algorithm searches for augmenting paths as 
though the graph were bipartite and, as soon as it encounters an odd circuit, 
it 'shrinks the trouble away'. So, we might hope that by implementing shrinking 
efficiently, we could achieve the same time bound for non-bipartite matching as 
for the bipartite matching algorithm used as a subroutine. We have just seen that 
this is indeed the case when the bipartite matching subroutine is the Hungarian 
method. Generally, it appears that the hope is idle. For instance, we cannot 
simply apply this idea to Hopcroft and Karp's O(vlVflEI) algorithm for bipartite 
matching because shrinking changes the length of augmenting paths. On the other 
hand, the 0 ( .JTVTI EI) bound can be achieved for non-bipartite graphs. Indeed, 
Hopcroft and Karp's algorithm can be generalized to achieve this bound, but 
the generalization is far from trivial. Even and Kariv developed an 0(IV1 512) 

algorithm (as did Bartnik [1978]) and an O(viVflEI log IVI) algorithm [Even & 
Kariv, 1975; Kariv, 1976]. The gap was finally bridged by Micali & Vazirani [1980], 
who developed an 0 Cv1iVTIEI) algorithm for general cardinality matching (see 
Vazirani [1994] for a proof of correctness). Blum [1990a, b] and Gabow & Tarjan 
[1991] achieved the same time bound in different manners. 



152 A.M.H. Gerards 

3. Bipartite matching duality 

A subset N ~ V (G) is called a node cover if each edge has at least one endpoint 
in N. r ( G) denotes the minimum cardinality of a node cover in G. Because a 
node cover is always at least as large as a matching we have that, for any graph G, 
bipartite or not: 

v(G) ::::; r(G). (15) 

In the complete graph K3 on 3 nodes: v(K3) = 1 # 2 = r(K3). So, v and r need 
not be equal. But, when G is bipartite we have equality in (15): 

Theorem 5 [Konig, 1931, 1933]. For each bipartite graph G, v(G) = r(G). 

Proof. Let F be a Hungarian forest with respect to a maximum matching M. 
Then N :=(Vi\ even(F)) u (V2 n odd(F)) is a node cover with INI = IMI. o 

Many equivalent versions of Konig's theorem (Theorem 5) appeared in the first 
half of this century. The oldest of these is probably the following result due to 
Frobenius [1917]. (For a short 'linear algebra'-proof see Edmonds [1967].) 

The determinant of a square matrix A viewed as a polynomial in its 
non-zero coefficients is identically zero, i.e., is zero for all values of 
its non-zero coefficients, if and only if there exists, for some p with 
0 < p ::::; n, a p x (n - p + 1) submatrix of A having only zero 
coefficients. (16) 

On the other hand, the best known version addresses the existence of a system of 
distinct representatives. A system of distinct representatives for a finite collection of 
finite sets S1, ... , Sn is a collection of distinct elements s1, ... , Sn with Si E S; for 
each i E {l, 2, ... , n}. 

There exists a system of distinct representatives for S1, ... , Sn if and 
on'ly if I U;eJ S;I 2:: Ill for each I~ {1, 2, ... , n}. (17) 

Formulated in terms of matchings in bipartite graphs, (16) and (17) become: 

Theorem 6 [Frobenius, 1917; Hall, 1935]. In each bipartite graph G = (V1 U Vz, £), 
exactly one of the following holds: 

- v( G) = IV1 I. i.e. there exists a matching 'of Vi into V2 '; 
- there exists a set U ~ Vi, such that ir ( U) I < I U I-

Here, r(U) := {v E V2 I there is a node u E U with uv E £}.(See Ore [1955] for 
a version of Konig's theorem in terms of r(U).) In fact, (16) is the special case of 
Theorem 6 in which I Vil =I V2I- Clearly, Theorem 6 follows from Konig's theorem. 
If v(G) < I Vil, there is a node cover N with INI = v(G) < !Vil· Since N is a node 



Ch. 3. Matching 153 

cover, U := Vi \N satisfies r(U) ~ V2nN, i.e., !r(U)I ::: 1V2nN1 < IVi \NI= 1u1. 
On the other hand, even though Theorem 6 seems a rather special case of Konig's 
theorem, the latter can easily be proved from the former. (Add !Vil - r(G) new 
nodes to Vi, each adjacent to every node in V1.) This is an example of the 
self-refining nature of matching theory. 

Frobenius used (16) to simplify the proof of one of his earlier results [Frobenius, 
1912] describing when the determinant of a matrix viewed as a polynomial in its 
non-zero coefficients can be factored into polynomials of lower degree. Konig 
[1915] also gave a simpler proof of Frobenius' factoring result in which he pointed 
out the relation to matchings in graphs. Frobenius did not appreciate this relation: 
'Die Theorie der Graphen, mittels deren Hr. Konig den obigen Satz abgeleitet hat, 
is nach meiner Ansicht ein wenig geeignetes Hilfsmittel fiJ.r die Entwicklung der 
Determinantentheorie. In diesem Falle fiJ.hrt sie zu einem ganz speziellen Satz von 
geringem Werte [essentially statement (18) below]. Was von seinem Inhalt Wert hat, 
ist in dem Satze II [statement (16)] ausgesprochen' [Frobenius, 1917]. Moreover he 
did not acknowledge Konig's proof, though Konig had sent it to him. Apparently, 
this did not please Konig [see Konig, 1933, 1936]. Like so many fields, matching 
theory also has its controversies. (Schneider [1977], in trying to reconstruct the 
issue, speculates that Frobenius had not penned this criticism. He hypothesized 
that because Frobenius was already very ill at the time - he died in August 1917 
- someone else finished the paper and wrote the criticism. See Schneider [1977] 
for Mirsky's refutation of this hypothesis.) 

Konig also proved the following consequence of Theorem 6 for regular graphs, 
i.e., graphs in which all nodes have the same degree. 

Each regular bipartite graph admits a perfect matching [Konig, 
1916a, b]. (18) 

An immediate consequence of (18) deals with edge colorings in bipartite graphs. 
An edge coloring is an assignment of colors to the edges so that if two edges share 
an end node they get different colors. The minimum number of colors needed to 
color the edges of Gin this way is denoted by Xe(G). Clearly, Xe(G) is at least the 
maximum degree of a node in G, denoted b.(G). In finding an edge coloring we 
may assume that the graph is regular Gust add edges and nodes to G until this is 
the case; of course without changing the maximum degree). Since an edge coloring 
is just a partition of the edge set into matchings, (18) implies the following. 

For each bipartite graph G, Xe(G) = b.(G) [Konig, 1916a, b]. (19) 

We digress briefly from our discussion of bipartite graphs to point out that 
although Xe(G) is either b.(G) or b.(G) + 1 for each simple (non-bip~rtite) graph 
G [Vizing, 1964, 1965], determining whether or not Xe(G) = b..(G) is NP-hard, 
even when G is regular of degree 3 [Holyer, 1981]. 

Another form of edge coloring asks for a coloring of the edges of G so that 
there is at least one edge of each color incident to each node. A coloring of this 
form corresponds to a partition of E(G) into edge covers. An edge cover in a 



154 A.M.H. Gerards 

graph G is a collection of edges F such that each node in V is an endpoint of at 
least one of the edges in F. Clearly, when the minimum degree of a node in G 
is o(G), a coloring of this form cannot use more than 8(G) colors. Konig [1916a, 
b] showed that when G is bipartite this upper bound is achievable, i.e., there is a 
coloring of the edges using 8(G) colors such that each node is incident to each 
color. 

Konig's theorem establishes a strong relationship between matchings and node 
covers in bipartite graphs. There is also a strong relationship in bipartite graphs 
between edge covers and matchings and between node covers and stable sets. A 
stable set in G is a collection of mutually non-adjacent nodes in G. We use a(G) 
to denote the maximum cardinality of a stable set in G and p(G) to denote the 
minimum cardinality of an edge cover in G. Clearly a(G) _:::: p(G). The following 
relationship among these problems is true for all graphs, bipartite or not. 

Theorem 7 [Gallai, 1959]. For each graph G = (V, E) without isolated nodes, 
a(G) + r(G) =I VI= v(G) + p(G). 

Proof. The first equality is trivial: stable sets are exactly the complements of node 
covers. To prove the second equality we use edge/node covers instead of edge 
covers. An edge/node cover of G is a covering of the nodes of G by edges and 
nodes. It is easy to see that the minimum cardinality of an edge/node cover is 
also p(G): each edge cover is an edge/node cover, and conversely, each edge/node 
cover can be turned into an edge cover of the same cardinality by replacing each 
node by an incident edge (G has no isolated nodes). Now observe that the edges 
a minimum cardinality edge/node cover may assumed to form a matching - a 
maximum matching in fact. So: p(G) = def(G) + v(G) =\VI - v(G). o 

An immediate consequence of this result is: 

For each bipartite graph G = (V1 U V2, E) without isolated nodes, 
a(G) = p(G) [Konig, 1931]. (20) 

Bipartite graphs are not the only graphs with v(G) = r(G) and, equivalently, 
a(G) = p(G). The class of graphs with this property, called the Konig property, 
has been characterized by Deming [1979] and Sterboul [1979] (see also Bourjolly 
& Pulleyblank [1989], Lovasz [1983] and Lovasz & Plummer [1986]). 

Intermezzo: min-max relations and good characterizations 
Both (20) and Theorem 7 are characterizations for the maximum size of a 

stable set. Even though (20) applies only to bipartite graphs we consider it to be 
a 'better' characterization than Theorem 7. The reason is that (20) assures that 
whatever the answer to the question: Given a bipartite graph G, is a(G) s k? is, 
we can always give a polynomial length certificate of it. Namely, either a stable set 
with k nodes or an edge-cover with less than k edges. This is not the case with 
Theorem 7. If a(G) < k it only guarantees that all node-covers of G are larger 
than IV\ - k, and it is not clear how to verify that. 



Ch. 3. Matching 155 

A problem is called well-characterized if whatever the answer is, there exists 
a polynomial length certificate for the correctness of that answer. Note that the 
existence of the certificate might not guarantee us that we can find it in polynomial 
time. A theorem asserting that a problem is well-characterized is called a good 
characterization for the problem. (In NP-language: a decision problem is well­
characterized if it belongs to NP n co-NP.) 

So 'a(G) S k?' is well-characterized for bipartite graphs and (20) is a good 
characterization for it. Theorem 7 is not a good characterization for 'a(G) s k?'. 
For non-bipartite graphs, 'a(G) s k?' is not known to be well-characterized. (If 
it would be, then NP =co-NP, which is generally believed not to be true.) It was 
Edmonds who first explicitly made the distinction between characterizations that 
are good and those that are not. 

Good characterizations for optimization problems often come in the form of 
a min-max relation, like Theorem 5 or (20). However, they can have other 
forms as well. For instance a polynomial time algorithm is a good-characterization 
(implying that P £ NP n co-NP). On the other hand, many polynomial time 
algorithms for optimization problems use a good characterization, mostly a min­
max relation, as stopping criterion - also in this chapter. The theorems in this 
section (except for Theorem 7) are good characterizations, and there are more to 
come in this chapter. 

3.1. Network flows 

There is a strong relation between bipartite matching problems and flow 
problems; essentially they are identical. 

Given a directed graph D = (V(D), A(D)) and two nodes s and t. An s, t­
fiow is a function f from A(D) to lR+ such that for each v E V(D) \ {s, t}: 
f(8-(v)) = f(o+(v)). The value of a flow f is defined by f(S+(s)) - /(8-(s)) 
(= f(o-(t)) - f (o+(t))). The max-fiow problem is to find a flow f of maximum 
value subject to the capacity constraints: f (a) s c(a) for each a E A. Here, c 
is a given capacity function from A(D) to lR+ U {oo}. For each U £ V(D) with 
s E U, t <f. V, the capacity of the s, t-cut s+(U) is defined to be c(o+(U)). Flow 
values and cut capacities satisfy the following min-max relation known as the 
Max-flow min-cut theorem. 

Theorem 8 [Ford & Fulkerson, 1956; Elias, Feinstein & Shannon, 1956]. The 
maximum value of an s, t-fiow with respect to a given capacity function is equal to 
the minimum capacity of an s, t-cut. Moreover, if the capacity function is integral, 
then there is an integral maximum flow. 

The following construction demonstrates the relation between flow problems 
and bipartite matching problems. Given a bipartite graph G = ( V1 U Vi, E); 
construct a directed graph D = (V(D), A(D)) as follows. Add a node s to V 
and directed edges from s to each node of Vi. Orient all edges in G fr_om V1 
to V2• Add a node t and a directed edge from each node of Vi to t. Assign the 



156 A.M.H. Gerards 

Fig. 6. 

following capacities to the directed edges. Each arc corresponding to an edge in 
G has infinite capacity. The arcs out of s or into t each have capacity 1. There 
is a one-to-one correspondence between matchings in G and integral flows in 
D and between node covers in G and cuts with finite capacity in D. Figure 6 
illustrates these relations: bold edges form a matching and bold arcs indicate a 
corresponding flow (bold arcs carry flow 1; the other arcs carry flow 0). The black 
nodes indicate a node cover and the dotted balloon identifies the set U such that 
o+(U) is the corresponding cut. Thus, Konig's theorem follows from the Max-flow 
min-cut theorem. Similarly, the algorithm for finding a maximum matching in a 
bipartite graph is essentially Ford and Fulkerson's maximum flow algorithm. 

Conversely, it is possible to derive the Max-flow min-cut theorem from Konig's 
theorem. Instead, we use Konig's theorem to prove another closely related result 
on directed graphs, namely Menger's theorem (Theorem 9). 

Let D be a directed graph and let S, T £; V(D). An S, T-path in Dis a directed 
path from a node in Stoa node in T. A set U £; V (D) is called an S, T-separator 
if it intersects each S, T -path. 

Theorem 9 [Menger, 1927]. Let D be a directed graph and let S, T ~ V(D). Then 
the maximum number of mutually node-disjoint S, T-paths is equal to the minimum 
cardinality of an S, T-separator. 

Proof. Clearly, we may assume that Sand T are disjoint. Let W := V (D) \(SU T) 
and construct a bipartite graph G as follows. For each node u E W we have two 
nodes u+ and u- in G. For each node u E S we have only one node u+ in G. 
Similarly, for each node u E T we have one node u- in G. (We refer to the set 
{u+ I u ES} of nodes in Gas Sand to the set {u- I u ET} of nodes in Gas T.) 
There are two types of edges in G: for each arc~ in D, u+v- is an edge in G 
and for each u E W, u+u- is an edge in G. 

Let M be a maximum matching in G and assume, without loss of generality, 
that exp(M) c SU T. Let k := IS\ exp(M)I = IT\ exp(M)I. It is easy to see - ~ 

that the collection {uv E A(D) I u+v- E M} forms the node-disjoint union of k 
directed S, T-paths and a collection of directed circuits in D. 

To prove the theorem it suffices to show the existence of an S, T - separator with 
cardinality k. Let N be a minimum node cover. By Konig's theorem, IN I = v ( G) = 



Ch. 3. Matching 157 

iCIV(G)l-lexp(M)I) = i<21Wl+ISl+ITl-lexp(M)I) = i<21Wl+2k) = !Wl+k. 
For each node u in W, to cover the edge u+u- in G either u+ or u- must be in N. 
Hence the set U := (Sn N) U (T n N) U {u E W I u+ and u- E N} has cardinality 
k. It remains to prove that U is an S, T-separator. Let u0, ... , u1 be a directed 
S, T-path. Since IN n {uci, u1, ut, ... , u;}I ~ t, either uci is in N in which case 
uo is in U, u; is in Nin which case u1 is in U, or {uj, uf} s; N for some O < i < t 

in which case u1 is in U. o 

There are many equivalent versions of Menger's theorem. One can, for instance, 
consider internally node-disjoint directed s, t-paths (shrink S and T to the single 
nodes s and t). Further, similar min-max relations hold for arc-disjoints, t-paths 
as well as node- or edge-disjoint s, t-paths in undirected graphs. All these results 
are equivalent in the sense that we can easily derive one from another. In fact, all 
these results can be seen as versions of Konig's theorem (or conversely). 

Menger's theorem for the number of arc-disjoints, t-paths is a special case of 
the Max-flow min-cut theorem in which all capacities are one. And conversely, 
one can derive the Max-flow min-cut theorem from this version of Menger's 
theorem. So there is a close relationship between matchings in bipartite graphs 
and flows. It extends to almost every problem on bipartite graphs discussed in this 
chapter. For instance, the minimum weight matching problem in bipartite graphs 
corresponds to the min-cost flow problem in which we are given the unit costs of 
flow through each arc and are asked to find a maximum flow of minimum total 
cost. 

For further consequences of Konig's theorem, e.g., Dilworth's theorems on 
chains and anti-chains in partially ordered sets [Dilworth, 1950], see Lovasz & 
Plummer [1986] or Mirsky [1971]. For a tour along all the above mentioned 
equivalences, see Reichmeider [1984). 

3.2. Intermezzo: perfect graphs and matroids 

We conclude this section with a short discussion on extensions of the results on 
matchings in bipartite graphs described in this section. This brings us outside the 
context of bipartite graphs. We go here in two directions: first, node coloring and 
stable sets in general graphs, and second, matroids. 

3.2.1. Node coloring and stable sets 
The chromatic number x(G) of G is the minimum number of colors needed to 

color the nodes of G such that adjacent nodes receive different colors. x(G) is 
at least the maximum size w(G) of a collection of mutually adjacent nodes in G. 
A graph is called peifect if and only if x ( H) = w ( H) for each induced sub graph 
H in G. Odd circuits are not perfect. On the other hand, bipartite graphs are, 
trivially, perfect. Konig's results stated in the beginning of this section yield three 
other, less trivial, classes of perfect graphs. 

We need a few definitions. The complement G of a graph G has the same nodes 
as G; nodes are adjacent in G when they are non-adjacent in G. The line graph 



158 A.M.H. Gerards 

of G has the edges of G as nodes; two edges in G are adjacent in the line graph 
when they share an end node in G. Clearly, Xe(G) is the chromatic number of 
the line graph of G. Similarly, matchings in G are stable sets in the line graph 
of G. 

With these definitions we get the following results. By (20), the complement of 
bipartite graph is perfect. By (19), the line graph of a bipartite graph is perfect. 
And, by Theorem 5, the complement of the line graph of a bipartite graph is 
perfect. 

So perfect graphs not only generalize bipartite graphs but also their line graphs. 
Moreover, also the complements of all these graphs are perfect. The latter is 
not so much of a coincidence: The complement of a perfect graph is perfect. This 
is the famous Perfect graph theorem proved by Lovasz [1972b]. Although, many 
classes of perfect graphs have been discovered over the last decennia, the main 
conjecture on perfect graphs is still open: If a graph is not perfect, then it or its 
complement contains an odd circuit with 5 or more edges as an induced subgraph 
[Berge, 1962]. 

The stable set problem is: Given a graph G and a weight function on V ( G), find 
a stable set of maximum weight. In general this problem is NP-hard [Karp, 1972]. 
On the other hand, by the Perfect graph theorem, we have a min-max relation for 
the maximum cardinality stable set in a perfect graph: a(G) = x(G). In fact, the 
stable set problem can be solved in polynomial time when G is perfect [Grotschel, 
Lovasz & Schrijver, 1981, 1984, 1988]. 

There is another class of graphs for which the stable set problem is polynomially 
solvable. In fact, it is very strongly related to matchings. A graph is claw-free 
if it has no node with three mutually non-adjacent neighbors. Line graphs are 
claw-free. Sbihi [1980] and Minty [1980] proved that one can find a maximum 
cardinality stable set in a claw-free graph in polynomial time. Minty [1980] did 
this by reducing the problem to a matching problem [see also Lovasz & Plummer, 
1986]. His algorithm also solves the weighted case. 

3.2.2. Matroid intersection 
In this section we will see an extension of Konig's theorem. 
A matroid M = (E, I) consists of a finite set E, the ground set, and a 

collection I of subsets of E satisfying the following three axioms: 0 E 'I; I E I 
and J £ I implies that J EI; and, finally,/, J E 'I and ill < Ill implies that 
there exist an e E J \ I such that I U {e} E 'I. The members of 'I are called 
the independent sets of M. The rank-fu.nction r M of a matroid M is defined by 
rM(F) := max{l/I I I EI; I £ F}. Examples of matroids are: the edge sets of 
forests in a graph and the linearly independent collections of columns of a matrix. 

There is a vast theory on matroids [see Welsh, 1976; Recski, 1989; Truemper, 
1992; Oxley, 1992] and many of the results there are inspired by results on 
matchings [see Lovasz & Plummer, 1986]. Here we just mention one of these 
results. 

The matroid intersection problem is: given two matroids on the same ground 
set find the largest set that is independent in both matroids. The maximum 



Ch. 3. Matching 159 

matching problem in a bipartite graph is a matroid intersection problem: given 
G =(Vi U Vi, E); define Mi and M1 with ground set E(G), and with Ii :={I~ 
Ell/ n 8(v) ::; 1 for each v E Vi} for i = 1, 2. It is easy to check that these are 
matroids, and that a collection of edges is independent in both Mi and M 2 if and 
only if it is a matching. 

Edmonds [1970] derived the following min-max relation for the matroid inter-
section problem. 

Let Mi := (E,Ii) and M1 := (E,I2) be two matroids on the 
same ground set E. Then max{I/ 1 I I E I1 U I2} = min{r Mi (F) + 
rM2 (E \ F)IF s; E}. (21) 

Konigs theorem is a special case of (21). Indeed, let G = (Vi u V2, E) be a 
bipartite graph and let M1 and Mz be the two matroids defined above. If F is a 
set of edges in G then r M; (F) is the cardinality of set of nodes in Vi incident to at 
least one of the edges in F. From that the relation between sizes of node covers 
and r Mi (F) + r Mz (E \ F) is easy. 

A similar extension of non-bipartite matching to a problem on matroids is the 
'matroid matching' problem [see Lovasz & Plummer, 1986]. 

4. Non-bipartite matching duality 

We begin our discussion of non-bipartite matching by developing a min-max 
relation for the size of a maximum matching. Although r(G) does not, as we have 
seen, provide a good characterization for the size of a maximum matching in a 
non-bipartite graph G, there is a min-max relation for v(G). An odd component 
of a graph G is a connected component of G with an odd number of nodes. We 
let c0 (G) denote the number of odd components of G = (V, E). 

For each matching Mand subset B s; V, I exp(M)I ~ c0 (G \ B)- IBI. 

(22) 

To see this, let M 1 be the set of the edges in M with both endpoints in G \B. As 
M1 leaves at least one node exposed in each odd component of G\B, I exp(M1)I ~ 
co(G \ B) + IBI. Since, I exp(M)I = I exp(M1)I - 21M \ M1I 2:: I exp(M1)I - 21BI, 
(22) follows. 

Theorem 10 [Berge, 1958]. For each graph G = ( V, E): 

def(G) = maxc0 (G \ B)- IBI. 
Bs;;V 

v(G) = min ~ (IVI - Co(G \ B) + IBI). 
Bs;;V 

Proof. Clearly, it suffices to prove the formula for def(G). Let M be a maximum 
matching in G. Apply the procedures GROW and SHRINK to G and M until 



160 A.M.H. Gerards 

we get a shrunken graph G' with a Hungarian forest F'. Each odd node in F' 
is a node of the original graph G and so is not contained in a pseudo-node. 
Each odd component of G \ odd(F') has been shrunk into a different even 
node of F' (or is equal to an even node). Moreover each even node arises in 
this way. Hence, c0 (G \ odd(F')) = leven(F')I. So, c0 (G \ odd(F')) - lodd(F')I = 
leven(F')l-lodd(F')I = def(G') = def(G). Combining this with (22), the theorem 
follows. o 

Theorem 10 generalizes Tutte's characterization of those graphs that contain a 
perfect matching. 

Theorem 11 [Tutte, 1947, 1954]. The graph G = (V, E) has a perfect matching if 
and only if 

c0 (G \ B) :'.:: !BI for each B s; V. 

Tutte's used matrix-techniques ('Pfaffians') to prove this. The first proof of his 
theorem that uses alternating paths has been given by Gallai [1950]. 

Edmonds' Odd set cover theorem is a version of Berge's theorem that more 
explicitly extends Konig's theorem to non-bipartite graphs. An odd set cover is 
a collection B of nodes together with a collection {S1, ... , Sk} of subsets of V, 
each with odd cardinality, such that for each edge uv either {u, v} n B #- 0, or 
{u, v} s; Si for some i = 1, ... , k. 

Theorem 12 [Edmonds, 1965c]. For each graph G, 

k 

v(G) = min {IBI + L !CISil -1) I B 

i=l and S1, ... , Sk form an odd set cover of G }· 

Proof. Among all B £ V with !<IVI - c0 (G \ B) + IBI) = v(G), choose one 
with I BI maximum, and let S1, ... , Sk denote the components of G \ B. Then 
all Si are odd (if I Si I would be even, then B u { v} with v E Si would contradict 
the choice of B). Hence B and S1, ... , Sk form an odd set cover. It satisfies 
IBI + L~=l t<ISil -1) =!BI+ !IV\ Bi - !k = !CIVI -co(G \ B) + IBI) = v(G). 
As obviously the minimum is at least v(G) the theorem follows. o 

The following special case of Tutte's theorem is over a hundred years old. It 
clearly demonstrates the long and careful attention paid to perfect matchings. A 
cubic graph is one in which each node has degree three. An isthmus is an edge 
that, when deleted from G, disconnects the graph. 

Theorem 13 [Petersen, 1891]. Every connected, cubic graph with at most two isthmi 
contains a perfect matching. 



Ch. 3. Matching 161 

Proof. Let B ~ V and let S1, ..• , Sk denote the odd components of G \ B. As G 
is cubic, 18(Si)I is odd for all i = 1, ... , k. Hence, 31BI ~ 18(B)I ~ L~==1 18(Si)I ~ 
3(k - 2) + 2 = 3co(G \ B) - 4. So, IBI ~ c0 (G \ B) - ~- Which implies that 
IBI ~ Co(G \ B) (as IBI -c0 (G \ B) is even). So, by Theorem 11, we may conclude 
that G has a perfect matching. o 

4.1. The Edmonds-Gallai stmcture theorem 

A graph G can have many different maximum matchings and applying GROW 

and SHRINK to one of them can lead to many different Hungarian forests. The 
ultimate shrunken graph, however, is independent of the choice of matching or the 
order in which we apply GROW and SHRINK. This observation is one aspect of the 
Edmonds-Gallai structure theorem [Gallai, 1963, 1964; Edmonds, 1965c]. In this 
section we discuss the main features of the Edmonds-Gallai structure, which plays 
a role in the development of algorithms for finding maximum weight matchings. 
In fact, every polynomial time maximum matching algorithm that calculates the 
Edmonds-Gallai structure can be embedded in a 'primal-dual framework' for 
solving the weighted matching problem in polynomial time (see Section 6.2). 

Suppose we have applied GROW and SHRINK to a graph G and a maximum 
matching M, yielding a Hungarian forest Fin a shrunken graph G*. We use the 
notation OUTER[u] (for nodes u in V(G)) and DEEP[u] (for nodes u in V(G*)) 
introduced in Section 2.2. The Edmonds-Gallai structure of a graph G is the parti­
tion of V(G) into three sets, D(G), A(G) and C(G), defined by D(G) := {u E VI 
v(G \ u) = v(G)}, A(G) := {u E V(G) \ D(G) I u is adjacent to a node in D(G)} 
and C(G) := V (G) \ (D(G) U A(G)). 

