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Abstract. A methodology is introduced based on first-order logic, for 
the design and decomposition of abstract domains for abstract interpre
tation. First, an assertion language is chosen that describes the proper
ties of interest. Next, abstract domains are defined to be suitably chosen 
sets of assertions. Finally, computer representations of abstract domains 
are defined in the expected way, as isomorphic copies of their specifica
tion in the assertion language. In order to decompose abstract domains, 
the notion of prime (conjunctive) factorization of sets of assertions is 
introduced. We illustrate this approach by considering typical abstract 
domains for ground-dependency and aliasing analysis in logic program
ming. 

1 Introduction 

In the theory of abstract interpretation [3], abstract domains are (computer) 
representations of prnperties. The semantics of an abstract domain is given by 
a function called concretization, that maps elements of the abstract domain 
into elements of a 'concrete domain'. Two fundamental aspects of the study 
of abstract domains are the investigation of representations supporting efficient 
implementations, and the comparative analysis of the properties represented by 
abstract domains. This paper is concerned with the latter aspect. 

Previous work on this subject is mainly based on two equivalent techniques 
( cf. [3]): Galois connections and closure operators. In [3] comparison of abstract 
domains is defined by means of the notion of abstraction, where an abstract 
domain is more abstract than another one if there is a Galois insertion from 
the first into the latter. This notion is weakened in [7], where the comparison 
is defined w .r. t. a given property, by means of the notion of quotient of one 
abstract domain w.r.t. another one, describing the part of the former abstract 
domain that is useful for computing the information described by the latter 
one. In [4], the approach based on closure operators is used for investigating 
domain complementation in abstract interpretation. The authors formalize the 
concept of decomposition of an abstract domain, as a set of abstract domains 
whose reduced product yields the initial abstract domain and use the notion of 
pseudo-complement for decomposing abstract domains. 
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In this paper we propose a method based on first-order logic for the design 
and decomposition of abstract domains. First, an assertion language is chosen 
whose syntax specifies the properties of interest, and whose semantics is fixed by 
means of a structure characterizing the meaning of the predicates in accordance 
with the properties they are supposed to describe. Next, an abstract domain 
is defined to be a suitably chosen set of assertions. Finally, computer represen
tations of abstract domains are defined in the expected way, i.e., they have to 
respect (i.e., be isomorphic to) their specification in the assertion language. In 
order to decompose abstract domains, the notion of prime (conjunctive) factor
ization of sets of assertions is introduced. This is a standard algebraic notion of 
factorization, where an abstract domain is factorized in pairwise 'disjoint' parts. 

This method has various benefits. First, it allows one to focus only on the ab
stract domains that describe the properties of interest, that are those expressible 
in the chosen assertion language. This is not the case for the standard methods 
above mentioned, where all possible abstract domains (on the concrete domain) 
are taken into account. Moreover, using our method abstract domains can be de
composed in 'disjoint' factors. This desirable property i.s not guaranteed in the 
decompositions obtained using the approach of [4]. Finally, the two phases of 
design and computer representation of an abstract domain are neatly separated, 
where the design phase is performed at the logical level. 

We illustrate this approach by considering typical abstract domains for 
ground-dependency and aliasing analysis in logic programming. The fragment .C 
of a first-order assertion language introduced in [13] (actually, a slight extension 
of this) is used. Logical descriptions of various abstract domains are given: Def 
[8] and Pos [14, 15] for ground-dependency analysis; Sharing [10) and ASub [18) 
for aliasing analysis. Maximal factorizations for these domains are obtained by 
inspecting the structure of the assertions in the abstract domains, and they are 
used for analyzing and comparing the abstract domains. 

The paper is organized as follows. The next section introduces our method
ology. Section 3 presents an assertion language for the design of typical abstract 
domains for logic programming, and Section 4 contains a comparative study of 
various abstract domains for logic programming. Finally, Section 5 contains a 
discussion on related work and some conclusive remarks. 