The set D(G) is the union of the sets DEEP[u] with u E even(F). 
In fact, the components of GID(G) are exactly the sets DEEP[u] 
with u E even(F). Moreover, A(G) = odd(F). (23) 

So, G* is obtained from G by shrinking the components of GID(G). We call the 
shrunken graph G* the Edmonds-Gallai graph of G. The result (23) follows from 
the definitions of GROW and SHRINK. All statements of (23) follow easily from 
the first one: if F is a Hungarian forest in G*, D(G) is the union of the sets 
DEEP[u] with u E even(F). To see this, consider a node u in G. Construct a new 
graph H by adding a new node v to G adjacent to u and construct a new graph 
H* by adding a new node v* to G* adjacent to OUTER [u ]. Now, we have the 
following equivalences: 

u E D(G) {:::=:::} v(H) = v(G) + 1 {=::} v(H*) = v(G*) + 1 (24) 

OUTER[u] E even(F) {=::} u E DEEP[w]forsome win even(F). (25) 

So we only need to establish the equivalence of the third statement in (24) with 
the first one in (25). If OUTER [ u] E even(F), consider the alternating forest F* in 
H* obtained by adding v* as a component to F. The nodes v* and OUTER[u] are 
both in even(F*) and in different components of F*. So, in that case GROW will 



162 A.M.H. Gerards 

find an augmenting path using the edge connecting these two nodes, implying that 
v(H*) = v(G*) + 1. On the other hand, if OUTER[u] <f. even(F), then 

def(H*) ~ c0 (H* \ odd(F)) - !odd(F)I = 
= leven(F)I + 1 - lodd(F)I = def(G*) + 1. (26) 

So in that case, v(H*) = v(G*). Thus (23) follows. 
The relation between the Edmonds-Gallai structure and the Hungarian forest 

in the Edmonds-Gallai graph provides insight into the structure of all maximum 
cardinality matchings in G. We need a few definitions. A graph G is factor-critical 
if v(G \ v) = v(G) = !<IV(G)i -1) for each v E V(G). A matching is near-perfect 
if it has exactly one exposed node. We let K(G) denote the number of components 
of GID(G). 

Each component of GID(G) is factor-critical and def(G) = 
K(G) - IA(G)I. Moreover, a matching M in G is maximum if 
and only if it consists of" 
- a perfect matching in C ( G), 
- a near-perfect matching in each component of G ID ( G), 
- a matching of each node u E A(G) to a node in a distinct 
component of G ID ( G). (27) 

This is the Edmonds-Gallai structure theorem. Note that it implies all the results 
on non-bipartite matching duality stated earlier in this section. Every statement 
in (27) follows easily from the first one: each component of GID(G) is factor­
critical. This follows inductively from (23) together with the fact that each graph 
spanned by an odd circuit - like a blossom - is factor-critical, and the follo­
wing: 

Let S be a subset of nodes in a graph G such that G IS is factor-
critical. If G x Sis factor-critical then so is G. (28) 

And, (28) is in tum immediate from: 

Let S be a subset of nodes in a graph G such that G IS is factor­
critical. Let s be the pseudo-node in G x S obtained by shrinking 
S. Then, for each matching M in G x S, there exists a near-perfect 
matching Ms in S such that M U Ms is a matching in G with 
- exp(M U Ms) = exp(M) ifs <f. exp(M), 
- exp(M U Ms) = (exp(M) \ {s}) U {s1} for some s1 E S, if 
s E exp(M). (29) 

Dulmage & Mendelsohn [1958, 1959, 1967] derived the Edmonds-Gallai struc­
ture for bipartite graphs. The components of GID(G) in a bipartite graph G each 
consist of a single node (because, GROW can never HALT in a bipartite graph, 
or equivalently, because the only factor-critical bipartite graph consists of a single 
node and no edges). 



Ch. 3. Matching 163 

The Edmonds-Gallai structure describes the maximum matchings of a graph 
as unions of (near-)perfect matchings in certain subgraphs and a matching in a 
bipartite subgraph (between A(G) and D(G)). So, more detailed information on 
the structure of maximum matchings requires structural knowledge about perfect 
and near-perfect matchings. Indeed, such structural results exist. In addition 
to the 'Dulmage-Mendelsohn decomposition' for bipartite graphs [Dulmage & 
Mendelsohn, 1958], we have the 'ear-decomposition' of bipartite graphs developed 
by Brualdi & Gibson [1977]. Hetyei [1964], Lovasz & Plummer [1975], Lovasz 
[1983] extended the 'ear-decomposition' to, not necessarily bipartite, graphs with 
perfect matchings and Lovasz [1972c] developed the 'ear-decomposition' of factor­
critical graphs. Finally, Kotzig [1959a, b, 1960], Lovasz [1972d] and Lovasz & 
Plummer [1975] developed the 'brick decomposition' of graphs with perfect 
matchings. See Lovasz [1987] for an overview of some of these results and 
Chapters 3, 4, and 5 of the book by Lovasz & Plummer [1986] for an exhaustive 
treatment of the subject. 

We conclude this section with some observations on how the Edmonds-Gallai 
structure behaves under certain changes of the graph. These observations facilitate 
our analysis of an algorithm for weighted matching in Section 6.2. 

For each edge e = uv E E(G), where u E A(G) and v E A(G) U 
C(G), G and G \ e have the same Edmonds-Gallai strncture. (30) 

It is easy to see that this is true. A bit more complicated is: 

For each pair of nodes u E D(G) and v E C(G) U D(G) not both 
in the same component of GID(G), def(G U e) :S def(G), where 
e = uv. Moreover, if def(G Ue) = def(G), then D(G Ue) ;2 D(G). (31) 

To see this, first observe that def(GUe)::::: def(G). Further, if def(GUe) = def(G), 
then D(G U e) 2 D(G). Now, assume that def(G U e) = def(G) and D(G U e) = 
D(G). Obviously, this implies that K(G U e) :S K(G) and IA(G U e)I ::=: IA(G)I. 
By (27), this yields K(G U e) = K(G) and IA(G U e)I = IA(G)I (otherwise 
def(G U e) < def(G)). But, this contradicts the definition of edge e. 

Let S s; V ( G) such that G IS is factor-critical and such that the 
pseudo-node s in G x S, obtained by shrinking S, is contained 
in A(G x S). Then def(G) :S def(G x S). Moreover, if def(G) = 
def(Gx S) then D(G) 2 D(G x S). Finally, if def(G) = def(G x S) 
and D(G) = D(G x S), then C(G) ;2 C(G x S). (32) 

The proof of (31) is similar to the proof of (31 ). By (29), def( G) :S def( G x S). 
Further, if def(G) = def(G x S), then D(G) 2 D(G x S). Now assume that 
def(G) = def(G x S) and D(G) = D(G x S). Then C(G) 2 C(G x S) and 
K(G x S) = K(G). By (27), IA(G)I = IA(G x S)I. Combining all this with 
IV (G)I > IV(G x S)I yields IC(G)I > IC(G x S)I. 



164 A.M.H. Gerards 

5. Matching and integer and linear programming 

In the next section we discuss the problem of finding a maximum weight 
matching. In this section we show that the problem is a linear programming 
problem. We first observe that, like many combinatorial optimization problems, 
the maximum weight matching problem is an integer linear programming problem: 

maximize LWeXe 
eeE 

subject to x(8(v)) < 1 (v E V) (33) 

Xe > 0 (e EE) 

Xe E tz, (e EE). 

In general, integer linear programming problems are hard to solve; they are 
NP-hard [Cook, 1971]. On the other hand, linear programming problems are easy 
to solve. There are not only practically efficient (but non-polynomial) procedures 
like the simplex method [Dantzig, 1951], but also polynomial time algorithms 
[Khachiyan, 1979; Karmarkar, 1984] for solving linear programs. Moreover, we 
have a min-max relation for linear programming, namely the famous LP-duality 
theorem [Von Neumann, 1947; Gale, Kuhn & Tucker, 1951]: 

(34) 

This min-max relation provides a good characterization for linear program­
ming. In this chapter one of problems in such a pair of linear programming 
problems will typically be a maximum or minimum weight matching problem. In 
that case we will refer to the other problem as the dual problem. Its feasible 
(optimal) solutions will be called the dual feasible (optimal) solutions. 

One consequence of the LP-duality theorem is that a pair of solutions, a feasible 
solution x to the maximization problem and a feasible solution y to the mini­
mization problem, are both optimal if and only if they satisfy the complementary 
slackness conditions: 

y T (b - Ax)= 0. (35) 

The complementary slackness conditions, more than the linear programming 
algorithms, guide the algorithms for maximum weight matching in Sections 6 
and 8.1. An obvious first attempt at a linear programming formulation of the 
weighted matching problem is the LP-relaxation: 

maximize LWeXe 
eEE 

subject to x(8(v)) < 1 (v E V) 
(36) 

Xe > 0 (e EE). 

If (36) admits an integral optimum solution, that solution also solves (33). 
Hence the question arises: When does (36) admit an integral optimum solution for 
every weight function w? This question is equivalent to: When is the polyhedron 



Ch. 3. Matching 

Fract(G) := {x E ~!I x(o(v)) ::::: 1 (v E V)} 

equal to the matching polytope: 

Match(G) := convex hull {x E Z!lx(o(v))::::: 1 (v E V)} 

= convex hull {XM IM is a matching in G} ? 

165 

(37) 

(38) 

If Fract(G) i= Match(G), can we find another system of inequalities Ax ::::: 
b such that Match(G) := {x E ~E(GJIAx :;:: b} (and thus, write (33) as 
max{w T xlAx ::::: b})? In this section we answer these questions. 

5.1. Bipartite graphs - the assignment polytope 

Theorem 14. Let G be an undirected graph. Then Match(G) = Fract(G) if and 
only if G is bipartite. 

Proof. First, consider a bipartite graph G and a vector x E Fract(G). Let 
F := {e E EIO < Xe < 1} i= 0 and select K s; F as follows. If Fis a forest, let K 
be a path in F between two nodes of degree 1 in F. If Fis not a forest, let K be a 
circuit in F, which - since G is bipartite - is even. In either case K is the disjoint 
union of two matchings, Mi and M2. It is easy to see that for some sufficiently 
small, positive E both x + E(XM1 - xM2) and x - E(XM1 - xM2) are in Fract(G). 
Moreover x is a convex combination of these two vectors. Thus, each extreme 
point of Fract(G) is an integral vector. (A vector x in a set P is an extreme point 
of P if it cannot be expressed as a convex combination of other vectors in P.) 
In other words, each extreme point of Fract(G) is the characteristic vector of a 
matching and so Fract(G) s; Match(G). The reverse inclusion holds trivially. 

Next, consider a non-bipartite graph G. Since G is not bipartite, it contains 
an odd circuit C. Clearly, x := !xc is in Fract(G). If x is also in Match(G), 
then there are matchings Mi (i = 1, ... , k) and non-negative numbers Ai (i = 
1, ... , k), such that: x = 2::7=}/'·iXM; and L~=l Ai = 1. This implies that: !ICI = 
x(C) = L:7= 1 A.iXM;(C)::::: Li=lA.d(ICl-1) = !<ICI -1); a contradiction. So, 
x Ii Match(G) and Fract(G) i= Match(G). o 

So, when G is bipartite, (36) has an integral optimum solution (the characteristic 
vector of a maximum weight matching). 

Egervary proved the following strengthening of Theorem 14. 

Theorem 15 [Egervary, 1931]. Let G = (Vi u V2, E) be a bipartite graph and 
w E zE. Then both of the following linear programming problems have integral 
optimum solutions. 

maximum L WeXe 

eeE 

subject to x(o(v)) ::::: 1 (v E Vi U Vi) 
Xe 2: 0 (e E E) 

=minimum rr(Vi U Vz) 

subject to .Tru + .Trv '.:::. Wuv (uv E E) 
.Trv '.:::. 0 (v E V1 U V2). 



166 A.M.H. Gerards 

Proof. That the maximization problem admits an integral optimum solution 
is Theorem 14. So, we consider only the dual problem (i.e. the minimization 
problem). 

Let rr' be a, not necessarily integral, dual optimal solution. We show that 
Ti E £'.~1 UVz defined by: 

if V E Vi 
if V E Vz 

is an integral dual optimal solution. 
To see that Ti is feasible, observe that for each uv E E 

(39) 

Define for a E R V1" := {u E Vi Irr~ - l rr~J =a); V2" := {u E Vz 1 Irr~ l - TC~ =a) 
and V" := V1" U Vf. For each a > O& I Vz" I ;:; I Vf I s 0. Indeed, for some 
sufficiently small E > 0, rrE := rr' - E(X v2 - x v1 ) is a dual feasible solution. So 
rr'(V1 U Vz) s rrE(V1 U Vz) = rr'(Vi U V2) - E(IVz"l - IV{tl). And thus we get: 

Ti(V1 U V2) = rr'(Vi U Vz) + L a(IV2"1 - IVfl) s rr'(Vi U V2). (41) 
a>O, V'¥0 

So Ti is an integral dual optimal solution. o 

So, when the weight function w is integral, the linear programming dual of (36) 
has an integral optimum solution. 

A system of linear inequalities Ax s b with the property that - like (36) -
min{y T bly TA = w; y '.'.: 0) is attained by an integral y for each integral objective 
function w for which the minimum exists, is called totally dual integral. Edmonds 
& Giles [1977] (and Hoffman [1974] for the special case of pointed polyhedra, i.e., 
polyhedra with extreme points) proved that a totally dual integral system Ax s b, 
with A and b integral, describes an integral polyhedron. (A polyhedron in IB.nis 
integral if it is the convex hull of vectors in zn.) Thus, when G is bipartite, the fact 
that the minimization problem in Theorem 15 admits an integral optimal solution 
implies that Fract(G) = Match(G). 

The perfect matching polytope of a graph G is the convex hull Perfect(G) of 
the characteristic vectors of perfect matchings in G. In the next section, when 
studying the weighted matching problem, we concentrate on perfect matchings. 
In the context of bipartite graphs the perfect matching polytope is often referred 
to as the assignment polytope. The following characterization of the assignment 
polytope follows easily from Theorem 14. 

Corollary 16. Let G be a bipartite graph. Then 

Perfect(G) = {x E IR! I x(8(v)) = 1 (v E V)}. (42) 



Ch. 3. Matching 167 

Note that, unlike Theorem 14, there exist non-bipartite graphs G for which (42) 
holds. 

Theorem 16 is probably best known in terms of doubly stochastic matrices and 
by the names of its re-inventors. A matrix A = (aij) is doubly stochastic if all its 
entries are non-negative and all its row and column sums are equal to one, i.e., 
Lj aij = 1 for each row i and Li aij = 1 for each column j. 

Theorem 17 [Birkhoff, 1946; Von Neumann, 1953]. Each doubly stochastic matrix 
is a convex combination of permutation matrices. 

5.2. Intermezzo: stable matchings 

Shapley & Shubik [1972] give the following economic interpretation of Theo­
rem 15. Consider the vertices in Vi and V2 as disjoint sets of players and each edge 
uv in G as a possible coalition between u and v. If u and v form a coalition they 
may share out the worth Wuv of uv as payoffs 1Tu and 1Tv among themselves. Sup­
pose that Mis a matching of G (i.e. a collection of coalitions) and that 1Tu(u E V) 
is a corresponding collection of payoffs, i.e. 1Tu + 1Tv = Wuv if uv E M. If there 
exists an edge uv <t M such that 1Tu + 1Tv < Wuv, then the payoffs are not stable for 
M: u and v could increase their profits by breaking their respective coalitions and 
joining together. A matching is payoff-stable if there exists a collection of payo:ffs 
for M without such instability. By Theorem 15 and the complementary slackness 
conditions (35) payoff-stable matchings exist, they are exactly the maximum weight 
matchings. The optimal dual solutions compress all the possible payoffs without 
any instability. 

Gale & Shapley [1962] introduced another notion of stability for matchings, the 
stable marriage problem. Suppose we have a marriage-market with n man and n 
women. Each person u has linear order -<u on the persons of opposite sex, where 
v -<u w means that u prefers to be married with w rather than with v. Modeling 
this on a bipartite graph, a collection of monogamous marriages is a matching. A 
perfect matching M between the men and women is stable, if for each uv <t M, 
with uu', vv' E M, either v -<u u' or u -<v v'. In other words, a perfect matching is 
stable if no unmarried couple would prefer to get divorced and marry each other. 

Gale & Shapley [1962] showed that a stable matching always exists. To see this, 
consider the following procedure in which each man starts proposing to his most 
preferred woman. If she rejects, he proposes to the next woman on his preference 
list and so on. Each woman keeps her best received proposal under consideration, 
rejecting all the other ones. When all women hold a proposal, the procedure stops, 
a stable matching has been obtained. Indeed, suppose there is unmarried couple u 
and v. If u did not propose to v he prefers his partner above v. If he did proposed 
to v, she rejected him, which means that she got a better proposal. 

Instead of letting the above 'propose and reject' game decide on how the 
couples are made, there also could be a match-maker that arranges the marriages. 
His arrangement has to be stable, but additionally to the preferences he has 
a weight function on the possible pairs and he wishes to arrange a stable 



168 A.M.H. Gerards 

matching with maximum weight. The following polyhedral characterization of 
stable matchings, due to Vande Vate [1989], shows that this maximal weight stable 
matching problem is a linear programming problem. 

The convex hull of the characteristic vectors of stable matchings in 
a complete bipartite graph G = (V1 U V2, E) is: 

{x E Perfect(G) I L Xuw + L Xwv + Xuv :=:: l(u E V1, V E Vi)}. (43) 
V-<uW U-<vW 

In fact, it turned out that many of the properties of stable matchings can be 
derived form this polyhedral result [see Roth, Rothblum and Vande Vate, 1993]. 

The stable matching problem can also be formulated for non-bipartite graphs. 
However, in that case, no stable matching might exist; a 4-node example is easily 
constructed. On the other hand, Irving [1985] derived a polynomial time algorithm 
that finds a stable matching if it exists. For further reading on stable matchings we 
refer to the book of Gusfield and Irving [1989]. 

5.3. Non-bipartite graphs - Edmonds' matching polytope 

So, when G is not bipartite, Fract(G) =j:. Match(G). In trying to formulate the 
weighted matching problem in a non-bipartite graph G as a linear programming 
problem, we begin with the inequalities defining Fract(G). Then, we search for 
inequalities that 'cut off' the fractional extreme points of Fract(G). The following 
lemma characterizes the fractional extreme points of Fract(G). Its proof is similar 
to that of Theorem 14. 

Lemma 18 [Balinski, 1965]. A vector x E IRE is an extreme point of Fract( G) if and 
only if there exists a matching M and a collection of odd circuits C1 , ... , Ck in the 
graph G, such that the matching and the odd circuits are pairwise node-disjoint and 

x = xM + f (xc1 + ... + xck). (44) 

Let U ~ V(G), with IVI;:::: 3 and odd. Add up all the inequalities LeeS(v) Xe S 1 
with v E U, and all inequalities -xe S 0 with e E 8(U). Dividing the resulting 
inequality by 2 yields 

x((U}) = !(I:x(8(v))- L xe)::: flVI. (45) 
veU ee8(U) 

Obviously, each x E Fract(G) satisfies (45). Rounding down the right hand side 
we get the following blossom constraint 

x((V})::: f (IUI -1). (46) 

The characteristic vectors of matchings in G satisfy all the blossom constraints. 
However, the fractional extreme points of Fract(G) do not. Indeed, the fractional 
extreme point x of Fract( G) violates the blossom constraint obtained when U is 
chosen to be the node set of one of the odd circuits defining x. So, if we add all 



Ch. 3. Matching 169 

the blossom constraints to the constraints defining Fract(G), we get a polyhedron 
Blossom(G), which contains Match(G), but is, for non-bipartite graphs, properly 
contained in Fract(G). In particular, the blossom constraints 'cut off' all the 
fractional extreme points of Fract( G). In the process, however, we might have 
introduced new fractional extreme points. Edmonds showed that adding the 
blossom constraints does not introduce any new fractional extreme points. 

Theorem 19 [Edmonds, 1965b). For each graph G, Match(G) = Blossom(G). 

Proof. Edmonds [1965b] originally proved this result via his weighted matching 
algorithm (cf. Section 6.2). Since then, others including Balinski [1972], Hoffman 
& Oppenheim [1978], Lovasz [1979a], Seymour [1979], Araoz, Cunningham, 
Edmonds & Green-Kr6tki [1983) and Schrijver [1983b] have offered different 
proofs. We essentially follow the proof by Araoz and coworkers and Schrijver. 

Suppose that for some graph G, Match(G) =f. Blossom(G). Among all such 
graphs, suppose G = ( V, E) has IV I + I EI as small as possible. So G is connected 
and non-bipartite. Consider a fractional extreme point x of Blossom(G). Since no 
fractional extreme point of Fract(G) is in Blossom(G), x is not an extreme point 
of Fract(G). Hence, there exists a subset S of V with ISI ~ 3 and odd, such that 

x((S)) = t<ISI - 1). (47) 

Among all such subsets, choose S so that ISI is as small as possible. 

Claim 1. ISI < IVl-

Proof of Claim 1. If not, x(E) = t<IVI - 1) must be the only blossom constraint 
x satisfies with equality. Further, since IVI + IEI is as small as possible, Xe > 0 
for each e E E. Otherwise, if Xe = 0 for some e E E, G \ e would be a smaller 
counterexample. Finally, since x is an extreme point of Blossom(G), x satisfies 
with equality at least iEI constraints from the defining system. Hence there are 
at least IEI - 1 nodes u in V(G) with x(8(u)) = 1. On the other hand, since 
x(c5(u)) > 0 for each node u and 

L(l - x(8(v))) = IVI - 2x(E) = 1, (48) 

veV 

there are at least two nodes u such that x(8(u)) < 1. Hence, IVI - 1 ~ IEI. 
But connected non-bipartite graphs have at least as many edges as nodes -
contradiction! End of proof of Claim 1. 

Partition x into x = [x 1, x2], where x 1 is the restriction of x to edges in (S). 
Consider the graph G x S obtained by shrinking S to the pseudo-node s. 

Claim 2. x 1 E Blossom(GiS) and x2 E Blossom(G x S). 

Proof of Claim 2. Since x is in Blossom(G), x 1 s~tisfies x 1(8(v)) ~ 1 f?r e~ch 
v E s and the blossom constraints for GIS. So, x E Blossom(GIS). Likewise, 



170 A.M.H. Gerards 

x 2 satisfies x2 ( 8 ( v)) .:::; 1 for each v E V ( G) \ S and the blossom constraint 
x 2((U)) :::: 1CIUI - 1) for each subset U s;: V \ S with iUI ::: 3 and odd. 
Further, since ISI '.'.': LvEsx(8(v)) = 2x((S)) + x(8(S)) and 2x((S)) = ISI - 1, 
x 2(8(s)) = x(8(S)).:::; l. Finally, for each U ~ V(G x S) containing s, 

x 2 ((U)) = x(((U \ {s}) US)) - x((S)).:::; 

:::: !Ci(U \ {s}) u Si -1)-!CISl-1) = !CIUI -1) 

and so x 2 E Blossom(G x S). End of proof of Claim 2. 

Since G is a smallest counterexample, 

Match(GiS) = Blossom(GiS) 
and Match(G x S) = Blossom(G x S). (49) 

Hence, x 1 can be expressed as a convex combination of the characteristic vectors 
of matchings in G IS and x 2 can be expressed as a convex combination of the 
characteristic vectors of matchings in G x S. This implies that there is a non­
negative integer k, matchings M 1, ... , Mk in GiS, and matchings N1 , ... , Nk in 
G x S, such that 

1 M M 1 N N 
x1 = k(x 1 + · · · + x k) and x2 = k(x 1 + · · · + x k). (50) 

Note that the matchings Mi, and similarly the matchings Ni, need not all be 
distinct. 

Claim 3. We can renumber the matchings Ni (i = 1, ... , k), so that Mi U Ni is a 
matching in G for each (i = 1, ... , k). 

Proof of Claim 3. By ( 4 7) each Mi has exactly one exposed node in G IS. Thus, we 
need only prove that for each u ES: l{i I I Min 8(u)I = O}i :_:: l{i I !Nin 8(u)I = l}I. 
To see this, observe that: 

l{i i IMi n 8(u)I = O}i - IU i INi n 8(u)I = l}i 

= k - l{i I !Min 8(u)i = 1}1- l{i I !Nin 8(u)i = l}i 
k k 

= k - (:[ IMi n 8(u) n (S)i +LI Nin 8(u) n 8(S)i) 
i=I i=l 

= k - k (x 1(8(u) n (S)) +x2 (8(u) n 8(S))) 

= k - kx(8(u)) :_:: 0. 
End of proof of Claim 3. 

So, as x = 1/ k(xM1UN1 + . · · + xMkuNk), it is the convex combination of 
characteristic vectors of matchings; contradicting the assumption that it is a 
fractional extreme point of Blossom( G). o 

We can sharpen this result in the sense that we can specify which of the 
non-negativity, degree and blossom constraints are necessary to describe the 



Ch. 3. Matching 171 

matching polytope of a given graph. Indeed, although we need all the non­
negativity constraints, we do not need the degree constraint x(o(v)) .::: 1 for a 
node v E V (G) if there is another node u with o(v) ~ o(u) or there is an edge 
uw with o(v) £ o(u) U o(w). Moreover, we only need the blossom constraint 
x((S}).::: iCISI - 1) for S £ V(G) such that ISI ~ 3 and odd, GIS is factor-critical 
and GIS has no cut node. (A node u is called a cut node of a connected graph 
G if G \ u is not connected.) Pulleyblank & Edmonds [1974] showed that these 
are exactly the constraints we need in order to have a minimum system of linear 
inequalities defining the matching polytope. In geometric terms these constraints 
correspond to the 'facets' of the matching polytope [see Pulleyblank, 1989]. 

The fact that the dual problem in Theorem 15 has integral optimum solutions 
extends to non-bipartite graphs: the non-negativity, degree and blossom con­
straints form a totally dual integral system [Cunningham & Marsh, 1978; Hoffman 
& Oppenheim, 1978; Schrijver & Seymour, 1977; Schrijver, 1983a, b]. In fact, 
this remains true if we restrict ourselves to Pulleyblank and Edmonds' minimal 
description of the matching polytope [Cunningham & Marsh, 1978]. 

The following characterization of the perfect matching polytope follows easily 
from Theorem 19. 

Corollary 20. For each graph G = (V, E), Perfect(G) is the solution set of the 

system: 

x(o(v)) 
x((U}) 
Xe 

= 1 (v E V) 
.::: t<IUI - 1) (U £ V, IUI odd and at least 3) 
~ 0 (e EE), 

which is equivalent to the sy~tem 

x(o(v)) = 1 (v E V) 
x(o(U)) ~ 1 (U £ V, IUI odd and at least 3) 
Xe ~ 0 (e EE). 

(51) 

(52) 

Proof. That (51) describes the perfect matching polytope is trivial. We need only 
prove that (51) and (52) are equivalent. 

Consider U ~ V, with IUI odd, and let x E ~Ebe such that x(o(v)) = 1 for 
each v E V. Then 

x((U}).::: tc1u1 -1) ~ x((U}) - t I:X<o(v)).::: tc1u1 -1) - t1u1 
vEU 

~ -tx(o(U)).::: -t 
~ x(o(U)) ~ 1. 

0 

So, we have two descriptions of the perfect matching polytope. We call (51) 
the blossom description of the perfect matching polytope and (52) the odd. cut 
description. The inequalities x(o(U)) ~ 1 in (52) are called the odd cut constraints. 



172 A.M.H. Gerards 

Like the blossom description of the matching polytope, the blossom description 
of the perfect matching polytope is totally dual integral (the 'perfect matching 
case' follows directly from the 'matching case'). This is not the case for the odd 
cut description - the complete graph on 4 nodes, K4, provides a counterexample. 
However, from the proof of Corollary 20 and the fact that (51) is totally dual 
integral, it can be shown that when the weight function is integral, the odd cut 
description admits half-integral dual optimal solutions. 

The (perfect) matching polytope is a geometric object: namely the convex hull 
of points in a Euclidean space. There are many other interesting geometric objects 
related to matchings, e.g., the cone generated by the characteristic vectors of 
perfect matchings, the linear hull of the characteristic vectors of matchings, etc. 
Edmonds, Lovasz & Pulleyblank [1982], Naddef [1982], Naddef & Pulleyblank 
[1982] have obtained results in this vein. Structural results on matchings like 
those mentioned in Section 4.1 ('ear-decomposition' and 'brick-decomposition') 
often play a crucial role in characterizing these geometric objects. An especially 
noteworthy example is Lovasz's beautiful characterization of the matching lattice, 
i.e., the set {LMeM A.MXM I A.M E 7l, (M E M)} where M denotes the set of 
perfect matchings [Lovasz, 1987; cf. Murty, 1994]. 

Karzanov (1992] derived a polynomial time algorithm for calculating the Euclid­
ean distance from the origin to the perfect matching polytope of a bipartite graph. 

In this section we have formulated matching problems as linear programming 
problems. Making combinatorial problems accessible to linear programming tech­
niques in this way is one of the main goals of 'polyhedral combinatorics'. In 
general, this area could be described as the study of methods for solving com­
binatorial problems using the theory of linear inequalities. Over the years, the 
results in this section have been among the principal paradigms of this polyhedral 
approach. (However, even for matchings not all polyhedral questions have been 
resolved, see Cunningham & Green-Krotki [1986].) For surveys on polyhedral 
combinatorics, see Pulleyblank [1983, 1989] and Schrijver [1983a, 1995]. The stan­
dard reference for the theory of integer and linear programming - the toolbox for 
polyhedral combinatorics - is Schrijver's book [1986]. 

6. Finding maximum and minimum weight matchings 

In this section we give polynomial time algorithms for finding a (perfect) 
matching of maximum or minimum weight. Actually we consider only the problem 
of finding a minimum weight perfect matching, but this is not really a restriction. 
Indeed, suppose we are given a non-negative weight function w E JRE and want to 
find a maximum weight matching in a graph G. By adding nodes and edges with 
zero weight, we can transform the problem into one of finding a maximum weight 
matching in a complete graph with an even number of vertices, or if G is bipartite, 
in a complete bipartite graph in which the two color classes have the same number 
of nodes. Since each matching in these graphs is contained in a perfect matching, 
we may find a maximum weight matching in the original graph by finding a 



Ch. 3. Matching 173 

maximum weight perfect matching in the complete (bipartite) graph. Replacing 
each weight We by -we, we tum the problem into a minimization problem and, if 
we prefer non-negative weights, we may add a suitable constant to each weight. 

A weighted matching problem is a linear programming problem, so the du­
ality theorem of linear programming (34) provides a stopping criterion. In fact, 
using the complementary slackness conditions, we reduce the weighted matching 
problem to a series of cardinality matching problems. 

6.1. Bipartite graphs 

Throughout this section G = (V1 U Vi,£) is a bipartite graph and w E lRf For 
convenience, we assume that G contains a perfect matching. From Corollary 16 
and linear programming duality (34) the minimum weight of a perfect matching is 
equal to the maximum in 

maximize rr (Vi U Vi) 

subject to nu+ 7Tv < Wuv (uv E £). 
(53) 

We refer to (53) as the dual problem and to each feasible solution 7T to (53) as 
dual feasible. For each dual feasible solution n we define the reduced cost function 
wrr E JRE by: w:v := Wuv - 7Tu - 7Tv for each uv E E, and the graph Grr by 
V(Grr) := V(G) and E(Grr) := {uv E E(G) I w:v = 0}. Thus, Grr is the subgraph 
on the nodes of G that includes only those edges, called admissible, with zero 
reduced cost under 7T. The edges not in E ( G rr) are called inadmissible. 

The complementary slackness conditions (35) imply that: 

A dual feasible solution 7T is optimal if and only if Grr admits a 
perfect matching. Moreover, if Gn admits a perfect matching, then 
the perfect matchings in Gn are exactly the minimum weight perfect 
matchings in G. (54) 

So, given a dual feasible TC, we check whether Grr has a perfect matching M. If 
it does, M is a minimum weight perfect matching in G and we are done. If it does 
not, we change 7T as follows. 

DUAL CHANGE (in bipartite graphs): Let M be a maximum matching and F a 
Hungarian forest in Grr. Define TC 1 by 

where 

l nu + E if u E Vi n even(F) 
rr~ := nu - E if u E V2 n odd(F) 

nu otherwise, 

E := min{w:vlu E even(F) n Vi, v E V2 \ odd(F), uv EE}. 

By (56) and because Fis Hungarian, TC 1 is dual feasible. Moreover, 

Mand Fare contained in Gn" 

(55) 

(56) 

(57) 



174 A.M.H. Gerards 

So, we can apply GROW, starting with the matching M and the alternating forest 
F, to search for a maximum matching in Grr'· 

Note that, since uv E E(Grr') for each u E V1 n even(F) and v E Vz \ odd(F) 
with w:v = E, 

Fis not Hungarian in Grr'· (58) 

Thus, we have the following algorithm for finding a minimum weight perfect 
matching in a bipartite graph. We begin with the dual feasible solution rr with 
Trv = 0 for each v E Vi U Vz. 

We apply GROW and AUGMENT until we find either a perfect matching M or 
a Hungarian alternating forest F in Grr. If we find a perfect matching M in Grr, 
we are done: M is a minimum weight perfect matching in G. Otherwise, we apply 
DUAL CHANGE. Clearly this algorithm, called the weighted Hungarian method, 
runs in polynomial time. It was originally introduced by Kuhn [1955, 1956]. For 
variants of his method, see Flood [1956], Ford & Fulkerson [1957], Motzkin [1956] 
and Munkres [1957]. Bertsekas [1979] proposed a so-called auction method [ cf. 
Bertsekas, 1990]. 

Kuhn's algorithm is a 'dual' algorithm in the sense that at any stage it keeps 
a dual feasible solution and a primal infeasible solution (namely a non-perfect 
matching) satisfying complementary slackness. Primal feasibility, i.e. the matching 
being perfect, acts as the stopping criterion. Another possible approach is the 
'primal' algorithm of Balinski & Gomory [1964]. It keeps at any stage a perfect 
matching which is changed until it becomes optimal. The stopping criterion in 
their algorithm is dual feasibility. 

Note that although the weighted Hungarian method was motivated by Theo­
rem 14, its correctness does not rely on that result. In fact, the algorithm provides 
a separate proof of Theorem 14 as well as of Theorem 15 (the initial dual feasible 
solution is integral and, when the weights are integral, each dual change maintains 
integrality). 

6.1.1. Implementation of the weighted Hungarian method 
After I Vi I augmentations, the weighted Hungarian method finds a perfect 

matching M in Grr and, by the complementary slackness conditions (35), M is a 
minimum weight perfect matching in G. Thus, the running time of the algorithm 
depends on the computations required between consecutive augmentations, called 
a phase. 

Note that if an admissible edge becomes inadmissible after a dual change, it 
cannot be come admissible again until after the next augmentation. This means 
that if we ignore the effort required to make the dual changes, each phase of 
the algorithm is essentially an application of GROW. One could say that the 
'dual changer' confounds the 'grower': any time the alternating forest becomes 
Hungarian, the 'dual changer' adjusts the graph so that the forest is no longer 
Hungarian. Consequently, if we disregard the effort spent on dual changes, each 
phase can be carried out in O(IEI) time. We sketch two implementations of the 
dual changes; one for dense graphs and one for sparse graphs. 



Ch. 3. Matching 175 

Dual changes in dense graphs: In dense graphs, where [Vl 2 = O(IEI), we 
maintain an array CLOSE so that for each v E V2, CLOSE [ v] = u, where 
u E V1 n even(F) and w~v = min{w~,v I u' E V1 n even(F)}. Using CLOSE, we 
can make each dual change in O(IVI) time and, each time we add a node to 
Vi n even(F), we can update CLOSE in O([VI) time. During a phase we make at 
most I Vi I dual changes and add at most IV1 I nodes to V1 n even(F). So, with this 
implementation we can carry out the dual changes for each phase in 0(1 Vi 2) time. 

The weighted Hungarian method can be implemented to run in 
O([Vl3) time. (59) 

Dual changes in sparse graphs: In sparse graphs, where I EI is significantly 
smaller than I Vi 12, we can improve the running time by implementing the dual 
changes more efficiently. First, we concentrate on finding the value of E. For each 

node v in V2 \ odd(F), we maintain the value SLACK[v] := wCLOSE[v]v· Each time 
we add a node u to V1 n even(F), we scan each of its deg(u) neighbors v to update 
CLOSE and SLACK. So, during an entire phase we require only O(IEI) time to 
maintain these two arrays. 

Standard data structures such as 'd-heaps' or 'priority queues' [see Tarjan, 1983, 
or Aho, Hopcroft & Ullman, 1974] for storing V2 \ odd(F) according to the 
entries in SLACK facilitate quick determination of E. Using such a data structure 
we can not only find E, but also update the data structure itself in O(log [VI) 
time whenever SLACK changes or a node leaves V2 \ odd(F). So, it is possible to 
determine the values of E in O(IEI log IVI) time per phase. 

Instead of making dual changes explicitly, which can take up to IV I steps each, 
we make them implicitly. We maintain a variable Erotal and, for each node u E V, 
we keep two variables: rr,~ld and ni'". Together these represent the dual variable 
rr,, according to the following rule: 

l rr,~ld + (Erotal - rr~0') if u E Vi n even(F) 
old ( cor) "f" V dd(F) Iru := nu - €total - Ttu I U E 2 n 0 

rrold otherwise 
u 

(60) 

To make a dual change implicitly, we replace Etoral by Eroral +E. When a node u 
enters the alternating forest, we set rri0 r := Etotal; and when an augmentation leads 
us to remove the node u from the alternating forest we set 

nold ._ rr,, €101al - rr,, I u v n 
{ 

old + ( cor) ·f E e e (F) 

u .- rr~ld - (€total - rr~0') if u E odd(F). 

Clearly, this 'delayed' revision can be carried out within GROW and AUGMENT. 

Thus, we have the following result: 

The weighted Hungarian method can be implemented to run in 

0(1 El IV! log IVI) time. (61) 

Fredman & Tarj an [ 1987] improved this time bound to 0 (IV I (I EI + IV I log IV I)) 
using 'Fibonacci-heaps'. Brezovec, Cornuejols, & Glover [1988] obtained the same 
time bound based on algorithm for a special case of matroid intersection. 



176 A.M.H. Gerards 

6.2. Non-bipartite graphs 

In this section we consider the problem of finding a minimum weight perfect 
matching in a non-bipartite graph G. For convenience, we assume that G admits a 
perfect matching and that the weights w E IRE are non-negative. 

By Corollary 20, a minimum weight perfect matching solves the linear program­
ming problem 

maximize LWeXe 
eEE 

subject to x(o(v)) = 1 (v E V) (62) 
x(o(S)) > 1 (SE Q(G); ISI =I= 1) 
Xe > 0 (e E E), 

where Q(G) := {S ~ V(G) J ISI is odd}. Thus, by linear programming duality (34), 
the minimum weight of a perfect matching is equal to the maximum in 

maximize I: JTs 

SEQ(G) 

subject to I: JTs < We (e EE) (63) 

Sd2(G);8(S)=>e 

JTs > 0 (SE Q(G); ISI =/= 1). 

We refer to (63) as the dual problem and to each feasible solution JT to (63) as 
dual feasible. For each dual feasible solution JT the reduced cost function wrr E RE 
is defined by: w: := We - LsEQ(G);8(S);ie JTs for each e E £, and the graph Grr 
on the node set V(Gn) := V(G) has edge set defined by E(Grr) := {uv E E(G) I 
w~v = O}. So, again, Gn is the subgraph on the nodes of G that includes only 
those edges, called admissible, with zero reduced cost under JT. Finally, we define 
Qn := Qn(G) :={SE Q(G) I JTs > 0 and ISI =!= 1). 

The complementary slackness conditions (35) imply the following characteriza-
tion of minimum weight perfect matchings: 

A dual feasible solution JT is optimal if and only if Gn admits a 
perfect matching M such that M n 8 (S) = 1 for each S E Qn ( G). 
If n: is optimal, the collection of all such perfect matchings in Gn is 
exactly the collection of minimum weight perfect matchings in G. ( 64) 

So minimum weight perfect matchings are perfect matchings in Gn, for some 
optimal JT, that satisfy additional conditions. These additional conditions prevent 
us from finding a minimum weight perfect matching in G by simply searching for 
a maximum cardinality matching in Gn as we did in the case of bipartite graphs. 
To overcome this, we restrict attention to those dual feasible solutions n:, called 
structured, that satisfy the following two conditions: 

Qn is nested,i.e., if S, TE Qn, then S ~ T, T ~Sor Sn T = 0. (65) 



Ch. 3. Matching 177 

If S E Qrr, and S1, ... , Sk are the inclusion-wise maximal mem­
bers of Qrr properly contained in S, then (Grr x S1 x · · · x Sk)IS 
is factor-critical. ( 66) 

Note that by (28), (66) implies that Grr IS and G IS are also factor-critical. 
For each structured dual feasible :rr we define Grr to be the graph obtained from 

Grr by shrinking the members of Qrr· The motivation for considering only struc­
tured dual solutions is apparent from the following consequence of (64) and (29): 

A structured dual feasible solution :rr is optimal if and only if Grr 
admits a perfect matching. ( 67) 

This suggests the following algorithm, developed by Edmonds [1965b ], for 
finding a minimum weight perfect matching in a non-bipartite graph G. 

EDMONDS' ALG~ITH~ Given a structured dual feasible n: - initially identical 
to 0 - construct Grr. If Grr admits a perfect matching M, then the dual feasible 
solution TC is optimal; extend M to a minimum weight perfect matching in Grr. 
Otherwise, determine the Edmonds-Gallai structure of Grr and revise the dual 
solution according to (68) below. 

We rely on notation similar to that in Section 2.2 to describe the relation 
between G and Grr· If SE Qrr(G) is shrunk into pseudo-nodes E Gn, we define 
DEEPn[s] =Sand OUTERrr[u] = s for each u E S. For each node u in G that 
is also a node in Grr, we define DEEPrr[u) = {u} and OUTERn[u] = u. For each 
T s; V(Gn), DEEPrr[T] := UsETDEEPrr[s]. 

DUAL CHANGE (in non-bipartite graphs): Given a structured dual feasible solu­
tion TC, define 

where 

TCs + E 

71:5 - E 

TCs 

if S =DEEP rr[D] for some component D of D(Grr) 
if S = DEEPrr[s] for some s E A(Grr) (68) 
otherwise, 

E .- min{E1, ~Ez, E3}, and 

Et .- min{w:v I OUTERrr[u] E D(Gn);OUTERrr[v] E C(Grr)}; 
E2 .- min{w:v I OUTERrr(u] and OUTERn[v] (69) 

in different components of D(Gn) }; ~ 
E3 .- min{TCs IS= DEEPn[s] for some s E A(Gn), 

IDEEPrr[s]I =f 1). 

Determining whethe~r not Grr has a perfect matching, computin_gjhe Edmonds­
Gallai structure of Grr, and extending a perfect matching in Grr to a perfect 
matching in Gn can all be accomplished via any maximum cardinality algorithm 
that determines the Edmonds-Gallai structure, like the blossom algorithm or 



178 A.M.H. Gerards 

the algorithm in Section 8.4. A perfect matching in Grr obtained by extending 
a perfect matching in G:rr satisfies the complementary slac~ss conditions (64) 
and hence is a minimum weight perfect matching in G. If Grr does not admit a 
perfe~matchin_&__DUAL CHAN_Q,E increases the dual objective function value by 
E (K(Grr) - JA(Grr)I) = E def(Grr) > 0. So Edmonds' algorithm only stops, when 
a minimum weight perfect matching has been obtained. That the algorithm does 
stop follows from the following lemma. 

Lemma 21. Given a structured dual feasible solution n:, DUAL CHANGE yields a 
structured dual feasible solution n:', such that: 

- def(Gir•) ~ def(Grr); 

- if def(Grr,) = def(Grr), then DEEPir-(D(Grr•)) 2 DEEPrr(D(G;;)); 

- if def(Gir') = def(Grr) and DEEP:rr•(D(G71•)) =DEEP rr (D(Grr )), 
then DEEP 71·(C(Grr•)) ~ DEEP 11 (C(G 11 )). 

Proof. For each component D of D(Gir ), the sets in Qir are either disjoint from 
DEEPrr[D] or contained in DEEP 11 [D]. So Q71 , is nested. Moreover, by (27) Gn!D 
is factor-critical, so rr' satisfies (66) and hence is structured. 

To prove the remainder of the lemma, observe that G rr' can be obtained from 
c:r in two steps. First, shrink the node-sets S that are not in Qrr but are in Qrr', 
this yields G11 (i.e. the Edmonds-Gallai graph of Grr ). The nodes in D( Grr *) and 
in C(Grr *)are contained in V(G 11,), Hence: 

~* ~ 

- def( Gir ) = def(Grr ); 
~* ~ 

- DEEPir1 (D(Grr )) = DEEPir(D(Grr)); (70) 
~* ~ 

- DEEPir•(C(Grr )) = DEEP 71 (C(Grr)) 

G;;, can be obtained from G11,* by applying the operation (31) if E =Et or ~E2, 
the operation in (32) if E = E3 and the operation (30). So, by (30), (31) and (32): 

~ ~* 

- def(Gir 1 ) ~ def(Grr ); 
,_ -* -- -* - if def(G;r') = def(Grr ) then D(Grr') 2 D(Grr ); 

- if both def(G11') = def(Gir *)and D(G11,) = D(Grr *), 
(71) 

then C(G';,) ~ C(Gir *). 
From (71) and (70), the lemma follows. o 

As a consequence, there are at most O(jV(G)i 3) dual changes. Since we can 
find a maximum cardinality matching and the Edmonds-Gallai structure of Grr in 
polynomial time, 

Edmonds' algorithm finds a minimum weight perfect matching in 
polynomial time. (72) 

Note that the algorithm provides a constructive proof of Corollary 20. 



Ch. 3. Matching 179 

6.2.l. Implementing Edmonds' algorithm 
In implementing Edmonds' algorithm for finding a minimum weight perfect 

matching in a non-bipartite graph, we can exploit the efficient algorithms discussed 
in Section 2.2 for finding a maximum cardinality matching. Note, however, that 
unlike the cardinality problem, in solving the weighted problem we must be able 
to expand a pseudo-node without expanding the pseudo-nodes contained in it. We 
can similarly exploit the efficient methods discussed in Section 6.1 for revising the 
dual solution but the continual shrinking and expanding of blossoms gives rise to 
certain complications [see Gali!, Micali & Gabow, 1986]. 

Lawler [1976] developed an O(iVl3) implementation of Edmonds' algorithm. 
Galil, Micali & Gabow [1986] derived an O(!El\VlloglVI) algorithm. Gabow, 
Galil & Spencer [1989] derived an implementation that runs in O(\Vl(\E\ log2 log2 

logmax{IEl/IVl.21 IVI + IVI log !VI)) time. This, in turn, has been improved by 
Gabow's O(IV\(IEI +!VI log !VI)) bound [Gabow, 1990]. Nice reviews of these 
implementations are Ball & Derigs [1983] and Galil [1986a]. 

Gabow & Tarjan [1991] and Gabow [1985] have developed algorithms whose 
running times depend on the edge weights. These algorithms require 
O(.JIV \a(\V\, IE\) log \V\\E\ log(\ V\N)) and O(\V \314\E\ log N) time, respec­
tively, where N is an upper bound on the edge weights. 

These running times can be further improved when we confine ourselves to 
restricted classes of weighted matching problems. Lipton & Tarjan [1980] derived 
an O(jV\312 log \VI) algorithm for matching in planar graphs. This algorithm is 
based on their Separator theorem for planar graphs: If G = (V, E) is planar 
we can partition V into three sets A, B and C with \A\, \B\ .:::; ~\VI and 
ICI :5 2.J2TV\ such that no edge connects A with B [Lipton & Turjan, 1979]. 
The separator C can be found in linear time and can be used to recursively 
decompose a matching problem in a planar graph into matching problems in 
smaller planar graphs. 

Vaidya [1989] showed that Euclidean matching problems, in which the nodes 
are given as points in the plane and the weight of an edge between the two 
points u and v is the distance between the two points in the plane, can be 
solved in O(iVl 512(log jVl)4) time. When the points lie on a convex polygon, a 
minimum weight matching can be found in 0(\ V\ log \VI) time [Marcotte & Suri, 
1991]. 

7. General degree constraints 

Matching can be viewed as a 'degree-constrained subgraph problem': find a 
maximum cardinality, or maximum weight, subgraph in which each node has 
degree at most one. In this section we consider more general degree constraints. 

Let G = (V, E) be an undirected graph, possibly with loops. The collection 
of loops incident to node v is denoted by A.(v). The general matching problem 
is: Given edge weights w E JR. E, edge capacities c E (JR. U { oo })£ and degree 
bounds a, b E (JR. U { oo}) v find a minimum or maximum weight integral vector x 



180 A.M.H. Gerards 

satisfying: 

av ;::: x(S(v)) + 2x(A.(v)) :::; bv (v E V) 
0 ;::: Xe :::; Ce (e E E). 

(73) 

We call an integral vector x satisfying (73) a general matching. We call a 
the degree lower bounds, b the degree upper bounds and c the capacities. The 
corresponding constraints are called the lower and upper degree constraints and the 
capacity constraints. We did not impose more general lower bounds on the values 
of Xe since this does not yield a more general problem. (Given a lower bound 
d # 0 on the edges, replace each degree lower bound av by av-d(S(v))-2d(A.(v)), 
each degree upper bound bv by bv-d(8(v))-2d(A.(v)), each capacity Ce by Ce -de, 
and each edge variable Xe by Xe - de.) 

In addition to matching and perfect matching, the general matching problem 
includes: the simple b-matching problem in which a = 0, b is arbitrary and c = 1; 
the b-matching problem in which a = 0, b is arbitrary and c = oo; the capacitated 
b-matching problem in which a = 0 and b and c are arbitrary; and the edge cover 
problem in which a = 1, b = oo, and c = 1. The general matching problem also 
includes the perfect versions of the ( capacitated) b-matching problems in which 
a = b and the simple perfect b-matching problem, also called the b-factor problem. 

We can use loops to express the degree constraints as parity conditions. For 
instance, to force the degree of a node v to be an odd number between 3 and 11 
we add a loop .e. to v and impose the constraints: x(S(v)) + 2xe = 11; 0 :::: xe ::: 4. 
We discuss parity conditions in Section 7.4. 

An even more general degree-constrained subgraph problem is the D-matching 
problem: Given a set Dv ~ z; for each v E V, find a sub graph G' of G with 
deg0 ,(v) E Dv for each v E V. Lovasz [1972a] proved that finding a D-matching 
is NP-complete, even when Dv is restricted to be either {1} or {O, 3}. When for 
each v E V, Z+ \ Dv contains no consecutive integers, the D-matching problem is 
polynomially solvable [Lovasz, 1973; Comuejols, 1988; and Sebo, 1993]. 

Related to the degree-constrained subgraph problem is the question: For which 
d E z~<Gl has (73) an integral solution x with x(o(v)) = dv for all v E V(G)? 
A polyhedral answer to this question has been given by Cunningham & Green­
Kr6tki [1991], generalizing results by Balas & Pulleyblank [1983, 1989], who solved 
cases a = 0, b = 1 and c = 1, and by Koren [1973]. Koren considered the special 
instances of the question that G is the complete graph, a = 0, b = oo and c = 1, 
in other words he derived a system of inequalities for the convex hull of all the 
degree-sequences of simple graphs on V (G) (see also Peled & Srinivasan [1989] 
and Cunningham & Zhang [1992]). The inequalities in this system are exactly 
the well-known necessary and sufficient conditions derived by Erdos & Gallai 
[1960] for a sequence of integers to be the sequence of degrees of a simple graph. 
For a separation algorithm ( cf. Section 8.3) for the polyhedron given by Balas & 
Pulleyblank [1989] see Cunningham & Green-Kr6tki [1994]. 

For other generalizations of matchings see: Cornuejols & Hartvigsen [1986], 
Cornuejols, Hartvigsen & Pulleyblank [1982], Giles [1982a, b, c], and Lovasz [1970b]. 
In this chapter we restrict attention to general matchings as defined in (73). 



Ch. 3. Matching 181 

7.1. Reducing the general matching problem 

One aspect of the self-refining nature of matching theory is that the general 
matching problem not only includes matching as a special case, but can also be 
reduced to the matching problem. There are two main steps in the reduction of 
general matching to matching. First, one reduces the general matching problem 
to a perfect b-matching problem in a new graph with no loops and no capacity 
constraints. Second, one further reduces the perfect b-matching problem to a 
perfect matching problem. The reductions are due to Tutte [1954]. 

In view of these reductions it is reasonable to expect that results analogous 
to those discussed earlier in this chapter extend to general matching. Indeed, 
this is the case. Tutte [1952, 1974] generalized his perfect matching theorem 
(Theorem 11) to give necessary and sufficient conditions for the existence of an/­
factor (see also Tutte [1981] and, for an algorithmic proof, Anstee [1985]). Lovasz 
[1970a] further generalized this result to (f, g)-factors or general matchings 
with av = deg(v) - gv (v E V), b = f and c = l. Lovasz also generalized 
the Edmonds-Gallai structure theorem to a structure theorem for (/,g)-factors 
[Lovasz, 1970a, c, 1972a] and /-factors [Lovasz, 1972e]. For a discussion of these 
latter results, see Lovasz & Plummer [1986]. 

The polyhedral results and polynomial-time solvability of matching also extend 
to the general matching problem. After explaining the reductions from general 
matching problems to the (perfect) matching problem, we first consider polyhedral 
results for general matchings and next deal with algorithmic issues. It is possible 
to derive general matching results via the reductions [see Araoz, Cunningham, 
Edmonds & Green-Kr6tki, 1983], but direct proofs are typically simpler. 

In explaining the reductions we only show how the new graphs should be 
constructed and what the new bounds on the degrees should be. We leave it 
to the reader to determine appropriate weights on the edges and to prove that 
indeed the original problem can be solved by solving the newly constructed 
problem. 

7.1.1. Reduction to perfect b-matching 
We first show how to transform the general matching problem in G = (V, E) 

to a perfect b-matching problem in a graph with no loops and no capacity 
constraints. 

Reduction to Cuv < oo for each edge uv and bv < oo for each node v: First, 
replace for each edge uv the capacity Cuv with min{Cuv. bu, bv} or, if this minimum 
is infinite, with max{au, av}. With these new, finite, capacities, replace for each 
node v the degree upper bound bv with min{bv, c(8(v)) + 2c().(v))}. 

Reduction to av = bv for each node v: Next, construct a new graph G' as follows. 
Make two copies G 1 and G2 of G. For each node v in G add an edge v1 v2 with 
capacity Cv1v2 := bv -av between the copies v1 in G1 and v2 in G2 of v. A copy (in 
G1 or G2) of an edge e in G gets the same capacity as e. For each node v in G the 
degree bounds of its two copies v1 and v2 in G' are: av1 := hv1 := av2 := bv2 := bv. 



182 A.M.H. Gerards 

Reduction to a loopless graph with c = oo: Finally, replace each edge e = uv in 
G' with two new nodes, Ue and Ve, and three new edges, uue, UeVe, and VeV. The 
capacities of these new edges are infinite and the degree bounds of the new nodes 
are: au, := av, :=hue := hv, := Cuv· 

7.1.2. Reduction to perfect matching 
Now, we further reduce the perfect b-matching problem in the loopless graph 

G' to a perfect matching problem in a graph G". Replace each node v in G' with 
bv copies v1, v2, ... , Vbv· Replace each edge uv in G' by a collection of edges in 
G", namely one between each copy ui of u and each copy v.i of v. The b-matching 
problem in G' is now a perfect matching problem in the new graph G11 • 

7.2. General matching polyhedra 

As polyhedral results for bipartite graphs are easier, we consider them first. 

7.2.1. Bipartite graphs 

Theorem 22. The polyhedron described by (73) is integral for all integral vectors 
a, band c if and only if G is biparlite. (Note that bipartiteness excludes loops.) 

Proof. Rather than derive this result by combining Corollary 16 with the above 
reductions, we present a proof based on the well-known result of Hoffman & 
Kruskal [1956] on totally unimodular matrices. An m x n-matrix A is called totally 
unimodular if each square submatrix of A has determinant equal to 0 or ±L The 
following is easy to prove: 

The node-edge incidence matrix of a graph G is totally unimodular 
if and only if G is biparlite. (74) 

Hence, the theorem follows from: 

Given an m x n-matrix A, the polyhedron {x E !Rn I a ::::= Ax ::::= 

b; 0 S x S c} is integral for each a, b E zm, c E zn if and only if A 
is totally unimodular [Hoffman & Kruskal, 1956). (75) 

D 

7. 2. 2. Network flows and bidirected graphs 
Given a directed graph D = (V(D), A(D)), a, b E g;,V(D) and c E zA(D) a 

general network flow is a vector x satisfying: 

(v E V(D)) 
(a E A(D)). 

(76) 

That (76) defines an integral polyhedron follows from network flow theory 
as well as from Hoffman and Kruskal's theorem (75). By a construction similar 



Ch. 3. Matching 183 

to that used in Section 3.1 to reduce bipartite matching problems to max-flow 
problems, this in turn implies Theorem 22. 