2 Abstract Domains in Assertion Form 

First-order logic is a familiar formalism, used for specifying as well as for reason
ing about properties. We show in this section how first-order logic can be used 
for the design and decomposition of abstract domains for abstract interpretation. 

Here and in the sequel C denotes a generic assertion language. We assume 
that the semantics of the predicates in .C is fixed according to their intended 
meaning, by a given structure denoted by M. Assertions are indicated by</>, '1/J. 
As already mentioned, abstract domains represent properties of some syntactic 
objects, usually a subset of the variables of the considered program. Thus, the 
definition of abstract domain we give is parametric with respect to a set V 
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of syntactic objects. We adopt the following convenient assumptions: 1. V is 
(identified with) a set of distinct variables of C; 2. in the definition of abstract 
domain, only the set of assertions of C whose free variables are contained in 
V is considered, denoted by A(C, V); 3. assertions with the same meaning are 
identified. 

This last assumption amounts to consider equivalence classes of assertions of 
A(C, V), where (4>] denotes all the assertions that are logically equivalent to </J. 
For simplicity, in the sequel the squares in [4>] are often omitted. 

Definition l. (Abstract Domain on£) An abstract domain (on .C), denoted 
by A (possibly subscripted), is a set of assertions of A(C, V) containing false, 
and closed under conjunction and variance1 • 0 

Observe that this definition of abstract domain is consistent with the original 
one given by the Cousots (cf. [3]): the 'concrete domain' is the set of sets of 
valuations, and the 'concretization function' maps an assertion 4> into the set of 
valuations that satisfy <f> . 

. In the sequel, for simplicity, we shall often avoid to mention the element false 
when specifying the set of assertions of an abstract domain. 

Example 1. A simple abstract domain for the study of the sign of program vari
ables assuming integer values is given in [3]. For a considered set V of program 
variables, this domain can be specified in our formalism as follows: £ contains 
the constants and function symbols of the program, and the unary predicates ?:, 
:::;; M maps terms into integers according with their intended interpretation, and 
specify the semantics of ?: , ~ in the expected way. Then the abstract domain 
for the study of the sign of the variables in V can be described by the set Signv 
of assertions that are conjunctions of atoms of the form x ?: 0, or x ~ 0, with x 
in V. 0 

Viewing abstract domains as sets of assertions allows us to use the following 
notion of (conjunctive) factorization for decomposing (in£) an abstract domain 
in 'disjoint' parts. 

The notation Ai = A2 is used, meaning that A1 and A2 contain the same 
equivalence classes. Moreover, for two sets Ai, A2 of assertions, Ai AA2 denotes 
the set {[<Pi A 4>2] I 4>1 E Ai, 4>2 E A2}· 

Definition 2. (Prime Factorization on £) The set {Ai, ... , An} is a (con
junctive) prime factorization of A if the following conditions hold: 
(a) If n > 1 then Ai =J. {true,false}, for i E [l,n]; 
(b) for every i =J. j A; n Ai = {true, false}; 
(c) Ai A ... A An= A. 

We call A reduced if it has only one factorization. Moreover, a factorization 
of A is maximal if Ai is reduced, for i E [l, n]. D 

1 Recall that a. variant of an assertion <P is a.ny assertion <Pu obtained by applying to 
tjJ a. substitution u that renames the variables of tjJ 
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The name 'prime' in the above definition is used to underline the similarity 
of our definition with the standard algebraic notion of factorization of integers 
in relatively prime factors. For simplicity, in the sequel we write 'factorization' 
instead of 'prime factorization'. Clearly, if A is reduced then {A} is its only 
factorization, and it is maximal. 