The general network flow problem and the general matching problem are 
similar. Both are constraint by a system of the form a s Ax s b; 0 s x s c, 
where each column of A has at most two non-zero coefficients. In the matching 
case both non-zero coefficients are 1, whereas in the network flow case one is 1 
and the other is -1. The other difference is that in the matching case we also 
allow columns with a single coefficient of 2 as the only non-zero entry. Edmonds 
& Johnson [1970] proposed a common generalization of these two models: the 
general matching problem for bidirected graphs. A bidirected graph is a matrix A 
in which each column either contains two non-zero entries both ±1 or contains 
a single non-zero entry equal to ±1 or ±2. A general matching in a bidirected 
graph A is an integral vector x satisfying: a s Ax s b; 0 s x s c. The results 
in this section also hold for these more general objects [Edmonds & Johnson, 
1970]. 

Z2.3. Non-bipartite graphs 
We derived the matching polytope (45) and (46) of a non-bipartite graph from 

the degree constraints by adding constraints obtained in the following manner. 
Add up degree and non-negativity constraints so that the coefficients in the left 
hand side of the resulting inequality are even, divide the resulting inequality by 
2 and round the right hand side down to the nearest integer. Applying the same 
construction to (73) yields the inequalities: 

x( (Vi) )-x((V2))+x(F1)-x(Fi) s lt(b(Vt)-a(Vz)+c(F1 UF2)) J 
for each pair Vi, V2 of disjoint subsets of V, each F1 :; o ( V1) \ 
o(V2), and each partition F2, Fz of a(Vz) \ a(Vt). (77) 

In fact these inequalities, also called blossom constraints, describe the convex 
hull of general matchings. This can be derived from Theorem 19 or Corollary 20 
via the above reductions [see Cook, 1983b; Schrijver, 1983a]. 

Theorem 23 [Edmonds, 1965b; Edmonds & Johnson, 1970]. For each graph 
G = (V, E), a, b E zv and c E zE, the convex hull of all integral solutions to (73) 
is the solution set of the system of inequalities defined by (73) and (77). Moreover, 
this system is totally dual integral. 

Note that many of the inequalities (77) are redundant, e.g., when b(Vi) -
a(V2) + c(F1 U F2 ) is even (though this is not the only case!). Although restricting 
the formulation to the inequalities (77) with b(Vt) - a(V2) + c(F1 U F2) odd gives 
a description of the convex hull of general matchings, we can no longer be assured 
that the system is totally dual integral. So, unlike ordinary matchings, the systems 
that are non-redundant and those that are minimally totally dual integral are 
distinct [see Cook & Pulleyblank, 1987; Cook, 1983a, b; Pulleyblank, 1980, 1981]. 

Below we list consequences of Theorem 23 for some of the more prominent 
special cases of general matching. 



184 A.M.H. Gerards 

The b-matching polytope: The convex hull of all b-matchings is given by: 

x(8(v)) 
x((U}) 
Xe 

S bv 
s l!b(U)j 
::: 0 

(v E V) 
(U £; V) 
(e EE) 

(78) 

(Edmonds (1965b], see Hoffman & Oppenheim (1978] and Schrijver & Seymour 
[1977] for alternative proofs). 

If we replace the constraints x(8(v)) s bv with the constraints x(8(v)) = bv, 
we get the convex hull of perfect b-matchings. In the case of perfect b-matchings, 
as with perfect matchings, we can replace the blossom constraints with the odd 
cut constraints to get the following description of the convex hull of perfect 
b-matchings: 

x(8(v)) 
x(8(U)) 

= bv (v E V) 
::: 1 (U £; V with b(U) odd) 
2: 0 (e E E). 

(79) 

When all components of b are even, the b-matching polytope is described by 
the degree and the non-negativity constraints, regardless of whether the graph 
is bipartite or not. In fact, when b has only even components, we can reduce 
the b-matching problem in a non-bipartite graph to one on a bipartite graph, or 
equivalently, to a general network flow problem. Consider the perfect b-matching 
problem on a graph G where all the components of b are even. Construct a 
directed graph D := (V(D), A(D)) as follows: For each node v in G there are 
two nodes, v- and v+, in V(D), and for each edge uv in G there are two directed 
edges, one from u- to v+ and one from v- to u+, in D. Now, solving the perfect 
b-matching problem in G is equivalent to solving a general network flow problem 
in D, subject to the following constraints (note that, 8-(v+) = 8+(v-) = 0 for 
each v E V): 

x(8+(v+)) - x(8-(v+)) 
x(8+(v-)) -x(8-(v-)) 

= !bv 
-!bv 

::: 0 

(v E V) 
(v E V) 
(a E A(D)). 

(80) 

Since the right-hand-side in the general network flow problem is integral, it admits 
an integral optimum solution. 

The 2-factor polytope: A 2-factor, or simple perfect 2-matching, in G = (V, E) is 
a collection of node-disjoint circuits covering V. Note the difference with perfect 
2-matchings, in which we may use edges twice. The perfect 2-matching problem is 
a special case of the perfect b-matching problem with b even, the 2-factor problem 
is not. Theorem 23 implies that the convex hull of 2-factors is described by: 

x(o(v)) = 2 (v E V) 
0 S Xe S 1 (e E E) (81) 

x((V}) + x(F) s IV!+ t<IFI - 1) (U ~ V, F ~ 8(U), !FI odd). 



Ch. 3. Matching 185 

Again, we may replace the blossom constraints with the odd cut constraints: 

x(o(U) \ F) - x(F) ::S 1 - IF! (U £ V, F £ o(U), IF! odd). (82) 

Using (81), and (82), one can derive a characterization of those graphs with simple 
perfect 2-matchings [see Belck, 1950; Tutte, 1952]. 

The edge-cover polyhedron: The convex hull of edge covers is described by: 

x(o(v)) :::: 1 (v E V) 

0 < Xe ::S 1 (e E £) (83) 
x(o(U) U (U)) :::: !CIUI + 1) (U £ V, /U I odd). 

7.3. Algorithms for general matchings 

In this section we consider the polynomiality of the algorithms for general 
matching problems. 

The reduction of a general matching problem to a perfect b-matching problem 
requires 0 (IV I + I EI) time and results in a graph with 0 (IV I + I EI) nodes and 
edges. So, given a polynomial time algorithm for the perfect b-matching problem, 
we may solve the general matching problem in polynomial time. The reduction 
from the perfect b-matching problem to the perfect matching problem, on the 
other hand, requires 0 (b(V)) steps and results in a perfect matching problem in 
a graph with O(b(V)) nodes. Hence we get: 

There exists an algorithm for the b-matching problem with running 
time bounded by a polynomial in I E (G) I and b(V) (84) 

[Edmonds, 1965b, see also Edmonds, Johnson & Lockhart, 1969, and Pulleyblank, 
1973]. This time bound, however, is not very good. It grows polynomially with the 
values of bv 's and hence exponentially with the space required to encode them. 
(Recall that the integer bv can be encoded in log(!bvl + 1) + 1 binary digits.) So, 
the given time bound is exponential in the size of the input of the problem. (An 
algorithm like this, whose running time is polynomial in the values of the numbers 
involved in the input, is called pseudo-polynomial.) If we restrict attention to 
those instances of the general matching problem in which the degree bounds and 
capacities are bounded by some fixed constant (or by a polynomial in /V ( G) I), 
(84) yields polynomial algorithms: 

The (simple) (perfect) 2-matching problem and the edge cover 
problem can be solved in time bounded by a polynomial in I V ( G) /. ( 85) 

A different approach is required to solve the general b-matching problem in 
polynomial time. 



186 A.M.H. Gerards 

7.3. l. A strongly polynomial algorithm for perfect b-matching 
We describe an algorithm, due to Edmonds, that solves a b-matching problem 

by first solving a single general network flow problem and then a single perfect 
matching problem. It is based on the following 'sensitivity' result. 

Theorem 24. Let G = (V, E) be an undirected graph and b, b' E Z~. If x' is a 
minimum weight perfect b' -matching with respect to a given weight function w E Z! 
then there exists a minimum weight perfect b-matching x (with respect to w) such 
that 

lxe - x;I::: L ibv - b~I for each e EE. 
veV 

Proof. Let d := b - b'. Clearly, it suffices to prove the theorem for the special 
case that Lve v ldv I = 2. In fact, we will additionally assume that b E {O, 1} v. (In 
applying this theorem, we only need that case anyway. Moreover, the other cases 
are proved similarly.) So there exist u1, u2 E V such that du 1 = du2 = 1 and du= 0 
if u <f. {u1, u2}. 

Let x' be a minimum weight perfect b' -matching, and x" be a minimum weight 
perfect b-matching. Let B be the collection of ally E zE such that: 

y(8(v)) 
0 < Ye 
x: -x; :;: Ye 

= 
::: 
::: 

dv 
x; -x; 
0 

(v E V) 
(e E E and x: ~ x~) 
(e E E and x: ::: x~). 

(86) 

Note that if y E B, x" - y is a perfect b'-matching and x' + y is a perfect 
b-matching. Hence w T (x" - y) ~ w T x', and thus w T (x' + y) :::: w T x". Which 
implies that for each y E B, x' + y is a minimum weight perfect b-matching. So it 
suffices to prove that B contains a vector y with IYel ::: 2 for each e E E. 

Take a sequence vo, e1, v1, ez, v2, ... , ek, Vk of edges and nodes such that 
the following conditions are satisfied: vo = u1 and vk = u2; ei = Vi-1 Vi for 
i = 1, ... , k; if i is odd then x~ > xe'.; if i is even then xe"· < xe'.; and, for each 

l I I l 

edge e at most Jx~ - x;J edges ei are equal to e. It is not difficult to see that, 
since x" - x' E B, such a sequence exists. Assume that the sequence is as short as 
possible. This implies that we do not use an edge more than twice in the sequence. 
Let y E zE be defined by Ye:= L~=l,e;=e(-l)i+l. Then y E Band IYel ::: 2, so 
the theorem follows. o 

We can apply this theorem in solving perfect b-matching problems as follows: 
Let x' be a minimum weight perfect b'-matching, where b~ := 2 L!hvJ for each 
v E V. Next defined:= b - b' (E {O, l}v) and search for a minimum weight 
general matching x subject to the constraints: 

x(8(v)) = dv (v E V) 
Xe ~ max{-JVI, -x;} (e EE). (87) 

Then, by Theorem 24, x' + x is a minimum weight perfect b-matching. 



Ch. 3. Matching 187 

By the remarks following (73) and the reductions in Section 7.1 we can 
transform the general matching problem subject to (87) into perfect matching 
problem on a graph whose size is a polynomial in the size of G. As b' has 
only even components the perfect b' -matching problem is a general network flow 
problem. So, we have: 

A b-matching problem in a graph G can be solved by solving 
one polynomially sized general network flow problem and one 
polynomially sized perfect matching problem (Edmonds). (88) 

The general network flow problem with constraints (80) is essentially equivalent 
to the min-cost flow (or circulation) problem. The first polynomial algorithm 
for the min-cost circulation problem was developed by Edmonds & Karp [1970, 
1972] and has running time polynomial in LvEV(D) log(lbul + 1). This algorithm 
combines the pseudo-polynomial 'out-of-kilter' method [Yakovleva, 1959; Minty, 
1960; and Fulkerson, 1961] with a scaling technique. Cunningham and Marsh 
[see Marsh, 1979] and Gabow (1983] found algorithms for b-matching that 
are polynomial in LvEV(D) log(lbu I + 1), also using a scaling technique. The 
disadvantage of these algorithms is that the number of arithmetic steps grows with 
LvEV(D) log(lbvl + 1). So, larger numbers in the input not only involve more work 
for each arithmetic operation, but also require more arithmetic operations. This 
raised the question of whether there is an algorithm such that the number of 
arithmetic operations it requires is bounded by a polynomial in JV(D)I and the 
size of the numbers calculated during its execution is bounded by a polynomial in 
LvEV(D) log(Jbvl + 1) (this guarantees that no single arithmetic operation requires 
exponential time). For a long time this issue remained unsettled, until Tardos 
[1985] showed that, indeed, there exists such a, strongly polynomial, algorithm for 
the min-cost circulation problem [see also Goldberg & Tarjan, 1989]. Combining 
this with (88) we get: 

Theorem 25. There exists a strongly polynomial algorithm for the general matching 
problem. 

For a similar strongly polynomial algorithm for b-matching, see Anstee [1987]. 

7.4. Parity constraints 

7.4.1. The Chinese postman problem [Kwan Mei-Ko, 1962; Edmonds, 1965a) 
Given a connected graph G = (V, E) and a length function e E Z!: find a 

closed walk e1, •.. , ek in the graph using each edge at least once - we call this 
a Chinese postman tour - such that its length .f.(e1) + · · · + l(ek) is as small as 
possible. 

If G is Eulerian, i.e., the degree of each node is even, then there exists an 
Eulerian walk, that is a closed walk using each edge exactly once. This is Euler's 
[1736] famous resolution of the Konigsberger bridge problem. So, for Eulerian 
graphs the Chinese postman problem is trivial (actually finding the Eulerian 



188 A.MH. Gerards 

walk takes O(IEI) time). On the other hand, if G has nodes of odd degree, 
every Chinese postman tour must use some edges more than once. We call a 
vector x E zE such that Xe '.'.: 1 for each edge e and Leeo(v) Xe is even for each 
node v, Eulerian. By Euler's theorem it is clear that for each Eulerian vector x 
there is a Chinese postman tour that uses each edge e exactly Xe times. Thus, 
solving the Chinese postman problem amounts to finding an Eulerian vector x of 
minimum length .eT x. Clearly, a minimum length Eulerian vector can be assumed 
to be {1, 2}-valued. Hence, searching for a shortest Eulerian vector x amounts 
to searching for a set F := {e E E I Xe = 2} with .e(F) minimum such that 
duplicating the edges of F leads to an Eulerian graph. Duplicating the edges in F 
leads to an Eulerian graph exactly when each node v is incident to an odd number 
of edges in F if and only if the degree of v in G is odd. So, the Chinese postman 
problem is a 'T-join problem' discussed below. 

There are other versions of the Chinese postman problem. In a directed graph, 
the problem is a general network flow problem. Other versions, including: the 
rural postman problem in which we need only visit a subset of the edges; the 
mixed Chinese postman problem in which some edges are directed and others 
are not; and the windy postman problem in which the cost of traversing an edge 
depends on the direction, are NP-hard. 

Z4.2. The T-joinproblem 
Given a graph G = (V, E) and an even subset T of the node set V, a subset F 

of edges such that I c5 F ( v) I is odd for each node v in T and even for each v not in 
T is called a T -join. The T-join problem is: Given a length function 1!, E Z E find a 
T-join F of minimum length .e(F). 

The T -join problem is the special case of the general matching problem with no 
upper bound constraints on the edges and no degree constraints other than the 
parity constraints. 

7.4.3. Algorithms for T-joins 
We describe two algorithms for finding a shortest T -join with respect to a length 

function f, E z!CG). The two algorithms rely on matchings in different ways. 
The first algorithm is due to Edmonds & Johnson [1973]. Let H be the 

complete graph with V(H) = T. Define the weight function we z!CH) as follows. 
For each edge uv E E(H), Wuv is the length, with respect to£, of a shortest uv­
path Puv in G. Find a minimum weight perfect matching, u1u2, u3u4 , ... , Uk-IUk 

say, in H. The symmetric difference of the edge sets of the shortest paths 
Pu 1u2 , Pu3u4 , ••• , Puk-JUk is a shortest T-join. 

Since the shortest paths and a minimum weight perfect matching can be found 
in polynomial time, the algorithm runs in polynomial time. In fact, we can 
find shortest paths in polynomial time when some of the edges have negative 
length, as long as G has no negative length circuit (see Section 9.2). But, when 
we allow negative length circuits, the shortest path problems become NP-hard. 
Nevertheless, the T-join problem with a general length function can be solved 



Ch. 3. Matching 189 

in polynomial time (which implies that we also can find a T -join of maximum 
length). 

In the second algorithm we construct a graph H as follows. For each node u in 
G and each edge e incident to u we have a node Ue· For each node u in T with 
even degree or not in T with odd degree, we have the node u and the edges uue 
for each edge e incident to u. For each node u in G and each pair e, f of edges 
in o(u), we have an edge UeUf· Finally, for each edge e = uv in G we have an 
edge Ue Ve in H; we call these the G-edges of H. Each collection of G-edges is a 
matching in Hand it corresponds to a T-join in G if and only if it is contained in a 
perfect matching of H. So, if we give each G-edge Ue Ve weight Ce and all other the 
edges in H weight 0, we have transformed the minimum length T-join problem in 
G into a minimum weight perfect matching problem in H. 

Clearly, this algorithm allows edges with negative weights. Another way to 
solve a T-join problem with negative weights is by the following transformation 
to a T'-join problem with all weights non-negative. Let N := {e E E I We < O} 
and TN := {v E V I degN(v) is odd}. Moreover, define w+ E JE.~ be defined by 
wt:= lwel for each e EE and T' := T !::,. TN· Then min{w(F) IF is a T-join} = 
w(N) + min{w+(F) IF is a T'-join}. Fis a minimum weight T-join with respect 
to w if and only if then F b. N is a minimum weight T' -join with respect to w+. 

Edmonds & Johnson [1973] derived a direct algorithm for the T-join problem, 
which, like Edmonds' weighted matching algorithm, maintains a dual feasible 
solution and terminates when there is a feasible primal solution that satisfies the 
complementary slackness conditions. Barahona [1980] and Barahona, Maynard, 
Rammal, & Uhry [1982) derived a 'primal' algorithm using dual feasibility as a 
stopping criterion (similar to the primal matching algorithm of Cunningham and 
Marsh (see Section 8.1)). Like the matching algorithm, these algorithms can be 
implemented to run in 0(1 Vi 3) and O(IEI I VI log I Vi) time, respectively. In planar 
graphs the T-join problem can be solved in O(IVl 312 log !VJ) time [Matsumoto, 
Nishizeki & Saito, 1986; Gabow, 1985; Barahona, 1990]. 

7.4.4. Min-max relations for T-joins - the T -join polyhedron 
For each U <;;; V(G) with Un T odd, we call o(U) a T-cut. Clearly, the 

maximum number v ( G, T) of pairwise edge-disjoint T -cuts cannot exceed the 
smallest number r ( G, T) of edges in a T-join. Equality need not hold. For 
example, v(K4, V(K4)) = 1 < 2 = r(K4, V(K4)). Seymour proved [Seymour, 
1981]: 

In a bipartite graph G, v(G, T) = r(G, T) for each even subset T 
of nodes. (89) 

Frank, Sebo & Tardos [1984] and Sebo [1987] derived short proofs of this result. 
In a bipartite graph, a maximum collection of pairwise edge-disjoint T-cuts can 
be found in polynomial time. (Korach [1982] gives an O(IEllVl4) procedure and 
Barahona [1990] showed that the above mentioned 0(1 Vl 3) and O(IEll VI log I VI) 



190 A.M.H. Gerards 

T -join algorithms can be modified to produce a maximum collection of disjoint 
T-cuts when the graph is bipartite.) 

When the length function e is non-negative and integral, we have the following 
rnin-max relation for shortest T-joins in arbitrary graphs [Lovasz, 1975]: 

The minimum length of a T-join with respect to a length function 
e E z!CGl is equal to half the maximum number of T-cuts such 
that each edge e is in at most U(e) of them. (90) 

This can be proved from (89) or from the algorithm of Edmonds & Johnson 
[1993]. Let H be the bipartite graph obtained from G by replacing each edge e 
by a path of length U(e). If f.(e) is 0, contract e. A minimum length T-join in G 
corresponds to a minimum cardinality T-join in H. Applying (89) to H yields (90). 

As a consequence, we obtain a linear inequality description of the T-join 
polyhedron, i.e., the set of vectors x E JRE such that there exists a convex 
combination y of characteristic vectors of T-joins with x '.'.'.: y. 

Corollary 26 [Edmonds & Johnson, 1973]. Let T be an even subset of the node set 
of a graph G = (V, E). Then the T-join polyhedron is the solution set of: 

x(o(U)) '.'.'.: 1 (U £;; V; IV n TI is odd) 
Xe '.'.'.: 0 (e EE). 

(91) 

Note that this result immediately yields Corollary 20. Conversely, Corollary 26 
follows from Corollary 20 via the reduction to perfect matchings used in Schrijver's 
T-join algorithm. Alternatively, we can prove Corollary 26 in a manner analogous 
to our proof of Theorem 19. For a generalization of Corollary 26, see Burlet & 
Karzanov [1993]. 

The system (91) is not totally dual integral. The complete graph on four nodes, 
K4, with T = V(K4) again provides a counterexample. In a sense, this is the 
only counterexample. One consequence of Seymour's characterization of 'binary 
clutters with the max-flow min-cut property' [Seymour, 1977] is: 

If G is connected and T is even, then (91) is totally dual integral 
if and only if V(G) cannot be partitioned into four sets Vi, ... , V4 
such that Vi n T is odd and G I Vi is connected for each i = 1, ... , 4 
and for each pair Vi and Vj among Vi, ... , V4, there is an edge u v 
with u E Vi and v E Vj- (92) 

An immediate consequence of (92) is that, like bipartite graphs, series parallel 
graphs are Seymour graphs, meaning that v(G, T) = r(G, T) for each even subset 
T of nodes. Other classes of Seymour graphs have been derived by Gerards [1992] 
and Szigeti [1993]. It is unknown whether recognizing Seymour graphs is in NP. 
Just recently, Ageev, Kostochka & Szigeti [1994] showed that this problem is in 
co-NP by proving a conjecture of SebO. 

Seba [1988] derived a (minimal) totally dual integral system for the T-join 
polyhedron of a general graph. (For a short proof of this result and of (92) see 



Ch. 3. Matching 191 

Fr~n~ & Szigeti [1994].) Sebo [1986, 1990] also developed a structure theory for 
T -Jams analogous to the Edmonds-Gallai structure for matchings. The core of 
this structure theory concerns structural properties of shortest paths in undirected 
graphs with respect to length functions that may include negative length edges, but 
admit no negative length circuits. Frank [1993] derived a good characterization for 
finding a node set Tin G that maximizes r(G, T). 

8. Other matching algorithms 

In this section we discuss other algorithms for both cardinality and weighted 
matchings. 

8.1. A primal algorithm 

Edmonds' algorithm for finding a minimum weight perfect matching maintains 
a (structured) dual feasible solution and a non-perfect, and so infeasible, match­
ing that together satisfy the complementary slackness conditions. At each iteration 
it revises the dual solution so that the matching can be augmented. When the 
matching becomes perfect it is optimal. An alternative approach is to maintain a 
perfect matching and a (structured) dual solution that satisfy the complementary 
slackness conditions. At each iteration, revise the matching so that the dual solu­
tion approaches feasibility. Cunningham & Marsh [1978] developed such a 'primal' 
algorithm. In outlining their algorithm we return to the notation of Section 6.2. 

Let G be an undirected graph and suppose w E JE.!(G). Moreover, let n: E JE.Q(G) 

be a structured dual solution, i.e., n: satisfies (65) and (66). We also assum0hat 
ns ::::. 0 for each SE Q(G) with \Si f. 1 and that M is a perfect matching in Grc· If 
all the edges have non-negative reduced cost w: = We - LSES°2(GJ;8(S)=ie ns, then 
n is dual feasible and, since M can be extended to a minimum weight perfect 
matching in G, n is optimal. Otherwise, we 'repair' n: and M as follows: 

REPAIR: Let uv = e E E(G) with w; < 0 and suppose there exists an alternating 
path P in Grc from OUTERrc[u] to OUTERrc[v] starting and ending with a 
matching edge. We call such a path a repairing path. Carry out the following 

repairs (R := DEEPrc(OUTERrc(u]]): 
EXPANDING R: If JT:R .'.S -w: and IRI f. 1, revise1!'!e dual solution by changing 

JT:R to 0. This means that we must expand R in Grc and extend M accordingly. 
Moreover, since n satisfies (66), we can extend P to an alternating path from 
the new node OUTERrc[u] to OUTERrc[v], again starting and ending with a 

matching edge. 
We repeat EXPANDING R until n:R > -w: or IRI = 1. Note that each 
EXPANSION of R causes a matching edge, namely the starting edge of P, 

to receive positive reduced cost. Once we have finished EXPANDING, we call 
REPAIRING e to find a new perfect matching and a revised dual solution that 

satisfy the complementary slackness conditions. 



192 A.M.H. Gerards 

REPAIRING e: If IRI = 1, or 7rR > -w:, replace M by M !!..(PU {e}) and change 
the dual solution by adding w: to 7rR· 

So, all that remains is the question of how to find a repairing path. Assume u 
is a node incident to an edge with negative reduce cost and let r := OUTERrr(u]. 
We create an auxiliary graph H b,tadding a new node u* to G ~an edge from 
u* to u. Similarly, we construct Hrr by adding the edge u*r to Grr. Consider the 
Edmonds-Gallai structure of 14. There are two possibilities: 

1. There is an e~e between u and DEEPrr[v] with negative reduced cost for 
some node v E D(Hrr ). In this case, let Q be an M-alternating u* v-path (Q exists 
because v E D(llrr) and u* is the only node in H exposed with respect to M). 
Clearly Q \ {u*r} is a repairing path. 

2. If there is no such node v, we change the dual variables according to the 
definitions in (68) and (69), but with the understanding that in (69) we ignore 
those edges with negative reduced cost. We also ignore a dual change in u* (note 
that u* is a singleton component of D(Hrr )). We repeat this operation until 1. 
applies or until all the edges incident to u receive a non-negative reduced cost. 

Needless to say, in implementing the algorithm we do not need to find the 
Edmonds-Gallai structure explicitly, but instead use GROW and SHRINK. The 
algorithm can be implemented in 0([V(G)i3) time. 

8.2. Shortest alternating paths and negative alternating circuits 

Given a matching M, a weight function w E RE(G) and a set of edges F, we 
define WM(F) := w(F \ M) - w(F n M). A negative circuit is an even alternating 
circuit C with WM(C) < 0. A matching M is called extreme if it admits no 
negative circuit. In a manner similar to the proof of Theorem 1, one can prove 
that a perfect matching is extreme if and only if it is a minimum weight perfect 
matching. This suggests the following algorithm for finding a minimum weight 
perfect matching: 

NEGATIVE CIRCUIT CANCELLING: Given a perfect matching M, look for a 
negative circuit. If none exists, M is extreme and hence optimal. If M admits a 
negative circuit C, replace M with M !1C and repeat the procedure. 

Given a matching M and an exposed node u, an augmenting path P starting at 
u is called a shortest augmenting path from u if it minimizes WM(P). It is easy to 
prove that if M is extreme and P is an augmenting path starting at an exposed 
node u, then M !1P is extreme if and only if Pisa shortest augmenting path from 
u. This also suggests an algorithm: 

SHORTEST AUGMENTING PATHS: Given an extreme matching M, (initially M = 
0), look for a shortest augmenting path. If none exists, M is a minimum weight 
maximum cardinality matching. If M admits a shortest augmenting path P, replace 
M by M /1 P and repeat the procedure. 



Ch. 3. Matching 193 

So the question arises: How to find negative circuits or shortest augmenting 
paths? The answer is not so obvious. We can hardly check all possible alternat­
ing circuits or augmenting paths. In fact, the observations above are weighted 
analogues of the theorem of Berge and Norman and Rabin (Theorem 1). How­
ever, Edmonds' algorithm for minimum weight perfect matching can be viewed 
as a shortest augmenting path algorithm and Cunningham and Marsh's primal 
algorithm is a negative circuit cancelling method. Derigs [1981] [see also Derigs, 
1988b] developed versions of these algorithms in which shortest augmenting path 
occur more explicit. Not surprisingly, these algorithms also rely on alternating 
forests, shrinking and the use of dual variables. 

8.3. Matching, separation and linear programming 

In Section 5 we formulated the weighted matching problem as a linear pro­
gramming problem. Can we solve it as a linear program? The main problem 
is the number of inequalities. There are, in general, an exponential number of 
blossom constraints (viz. odd cut constraints). A first approach to overcoming this 
is, in fact, the development of algorithms like Edmonds' algorithm and the primal 
algorithm by Cunningham and Marsh that can be viewed as special purpose ver­
sions of simplex methods in which only the constraints corresponding to non-zero 
dual variables are explicitly considered. A second approach is to use the ellipsoid 
method, the first polynomial time algorithm for linear programming [Khachiyan, 
1979]. Grotschel, Lovasz & Schrijver [1981], Karp & Papadimitriou [1982] and 
Padberg & Rao [1982] observed that the polynomial time performance of this 
method is relatively insensitive to the size of the system of linear constraints. 
The only information the ellipsoid method needs about the constraint system is a 
polynomial time separation algorithm for the set of feasible solutions. A separation 
algorithm for a polyhedron solves the following problem. 

Separation problem: Given a polyhedron P s; IR11 and a vector x E IR", decide 
whether x E P and, if it is not, give a violated inequality, that is an inequality 
a T x ::; a satisfied by each x E P, but such that a T:X >a. 

Padberg & Rao [1982] developed a separation algorithm for the perfect match­
ing polytope. It is easy to check whether a given x E JE.ECG) satisfies the non­
negativity and degree constraints. So, the separation problem for the perfect 
matching polyhedron is essentially: Given a non-negative vector x E JE.ECGl, find 
an odd collection S of nodes such that x(8(S)) < 1 or decide that no such Sexists. 
This problem can be solved by solving the following problem (with T = V ( G) ). 

Minimum capacity T -cut problem: Given an even collection T of nodes and 
x E IR!(G), find Sr;; V ( G) with IS n TI odd and x ( 8 (S)) as small as possible. 

We call a set 8 (S) with S<;; V ( G) a T-separator if Sn T and S \ T are not empty. 
A minimum T-cut is a T-cut 8(S) with x(8(S)) as small as possible. We define a 
minimum T-separator similarly. 



194 A.M.H. Gerards 

Crucial to the solution of this problem is the following fact. 

Let 8(W) be a minimum T-separator, then there exists a minimum 
T-cut 8(S) with S £ W or S £ V(G) \ W [Padberg & Rao, 1982]. (93) 

To prove this, let 8(W) be a minimum T-separator and 8(Z) be a minimum 
T-cut. If 8(W) is a T-cut, Z £ W or Z £ V(G) \ W, we are done. So, 
suppose none of these is the case. By interchanging W and V(G) \ W or Z and 
V(G) \ Z (or both) we may assume that IZ n W n TI is odd and V(G) \(WU Z) 
contains a node of T. Hence 8(W n Z) is a T-cut and 8(W U Z) is a T­
separator. So, x(8(W)) ~ x(8(W U Z)). Now, straightforward calculations show 
that: x(8(Z))-x(8(WnZ)) ~ x(8(Z))-x(8(WnZ))+x(8(W))-x(8(WU Z)) = 
2 LueZ\ w LueW\Z Xuv ~ 0, which completes the proof of (93 ). 

This suggests the following recursive algorithm. Determine a minimum T -
separator 8(W). If IW n TI is odd we are done, 8(W) is a minimum T-cut. 
Otherwise, we search for a minimum (T \ W)-cut in G x W and a minimum 
(T n W)-cut in G x (V(G) \ W). By (93), one of these two yields a minimum T-cut 
in G. It is easy to see that this recursive method requires at most IT I - 1 searches 
for a minimum T-separator. Each search for a T-separator can be carried out 
by solving ITI - 1 max-flow problems. (Indeed, fix s E T and use a max-flow 
algorithm to find a minimums, t-cut for each t E T \ {s}.) So the minimum odd 
cut problem and the separation problem for the perfect matching polytope can be 
solved in polynomial time by solving a series of 0(1Ti2) max-flow problems. Thus, 
the ellipsoid method provides a new polynomial time algorithm for the minimum 
weight perfect matching problem. (In fact, the minimum T-cut algorithm can be 
improved so that only ITI - 1 max-flow problems are required, by calculating a 
'Gomory-Hu' tree [see Padberg & Rao, 1982].) 

This method is not practical because the ellipsoid method performs poorly in 
practice. On the other hand, the separation algorithm can be used in a cutting 
plane approach for solving matching problems via linear programming. Start 
by solving a linear program consisting of only the non-negativity and degree 
constraints. If the optimal solution x* to this problem is integral, it corresponds to 
a perfect matching and we are done. Otherwise, use Padberg and Rao's procedure 
to find an odd cut constraint violated by x*. Add this to the list of constraints 
and resolve the linear programming problem. Gr6tschel & Holland [1985] built 
a matching code based on this idea. At that time, their code was competitive 
with existing combinatorial codes (based on Edmonds' or Cunningham and 
Marsh's algorithm). This contradicted the general belief that the more fully a 
method exploits problem structure, the faster it should be. This belief has been 
reconfirmed, at least for the matching problem, by new and faster combinatorial 
matching codes. 

An entirely different approach to solving matching problems with linear 
programming is to construct a polynomial size system of linear inequalities 
Ax + By ~ c such that {x E 1.E(G) I Ax+ By ~ c} is the (perfect) matching 
polytope. We call such a linear system a compact system for the (perfect) match-



Ch. 3. Matching 195 

ing polytope. Although, perfect matching polytopes of planar graphs [Barahona, 
1993a] and, in fact, perfect matching polytopes of graphs embeddable on a fixed 
surface [Gerards, 1991] have compact systems, no compact system is known for 
the matching problem in general graphs. It should be noted that compact systems 
for matching polytopes that use no extra variables do not exist, not even for 
planar graphs [Gamble, 1989]. Yannakakis [1988] proved that there is no compact 
symmetric system for the matching polytope. (Here, 'symmetric' refers to an 
additional symmetry condition imposed on the systems.) 

Barahona [1993b] proposes yet a different approach. Given a matching M, one 
can find a negative circuit with respect to M by searching for an even alternating 
circuit C with minimum average weight w M (C)/IC I· When using these special 
negative circuits, 0(IE12 log IV I) negative circuit cancellations suffice for finding 
a minimum weight perfect matching. An even alternating circuit of minimum 
average weight can be found by solving a polynomially sized linear programming 
problem. Hence, we can find a minimum weight perfect matching by solving 
0 (I E 12 log IV I) compact linear programming problems. 

8.4. An algorithm based on the Edmonds-Gallai structure 

Next we present an algorithm, due to Lovasz & Plummer [1986], for finding 
a largest matching in a graph. Like the blossom algorithm, it searches for 
alternating paths, but in a quite different manner. For instance, it does not 
shrink blossoms. The algorithm is inspired by the Edmonds-Gallai structure 
theorem. The algorithm maintains a list [, of matchings all of size k. Given the 
list L, define: D(L) := UMEL exp(M), A(L) := r(D(L)) \ D(l), and C(L) := 
V(G) \ (D([,) U A(L)). So, if k is v(G) and Lis the list all maximum matchings, 
then D(L), A(£), C(L) is the Edmonds-Gallai structure of G. During the 
algorithm, however, k ranges from 0 to v(G) and [, never contains more than 
IV ( G) I matchings. The clue to the algorithm is the following fact, which will serve 
as the stopping criterion. 

If M E Lis such that Mn (D(L)) has exactly one exposed node in 
each component of G ID (L) and no node in A (L) is matched to a 
node in A(L'.) U C(L), then Mis a maximum matching in G. (94) 

Indeed, in this case each component of GID(L) is odd and each node in A(L) 
is matched to a different component of GID(L). Hence, it is easy to see that 
I exp(M)I = co(A(L)) - IA(L)I; proving that Mis maximum (cf. (22)). 

The following notions facilitate the exposition of the algorithm. For u E D(£) 
we define Lu :={MEL I u E exp(M)}. For each ME Lu and M' E .C, we denote 
the maximal path in M !:::,M' starting at u by P(u; M, M') (if M' is also in Lu, this 
path consists of u only). An M-alternating path from a node in exp(M) to a node 
in A(£) with an even number of edges is called M-shifting. If P is M -shifting for 
M E £, then M b..P is a matching of size k with an exposed node v <f. D(L). So 



196 A.M.H. Gerards 

adding M !::. P to £ adds the node v to D(£). If Q is a path and u and v are nodes 
on Q then Quv denotes the uv-path contained in Q. 

The algorithm works as follows: 
Initially .C := {0}. Choose a matching M from .C. If it satisfies the conditions in 

(94) we are done: M is a maximum matching. Otherwise, apply the steps below 
to M to find an M' -augmenting or an M' -shifting path P with respect to some 
matching M'. If we find an M'-augmenting path P, we AUGMENT by setting£ 
equal to {M' !::.P}. Ifwe find an M'-shifting path P, we SHIFT by adding M' !::.P to 
L. The algorithm continues until we find a matching M satisfying (94). 
Step 1: If there is an edge uv E M, with u E A(£) and v '/. D(£), choose 
w E f(u) n D(£) and Mw E .Cw. If P(w; M, Mw) has an odd number of edges 
it is Mw-augmenting and we AUGMENT. If P(w; M, Mw) has an even number 
of edges and uv rj. P(w;M, Mw) then P(w;M, Mw) U {wu, uv} is M-shifting. 
Otherwise, either Pwu(w; M, Mw) or Pwv(w; M, Mw) does not contain uv and so 
is Mw-shifting. Select the appropriate path and SHIFT. 

Step 2: If there is a component S of G I D(.C) such that Mn (S) is a perfect matching 
in c1s, choose w Es and Mw E .c. Since sis even, Step 3 below applies to Mw. 
Replace M by Mw and go to Step 3. 
Step 3: If there is a path Qin CID([,), such that Mn (D(.C)) leaves the endpoints 
u and v of Q exposed, then, if uv E E(G), go to Step 4. Otherwise, choose 
a node w in Q, different from u and v. If w E exp(M), apply Step 3 with w 
in place of v and Quw in place of Q. If w rj. exp(M), choose Mw E .Cw. If 
P(w; M, Mw) is odd, it is Mw-augmenting, AUGMENT. If P(w; M, Mw) is even, 
then M' := M !::.P(w; M, Mw) is a matching of size k that leaves w and (at least) 
one of u and v exposed. Assume u E exp(M'). Add M' to£ and apply Step 3 with 
M' in place of M, win place of v and Quw in place of Q. 

(Note that each time we repeat Step 3, the path Q gets shorter.) 
Step 4: If there is an edge uv E CID(£) such that Mn (D(£)) leaves u and v 
exposed, consider the following two cases: 
Step 4': If u, v rj. exp(M), let Mu E .Cu. If P(u; M, Mu) is odd, it is Mu-augmenting. 
Otherwise, define M' := M !::.P(u; M, Mu). M' has size k and has u E exp(M') 
and v E exp(M' n (D(.C))). Add M' to£ and go to Step 4" with M' in place of M. 
Step 411 : If u E exp(M) or v E exp(M), we may assume that u E exp(M). If 
v E exp(M) too, then uv is M-augmenting. If v rj. exp(M) and vw E M then 
{uv, vw} is M-shifting. 

The correctness of the algorithm follows from its description. It runs in 
O(IV(C)i 4) time. 

8.5. Parallel and randomized algorithms - matrix methods 

The invention of parallel computers raised the question which problems can be 
solved substantially quicker on a parallel machine than on a sequential one. For 
problems that are polynomially solvable on a sequential machine a measure could 
be that the parallel running time is 'better than polynomial'. To make this explicit, 
Pippenger [1979] invented the class NC of problems solvable by an NC-algorithm. 



Ch. 3. Matching 197 

A parallel algorithm is called NC-algorithm if its running time is a polynomial 
in the logarithm of the input size and requires only a polynomial number of 
processors. For more precise definitions see Karp & Ramachandran [1990]. 

Many problems have been shown to be in NC [see Karp & Ramachandran, 
1990; Bertsekas, Castanon, Eckstein & Zenion, 1995, this volume]. But for 
matching the issue is still open. Partial answers have been obtained: Goldberg, 
Plotkin, & Vaidya [1993] proved that bipartite matching can be solved in sub-linear 
time using a polynomial number of processors [see also Vaidya, 1990; Goldberg, 
Plotkin, Shmoys & Tardos, 1992; Grover, 1992]. NC-algorithms for matching 
problems for special classes of graphs (or weights) have been derived by Kozen, 
Vazirani & Vazirani (1985], Dahlhaus & Karpinski [1988], Grigoriev & Karpinski 
(1987], He [1991], and Miller & Naor [1989]. But, whether or not: Has G a perfect 
matching? is in NC remains open. 

On the other hand, if we allow algorithms to take some random steps, and also 
allow some uncertainty in the output, we can say more: there exist randomized 
NC-algorithms for matching. They rely on matrix methods (for a survey, see Galil 
(1986b]). 

In Section 3 (see (16)) we already saw a relation between matchings in bipartite 
graphs and matrices. Tutte (1947] extended this to non-bipartite graphs. 

Let G = (V(G), E(G)) be an undirected graph, and let G = 
( V ( G), A ( G)) be a directed graph obtained by orienting the 
edges in G. For each edge e in G we have a variable Xe· Then the 
Tutte matrix of G (with respect to G) is the V(G) x V(G) matrix 
G (x) defined by: 

Xuv if UVE A(G) l ---> ~ 

G(x)uv := -Xuv if tmE A(G) · 
0 if uv¥ E(G) (95) 

Note that the Tutte matrix essentially just depends on G: reversing the orientation 
of and edge e in G just amounts to substituting -Xe for Xe in G(x). 

G has a perfect matching if and only if the determinant of G (x) is 
a non-vanishing polynomial in the variables Xe (e E E(G)) [Tutte, 
1947]. (96) 

To see this, let :F ~ {O, 1, 2}E(G) denote the collection of perfect 2-matchings. 
Then det(G(x)) = Lte:Faf fleeE(G) x{'. Moreover, it is not hard to show that 
a1 = 0 if and only if the 2-matching f contains an odd circuit. On the other hand, 
perfect 2-matchings without odd circuits contain a perfect matching. 

By itself (95) is not that useful for deciding whether or not G has a perfect 
matching. Determinants can be calculated in polynomial time if the matrix 
contains specific numbers as entries, but evaluating a determinant of a matrix with 
variable entries takes exponential time (in fact the resulting polynomial may have 



198 A.M.H. Gerards 

an exponential number of terms). However, by the following lemma, we can still 
use the Tutte matrix computationally. 

Lemma 27 [Schwartz, 1980]. Let p(x1, ... , Xm) be a non-vanishing polynomial of 
degree d. If .X1, ... , Xm are chosen independently and uniformly at random from 
{1, ... , n} then the probability that p(x1, ... , xm) = 0 is at most d/n. 

Proof. Write p(x1, ... ,xm) as L,:';,oPd-e(x1, ... ,Xm-dx~, where each Pk is a 
polynomial in x1, ... , Xm-1 of degree at most k. 

By induction to the number of variables, the probability that Pd-dm (x2, ... , Xm) 
= 0 is at most (d-dm)/n. On the other hand, if Pd-dm(x2, ... ,xm) =I= 0 then 
p(x1 ... , Xm-i. Xm) is a non-vanishing polynomial in Xm of degree dm, so has at 
most dm roots. In other words, if Pd-dm (i1, ... , Xm-1) =I= 0, the probability that 
p(x1, ... , Xm) = 0 is at most dm/n. Hence the probability that p(.X1, ... , Xm) = 0 
is at most (d -dm)/n + dm/n = d/n. o 

If we apply Lemma 27 to p(x) = det G (x ), which has degree IV ( G) I if it is non­
vanishing, and taken = 21V (G)I, we get a randomized polynomial time algorithm 
with the property that if G has a perfect matching the algorithm discovers this 
with probability at least ~ [Lovasz, 1979b]. Although this randomized algorithm 
is slower that the fastest -deterministic ones, it has the advantage that it can be 
parallelized. The reason is that calculating a determinant is in NC [Csansky, 1976]. 
So we have: 

There exists a randomized NC-algorithm that gives output 'v(G) = 
I V ( G) I' with probability at least ~ if the input graph G has a perfect 
matching [Lovasz, 1979b; Csanski, 1976]. (97) 

(Note that by running this algorithm several times, we can improve the probability 
of success as much as we want.) 

More generally, we have a randomized NC-algorithm for deciding whether 
v(G) '.?: k Uust add IV(G)! - 2k mutually non-adjacent nodes to G, each of them 
adjacent to all nodes of G and than decide whether the new graph has a perfect 
matching). If we, combine this with a binary search on k, we get NC-algorithm 
that gives a number e ::=:: v(G), that is equal to v(G) with high probability. 

These randomized algorithms have one big disadvantage: they are 'Monte 
Carlo' type algorithms. If G has no perfect matching the Lovasz-Csanski algorithm 
does not discover this. The algorithm presented for v(G) always gives an output 
f. ::::: v(G), but never tells us that .e, = v(G) (unless by change e = ~IV(G)\). 
Karloff [1986] resolved this problem by deriving a randomized NC-algorithm that 
determines a set B ~ V ( G) such that with high probability co( G \ B) - I BI = 
def(G) (cf. Theorem 10). Combining this with the previously described Monte 
Carlo algorithm for v(G) we get a randomized NC-algorithm that provides an 
upper and a lower bound for v(G), which are equal with high probability. 

Knowing v(G) does not provide us with a maximum matching. Of course, 
we can delete edges one by one from G, making G smaller and smaller, and 



Ch. 3. Matching 199 

keep track what happens with the maximum size of a matching. If we store 
the edges whose deletion decreased the maximum size of a matching of the 
current graph, we get a maximum matching of our original graph. Combining 
this with a randomized algorithm for the size of a maximum matching we get 
a randomized algorithm for actually finding a maximum matching. However, 
this algorithm is highly sequential. Moreover, it is not obvious at all how to 
parallelize it, how to make sure that the different processors are searching for the 
same matching. (See Rabin & Vazirani [1989] for another sequential randomized 
algorithm for finding a maximum matching.) The first randomized NC-algorithm 
that finds a perfect matching with high probability if it exists is due to Karp, 
Upfal & Widgerson [1986]. It runs in O(log3 (1V(G)I)) time. Below we sketch a 
randomized NC-algorithm due to Mulmuley, Vazirani, & Vazirani [1987] that runs 
in 0 (log2 (IV ( G)I)) time. 

The main trick of this algorithm, besides using the Tutte matrix, is that it first 
implicitly selects a canonical perfect matching; which than is explicitly found. Let 
U(G) denote the set of all w E z!<Gl such that the minimum perfect matching, 
denoted by Mw, is unique. Mulmuley, Vazirani, and Vazirani proved the following 
fact: (If e = uv E E(G), then x-: := zw, and Ge(x) denotes the submatrix of G(x) 
obtained by removing the row indexed by u and the column indexed by v.) 

If w E U( G), then 
(1) 2-2wCMw) det G(xw) is an odd integer, 
(2) UV E Mw {==::} 22cw,-w(Mwll det Ge(XW) is an odd integer. (98) 

So as soon as we have found a w E U(G), we can find a perfect matching by 
calculating the determinants in (98), which can be done in parallel by Csanski's 
NC-algorithm. The following lemma yields a randomized algorithm for selecting a 
weight function in U(G). 

Lemma 28 [Mulmuley, Vazirani, & Vazirani, 1987]. Let S = (x1, ... , Xn} be a 
finite set and F a collection of subsets of S. Assume that w1, ... , Wn are chosen 
uniformly and independently at random from { 1, ... , 2n }. Then the probability that 
there is a unique F E F minimizing w ( F) is at least ! . 
Proof. The probability p that the minimum weight set is not unique is at most n 
times the probability p 1 that there exists a minimum weight set in F containing x1 
and a minimum weight set in F not containing x1. For each fixed wz, ... , w,, this 
probability is either 0 or 1/2n. Hence P1 is at most 1/2n. So p :S np1 :S !· o 

Hence, there exists a randomized NC-algorithm for finding a perfect matching 
and thus also for finding a maximum matching. It requires 0(1£1 log IV I) random 
bits. Chari, Rohatgi & Srinivasan [1993] found a very nice generalization of 
Lemma 28 that enables the design of randomized NC-algorithms that require only 
O(IVI log(IEl/1 VI)) random bits. 



200 A.M.H. Gerards 

8. 5.1. Counting perfect matchings 
So randomization can help us where determinism does not (seem to) work. 

The same feature comes up when considering another computational task related 
to matchings: Count the number of perfect matchings in G. Over the years this 
problem has received a lot of attention, leading to many beautiful results. For 
many of these, and many references, see Lovasz & Plummer [1986] and Mine 
[1978]. As the topic lies beyond the scope of this chapter, we will only mention a 
few results relevant from a computational point of view. 

Valiant [1979] proved that counting the perfect matchings in a graph is as hard 
as solving any problem in NP, even for bipartite graphs (it is '#P-complete'). So, 
assuming P # NP, there exists no polynomial time algorithm for calculating the 
number </J(G) of perfect matchings in G. 

Kasteleyn [1963, 1967], however, derived a polynomial algorithm for counting 
perfect matchings in a planar graph. The main idea behind this algorithm is as 
follows (for details see Lovasz & Plummer [1986]). If G is an orientation of G 
we denote by p(G) the determinant of the matrix obtained by substituting 1 for 
each variable Xe of the Tutte matrix G(x). It can be shown that p(G) S </J(G)2 . 

G is called a Pfaffian orientation of G if p(G) = </J(G) 2 • Kasteleyn proved that 
a planar graph has a Pfaffian orientation which can be found in polynomial 
time. So counting perfect matchings in planar graphs reduces to calculating a 
determinant. Not all graphs have Pfaffian orientations. For instance, K3,3 does not 
have one. Little [1974] extended Kasteleyn's result by proving that if a graph has 
no subdivision of K3,3 as a subgraph it has Pfaffian orientation. Vazirani [1989] 
showed that counting perfect matchings in these graphs is in fact in NC (by 
deriving an NC-algorithm for finding the Pfaffian orientation for these graphs). 

So far for deterministic algorithms. Based on an idea of Broder [1986], Jerrum 
& Sinclair [1989] derived a polynomial time algorithm to approximate </J(G) with 
high probability when G has minimum degree i IV ( G) [. Their algorithm gives a 
number Y such that [Y -</J(G)\ S E</J(G) with probability at least 1 - 8. The algo­
rithm is polynomial in IV ( G) \, log 1/ E, log 1/ 8. The existence of such an algorithm 
for general graphs is still open. The main idea of the algorithm of Jerrum and 
Sinclair is as follows. Let for each k, </Jk(G) denote the of matchings of size k. 
Jerrum and Sinclair approximate </J(G) by approximating the ratios rk := <Pk!<Pk-1 

and multiplying them. So the problem reduces to approximating rk. We restrict 
ourselves to r1;2C1V(G)J) and approximate it by choosing uniformly and indepen­
dently almost perfect matchings (i.e. matchings of size at least ii V(G)[ - 1) at 
random and counting how many of these are perfect and how many not. Clearly, 
in this way we can get a good estimate of ri;2ovcGlll· Remains the question how 
to select an almost perfect matching at random. The problem is that there are 
exponentially many of them. This problem is overcome by defining a random walk 
on the set of almost perfect matchings. The steps in this random walk are as fol­
lows. Given an almost perfect matching M, with probability i choose e = uv E E 
uniformly and independently at random. If M is perfect and e E M, we move from 
M to M \ {e}. If Mis not perfect, e (j. Mand [M n8({u, v})l::::; 1, we move from 
M to (M \ 8({u, v})) U {e}. In all other cases we stay at M. Thus we get a Markov 



Ch. 3. Matching 201 

chain. It has a uniform stationary distribution and each random walk in the 
Markov chain converges to this stationary distribution. So if we start the Markov 
process with some arbitrary matching and 'walk forever', the matching will become 
'more and more random'. The point is that we do not have to walk forever. This 
Markov chain is 'rapidly mixing', meaning that the probability distribution after 
a polynomial number of steps is very close to uniform (irrespective the matching 
we start off with). As we only need to approximate ri/2(1V(G)D• it suffices to select 
the almost perfect matching 'almost uniformly at random'. Explaining all the 
technicalities in full detail would go to far here, but we can sketch the main ideas. 

We need some definitions. Let Q = (V, C) be the undirected graph with the 
almost perfect matchings in Gas its nodes and with M' MEE if M /:::. M' is a path 
with at most two edges. Let A E zVxV be defined by AM'M = -1 if M' M E e, 
AM'M = 0 if M'M fj €,and AMM = deg9(M) if M E V. Then the transition 
matrix of the above defined Markov chain is P := I - 1/(21El)A: the probability 
to move to M' being in Mis PM'M· Finally we define q E !RV by qM := 1/IVI for 
each M E V, and xM E {O, 1} V by xgj, = 1 if and only if M' = M. 

P is a symmetric doubly stochastic matrix with only positive eigenvalues. 
The largest these eigenvalue is 1 and has multiplicity 1 (as g is connected). 
The corresponding eigenvector is q, i.e. the uniform distribution on V and the 
stationary distribution of the Markov chain. If we start our Markov chain with an 
almost perfect matching M then the probability distribution after k steps is P<-xM 
which tends to q if k goes to oo. The rate of convergence can be expressed in the 
second largest eigenvalue }..z of P: ICJ>'<xM)M' -1/IVll ::: A~ for each M' E V. So 
far everything is just standard matrix theory. 

Sinclair & Jerrum [1989] derived the following bound on the second largest 
eigenvalue of P: 

(99) 

where 

<l>(Q) := 21~ 1 min { 181~)l Is s; v, 1s1 :s &1v1}, (100) 

is the conductance of Q. Jerrum & Sinclair [1989], in turn, derived the following 
bound on the conductance. 

(101) 

Combining all this we get: 

If k ~ r(E) := 21Vi 12 (1og IVI +log~). then lc-P:xM)M' - 1 ~ 1 1 ::: E 1 ~1 . 
(102) 

So making fr(E)l = O(IV! 12 ()Vllog)VI + logl/E)) steps in the Markov chain 
results in a random selection of an almost perfect matching from a probability 
distribution which is close to uniform. 



202 A.M.H. Gerards 

These are the main ideas of Jerrum and Sinclair's algorithm for counting 
perfect matchings in graphs with minimum degree ! IV I- The relation between 
the rate of convergence of a Markov chain and its conductance extends, under 
mild conditions, to other Markov chains, not related to matchings in graphs. Over 
the last decennium rapidly mixing Markov chains have become more and more 
important in the design of randomized counting or optimization algorithms. 

9. Applications of matchings 

In this section we discuss applications of matchings to other combinatorial 
optimization problems. In particular, we discuss the traveling salesman problem, 
shortest path problems, a multi-commodity flow problem in planar graphs, and the 
max-cut problem in planar graphs. 

9.1. The traveling salesman problem 

A traveling salesman tour, or Hamiltonian circuit in a graph G = (V, E) is the 
edge set of a circuit that spans all the nodes, i.e., a closed walk through G that 
visits every node exactly once. Given a distance function d E IRE, the traveling 
salesman problem is to find a traveling salesman tour F of minimum length 
d(F). The problem has many applications in many environments: routing trucks 
for pick-up and delivery services, drilling holes in manufacturing printed circuit 
boards, scheduling machines, etc .. The traveling salesman problem is NP-hard. 
In fact, simply finding a traveling salesman tour is NP-hard [Karp, 1972]. The 
problem has served pre-eminently as an example of a hard problem. For example, 
Lawler, Lenstra, Rinnooy Kan & Schmoys [1985] chose it as the guide in their 
tour through combinatorial optimization. Their volume provides a wide overview 
of research on this problem. For an update of what has emerged since then, see 
Jlinger, Reinelt & Rinaldi [1995, this volume]. 

In this section we discuss a heuristic for the traveling salesman problem that 
uses matchings. We also discuss the relation between matching and polyhedral 
approaches to the traveling salesman problem. We assume from now on that 
G = (V, E) is complete. 

9.1.1. Christofides' heuristic 
The problem is NP-hard and therefore is unlikely to be solvable in polynomial 

time. It makes sense then to take a heuristic approach, i.e., to find a hopefully 
good, but probably not optimal solution quickly. The heuristic we present here is 
due to Christofi.des [1976] and is meant for the case in which the distance function 
d is non-negative and satisfies the triangle inequality: duv + dvw :::: duw for each 
three nodes u, v, and w in G. 

Let F be a minimum length spanning tree of G and let T be the set of nodes 
v in G with degp(v) odd (so F is a T-join). Find a minimum weight perfect 
matching M in GIT with weight function d. Consider the union of F and M in the 



Ch. 3. Matching 203 

sense that if an edge occurs in both sets it is to be taken twice as a pair of parallel 
edges. This union forms an Eulerian graph and an Eulerian walk in this graph 
visits each node of G at least once. The length of the walk is d(F) + d(M). Since 
G is complete, we may transform the Eulerian walk into a traveling salesman tour 
by taking short cuts and, by the triangle inequality, the length of this tour is at 
most d(F) + d(M). 