Example 2. It is easy to check that { Sign~0 , Sign~0 } is a maximal factorization 
of Signy, where Sign<o is the set of assertions that are conjunctions of atoms 
of the form x < O with x in V, and where Sign>o is defined analogously. - , -

0 

In order to improve the precision of the static analysis of logic programs, 
abstract domains can be composed by means of the notion of reduced-product 
([3]). Intuitively, the reduced product of two domains is obtained from the car
dinal product of the domains by identifying pairs of elements whose conjunction 
represent the same information. A factorization yields a reduced-product in the 
expected way. 

Proposition 3. If { A1 , ... , A.,} is a factorization of A then A is the reduced
product of .A1, . .. , .A.,. 

Proof. Let Val denote the set of valuations. M provides a Galois insertion of an 
abstract domain .A into the concrete domain 2 Va.I consisting of sets of valuations. 
This Galois insertion is determined by the concretization function rA that maps 
an assertion </J of .A into the set of valuations that satisfy </>. Observe that 'M 
is injective because equivalent assertions are identified. Then the operator /\ on 
abstract domains (on .C) is a reduced-product operator. D 

The benefit of using this first-order framework is that the definition, decom
position and comparison of abstract domains can be performed in a uniform 
and familiar setting. However, (computer) representations of abstract domains 
for their efficient manipulation ([9)) often need different lattice structures (see, 
e.g., [2] for ground-dependency analysis). Therefore the notion of representation 
of an abstract domain is defined as follows. First, we need some preliminary 
terminology. The following notion of embedding of an abstract domain into .C is 
used. Here and in the the sequel 'D denotes an abstract domain (on any complete 
lattice) and /'D denotes its concretization function (cf. [3)). 

Definition 4. (Embedding) An embedding of 'D in .C is an injective mapping 
e:v : 'D-+ £ s.t. for every Din D, o: is in 1v(D) if and only if e:(D) is true under 
o:. 0 

Thus an embedding of a domain into .C consists of the (equivalence classes of 
the) assertions <!>D characterizing the sets 1v(D) of valuations, with D in D. 
The following result is an easy consequence of the definition of concretization 
function ([3]). 
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Proposition 5. The image e:v('D) of an embedding is an abstract domain on£. 

We can now formalize the concept of representation domain. 

Defi.nition6. (Representation Domain) V is a representation of A (or 
equivalently A and V are isomorphic, denoted by A :::: 'D) if there exists an 
embedding e:v s.t. A= e:v(V). 

0 

The definition of representation domain clarifies the role of domains in as
sertion form, as those used in the design phase, in contrast to the representation 
domains used in the (efficient) implementation. 

Example 3. Suppose V = { x }. Then a representation of Signv is the familiar 
lattice pictured below 

0 

We conclude this section with a discussion on the relationship of our approach 
with the one based on closure operators. Following [3], one can associate with 
each abstract domain an (upper) closure operator (on sets of valuations) by 
means of the concretization function r mapping an assertion into the set of 
valuations that satisfy that assertion. The closure operator associated with an 
abstract domain is the set of sets of valuations obtained by applying / to each of 
its assertions. In the standard approach, also the vice versa holds, i.e., the lattice 
of abstract domains is isomorphic to the lattice of upper closure operators. This 
result does not hold when Definition 1 is considered, for two reasons. One is the 
hypothesis of closure under variance w.r.t. V: a set of valuations that is not closed 
under variance (w.r.t. V) 2 is an (upper) closure operator, but it is not an abstract 
domain (on £). The other reason is related to the expressivity of the chosen 
assertion language £: (the image of) a closure operator is an abstract domain 
(on£) only if it can be described by means of a set of assertions (of£). However, 
if one assumes that the assertion language allows to describe all sets of valuations 
closed under variance (w.r.t. V), then the lattice of abstract domains (according 
with Definition 1) is isomorphic to the lattice of upper closure operators on sets 
of valuations closed under variance (w.r.t. V). 