The heuristic runs in polynomial time. There are many polynomial time al­
gorithms for finding a minimum weight spanning tree, e.g., Boruvka's algorithm 
[Boruvka, 1926], Kruskal's algorithm [Kruskal, 1956], or Jarnfk's algorithm (Jarnfk 
[1930], better known by the names of its re-inventors Prim [1957] and Dijkstra 
[1959]). Kruskal's algorithm, for instance, runs in O(IEI log iVI) time. Edmonds' 
matching algorithm, described in Section 6, finds a minimum weight matching in 
polynomial time. Once the tree and the matching are known, an Eulerian walk 
and a traveling salesman tour can be found in linear time. Gabow & Tarjan [1991 J 
showed that the heuristic can be implemented in 0(1Vi2·5(log iVl)u). (Instead of 
a minimum weight matching, their version finds a matching with weight at most 
1+1/1 VI times the minimum weight.) 

The following theorem shows that the heuristic produces a tour that is at most 
50% longer than the shortest traveling salesman tour. 

Theorem 29 [Christofides, 1976]. Let G = (V, E) be a complete graph and d E JE._; 
be a distance function satisfying the triangle inequality. Then A* .::; ~Jc, where A. is the 
length of a shortest traveling salesman tour, and A.* is the length of the tour found by 
Christofides' heuristic. 

Proof. Let C be a shortest traveling salesman tour, and let F and M be the 
tree and matching found by the heuristic. Let T be the nodes t1, ... , tk, with 
odd degree in F, where_ the numbering corresponds to the order in which C 
visits these nodes. Let C be the circuit with edges t1t2, t2t3, ... , tkt1. By the 
triangle inequality, C is shorter than C. Let M be the shorter of the two perfect 
matchings on T contained in C. Then M is a perfect matching of GIT. So, 
Jc = d(C) ::: d(C) :=:: 2d(M) ::: 2d(M). On the other hand, C contains a spanning 
tree - just delete an edge - so A. = d(C) :=:: d(F). Combining these inequalities, 
we see thatA * .::; d(F) + d(M) .::; ~A.. o 

9.1.2. A polyhedral approach to the traveling salesman problem 
Traveling salesman tours are connected 2-factors. So, the characteristic vectors 

of traveling salesman tours satisfy the following system of inequalities (compare 
with (81) and (82)): 

Xe > 0 (e EE) 

Xe .::: 1 (e EE) 

x(o(v)) = 2 (v E V) (103) 
x(o(U) \ F) - x(F) > 1-IFI (U s:; V, F s:; o(U)) 
x(o(U)) > 2 (Us:; V; 0 i= U i= V). 



204 A.M.H. Gerards 

In fact, every integral solution to (103) is the characteristic vector of a traveling 
salesman tour. Thus, the cutting plane approach described in Section 8.3 for 
solving the matching problem can be applied to the system (103) to solve the 
traveling salesman problem. In this case, however, the polyhedron defined by 
(103) has fractional extreme points and so success is not guaranteed. (Note that 
without the last set of inequalities, the system describes an integral polyhedron, 
namely the convex hull of 2-factors. The last set of inequalities, called the 
subtour elimination constraints, are necessary to 'cut-off' each 2-factor that is 
not a traveling salesman tour. However, adding these constraints introduces new, 
fractional, extreme points.) One could try to overcome this by adding more 
constraints to the system [see Grotschel & Padberg, 1985; Jlinger, Reinelt & 
Rinaldi, 1995], but no complete description of the traveling salesman polytope is 
known. In fact, unless NP =co-NP, no 'tractable' system describing the traveling 
salesman polytope exists [see Karp & Papadimitriou, 1982]. 

'Partial' descriptions like (103), however, can be useful for solving traveling 
salesman problems. Minimum cost solutions to such systems provide lower bounds 
for the length of a shortest traveling salesman tour. These lower bounds can be 
used, for instance, to speed up branch-and-bound procedures. In fact, over the last 
decennium much progress has been made in this direction [see Jiinger, Reinelt & 
Rinaldi, 1995]. 

The cutting plane approach requires a separation algorithm, or at least good 
separation heuristics, for the partial descriptions. We have separation algorithms 
for (103). Determining whether a given solution x satisfies the non-negativity, 
capacity and degree constraints is trivial. We can use a max-flow algorithm to 
determine whether x satisfies the subtour elimination constraints. So, all that 
remains is to find a polynomial time algorithm for the problem: 

Given x E ~!<G>, find a subset Us; V(G) and an odd subset F of 
o(U) such that x(o(U) \ F) - x(F) < 1- !FI or decide that no 
such subsets exist. (104) 

These constraints are the 'odd cut constraints' for the 2-factor problem and, in 
view of the reductions of general matching to perfect matching, it should not be 
surprising that we can solve this problem in much the same way as we solved the 
separation problem for the odd cut constraints for perfect matching. Construct 
an auxiliary graph as follows. Replace each edge e = uv in G with two edges in 
series: e1 := uw and ez := wv. Define x;1 := Xe and x;2 := 1 - Xe· Let T be the 
set of nodes in the resulting graph G* meeting an odd number of the edges ez. 
Consider the problem: 

Find U s; V(G*), such that IU n TI is odd and x(o(U)) < 1, or 
show that no such U exists. (105) 

It is not so hard to see that if U in (105) exists, then we may choose U so 
that for each edge e in G, at most one of ei and e2 is contained in 8(U). Hence, 
(104) is equivalent to (105) and the separation problem (105) amounts to finding 
a minimum weight T -cut. 



Ch. 3. Matching 205 

. Ab~ve we con_sidered the traveling salesman problem as a matching problem 
with side ~onstra_mts, _namely of finding shortest connected 2-factors. Other papers 
on matchmgs with side constraints are: Ball, Derigs, Hilbrand & Metz (1990], 
Cornuejols & Pulleyblank [1980a, b, 1982, 1983], and Derigs & Metz (1992]. 

9. 2. Shortest path problems 

The shortest path problem is: Given two nodes s and t in G, find ans, t-path 
of shortest length d(P) with respect to a length function d E IRE. In general, 
this problem is NP-hard, it includes the traveling salesman problem; but it is 
polynomially solvable when no circuit C in G has negative length d(C). When all 
edge lengths are non-negative, the problem can be solved by the labeling methods 
of Bellman [1958] & Ford [1956], Dijkstra [1959], and Floyd [1962a, b] and 
Warshall [1962]. The algorithms also find shortest paths in directed graphs, even 
when negative length edges are allowed (though some adaptations are required) 
as long as no directed circuit has negative length. The presence of negative length 
edges makes the problem in undirected graphs more complicated. Simple labeling 
techniques no longer work. In fact, the problem becomes a matching, or more 
precisely, a T -join problem. Indeed, let T := {s, t }. Since no circuit has negative 
length, a shortest T-join is a shortest s, t-path (possibly joined by circuits of length 
0). So we can find a shortest path in an undirected graph with negative length 
edges but no negative length circuits, by solving a T-join problem. Alternatively 
we can model the shortest path problem as a generalized matching problem. For 
each node v E V(G) \ {s, t}, add a loop £(v), then the shortest path problem is the 
generalized matching problem subject to the constraints: 

0 < Xe 

0 < Xt:(v) 

x(8(v)) + 2xe(v) 
x(8(v)) 

~ 1 e E E(G) 
~ 1 vEV(G)\{s,t} 
= 2 vEV(G)\{s,t} 
= 1 V E {s, t} 

(106) 

The reductions described in Section 7.1 reduce this problem to a perfect matching 
problem in an auxiliary graph. 

9.2.1. Shortest odd and even paths 
The shortest odd path problem asks for a shortest path from s to t with an 

odd number of edges. Similarly, the shortest even path problem asks for a shortest 
s, t-path with an even number of edges. In general these problems are NP-hard. 
The special case in which no circuit has negative length is, to my knowledge, still 
unsettled: the problems are not known to be hard, but neither do we know of any 
polynomial algorithm for them. If all edge lengths are non-negative, the pr~blems 
are solvable in polynomial time: they are matching problems. We show this ~y a 
reduction due to Edmonds [see Grotschel & Pulleyblank, 1981]. We only consider 
the case of odd paths. The shortest even path proble~ can be s~lv~d by an e~sy 
reduction to the shortest odd path problem, or alternatively, by a similar reduction 

to the matching problem. 



206 A.M.H. Gerards 

To find a shortest odd path between s and t, construct an auxiliary graph H 
as follows. Add to G a copy G' of G with the nodes s and t deleted (denote 
the copy in G' of node u by u' and the copy of edge e by e'). For each 
u E V(G) \ {s, t} add an edge from u to its copy u' in G'. The weight function 
w on H is defined by We := We' := de for each e E E ( G) and Wu'u := 0 
for each u E V(G) \ {s, t}. Let M be a perfect matching in H and define 
PM := {e E E(G) I e E Mn E(G) ore' E Mn E(G')}. It is easy to see that 
PM is the node-disjoint union of an odds, t-path and a collection of circuits. If 
M has minimum length with respect to w, each of the circuits has length 0 and 
so minimum weight perfect matchings in H correspond to shortest odd s, t-paths 
in G. 

Recently, Schrijver & Seymour [1994] characterized the odd s, t-path polyhe­
dron, i.e., the convex hull of the subsets of E(G) containing an odd s, t-path, 
thus proving a conjecture of Cook and Sebo. The inequalities describing the 
polyhedron are: 0 ~ Xe ~ 1 for all e E E(G), and 

2x((W) \ F) + x(o(W)) ~ 2 for each subgraph H = (W, F) of G 
such that both s and t are in W but no s, t-path in H is odd. (107) 

9.3. Max-cut and disjoint paths in planar graphs 

We conclude this section with the application of T -joins and planar duality to 
the max-cut problem and a disjoint paths problem in planar graphs. A graph G 
is planar if it can be embedded in the plane so that its edges do not cross. The 
planar dual G* of G with respect to an embedding is defined as follows. The graph 
G divides the plane into several connected regions each corresponding to a node 
in V(G*). Each edge e in G separates at most two regions of the plane in the 
sense that, if we removed e, these regions would combine into one. For each edge 
e E E(G) there is an edge e* in G* joining the nodes in G* corresponding to the 
regions separated by e. If e does not separate two regions, then it lies entirely in 
a single region and e* is a loop at the corresponding node of V(G*). We identify 
each edge e in G with the corresponding edge e* in G*. 

The graph G* is planar and its definition suggests a natural embedding. If G is 
connected and G* is embedded in the natural way, then (G*)* is again G. The 
most prominent property of planar duality is that Cs; E(G) (= E(G*)) is a cycle 
in G if and only if it is a cut in G* (recall that a cycle is a graph in which the degree 
of each node is even). The same relation exists between cuts in G and cycles 
in G*. 

The max-cut problem is: Given a weight function w E JRECG>, find a cut o(U) 
in G with w(o(U)) maximum. The problem is NP-hard in general [Karp, 1972], 
but polynomially solvable when G is planar. To see this, consider a planar graph 
G and a planar dual G*. Define T := {v E V(G*) I deg0 .(v) is odd}. Clearly, 
F E E ( G*) is a T -join if and only if E ( G*) \ F is a cycle in E ( G*). So, T -joins in 
G* correspond to complements of cuts in G. Hence the max-cut problem in G is a 
T -join problem in G* [Hadlock, 1975]. 



Ch. 3. Matching 207 

Combining planar duality with Seymour's theorem (89) for T -joins and T -cuts 
in bipartite graphs we obtain the following: 

Theorem 30 [Seymour, 1981 ]. Let G be a graph and let H be a collection pairs 
{s1, ti}, .. ., {sk. tk} of nodes. If the graph G + H, obtained from G by adding 
as extra edges the pairs in H, is planar and Eulerian, then the following are 
equivalent: 

(i) There exist edge-disjoint paths P1, ... , Pk in G such that each Pi goes from 
Sj to ti; 

(ii) For each U s; V(G), 18a(U)I ::: loH(V)I. 

Proof. Clearly, (ii) is necessary for (i), we show that it is also sufficient. Assume 
that (ii) holds and let (G + H)* be the planar dual of G + H with respect to some 
embedding. Since G + H is Eulerian, E ( G + H) is a cycle in G + H. In other 
words, E((G + H)*) is a cut in (G + H)* and so (G + H)* is bipartite. 

Let T be the set of nodes in V ( ( G + H)*) that meet an odd number of edges in 
H. Then H is a T -join in ( G + H)*. In fact, H is a minimum cardinality T-join 
in (G + H)*. To see this, observe that for any other T-join F the symmetric 
difference Fl1H is a cycle in (G + H)* and so a cut in G. By (ii), Fl1H contains 
at least as many edges from F as from H. So, IHI :::; IF I and H is a minimum 
cardinality T-join in (G + H)*. 

Now, applying (89) to (G + H)* and T, we see that there must be IHI =: k 
disjoint odd cuts C1 = 8(U1), ... , Ck= o(Uk) in (G + H)*. Clearly, each of these 
cuts has at least one edge in common with H and so each edge in H must be 
in exactly one of them. Assume (sit;)* E Ci for i = 1, ... , k. Without loss of 
generality, we may assume that the cuts are inclusion-wise minimal and so circuits 
in G +H. Then, P1 := C1 \ s1t1' ... ' Pk :=ck \ Sktk are the desired paths. D 

Matsumoto, Nishizeki, & Saito [1986] showed that the paths can be found in 
O(!V (G) 1512 log IV (G) I) time. When G + H is not Eulerian the problem becomes 
NP-hard [Middendorf & Pfeiffer, 1990]. For a general overview of the theory of 
disjoint paths, see Frank [1990]. 

10. Computer implementations and heuristics 

I 0.1. Computer implementations 

Over the years several computer implementations for solving matching prob­
lems have been designed, e.g. Pulleyblank [1973], Cunningham & Marsh (1978], 
Burkhard & Oerigs (1980], Derigs [1981, 1986a, b, 1988b], Derigs & Metz 
[1986, 1991], Lessard, Rousseau & Minoux (1989] and Applegate & Cook [1993]. 
Grotschel & Holland (1985] used a cutting plane approach and Crocker [1993] 
and Mattingly & Ritchey [1993] implemented Micali and Vazirani's O(.JTVllEI) 
algorithm for finding a maximum cardinality matching. 



208 A.M.H. Gerards 

Designing efficient matching codes, especially those intended for solving large 
problems, involves many issues. Strategic decisions must be made, e.g., what 
algorithm and data structures to use. Moreover, tactical decisions must be made, 
e.g., how to select the next edge in the alternating forest and when to shrink 
blossoms. Finally, of course, numerous programming details affect the efficiency 
of the code. We restrict our attention to a few key strategic issues. 

In solving large problems two paradigms appear to be important. The first of 
these is 'Find a 'good' starting solution quickly (the 'jump-start')' and the second 
is 'Avoid dense graphs'. We discuss the second paradigm first. 

One feature of Grotschel and Holland's code [1985] (see Section 8.3) that com­
peted surprisingly well with the existing combinatorial codes (based on Edmonds 
algorithm for instance), was that it first solved a matching problem in a sparse 
subgraph and then tuned the solution to find a matching in the original graph. 
Incorporating this approach sped up existing combinatorial codes significantly 
[Derigs & Metz, 1991]. The idea is to solve a minimum weight perfect matching 
problem on a (dense) graph G by first selecting a sparse subgraph Gsparse of G. 
A matching code, e.g., Edmonds' algorithm, can find a minimum weight perfect 
matching M and an optimal (structured) solution rr in Gsparse quickly. In G the 
matching may not be of minimum weight and the dual solution may not be 
feasible. The second phase of the procedure corrects this. A primal algorithm, 
e.g., Cunningham and Marsh's algorithm described in Section 8.1, is ideal for this 
phase. Weber [1981], Ball & Derigs [1983], and Applegate & Cook [1993] have 
developed alternative methods for this. 

The typical choice of Gsparse is the k-nearest neighbor graph of G, which is 
constructed by taking for each node u the k shortest edges incident to u. Typical 
choices fork run from 5 to 15. To give an impression of how few edges Gsparse can 
have: Applegate & Cook [1993] used their code to solve an Euclidean problem on 
101230 nodes (i.e., the nodes lie in the Euclidean plane and the weight of an edge 
is given by the Loo distance between its endpoints). So, G is complete and has 
0.5 · 1010 edges. When k is 10, Gsparse has 106 edges or less then 0.05% of the all 
the edges in G. In fact, Applegate and Cook solved this 101230 node problem - a 
world record. For more moderately sized problems (up to twenty thousand nodes) 
their code seems dramatically faster than previously existing matching codes. 

Many matching codes incorporate a jump-start to find a good matching and a 
good dual solution quickly before executing the full matching algorithm. Originally 
these initial solutions were typically produced in a greedy manner. Derigs and Metz 
[1986] suggested a jump-start from the fractional matching problem (or equiva­
lently the 2-matching problem). First, solve the 2-matching problem: max{w T x I 
x ;:: O; x(o(v)) = 2 (v E V)}. Let x* and n* be primal and dual optimal solutions 
to this linear programming problem (which can, in fact, be solved as a bipartite 
matching problem or a network flow problem). The set {e E E I x; > O} is the 
node-disjoint union of a matching M' := {e E E \ x; = 2} and a collection of odd 
circuits. Jump-start with the matching M obtained from M' and a maximum match­
ing in each of the odd circuits and the dual solution rr* (setting the dual variables 



Ch. 3. Matching 209 

corresponding to the blossoms equal to zero). Since x* and rr* are primal and dual 
optimal solutions to the 2-matching problem, they satisfy the complementary slack­
ness conditions. If G is dense, the 2-matching problem is first solved on a sparse 
subgraph. In fact, Applegate and Cook use different sparse graphs for finding the 
jump-start and for solving the actual problem (the latter is the k-nearest neighbor 
graph using the reduced costs with respect to the jump-start dual solution). 

10.2. Heuristics 

When solving large matching problems, searching for a good jump-start, or ap­
plying matchings in a heuristic for some other problem (e.g., Christofides' heuristic 
for the traveling salesman problem described in Section 9.1) it is often useful to 
use a heuristic to find a good matching quickly. A straightforward approach, called 
the greedy heuristic, attempts to construct a minimum weight perfect matching by 
starting with the empty matching and iteratively adding a minimum weight edge 
between two exposed nodes. The greedy heuristic runs in 0 (I V 12 log IV I) time 
and finds a solution with weight at most ~IVl 10g 3/2 times the minimum weight of 
a perfect matching [Reingold & Tarjan, 1981]. The version of the greedy heuristic 
designed to find a maximum weight matching, finds a solution with at least half 
the weight of a maximum weight matching. Results on greedy heuristics appear in 
Avis [1978, 1981], Avis, Davis & Steele [1988], Reingold & Tarjan [1981], Frieze, 
McDiarmid & Reed [1990] and Grigoriadis, Kalantari & Lai [1986]. 

Several heuristics have been developed for Euclidean matching problems where 
the set of points that have to be matched lie in the unit square. Many of these 
heuristics find the heuristic matching by dividing the unit square into subregions, 
finding a matching in each subregion and combining these matchings to a perfect 
matching between all the points. Other heuristics match the points in the order in 
which they lie on a space-filling curve. For detailed description and the analysis 
of such heuristics see: Bartholdi & Platzman [1983], Imai [1986], Imai, Sanae & 
Iri [1984]. Iri, Murota & Matsui [1981, 1982], Papadimitriou [1977], Reingold & 
Supowit [1983], Steele [1981 ], Supowit, Plaisted & Reingold [1980], Supowit & 
Reingold [1983], Supowit, Reingold & Plaisted [1983]. 

For a good overview on matching heuristics, see the survey of Avis [1983]. Here 
we mention some recent heuristics in more detail. 

When the weight function w satisfies the triangle inequality, each minimum 
weight V-join is a perfect matching (or, when some edges have weight 0, can be 
transformed easily into a perfect matching with the same weight). So, when w 
satisfies the triangle inequality, we can use T-join heuristics as matching heuristics. 

Plaisted [1984] developed a T-join heuristic that runs in O(IV 12 log IV I) time 
and produces a T-join with weight at most 2 log3 (1.5jVI) times the weight of an 

optimal solution. 
Given a graph G = ( V, E), an even subset T of V and w E JE.E, construct a 

T-join J as follows. (Note that w need not satisfy the triangle inequality, it would 
not survive the recursion anyway.) 



210 A.M.H. Gerards 

AUXILIARY GRAPH: If T = 0, then set J := 0. Otherwise, construct the weighted 
complete graph Hon the node set T. The weight w~v of each edge uv in His the 
length of a shortest uv-path Puv in G (with respect tow). 
SHRINK: For each u E T, define nu := min{w~u I v E T}. Construct a forest F 
in H as follows. Scan each node in order of increasing nu. If the node u is not 
yet covered by F, add to Fan edge uv with w~v =nu· Let Fi, ... , Fk denote the 
trees of F and let G' := H x V (F1) x · · · x V (Fk)· (If parallel edges occur select 
one of minimum weight to be in G'.) The pseudo-node corresponding to V(F;) is 
in T' if and only if IV (F;) I is odd. Apply the procedure recursively to G', w' and 
T' (starting with AUXILIARY GRAPH) and let J' be the resulting T'- join. 
EXPAND: Let J* denote the set of edges in H corresponding to the edges of 
J' in G. Choose T* so that J* is a T*-join. Then T;* := (T !:::. T*) n V(F;) is 
even for each i=l, ... , k. Let l; be the unique T;*-join in each tree F;. Then 
J H := J' U 11 U · · · U Jk is a T -join in H. 
T-JOIN. Let J be the symmetric difference of the shortest paths {Puv : uv E J H }. 

Note that each tree F; contains at least 2 nodes. So, if IV (Fi) I is odd it is at 
least three. Hence, the depth of the recursion is bounded by log3 IT 1-

Goemans & Williamson [1992] proposed a heuristic that not only yields a T-join 
F but also a feasible solution TC of 

maximize LTCs 
SE!.1 

subject to I: TCs ~ We (e EE) (108) 

SE!.1;8(S)3e 

TCs ~ 0 (SE !.1), 

where Q := {S s;; V \ IS n TI odd}. (108) is the dual linear programming problem 
of the T -join problem ( cf. (91 )). The weight of the heuristic T-join will be at most 
(2 - 2/ITI) LSE!.1;8(s) 3eTCs, so at most 2- 2/ITI times the minimum weight of a 
T-join. 

During the procedure we keep a forest F' (initially V(F') := V(G) and 
E(F') := 0). For each v E V(G), F~ denotes the component of F' containing v. 
We also keep a feasible solution TC of (108) (initially, TC = 0). 

The basic step of the heuristic is as follows: among all edges e = uv in G with 
F~ =I= F~ and F~ E Q, select one, e* say, that minimizes the quantity: 

1 
(F') + (F') (Wuv - L TCs), 

p u p v SE!.1;8(S)3uv 

(109) 

where p(S) := 1 if S E Q and p(S) := 0 if S rf. Q. Let E be the value of (109) 
when uv = e*. Add E to TCs for each component S of F' that is in Q and replace 
F' by F' U e*. This basic step is repeated until no component of F' is in Q. Then 
F' contains a unique T-join, which is the output of the heuristic. 

The heuristic can be implemented O(IVl2 log IVI) time. Note that when ITI = 2, 
so when the T-join problem is a shortest path problem, the heuristic T -join is in 



Ch. 3. Matching 211 

fact a shortest path. The heuristic also applies to other minimum weight forest 
problems with side constraints [see Goemans & Williamson, 1992). 

Grigoriadis & Kalantari [1988] developed an 0(1 V j2) heuristic that constructs 
a matching with weight at most 2(1V1tog3 713) times the optimum weight. Given a 
matching M, let GM denote the I-nearest neighbor graph of Gl(exp(M)). Begin 
with the empty matching M. In each component Gi of GM choose a tour visiting 
each edge twice. Shortcut the tour to obtain a traveling salesman tour 7; of Gi. 
Greedily select a matching Mi of small weight from 'I'i (thus I Mi I ?: ~11i I) and add 
it to M. Repeat the procedure until Mis perfect. 

The final matching heuristic we describe is due to Jiinger & Pulleyblank [1991 ]. 
It runs in 0 (IV I log IV I) on Euclidean problems. Given a set of points in the 
plane, construct a complete graph G with a node for each point and let the length 
of each edge be the Euclidean distance between the corresponding points. So each 
node u has two coordinates u 1 and u2 and each edge uv has weight (or length) 
Wuv := J (u1 - vi)2 + (u2 - v2)2. Construct a matching in G as follows. 

Let F be a minimum weight spanning tree in G. (The maximum degree of a 
node in T is five [see Jiinger & Pulleyblank, 1991].) 

DECOMPOSE: If IVI ::=:: 6, find a minimum weight matching in G. Otherwise, T 
has a non-pendant edge (i.e., an edge not incident to a node of degree 1). Let uv 
be a maximum weight non-pendant edge in T, then T \ {uv} consists of two trees: 
Tu containing u and Tv containing v. We consider two cases: 

Both Tu and Tv contain an even number of nodes: Apply DECOMPOSE, recur­
sively, to GIV(Tu) and Tu, and to GiV(Tv) and Tv. Note that Tu is a minimum 
spanning tree in GjV(Tu) and Tv is a minimum spanning tree in GjV(Tv). Return 
Mu U Mv, where Mu is the matching constructed in GIV(Tu) and Mv is the 
matching constructed in GIV(Tv)-

Both Tu and Tv contain an odd number of nodes: Apply DECOMPOSE to 
Gi(V(Tu) U {v}) and Tu U {uv} (which is again a minimum spanning tree) to 
construct a matching Mu. Let x be the node matched to u in Mu and choose 
y E V(Tv) with Wxy minimum. Then Tv U {xy} is a minimum spanning tree in 
Gi(V(Tv)U{x}). Applying DECOMPOSE again yields a matching Mv in Gi(V(Tv)U 
{x}). Return (Mu\ {ux}) U Mv· 

Note that the heuristic computes only one minimum spanning tree and the 
minimum spanning trees for the decomposed problems are easily obtained from 
it. Jiinger & Pulleyblank [1991] also give a heuristic for finding a dual feasible 
solution, again based on minimum spanning tree calculations. 

We conclude with a result of Grigoriadis & Kalantari [1986): The running time 
of a heuristic for the Euclidean matching problem that finds a matching of weight 
at most f(I VI) times the minimum weight, can be bounded from below by a 
constant times IV j log IV 1- If the heuristic yields a matching of weight at most 
f (jVI) times the minimum weight for all matching problems, its running time is at 
least a constant times IV 12. 



212 A.M.H. Gerards 

Acknowledgements 

I would like to thank Michele Conforti, Jack Edmonds, Mike Plummer, .Bill 
Pulleyblank, Lex Schrijver, Leen Stougie and John Vande Vate for many helpful 
comments. John Vande Vate made a tremendous, and highly appreciated, effort 
editing the paper; improving its English as well as its organization. Needless to say 
that all remaining failings are on my account. 

References 

Ageev, A.A., A.V. Kostochka and Z. Szigeti (1994). A characterization of Seymour graphs, preprint. 
Aho, A.V., J.E. Hopcroft and J.D. Ullman (1974). The Design and Analysis of Computer Algorithms, 

Addison-Wesley, Reading, MA. 
Ahuja, R.K., T.L. Magnanti and J.B. Orlin (1989). Network flows, in: G.L. Nemhauser, A.H.G. 

Rinnooy Kan and M.J. Thdd (eds.), Optimization, Handbooks in Operations Research and 
Management Science, Vol. 1, North-Holland, Amsterdam, pp. 211-369. 

Alt, H., N. Blum, K. Mehlhorn and M. Paul (1991). Computing a maximum cardinality matching in 
a bipatite graph in time O(n!.5Jm/logn), lnf Process. Lett. 37, 237-240. 

Anstee, R.P. (1985). An algorithmic proof of Tutte's /-factor theorem. J. Algorithms 6, 112-131. 
Anstee, R.P. (1987). A polynomial algorithm for b-matchings: an alternative approach. lnf Process. 

Lett. 24, 153-157. 
Applegate, D., and W. Cook (1993). Solving large-scale matching problems, in: D.S. Johnson and 

C.C. McGeoch (eds.), Network Flows and Matchings: First DIMACS Implementation Challenge, 
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 12, American 
Mathematical Society, Providence, Rl, pp. 557-576. 

Araoz, J., W.H. Cunningham, J. Edmonds and J. Green-Kr6tki (1983). Reductions to 1-matching 
polyhedra. Networks 13, 455-473. 

Avis, D. (1978). Thro greedy heuristics for the weighted matching problem. Congr; Numerantium 
XXI, 65-76. 

Avis, D. (1981). Worst case bounds for the Euclidean matching problem. Comput. Math. Appl. 1, 
251-257. 

Avis, D. (1983). A survey of heuristics for the weighted matching problem. Networks 13, 475-493. 
Avis, D., B. Davis and J.M. Steele (1988). Probabilistic analysis for a greedy heuristic for Euclidean 

matching. Probab. Eng. lnf Sci. 2, 143-156. 
Balas, E., and W. Pulleyblank (1983). The perfectly matchable subgraph polytope of a bipartite 

graph. Networks 13, 495-516. 
Balas, E., and W.R. Pulleyblank (1989). The perfectly matchable subgraph polytope of an arbitrary 

graph. Combinatorica 9, 321-337. 
Balinski, M.L. (1965). Integer programming: methods, uses and computation. Manage. Sci. 12 (A), 

253-313. 
Balinski, M.L. (1969). Labeling to obtain a maximum matching (with discussion), in: R.C. Bose and 

T.A. Dowling (eds.), Combinatorial Mathematics and its Applications, The University of North 
California Monograph Series in Probability and Statistics, No. 4, University of North California 
Press, Chapel Hill, pp. 585-602. 

Balinski, M.L. (1972). Establishing the matching polytope. J. Comb. Theory, Ser. B 13, 1-13. 
Balinski, M.L., and R.E. Gomory (1964). A primal method for the assignment and transportation 

problems. Manage. Sci. 10, 578-593. 
Balinski, M.L., and J. Gonzalez (1991). Maximum matchings in bipartite graphs via strong spanning 

trees. Networks 21, 165-179. 
Ball, M.O., L.D. Bodin and R. Dial (1983). A matching based heuristic for scheduling mass transit 

crews and vehicles. Transp. Sci. 17, 4-31. 



Ch. 3. Matching 213 

Ball, M.O., and U. Derigs (1983). An analysis of alternative strategies for implementing matching 
algorithms. Networks 13, 517-549. 

Ball, M.O., U. Derigs, C. Hilbrand and A. Metz (1990). Matching problems with generalized upper 
bound side constraints. Networks 20, 703-721. 

Barahona, F. (1980). Application de /'Optimisation Combinatoire a Certains modeles de Verres de 
Spins: Complexite et Simulation, Master's thesis, Universite de Grenoble, France. 

Barahona, F. (1990). Planar multicommodity flows, max cut and the Chinese postman problem, in: 
W. Cook and P.D. Seymour (eds), Polyhedral Combinatorics, DIMACS Series in Discrete Mathe­
matics and Theoretical Computer Science, Vol. 1, American Mathematical Society, Providence, 
RI, pp. 189-202. 

Barahona, F. (1993a). On cuts and matchings in planar graphs. Math. Program. 60, 53-68. 
Barahona, F. (1993b). Reducing matching to polynomial size linear programming. SIAM J. Opt. 3, 

688-695. 

Barahona, F., R. Maynard, R. Rammal and J.P. Uhry (1982). Morphology of ground states of a 
two-dimensional frustration model. J. Phys. A: Mathematical and General 15, 673-699. 

Bartholdi III, J.J., and L.K. Platzman (1983). A fast heuristic based on spacefilling curves for 
minimum-weight matching in the plane. Inf Process. Lett. 17, 177-188. 

Bartnik, G.W. (1978). Algorithmes de couplages dans les graphes, These Doctorat 3' cycle, 
Unversite Paris VI. 

Belck, H.-B. (1950). Reguliire Faktoren von Graphen. J. Reine Angew. Math. 188, 228-252. 
Bellman, R. (1958). On a routing problem. Q. Appl. Math. 16, 87-90. 
Berge, C. (1957). Two theorems in graph theory. Proc. Nat. Acad. Sci. U.S.A. 43, 842-844. 
Berge, C. (1958). Sur le couplage maximum d'un graphe. C.R. Acad. Sci., Ser. I (Mathematique) 

247, 258-259. 
Berge, C. (1962). Sur une conjecture relative au probleme des codes optimaux, Commun., 13eme 

Assemblee Generale de l'URSI, Tokyo. 
Berge, C. (1985). Graphs, North-Holland, Amsterdam [revised edition of first part of: C. Berge, 

Graphs and Hypergraphs, North-Holland, Amsterdam, 1973]. 
Berstekas, D.P., D.A. Castanon, J. Eckstein and S.A. Zenion (1995). Parallel computing in network 

optimization, in: M.0. Ball, T.L. Magnanti, C. Monma and G.L. Nemhauser (eds.), Network 
Models, Handbooks in Operations Research and Management Science, Vol. 7, North-Holland, 
Amsterdam, Chapter 5, pp. 331-400, this volume. 

Bertsekas, D.P. (1979). A distributed algorithm for the assignment problem, Working paper, 
Laboratory for Information and Decision Systems, M.I.T., Cambridge, MA. 

Bertsekas, D.P. (1990). The auction algorithm for assignment and other network flow problems: a 
tutorial. Interfaces 20(4), 133-149. 

Birkhoff, G. (1946). Tres observaciones sabre el algebra lineal. Rev. Fae. Cie. Exactas Puras Apl. 
Univ. Nac. Tucuman, Ser. A (Matematicas y Fisica Teoretica) 5, 147-151. 

Blum, N. ( 1990a). A new approach to maximum matching in general graphs (extended abstract), in: 
M.S. Paterson (ed.), Proc. 17th Int. Colloq. on Automata, Languages and Programming, Lecture 
Notes in Computer Science, Vol. 443, Springer-Verlag, Berlin, pp. 586-597. 

Blum, N. ( 1990b). A New Approach to Maximum Matching in General Graphs, Report No. 8546-CS, 
lnstitut ftir Informatik der Universitiit Bonn. 

Bondy, J.A, and U.S.R. Murty (1976). Graph theory with Applications, MacMillan Press, London. 
Boravka, O. (1926). O jistem problemu minimalnim. Prdca Moravske Pfirodovedecke Spolecnosti 3, 

37-48 (in Czech). 
Bourjolly, J.-M., and W.R. Pulleyblank (1989). Ki:inig-Egervary graphs, 2-bicritical graphs and 

fractional matchings. Discrete Appl. Math. 24, 63-82. 
Brezovec, c., G. Cornuejols and F. Glover (1988). A matroid algorithm and its application to the 

efficient solution of two optimization problems on graphs. Math. Program. 42, 471-487. 
Broder, A.Z. (1986). How hard is it to marry at random? (on the approximation of the ~ermanen.t), 

in: Proc. JSth Annual ACM Symp. on Theory of Computing, Association for Computmg Machm­
ery, New York, NY, pp. 50-58 [Erratum in: Proc. 20th ACM Symp. on Theory of Computing, 



214 A.M.H. Gerards 

1988, Association for Computing Machinery, New York, p. 551]-
Brualdi, R.A, and P.M. Gibson (1977). Convex polyhedra of doubly stochastic matrices L Applica­

tions of the permanent function. J. Comb. Theory, Ser. A 22, 194-230. 
Burkard, R.E., and U. Derigs (1980). Assignment and Matching Problems: Solution Methods 

with FORTRAN-Programs, Lecture Notes in Economics and Mathematical Systems, Vol. 184, 
Springer-Verlag, Berlin, Heidelberg. 

Burlet, M., and A.V. Karzanov (1993). Minimum Weight T, d-Joins and Multi-Joins, Rapport de 
Recherche RR929-M, Laboratoire ARTEMIS, Universite Joseph Fourier, Grenoble. 

Chari, S., P. Rohatgi and A. Srinivasan (1993). Randomness-optimal unique element isolation, with 
applications to perfect matching and related problems, preprint. 

Christofides, N. (1976). Worst-case Analysis of a New Heuristic for the Travelling Salesman Problem, 
Technical report, GSIA Carnegie-Mellon University, Pittsburgh, Pennsylvania. 

Cook, S.A. (1971). The complexity of theorem-proving procedures, in: Proc. 3rd Annual ACM Symp. 
on Theory of Computing, Association for Computing Machinery, New York, NY, pp. 151-158. 

Cook, W. (l983a). A minimal totally dual integral defining system for the b-matching polyhedron. 
SIAM J. Algebraic Discrete Methods 4, 212-220. 

Cook, W. (1983b). On some Aspects of Totally Dual Integral Sytems, PhD thesis, Department of 
Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario. 

Cook, W. and W.R. Pulleyblank (1987). Linear systems for constrained matching problems. Math. 
Oper. Res. 12, 97-120. 

Cornuejols, G. (1988). General factors of graphs. J. Comb. Theory, Ser. B 45, 185-198. 
Cornuejols, G., and D. Hartvigsen (1986). An extension of matching theory. J. Comb. Theory, Ser. 

B 40, 285-296. 
Cornuejols, G., D. Hartvigsen and W. Pulleyblank (1982). Packing subgraphs in a graph. Oper. Res. 

Lett. 1, 139-143. 
Cornuejols, G., and W. Pulleyblank (1980a). A matching problem with side conditions. Discrete 

Math. 29, 135-159. 
Cornuejols, G., and W.R. Pulleyblank (1980b). Perfect triangle-free 2-matchings. Math. Program. 

Study 13, 1-7. 
Cornuejols, G., and W. Pulleyblank (1982). The travelling salesman polytope and (0, 2}-matchings. 

Ann. Discrete Math. 16, 27-55. 
Cornuejols, G., and W.R. Pulleyblank (1983). Critical graphs, matchings and tours or a hierarchy 

of relaxations for the travelling salesman problem. Combinatorica 3, 35-52. 
Crocker, S.T. (1993). An experimental comparison on two maximum cardinality matching programs, 

in: D.S. Johnson and C.C. McGeoch (eds), Network Flows and Matchings: First DIMACS 
Implementation Challenge, DIMACS Series in Discrete Mathematics and Theoretical Computer 
Science, Vol. 12, American Mathematical Society, Providence, RI, pp. 519-537. 

Csansky, L. (1976). Fast parallel matrix inversion algorithms. SIAM]. Comp. 5, 618-623. 
Cunningham, W.H., and J. Green-Krotki ( 1986). Dominants and submissives of matching polyhedra. 

Math. Program. 36, 228-237. 
Cunningham, W.H., and J. Green-Kr6tki (1991 ). b-Matching degree-sequence polyhedra. Combina­

torica 11, 219-230. 
Cunningham, W.H., and J. Green-Kr6tki (1994). A separation algorithm for the matchable set 

polytope, Math. Program. 65, 139-190. 
Cunningham, W.H., and A.B. Marsh III (1978). A primal algorithm for optimum matching, in: 

M.L. Balinski and A.J. Hoffman (eds.), Polyhedral Combinatorics (dedicated to the memory of 
D.R. Fulkerson), Mathematical Programming Study 8, North-Holland, Amsterdam, pp. 50-72. 

Cunningham, W.H., and F. Zhang (1992). Subgraph degree-sequence polyhedra, in: E. Balas, G. 
Cornuejols and R. Kannan (eds.), Integer Programming and Combinatorial Optimization, Proc. 
Conf. of the Mathematical Progamming Society, Carnegie-Mellon University, May 25-27, 1992, 
pp. 246-259. 

Dahlhaus, E., and M. Karpinski (1988). Parallel construction of perfect matchings and Hamiltonian 
cycles on dense graphs. Theor. Comput. Sci. 61, 121-136. 



Ch. 3. Matching 215 

Dantzig, G.B. (1951). Maximization of a linear function of variables subject to linear inequalities, 
in: Tj.C. Koopmans (ed.), Activity Analysis of Production and Allocation, John Wiley, New York, 
NY, pp. 339-347. 

Deming, R.W. (1979). Independence numbers of graphs - an extension of the Koenig-Egervary 
theorem. Discrete Math. 27, 23-33. 

Derigs, U. (1981). A shortest augmenting path method for solving minimal perfect matching 
problems. Networks 11, 379-390. 

Derigs, U. (1986a). A short note on matching algorithms. Math. Program. Study 26, 200-204. 
Derigs, U. (1986b). Solving large-scale matching problems efficiently: a new primal matching 

approach. Networks 16, 1-16. 
Derigs, U. (1988a). Programming in Networks and Graphs, Lecture Notes in Economics and 

Mathematical Systems, Vol. 300, Springer-Verlag, Berlin. 
Derigs, U. (1988b). Solving non-bipartite matching problems via shortest path techniques. Ann. 

Oper. Res. 13, 225-261. 
Derigs, U., and A. Metz (1986). On the use of optimal fractional matchings for solving the (integer) 

matching problem. Computing 36, 263-270. 
Derigs, U., and A. Metz (1991). Solving (large scale) matching problems combinatorially. Math. 

Program. 50, 113-121. 
Derigs, U., and A. Metz (1992). A matching-based approach for solving a delivery/pick-up vehicle 

routing problem with time constraints. Oper. Res. Spektrum 14, 91-106. 
Devine, M.D. (1973). A model for minimizing the cost of drilling dual completion oil wells. Manage. 

Sci. 20, 532-535. 
Dijkstra, E.W. (1959). A note on two problems in connexion with graphs. Numer. Math. 1, 269-271. 
Dilworth, R.P. (1950). A decomposition theorem for partially ordered sets. Ann. Math. (2) 51, 

161-166. 
Dinic, E.A. (1970). Algorithm for solution of a problem of maximum flow in a network with 

power estimation (in Russian). Dok/. Akad. Nauk SSSR 194, 745-757 [English translation: Soviet 
Mathemathics Doklady, 11, 1277-1280]. 

Dulmage, A.L., and N.S. Mendelsohn (1958). Coverings of bipartite graphs. Can. J. Math. 10, 
517-534. 

Dulmage, A.L., and N.S. Mendelsohn (1959). A structure theory of bipartite graphs of finite 
exterior dimension. Trans. R. Soc. Can., Ser. III 53, 1-13. 

Dulmage, A.L., and N.S. Mendelsohn (1967). Graphs and matrices, in: F. Harary (ed.), Graph 
Theory and Theoretical Physics, Academic Press, New York, NY, pp. 167-277. 

Edmonds, J. (1965a). The Chinese postman's problem. Bull. Oper. Res. Soc. 13, B-73. 
Edmonds, J. (1965b). Maximum matching and a polyhedron with 0,1-vertices. J. Res. Nat. Bur. 

Stand. - B. Math. Math. Phys. 69B, 125-130. 
Edmonds, J. (1965c). Paths, trees and flowers. Can. J. Math. 17, 449-467. 
Edmonds, J. (1967). Systems of distinct representatives and linear algebra. J. Res. Nat. Bur. Stand. 

- B. Math. Math. Phys. 71B, 241-245. 
Edmonds, J. (1970). Submodular functions, matroids, and certain polyhedra, in: R. Guy, H. Hanani, 

N. Sauer and J. Schonheim (eds.), Combinatorial Structures and their Applications, Gordon and 
Breach, New York, NY, pp. 69-87. 

Edmonds, J., and R. Giles (1977). A min-max relation for submodular functions on graphs. Ann. 
Discrete Math. 1, 185-204. 

Edmonds, J., and E. Johnson (1970). Matching: a well-solved class of integer linear programs, 
in: R. Guy, H. Hanani, N. Sauer and J. Sch6nheim (eds.), Combinatorial Structures and their 
Applications, Gordon and Breach, New York, NY, pp. 89-92. 

Edmonds, J., E.L. Johnson and S.C. Lockhart (1969). Blossom I, a Code for Matching, unpublished 
report, IBM T.J. Watson Research Center, Yorktown Heights, NY. 

Edmonds, J., and E. L. Johnson (1973). Matching, Euler tours and the Chinese postman. Math. 
Program. 5, 88-124. 



216 A. M.H. Gerards 

Edmonds, J., and RM. Karp (1970). Theoretical improvements in algorithmic efficiency for 
network flow problems, in: R. Guy, H. Hanani, N. Sauer and J. Schonheim (eds.), Combinatorial 
Structures and their Applications, Gordon and Breach, New York, NY, pp. 93-96. 

Edmonds, J., and R.M. Karp (1972). Theoretical improvements in algorithmic efficiency for network 
flow problems. J. Assoc. Comput. Mach. 19, 248-264. 

Edmonds, J., L. Lovasz and W.R. Pulleyblank (1982). Brick decompositions and the matching rank 
of graphs. Combinatorica 2, 247-274. 

Egervary, E. (1931). Matrixok kombinatorius tulajdonsagairol (in Hungarian). Matematikai es 
Fizikai Lapok 38, 16-28. 

Elias, P., A Feinstein and C.E. Shannon (1956). Note on the maximum flow through a network. 
IRE Trans. Inf Theory IT 2, 117-119. 

Erdos, P., and T. Gallai (1960). Grafok ekiirt foku pontokkal (in Hungarian). Mat. Lapok 11, 
264-274. 

Euler, L. (1736). Solutia problematis ad geometriam situs pertinentis. Comment. Acad. Sci. Imp. 
Petropolitanae 8, 128-140. 

Even, S., and 0. Kariv (1975). An O(n2·5) algorithm for maximum matching in general graphs, 
in: Proc. 16th Annual Symp. on Foundations of Computer Science, IEEE, New York, NY, pp. 
100-112. 

Even, S., and R.E. Tarjan (1975). Network flow and testing graph connectivity. SIAM J. Comput. 4, 
507-518. 

Feder, T., and R. Motwani (1991). Clique partitions, graph compression and speeding-up algo­
rithms, in: Proc. 23rd Annual ACM Symp. on Theory of Computing, Association for Computing 
Machinery, New York, NY, pp. 123-133. 

Flood, M.M. (1956). The traveling-salesman problem. Oper. Res. 4, 61-75. 
Floyd, R.W. (1962a). Algorithm 96: ancestor. Commun. Assoc. Comput. Mach. 5, 344-345. 
Floyd, R.W. (1962b). Algorithm 97: shortest path. Commun. Assoc. Comput. Mach. 5, 345. 
Ford Jr., L.R. (1956). Network Flow Theory, Paper P-923, RAND Corporation, Santa Monica, CA. 
Ford Jr., L.R., and D.R. Fulkerson (1956). Maximal flow through a network. Can. J. Math. 8, 

399-404. 
Ford Jr., L.R., and D.R. Fulkerson (1957). A simple algorithm for finding maximal network flows 

and an application to the Hitchcock problem. Can. J. Math. 9, 210-218. 
Frank, A. (1990). Packing paths, circuits and cuts - a survey, in: B. Korte, L. Lovasz, H.J. Promel 

and A. Schrijver (eds.), Paths, Flows and VLSI-Layout, Springer-Verlag, Berlin, Heidelberg, pp. 
47-100. 

Frank, A. (1993). Conservative weightings and ear-decompositions of graphs. Combinatorica 13, 
65-81. 

Frank, A., A. Sebo and E. Tardos (1984). Covering directed and odd cuts. Math. Program. Study 22, 
99-112. 

Frank, A., and Z. Szigeti (1994). On packing T-cuts, J. Comb. Theory, Ser. B 61, 263-271. 
Fredman, M.L., and R.E. Tarjan (1987). Fibonacci heaps and their uses in improved network 

optimization algorithms. I. Assoc. Comput. Mach. 34, 596-615. 
Frieze, A., C. McDiarmid and B. Reed (1990). Greedy matching on the line. SIAM J. Comput. 19, 

666-672. 
Frobenius, G. ( 1912). Ober Matrizen aus nicht negativen Elementen. Sitszungsberichte der koniglich 

preussischen Akademie der Wissenschaften zu Berlin, 456-477. 
Frobenius, G. (1917). Ober zerlegbare Determinanten. Sitszungsberichte der koniglich preussischen 

Akademie der Wissenschaften zu Berlin, 274-277. 
Fujii, M., T. Kasami and N. Ninomiya (1969). Optimal sequencing of two equivalent processors. 

SIAM J. Appl. Math. 17, 784-789 [Erratum in: SIAM J. Appl. Math. 20 (1971), 141 ]. 
Fulkerson, D.R. (1961). An out-of-kilter method for minimal cost flow problems. SIAM J. Appl. 

Math. 9, 18-27. 
Gabow, H.N. (1973). Implementation of Algorithms for Maximum Matching on Non-bipartite Graphs, 

PhD thesis, Stanford University, Department of Computer Science, 1973. 



Ch. 3. Matching 217 

Gabow, H.N. (1976). An efficient implementation of Edmonds' algorithm for maximum matching 
on graphs. J. Assoc. Comput. Mach. 23, 221-234. 

Gabow, H.N. (1983). An efficient reduction technique for degree-constraint subgraph and bidirected 
network fio':" problems, in: Proc. 15th Annual ACM Symp. on Theory of Computing, Association 
for Computmg Machinery, New York, NY, pp. 448-456. 

Gabow, H.N. (1985). A scaling algorithm for weighted matching on general graphs, in: Proc. 26th 
Annual Symp. on Foundations of Computer Science, IEEE, New York, NY, pp. 90-100. 

Gabow, H.N. (1990). Data structures for weighted matching and nearest common ancestors 
with linking, in: Proc. lst Annual ACM-SIAM Symp. on Discrete Algorithms, Association for 
Computing Machinery, New York, NY, pp. 434-443. 

Gabow, H.N., Z. Galil and T.H. Spencer (1989). Efficient implementation of graph algorithms using 
contraction. J. Assoc. Comput. Mach. 36, 540-572. 

Gabow H.N., and R.E. Tarjan (1983). A linear-time algorithm for a special case of disjoint set 
union, in: Proc. 15th Annual ACM Symp. on Theory of Computing, Association for Computing 
Machinery, New York, NY, pp. 246-251. 

Gabow, H.N., and R.E. Thrjan (1991). Faster scaling algorithms for general graph-matching 
problems. J. Assoc. Comput. Mach. 38, 815-853. 

Gale, D., H.W. Kuhn and A.W Tucker (1951). Linear programming and the theory of games, 
in: Tj.C. Koopmans (ed.), Activity Analysis of Production and Allocation, New York, NY, pp. 
317-329. 

Gale, D., and L.S. Shapley (1962). College admissions and the stability of marriage. Am. Math. 
Mon. 69, 9-15. 

Galil, Z. (1986a). Efficient algorithms for finding maximum matching in graphs. ACM Comput. 
Surv. 18, 23-38. 

Gali!, Z. (1986b). Sequential and parallel algorithms for finding maximum matchings in graphs. 
Annu. Rev. Comput. Sci. 1, 197-224. 

Gali!, Z., S. Micali and H. Gabow (1986). An O(EV log V) algorithm for finding a maximal 
weighted matching in general graphs. SIAM J. Comput. 15, 120-130. 

Gallai, T. (1950). On factorisation of graphs. Acta Math. Acad. Sci. Hung. 1 133-153. 
Gallai, T. ( 1959). Ober extreme Punkt- und Kantenmengen. Ann. Univ. Sci. Budap. Rolando Eotvos 

Nominatae, Sect. Math. 2, 133-138. 
Gallai, T. (1963). Kritische Graphen II. Mag. Tud. Akad. Mat. Kut. lntez. Kozl. 8, 373-395. 
Gallai, T. (1964). Maximale Systeme unabhiingiger Kanten. Mag. Tud. Akad. Mat. Kut. /nth Koz/. 

9, 401-413. 
Gamble, AR. (1989). Polyhedral Extentions of Matching Theory, PhD thesis, Department of Combi­

natorics and Optimization, University of Waterloo, Waterloo, Ontario. 
Gerards, A.M.H. (1991). Compact systems for T-join and perfect matching polyhedra of graphs 

with bounded genus, Oper. Res. Lett. 10, 377-382. 
Gerards, A.M.H. (1992). On shortest T-joins and packing T-cuts. J. Comb. Theory, Ser. B 55, 73-82. 
Giles, R. (1982a). Optimum matching forests I: special weights. Math. Program. 22, 1-11. 
Giles, R. (1982b). Optimum matching forests II: general weights. Math. Program. 22, 12-38. 
Giles, R. (1982c). Optimum matching forests III: facets of matching forest polyhedra. Math. 

Program. 22, 39-51. 
Goemans, M.X., and D.P. Williamson (1992). A general approximation technique for constrained 

forest problems, in: Proc. 3rd Annual ACM-SIAM Symp. on Discrete Algorithms, Association for 
Computing Machinery, New York, NY, pp. 307-316. 

Goldberg, A.V., S.A. Plotkin, D.B. Shmoys and E. Tardos (1992). Using interior-point methods 
for fast parallel algorithms for bipartite matching and related problems. SIAM 1. Comput. 21, 

140-150. 
Goldberg, AV., S.A. Plotkin and P.M. Vaidya (1993). Sublinear-time parallel algorithms for 

matching and related problems. J. Algorithms 14, 180-213. 
Goldberg, A.V., E. Tardos and R.E. Tarjan (1990). Network flow algorithms, in: ~- Korte, L. 

Lovasz, H.J. Promel and A. Schrijver (eds.), Paths, Flows and VLSI-Layout, Sprmger-Verlag, 



218 A.M.H. Gerards 

Berlin, Heidelberg, pp. 101-164. 
Goldberg, AV., and RE. Tarjan (1989). Finding minimum-cost circulations by canceling negative 

cycles. J. Assoc. Comput. Mach. 36, 873-886. 
Gondran, M., and M. Minoux (1984). Graphs and Algorithms, Wiley/Interscience, New York, NY. 
Grigoriadis, M.D., and B. Kalantari (1986). A lower bound to the complexity of Euclidean and 

rectilinear matching algorithms. Inf. Process. Lett. 22, 73-76. 
Grigoriadis, M.D., and B. Kalantari (1988). A new class of heuristic algorithms for weighted perfect 

matching. J. Assoc. Comput. Mach. 35, 769-776. 
Grigoriadis, M.D., B. Kalantari and C.Y. Lai (1986). On the existence of weakly greedy matching 

heuristics. Oper. Res. Lett. 5, 201-205. 
Grigoriev, D.Y., and M. Karpinski (1987). The matching problem for bipartite graphs with 

polynomially bounded permanents is in NC, in: 28th Annual Symposium on Foundations of 
Computer Science, IEEE, New York, NY, pp. 166-172. 

Grotschel, M., and O. Holland (1985). Solving matching problems with linear programming. Math. 
Program. 33, 243-259. 

Grotschel, M., L. Lovasz and A. Schrijver (1981). The ellipsoid method and its consequences in 
combinatorial optimization. Combinatorica 1, 169-197 [corrigendum in: Combinatorica 4 (1984), 
291-295]. 

Grotschel, M., L. Lovasz and A Schrijver (1984). Polynomial algorithms for perfect graphs. Ann. 
Discrete Math. 21, 325-356. 

Griitschel, M., L. Lovasz and A. Schrijver (1988). Geometric Algorithms and Combinatorial Opti­
mization, Springer-Verlag, Berlin. 

Grotschel, M., and M.W. Padberg (1985). Polyhedral theory, in: E.L. Lawler, J.K. Lenstra, A.H.G. 
Rinnooy Kan, and D.B. Shmoys (eds.), The Traveling Salesman Problem, A Guided tour of 
Combinatorial Optimization, John Wiley and Sons, Chichester, pp. 251-305. 

Griitschel, M., and W.R. Pulleyblank (1981). Weakly bipartite graphs and the max-cut problem. 
Oper. Res. Lett. 1, 23-27. 

Grover, L.K. (1992). Fast parallel algorithms for bipartite matching, in: E. Balas, G. Cornuejols, 
and R Kannan (eds.). Integer Programming and Combinatorial Optimization, Proc. Conf. of the 
Mathematical Programming Society, Carnegie-Mellon University, May 25-27, 1992, pp. 367-384. 

Gusfield, D., and RW. Irving (1989). The Stable Marriage Problem: St1Ucture and Algorithms, MIT 
Press, Cambridge, Massachusetts. 

Hadlock, F. (1975). Finding a maximum cut of a planar graph in polynomial time. SIAM J. Comput. 
4, 221-225. 