2 The notion of variant w.r.t. V of a set d of valuations is defined in the expected way: 
let p be a substitution that renames the variables of V with other variables of V. 
Then a variance of d is obtained by applying p to the domain of every valuation 
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3 Abstract Domains for Logic Programming 

In this section, we show how a slight extension of the first-order assertion lan
guage C introduced in (13] can be used for the design and decomposition of 
typical abstract domains for the static analysis of logic programs. 

Term properties, like groundness and sharing, have been identified as crucial 
when analyzing the run-time behaviour of logic programs. For instance, ground
dependency analysis can be used for compile optimization, by using matching 
instead of unification when it is known that at a given program point a variable 
is bound to a ground term every time the execution reaches that point. Informa
tion on the sharing among variables in a logic program is useful for important 
optimizations, like and-parallelism. The assertion language here considered al
lows to express properties of terms, like groundness, freeness, linearity, sharing, 
covering and independency. Informally, a term is ground if it does not contain 
variables, it is free if it is a variable, and it is linear if every variable occurs in 
it at most once. Moreover, !!- set of terms share if they have at least one com
mon variable, while they are independent if they do not share. Finally, a term 
is covered by a set of terms if the set of its variables is contained in the union 
of the sets of variables of the terms in that set. For instance, the term f(x, y) is 
covered by the set {g(x),g(y)}. 

In order to define C, a countable set Var of {logical) variables is used, denoted 
by v, x, y, z, possibly subscripted. Here and in the sequel, S represents a finite 
set of logical variables, and !SI its cardinality. Moreover, the notation S C S' 
indicates that S is a proper subset of S'. 

Definition 7. (The Assertion Language) Let C' be the smallest set F of 
formulas containing atoms of the form var(x), ground(x), linear(x), share(S), 
and s.t. if </>1 and </>2 are in F then -i</>1 and </>1 /\ </>2 are also in F. The assertion 
language .C consists of all the formulas of the form Vxi, ... , xn(</>), with <f> E .C', 
andn~Q O 

The formula </> V t/J is used as a shorthand for -.( -.<!J /\ -.'ljJ), <f> :::} t/J denotes 
...,</> V 1/;, and</><:? 1/J stands for(</>:::} 'if;)/\ (t/J:::} <f>). Moreover, the propositional 
constants true and false are assumed to be in .C, where true is identified with 
the conjunction over the emtpy set of assertions /\0 and false with V0. In the 
sequel, the notation share(x,y) is used as shorthand of share({x,y}), with x,y 
distinct. 

Observe that only a weak form of universal quantification is allowed, where V 
does not occur in the scope of any-.. For instance, Vz ( var(z) /\-.share( {z, x})) 
is in .C, but -,'fz ( var(z) /\-.share( {z, x})) is not in .C. 

The meaning of assertions in .C is specified by means of the following struc
ture M. Let OVar be the set of {object) variables, here identified for simplicity 
with Var, and let Fun be a set of functors with rank (constants are identified 
with functors of rank 0). In the following, occ(x, r) denotes the number of occur
rences of the variable x in the term r, and OVar(r) the set of (object) variables 
occurring in r. 
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Definition 8. The structure M contains the universe U consisting of the {ob
ject) terms built on OVar and Fun. Moreover, for each predicate symbol p of C, 
M contains a predicate in U, also denoted by p, with the following semantics: 

MI= var(r) if r E OVar 
M I= ground(r) if OVar(r) = 0 
MI= linear(r) if occ(x, r} = 1 for every x in OVar(r) 
MI= share({ri, . .. ,rn}) ifn~=l OVar(ri) =fa 0 

D 

Example4. The assertion -ishare({x,y, z})V share({x,y}) is valid in M. In fact, 
for every valuation a, if OVar(xa) n OVar(ya) =fa 0 then MI= share({x,y})a, 
otherwise M I= -ishare( { :z:, y, z} )a. D 

Note that even if share is not first-order (its argument is a set), it can be ex
pressed in first-order logic by means of a family of first-order predicates sharen 
of rank n, with n ~ 0. The set of valid (in M) assertions of.Chas been charac
terized by means of a complete and decidable theory T, by means of a simple 
axiomatization (see (13]}. 

The completeness and decidability of T provides an automatic tool for prov
ing properties of some elements of an abstract domain, in the following way. In 
order to prove that an element 4> of a domain satisfies a property P, specified 
in £ by means of the assertion '!/;, it is sufficient to check the validity of the 
implication tj> => '!/;. 

In order to use C for the static analysis of logic programs, it is necessary to 
assume that U contains the constants and function symbols of the considered 
class of programs. Moreover, we adopt the notation of the previous section: V 
denotes the set of (logical) variables representing the considered (program) .varl.
ables, and A(.C, V) the set of assertions of£ whose free variables are contai~ed 
in V. Therefore substitutions are identified with valuations. 

An abstract domain (on .C} is specified according with Definition 1. Observe 
that we obtain a more specific notion of abstract domain than the original one 
( cf. (3]), because of the choice of the assertion language, and because of the 
condition of closure under variance. For instance, {ground(x ), true, false} would 
represent an abstract domain in the original definition, but it is not a legal one in 
our definition (unless V = { :z:} ). The condition of closure under variance w.r.t. V 
has been implicitly assumed in the literature on abstract interpretation of logic 
programs, but it has not been taken into account when reasoning about these 
domains using the standard techniques based on Galois insertions or closure 
operator (cf. (4]). 

We conclude this section with a simple example. 

Example 5. Consider the abstract domain Con introduced by Mellish (17) and 
used in early mode and groundness analyzers (12]. Con consists of the bottom 
element ..L, and of the sets S = {x1 , ••• , :z:n} of variables ofV, with concretization 
function mapping ..L into 0 and 'YCon.(S) = {u I OVar(xu) = 0 for all x ES}. 
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Let Aeon be the set of assertions that are conjunctions of atoms of the form 
ground(x), with x in V. It is easy to show that Aeon satisfies Definition 1, and 
that Con is a representation of Aeon, by considering the embedding f.Con that 
maps J_ into false and a set {x1, ... ,xn} into the assertion ground(x1 ) /\ •.. /\ 

ground(xn)· 0 

4 Ground-Dependency and Aliasing Analysis 

This section contains a comparative analysis of various abstract domains for the 
static analysis of logic programs, namely Def, Pos, Sharing and ASub. Each of 
these domains is shown to be the representation of an abstract domain on £. 
These logical characterizations in £ of the domains are used for deriving their 
maximal factorizations, for studying and comparing the original domains, as well 
as for defining new ones. 

4.1 Def in Logical Form 

The abstract domain Def was introduced by Marriott and S~ndergaard for 
ground-dependency analysis in [15], based on previous work by Dart ([8]) on 
groundness analysis in deductive databases. We show that Def can be factor
ized into two reduced domains, describing groundness and covering, respectively. 

First, we recall the definition of Def. Def is the largest class of posi
tive boolean functions whose models are closed under intersection, augmented 
with the bottom element false. Recall that a boolean function F is positive if 
F(true, ... , true) = true. Here boolean functions are represented by (equiva
lence classes of) propositional formulas, as e.g. in [15]. In order to define the 
concretization function /Def, substitutions are viewed as truth assignments as 
follows. For a substitution u, the truth assignment groundsu maps a proposi
tional variable x to true iff xr:; is ground, and to false otherwise. Moreover, the 
notion of instance ff1 of a substitution u is used, meaning that u' is obtained 
by composing r:; with some substitution. The concretization function /Def maps 
an element F of Def into the set /Det(F) of those substitutions r:; s.t. for every 
instance u' of u, F under the truth assignment groundsu' is true. Intuitively, 
/DeJ(F) extracts the 'monotonic' (in the sense that its truth is preserved under 
instantiation) information described by the propositional formula F. 