Hall Jr., M. (1956). An algorithm for distinct representatives. Am. Math. Mon. 716-717. 
Hall, P. (1935). On representatives of subsets. J. Lond. Math. Soc. 10, 26-30. 
Helgason, R.V., and J.L. Kennington (1995). Primal simplex algorithms for minimum cost net­

work flows, in: M.O. Ball, T.L. Magnanti, C. Monma and G.L. Nemhauser (eds.), Network 
Models, Handbooks in Operations Research and Management Science, Vol. 7, North-Holland, 
Amsterdam, Chapter 2, pp. 85-134, this volume. 

He, X. (1991). An efficient parallel algorithm for finding minimum weight matching for points on 
a convex polygon, lnf Process. Lett. 37, 111-116. 

Hetyei, G. (1964). 2 x 1-es teglalapokkal lefedhetii idomokr61 (in Hungarian). Pecsi Tanarkepzo 
Foiskola Tud. Kozl. 8, 351-367 

Hoffman, A.J. (1974). A generalization of max flow-min cut. Math. Program. 6, 352-359. 
Hoffman, A.J., and J.B. Kruskal (1956). Integral boundary points of convex polyhedra, in: H.W. 

Kuhn and A.W. Tucker (eds.). Linear Inequalities and Related Systems, Annals of Mathematical 
Studies, Vol. 38, Princeton University Press, Princeton, NJ, pp. 223-246. 

Hoffman, A.J., and R. Oppenheim (1978). Local unimodularity in the matching polytope. Ann. 
Discrete Math. 2, 201-209. 

Holyer, I. (1981). The NP-completeness of edge-coloring. SIAM J. Comput. 10, 718-720. 
Hopcroft, J.E., and RM. Karp (1971). An n512 algorithm for maximum matthings in bipartite 

graphs, in: Conf Record 1971 12th Annual Symp. on Switching and Automata Theory, IEEE, New 



Ch. 3. Matching 219 

York, NY, pp. 122-125. 

Hopcroft, J.E., and R.M. Karp (1973). An n512 algorithm for maximum matchings in bipartite 
graphs. SIAM J. Cornput. 2, 225-231. 

Imai, H: (1986). Worst-case analysis for planar matching and tour heuristics with bucketing 
techniques and spacefilling curves. J. Oper. Res. Soc. lap. 29, 43-67. 

lm~i, H., H. Sanae and M. lri (1984). A planar-matching heuristic by means of triangular buckets, 
m: Proc. 1984 Fall Conf of the Operations Research Society of Japan, 2-D-4, pp. 157-158 (in 
Japanese). 

lri, M., K. Murata and S. Matsui (1981). Linear-time approximation algorithms for finding the 
minimum-weight perfect matching on a plane. Inf Process. Lett. 12, 206-209. 

lri, M., K. Murata and S. Matsui (1982). An approximate solution for the problem of optimizing the 

plotter pen movement, in: R.F. Drenick and F. Kozin (eds.), System Modeling and Optimization, 

Proc. lOth lFIP Conf., New York, 1981, Lecture Notes in Control and Information Sciences, 
Vol. 38, Springer-Verlag, Berlin, pp. 572-580. 

lri, M., K. Murata and S. Matsui (1983). Heuristics for planar minimum-weight perfect matchings. 
Networks 13, 67-92. 

lri, M., and A. Taguchi (1980). The determination of the pen-movement of an XY-plotter and 
its computational complexity, in: Proc. 1980 Spring Conf of the Operations Research Society of 

Japan, P-8, pp. 204-205 (in Japanese). 

Irving, R.W. (1985). An efficient algorithm for the "stable roommates" problem. J, Algorithms 6, 
577-595. 

Jarnfk, V (1930). 0 jistem problemu minimalnim (in Czech). Prtica Moravske Pfirodovedecke 

Spolecnosti 6, 57-63 

Jerrum, M., and A. Sinclair (1989). Approximating the permanent. SIAM J. Comput. 18, 1149-1178. 

Jiinger, M., and W. Pulleyblank (1991). New primal and dual matching heuristics, Report No 
91.105, Institut for Informatik, Universitat zu Koln. 

Jiinger, M., G. Reinelt and G. Rinaldi (1995). The traveling salesman problem, in: M.O. Ball, T.L. 
Magnanti, C. Monma and G.L. Nemhauser (eds.), Network Models, Handbooks in Operations 

Research and Management Science, Vol. 7, North-Holland, Amsterdam, Chapter 4, pp. 225-330, 
this volume. 

Kameda, T., and I. Munro (1974). An O(IVI ·!El) algorithm for maximum matching of graphs. 

Computing 12, 91-98. 
Kariv, 0. (1976). An 0(n512 ) Algorithm for Maximum Matching in General Graphs, PhD thesis, 

Weizman Institute of Science, Rehovot. 
Karloff, H.J. (1986). A Las Vegas RNC algorithm for maximum matching. Combinatorica 6, 

387-391. 
Karmarkar, N. (1984). A new polynomial-time algorithm for linear programming. Combinatorica 4, 

373-395. 
Karp, R.M. (1972). Reducibility among combinatorial problems, in: R.E. Miller and J.W Thatcher 

(eds.), Complexity of Computer Computations, Plenum Press, New York, NY, pp. 85-103. 

Karp, R.M., and E. Upfal an A. Wigderson (1986). Constructing a perfect matching is in random 

NC. Combinatorica 6, 35-48. 
Karp, R.M., and C. H. Papadimitriou (1982). On linear characterizations of combinatorial opti­

mization problems. SIAM 1. Comput. 11, 620-632. 
Karp, R.M., and V. Ramachandran (1990). Parallel algorithms for shared-memory machines, in: J. 

van Leeuwen (ed.), Handbook of Theoretical Computer Science, Vol. A: Algorithms and Complexity, 

Elsevier, Amsterdam, pp. 869-941. 
Karzanov, A (1992). Determining the distance to the perfect matching polytope of a bipartite 

graph, preprint. 
Kasteleyn, P.W. (1963). Dimer statistics and phase transitions. J. Math. Phys. 4, 287-293. 

Kasteleyn, P.W. (1967). Graph theory and crystal physics, in: F. Harary (ed.), Graph Theory and 

Theoretical Physics, Academic Press, New York, NY, pp. 43-110. 



220 A.M.H. Gerards 

Khachiyan, L.G. (1979). A polynomial algorithm in linear programming (in Russian). Dokl. Akad. 
Nauk SSSR 224, 1093-1096. 

Konig, D. (1915). Vonalrendszerek es determinansok (in Hungarian). Mat. Termeszettudomanyi 
Ertesito 33, 221-229. 

Konig, D. (1916a). Graphok es alkalmazasuk a determinansok es a halmazok elmeleteben (in 
Hungarian). Mat. Termeszettudomanyi Ertesito 34, 104-119. 

Konig, D. (1916b). Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre. 
Math. Ann. 77, 453-465. 

Konig, D. (1931). Graphok es matrixok (in Hungarian). Mat. Fizikai Lapok 38, 116-119. 
Konig, D. (1933). Ober trennende Knotenpunkte in Graphen (nebst Anwendungen auf Determi­

nanten und Matrizen). Acta Litt. Sci. Regiae Univ. Hung. Francisco-Josephinae (Szeged), Sectio 
Sci. Math. 6, 155-179. 

Konig, D. (1936). Theorie der endlichen und unendlichen Graphen, Akademischen Verlagsge­
sellschaft, Leipzig [reprinted: Chelsea, New York, 1950, and Tuubner, Leipzig, 1986]. 

Korach, E. (1982). On Dual Integrality, Min-Max Equalities and Algorithms in Combinatorial Pro­
gramming, PhD thesis, Department of Combinatorics and Optimization. University of Waterloo, 
Waterloo, Ontario. 

Koren, M. (1973). Extreme degree sequences of simple graphs. J. Comb. Theory, Ser. B 15, 213-234. 
Kotzig, A. (1959a). Z te6rie konecnych grafov s linearnyrn faktorom I (in Slovak). Mat.-Fyz. Casopis 

Slovenskej Akad. Vied 9, 73-91. 
Kotzig, A. (1959b). Z te6rie konecnych grafov s Iinearnym faktorom II (in Slovak). Mat.-Fyz. 

Casopis Slovenskej Akad. Vied 9, 136-159. 
Kotzig, A. (1960). Z te6rie koneenych grafov s linearnym faktorom III (in Slovak). Mat.-Fyz. 

Casopis Slovenskej Akad. Vied 10, 205-215 
Kozen, D., U.V. Vazirani and V.V. Vazirani (1985). NC algorithms for comparibility graphs, 

interval graphs, and testing for unique perfect matching, in: S.N. Maheshwari (ed.). Foundations 
of Software Technology and Theoretical Computer Science, Fifth Conference, New Delhi, 1985, 
Lecture Notes in Computer Science, Vol. 206, Springer-Verlag, Berlin, pp. 496-503. 

Kruskal, J.B. (1956). On the shortest spanning subtree of a graph and the traveling salesman 
problem. Proc. Amer. Math. Soc. 7, 48-50. 

Kuhn, H.W. (1955). The Hungarian method for the assignment problem. Nav. Res. Logist. Q. 2, 
83-97. 

Kuhn, H.W. (1956). Variants of the Hungarian method for assignment problems. Nav. Res. Logist. 
Q. 3, 253-258. 

Kwan Mei-Ko (1962). Graphic programming using odd and even points. Chin. Math. 1, 273-277. 
Lawler, E.L. (1976). Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and 

Winston, New York, NY. 
Lawler, E.L., J.K. Lenstra, A.H.G. Rinnooy Kan and D.B. Shmoys (1985). The Traveling Salesman 

Problem, A Guided tour of Combinatorial Optimization, John Wiley and Sons, Chichester. 
Lessard, R., J.-M. Rousseau and M. Minoux (1989). A new algorithm for general matching 

problems using network flow subproblems. Networks 19, 459-479. 
Lipton, R.J., and R.E. Thrjan (1979). A separator theorem for planar graphs. SIAM!. Appl. Math. 

36, 177-189. 
Lipton, R.J., and R.E. Thrjan (1980). Applications of a planar separator theorem. SIAM J. Comput. 

9, 615-627. 
Little, C.H.C. (1974). An extension of Kasteleyn's method for enumerating the 1-factors of planar 

graphs, in: D.A. Holton (ed.), Combinatorial Mathematics, Proc. 2nd Australian Conf., Lecture 
Notes in Mathematics, Vol. 403, Springer-Verlag, Berlin, pp. 63-72. 

Lovasz, L. (1970a). The factorization of graphs, in: R. Guy, H. Hanani, N. Sauer and J. Schonheim 
(eds.), Combinatorial Strnctures and their Applications, Gordon and Breach, New York, NY, pp. 
243-246. 

Lovasz, L. (1970b). Generalized factors of graphs, in: P. Erdos, A. Renyi and v:r. S6s (eds.), 
Combinatorial Theory and its Applications II, Coloq. Math. Soc. Janos Bolyai, 4, North-Holland, 



Ch. 3. Matching 221 

Amsterdam, pp. 773-781. 
Lovasz, L. (1970c). Subgraphs with prescribed valencies./. Comb. Theory 8, 391-416. 
Lovasz, L. (1972a). The factorization of graphs II. Acta Math. Acad. Sci. Hung. 23, 223-246. 
Lovasz, L. (1972b). Normal hypergraphs and the perfect graph conjecture. Discrete Math. 2, 

253-267. 
Lovasz, L. (1972c). A note on factor-critical graphs. Stud. Sci. Math. Hung. 7, 279-280. 
Lovasz, L. (1972d). On the structure of factorizable graphs. Acta Math. Acad. Sci. Hung. 23, 

179-195. 
Lovasz, L. (1972e). On the structure of factorizable graphs, II. Acta Math. Acad. Sci. Hung. 23, 

465-478. 
Lovasz, L. (1973). Antifactors of graphs. Period. Math. Hung. 4, 121-123. 
Lovasz, L. (1975). 2-matchings and 2-covers of hypergraphs. Acta Math. Acad. Sci. Hung. 26 (1975) 

433-444. 
Lovasz, L. (1979a). Graph theory and integer programming. Ann. Discrete Math. 4, 141-158. 
Lovasz, L. (1979b). On determinants, matchings and random algorithms, in: L. Budach (ed.), 

Fundamentals of Computation Theory, FCT '79, Proc. Conf. on Algebraic, Arithmetic and 
Categorial Methods in Computation Theory, Akademie-Verlag, Berlin, pp. 565-574. 

Lovasz, L. (1983). Ear-decompositions of matching-covered graphs. Combinatorica 3, 105-117. 
Lovasz, L. (1987). Matching structure and the matching lattice. J. Comb. Theory, Ser. B 43, 187-222. 
Lovasz, L., and M.D. Plummer (1975). On bicritical graphs, in: A. Hajnal, R.Rado and V.T. S6s 

(eds.), Infinite and Finite Sets, Vol. JI, North-Holland, Amsterdam, pp. 1051-1079. 
Lovasz, L., and M.D. Plummer (1986). Matching Theory, Akademiai Kiad6, Budapest [also pub­

lished as: North-Holland Mathematics Studies Vol. 121, North-Holland, Amsterdam, 1986]. 
Marcotte, 0., and S. Suri (1991). Fast matching algorithms for points on a polygon. SIAM J. 

Comput. 20, 405-422. 
Marsh III, A.B. (1979). Matching Algorithms, PhD thesis, The Johns Hopkins University, Baltimore. 
Matsumoto, K., T. Nishizeki and N. Saito (1986). Planar multicommodity flows, maximum matchings 

and negative cycles. SIAM J. Comput. 15, 495-510. 
Mattingly, R.B., and N.P. Ritchey (1993). Implementing an O(./NM) cardinality matching algo­

rithm, in: D.S. Johnson and C.C. McGeoch (eds.), Network Flows and Matchings: First DIMACS 
Implementation Challenge, DIMACS Series in Discrete Mathematics and Theoretical Computer 
Science, Vol. 12, American Mathematical Society, Providence, Rl, pp. 539-556. 

Menger, K. (1927). Zur allgemeinen Kurventheorie. Fundam. Math. 10, 96-115. 
Micali, S., and V.V. Vazirani (1980). An O(.JTVilEI) algorithm for finding maximum matching in 

general graphs, in: Proc. 21th Annual Symp. on Foundations of Computer Science, IEEE, New 
York, NY, pp. 17-27. 

Miller, G.L., and J. Naor (1989). Flow in planar graphs with multiple sources and sinks, in: Proc. 
30th Annual Symp. on Foundations of Computer Science, IEEE, New York, NY, pp. 112-117. 

Mine, H. (1978). Permanents, Addison-Wesley, Reading. 
Minty, G.J. (1960). Monotone networks. Proc. R. Soc. Lond. 257, 194-212. 
Minty, G.J. (1980). On maximal independent sets of vertices in claw-free graphs. J. Comb. Theory, 

Ser. B 28, 284-304. 
Mirsky, L. (1971). Transversal Theory, Academic Press, London. 
Middendorf, M., and F. Pfeiffer (1990). On the complexity of the disjoint paths problem (extended 

abstract), in: W. Cook and P.D. Seymour, (eds.), Polyhedral Combinatorics, DIMACS Series 
in Discrete Mathematics and Theoretical Computer Science, Vol. 1, American Mathematical 
Society, Providence, RI, pp. 171-178. 

Motzkin, T.S. (1956). The assignment problem, in: J.H. Curtiss (ed.), Numerical Analysis, Proc. 
Symp. in Applied Mathematics, Vol. IV, McGraw-Hill, New York, NY, pp. 109-125. 

Mulder, H.M. (1992). Julius Petersen's theory of regular graphs. Discrete Math. 100, 157-175. 
Mulmuley, K., U.V. Vazirani and V.V. Vazirani (1987). Matching is as easy as matrix inversion. 

Combinatorica 7, 105-113. 



222 A.M.H. Gerards 

Munkres, J. (1957). Algorithms for the assignment and transportation problems. J. Soc. Ind. Appl. 

Math. 32-38. 
Murata, K. (1993). Combinatorial Relaxation Algorithm for the Maximum Degree of Subdetenninants: 

Computing Smith-McMillan Fonn at Infinity and Structural Indices in Kronecker Form, RIMS-954, 
Research Institute for Mathematical Sciences, Kyoto University. 

Murty, U.S.R. (1994). The Matching Lattice and Related Topics, preliminary report, University of 
Waterloo, Waterloo, Ontario. 

Naddef, D. (1982). Rank of maximum matchings in a graph. Math. Program. 22, 52-70. 
Naddef, DJ., and W.R. Pulleyblank (1982). Ear decompositions of elementary graphs and G Fz-rank 

of perfect matchings. Ann. Discrete Math. 16, 241-260. 
Nemhauser, G.L., and L.A. Wolsey (1988). Integer and Combinatorial Optimization, John Wiley and 

Sons, New York, NY. 
von Neumann, J. (1947). Discussion of a maximum problem, unpublished working paper, Institute 

for Advanced Studies, Princeton, NJ [Reprinted in: A.H. Taub (ed.), John von Neumann, 

Collected works, Vol. VI, Pergamon Press, Oxford, 1963, pp. 89-95]. 
von Neumann, J. (1953). A certain zero-sum two-person game equivalent to the optimal assignment 

problem, in: H.W. Kuhn and AW. Tucker (eds.), Contributions to the Theory of Games II, Annals 
of Mathematical Studies, Vol. 28, Princeton University Press, Princeton, NJ, pp. 5-12. 

Norman, R.Z., and M.O. Rabin (1959). An algorithm for a minimum cover of a graph. Proc. Am. 

Math. Soc. 10, 315-319. 
Ore, 0. (1955). Graphs and matching theorems. Duke Math. J. 22, 625-639. 
Oxley, J.G. (1992). Matroid Theory, Oxford University Press, New York, NY. 
Padberg, M.W. and M.R. Rao (1982). Odd minimum cut-sets and b-matchings. Math. Oper. Res. 7, 

67-80. 
Papadimitriou, C.H. (1977). The probabilistic analysis of matching heuristics, in: Proc. 15th Annual 

Allerton Conf on Communication, Control, and Computing, pp. 368-378. 
Peled, U.N., and M.N. Srinivasan (1989). The polytope of degree sequences, Linear Algebra Appl. 

114/115, 349-373. 
Petersen, J. (1891). Die Theorie der regularen graphs. Acta Math. 15, 193-220. 
Pippinger, N. (1979). On simultaneous resource bounds, in: Proc. 20th Annual Symp. on Foundations 

of Computer Science, IEEE, New York, NY, pp. 307-311. 
Plaisted, D.A. (1984). Heuristic matching for graphs satisfying the triangle inequality. J. Algorithms 

5, 163-179. 
Plummer, M.D. (1992). Matching theory - a sampler: from Denes Konig to the present. Discrete 

Math. 100, 177-219. 
Plummer, M.D. (1993). Matching and vertex packing: how "hard" are they? in: J. Gimbel, J.W. 

Kennedy and L.V. Quintas (eds.), Quo Vadis, Graph Theory? A Source Book for Challenges and 
Directions, Ann. Discrete Math. 55, 275-312. 

Prim, R.C. (1957). Shortest connection networks and some generalizations. Bell System Tech. J. 36, 
1389-1401. 

Pulleyblank, W.R. (1973). Faces of Matching Polyhedra, PhD thesis, Department of Combinatorics 
and Optimization, University of Waterloo, Waterloo, Ontario. 

Pulleyblank, W. (1980). Dual integrality in b-matching problems. Math. Program. Study 12, 176-196. 
Pulleyblank, W.R. (1981). Total dual integrality and b-matchings. Oper. Res. Lett. 1, 28-30. 
Pulleyblank, W.R. (1983). Polyhedral combinatorics, in: A Bachem, M. Grotschel and B. Korte 

(eds.), Mathematical Programming, the State of the Art: Bonn 1982, Springer-Verlag, Berlin, pp. 
312-345. 

Pulleyblank, W.R. (1989). Polyhedral combinatorics, in: G.L. Nemhauser, A.H.G. Rinnooy Kan and 
M.J. Todd (eds.), Optimization, Handbooks in Operations Research and Management Science, 
Vol. l, North-Holland, Amsterdam, pp. 371-446. 

Pulleyblank, W.R. (1995). Matchings and stable sets, in: R. Graham, M. Grotschel, and L. Lovasz 
(eds.), Handbook of Combinatorics, to appear. 



Ch. 3. Matching 223 

Pulleyblank, W., and J. Edmonds (1974). Facets of I-matching polyhedra, in: C. Berge and D. 
Ray-Chaudury (eds.), Hypergraph Seminar, Springer-Verlag, Berlin, pp. 214-242. 

Rabin, M.0., and Y.V. Vazirani (1989). Maximum matchings in general graphs through randomiza­
tion. J. Algorithms 10, 557-567. 

Recski, A. (1989). Matroid Theory and its Applications in Electrical Networks and Statics Springer-
Verlag, Heidelberg. ' 

Reichmeider, P.F. (1984). The Equivalence of some Combinatorial Matching Problems, Polygonal 
Publishing House, Washington DC. 

Reingold, E.W., and K.J. Supowit (1983). Probabilistic analysis of devide-and-conquer heuristics for 
minimum weighted Euclidean matching. Networks 13, 49-66. 

Reingold, E.M., and R.E. Tarjan (1981). On a greedy heuristic for complete matching. SIAM J. 
Comput. 10, 676--681. 

Roth, A.E., U.G. Rothblum and J.H. Vande Vate (1993). Stable matchings, optimal assignments 
and linear programming. Math. Oper. Res. 18, 803-828. 

Sbihi, N. (1980). Algorithme de recherche d'un stable de cardinalite maximum dans une graphe 
sans etoile. Discrete Math. 29, 53-76. 

Schneider, H. ( 1977). The concepts of irreducibility and full indecomposability of a matrix in the 
works of Frobenius, Konig and Markov. Linear Algebra Appl. 18, 139-162. 

Schrijver, A (1983a). Min-max results in combinatorial optimization, in: A Bachem, M. Grotschel 
and B. Korte (eds.), Mathematical Programming, the State of the Art: Bonn 1982, Springer-Verlag, 
Berlin, pp. 439-500. 

Schrijver, A (1983b). Short proofs on the matching polyhedron. J. Comb. Theory, Ser. B 34, 
104-108. 

Schrijver, A. (1986). Theory of Linear and Integer Programming, John Wiley and Sons, Chichester. 
Schrijver, A. (1995). Polyhedral combinatorics, in: R.Graham, M. Grotschel, and L. Lovasz (eds.), 

Handbook of Combinatorics, to appear. 
Schrijver, A., and P.D. Seymour (1977). A proof of total dual integrality of matching polyhedra, 

Mathematical Centre Report ZN 79/77, Mathematisch Centrum, Amsterdam. 
Schrijver, A., and P.D. Seymour (1994). Packing odd paths, J. Comb. Theory, Ser. B 62, 280-288. 
Schwartz, J.T (1980). Fast probabilistic algorithms for verification of polynomial identities. J. Assoc. 

Comput. Mach. 27, 701-717. 
Sebo, A. (1986). Finding the I-join structure of graphs. Math. Program. 36, 123-134. 

Sebo, A. (1987). A quick proof of Seymour's theorem on t-joins. Discrete Math. 64, 101-103. 

Sebo, A. (1988). The Schrijver system of odd join polyhedra. Combinatorica 8, 103-116. 
Sebo, A (1990). Undirected distances and the postman-structure of graphs. J. Comb. Theory, Ser. B 

49, 10-39. 
Sebo, A. (1993). General antifactors of graphs. J. Comb. Theory, Ser. B 58, 174-184. 
Seymour, P.D. (1977). The matroids with the max-flow min-cut property. J. Comb. Theory, Ser. B 

23, 189-222. 
Seymour, P.D. (1979). On multi-colourings of cubic graphs, and conjectures of Fulkerson and Tutte. 

Proc. Lond. Math. Soc., Third Ser. 38, 423-460. 
Seymour, P.D. (1981). On odd cuts and plane multicommodity flows. Proc. Lond. Math. Soc., Third 

Ser. 42, 178-192. 
Shapley, L.S., and M. Shubik (1972). The assignment game I: the core. lnt. J. Game Theory 1, 

111-130. 
Sinclair, A., and M. Jerrum (1989). Approximate counting, uniform generation and rapidly mixing 

Markov chains. Inf Comput. 82, 93-133. 
Steele, J.M. (1981). Subaddittive Euclidean functionals and nonlinear growth in geometric proba­

bility. Ann. Probab. 9, 365-376. 
Sterboul, F. (1979). A characterization of the graphs in which the transversal number equals the 

matching number. J. Comb. Theory, Ser. B 27, 228-229. . . 
Supowit, K.J., D.A. Plaisted and E.M. Reingold (1980). Heuristics for. weighted perfe~t matchmg, m: 

Proc. J2th Annual ACM Symp. on Theory of Computing, Assoc1at1on for Computmg Machmery, 



224 A.M.H. Gerards 

New York, NY, pp. 398-419. 
Supowit, K.J., and E.M. Reingold (1983). Devide and conquer heuristics for minimum weighted 

Euclidean matching. SIAM J. Comput. 12, 118-143. 
Supowit, K.J., E.M. Reingold and D.A. Plaisted (1983). The traveling salesman problem and 

minimum matching in the unit square. SIAM J. Comput. 12, 144-156. 
Szigeti, Z. (1993). On Seymour Graphs, Technical report, Department of Computer Science, Eotvos 

Lorand University, Budapest. 
Tardos, E. (1985). A strongly polynomial minimum cost circulation algorithm. Combinatorica 5, 

247-255. 
Thrjan, R. E. (1983). Data Structures and Network Algorithms, Society for Industrial and Applied 

Mathematics, Philadelphia, PA. 
Truemper, K (1992). Matroid Decomposition, Academic Press, San Diego. 
Tutte, W.T. (1947). The factorization of linear graphs. J. Lond. Math. Soc. 22, 107-111. 
Tutte, W.T. (1952). The factors of graphs. Can. J. Math. 4, 314-328. 
Tutte, W.T. (1954). A short proof of the factor theorem for finite graphs. Can. J. Math. 6, 347-352. 
Tutte, W.T. (1974). Spanning subgraphs with specified valancies. Discrete Math. 9, 97-108. 
Tutte, W.T. (1981). Graph factors. Combinatorica 1, 79-97. 
Vaidya, P.M. (1989). Geometry helps in matching. SIAM J. Comput. 18, 1201-1225. 
Vaidya, P.M. (1990). Reducing the parallel complexity of certain linear programming problems, 

in: Proc. 31th Annual Symp. on Foundations of Computer Science, IEEE, New York, NY, pp. 
583-589. 

Valiant, L.G. (1979). The complexity of computing the permanent. Theor. Comput. Sci. 8, 189-201. 
Vande Vate, J.H. (1989). Linear programming brings marital bliss. Oper. Res. Lett. 8, 147-153. 
Vazirani, V.V. (1989). NC algorithms for computing the number of perfect matchings in K3,3-free 

graphs and related problems. Inf Comput. 80, 152-164. 
Vazirani, V.V. (1994). A theory of alternating paths and blossoms for proving correctness of the 

O(../VE) general graph maximum matching algorithm. Combinatorica 14, 71-109. 
Vizing, VG. (1964). On an estimate of the chromatic class of a p-graph (in Russian), Diskretnyi 

Analiz 3, 25-30 
Vizing, V.G. (1965). The chromatic class of a multigraph (in Russian), Kibemetika 3, 29-39 [English 

translation: Cybernetics 1 (3) (1965) 32-41]. 
Warshall, S. (1962). A theorem on Boolean matrices. J. Assoc. Comput. Mach. 9, 11-12. 
Weber, G.M. (1981). Sensitivity analysis of optimal matchings. Networks 11, 41-56. 
Welsh, D.J.A. (1976). Matroid Theory, Academic Press, London. 
Witzgall, C., and C.T. Zahn, Jr. (1965). Modification of Edmonds' maximum matching algorithm. J. 

Res. Nat. Bur. Stand. - B. Math. Math. Phys. 69B, 91-98. 
Yakovleva, M.A. (1959). A problem on minimum transportation cost, in: V.S. Nemchinov (ed.), 

Applications of Mathematics in Economic Research, lzdat. Social'no-Ekon. Lit., Moscow, pp. 
390-399. 

Yannakakis, M. (1988). Expressing combinatorial optimization problems by linear programs, Work­
ing paper, AT&T Bell Laboratories [Extended abstract in: Proc. 20th Annual ACM Symp. on 
Theory of Computing, Association for Computing Machinery, New York, NY, pp. 223-228]. 