Consider the following abstract domain Avef on £. 

Definition 9. Ave/ is the set of assertions that are conjunctions of formulas of 
the form l:/z ( var(z) /\ share(z, x):::} share(z, Y1) V ... V share(z, Yn)), with n ~ 0, 
where x, y1 , ... , Yn are in V, and z is a fresh variable. 0 

We show that Def is a representation of Avef, and provide a maximal fac
torization of Avef. 

First, Def is characterized in logical form by means of the following trans
formation. We use the representation of an element F in Def as a conjunction 
of formulas, called definite clauses, of the form y1 /\ ... /\ Yn -+ x with n ~ 0 (see 
[8, 2]). 
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Definition 10. The transformation eve/ : De/ - J:, maps Finto <PF, defined as 
follows: 

- <PF = 'v'z(var(z) /\ share(z,x) => share(z,y1) V ... V share(z,yn)) if F =Yi/\ 

· · · /\ Yn - x. 
- <PF = <PF1 /\ ..• /\ <PF,. if F = F1 /\ ... /\ F1r., k ~ 0, and all the Fi's are definite 

clauses. 
D 

Observe that, for n = 0 we obtain the assertion 'v'z ( var(z) /\ share(z, x) =>false), 
that is equivalent to ground(x). 

Example 6. The element x /\ (y +-+ w) is mapped by eve/ into the assertion 
ground(x) /\ 'v'z (var(z) /\ share(z,w) => share(z, y)) /\ 'v'z (var(z) /\ share(z, y) => 
share(z, w)). o 

Next, the transformation of Definition 10 is shown to be correct. 

Lemma 11. eoer is an embedding of Def into C. 

Finally, using the above Lemma we can prove that De/ is a representation 
of AveJ· 

Theorem12. Def '.::::'. Aoef· 

In order to analyze De/ and to compare it with other abstract domains, a 
maximal factorization of Avef is given. To this end, we use the following domains. 
For every IVI ~ n ~ 0, consider the domain Avef." consisting of the conjunctions 
of formulas of the form 'v'z ( var(z)/\share(z, x) => share(z, y1 )V ... V share(z, Yn)), 
with Yi. ... , Yn distinct variables of V. The following result holds. 

Lemma13. {Aoef" I n E [O, IVI]} is a maximal factorization of Aoef· 

Let Avef+ = /\ne[l,IVIJADe/"· A representation of Avef+ is provided by the 
set De/+ of positive boolean functions that can be represented as conjunctions 
of clauses y1 /\ •.• /\ Yn --+ x, with n ~ 1, plus the bottom element false, with 
concretization function the one of De/. Then by Lemma 13 it follows that Def 
is (isomorphic to) the reduced-product of the domain Con and De/+. 

It has been recently shown in [4) that De/ characterizes the ground
dependency information on V described by the domain Sharing. We shall see 
that this result is easily derived from the logical descriptions of these domains. 

4.2 Pos in Logical Form 

In order to study ground-dependency analysis, the abstract domain Pos was 
introduced by Marriott and S~ndergaard [14, 15), consisting of the positive 
boolean functions, plus the bottom element false, with concretization function 
equal to /De/· 

Consider the following abstract domain APoa. 
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Definition 14. Ap08 is the set of assertions that are conjunctions of for
mulas of the form \fz(var(z) /\ share(z,x1) => Q(z,y1, · · · ,yn)) V ... V 
V'z(var(z)/\share(z,xm) => Q(z,y1, ... ,y,.)), with m ~ 1, and n ~ 0, where 
x1 , ..• , Xm, y1 , ••• , Yn are in V, and z is a fresh variable. 0 

We show that Pos is a representation of APos, and provide a maximal fac
torization (on C) of APos. 

First, Posis characterized in logical form by means of the following transfor
mation. We use the representation of an element F of Pos as a conjunction of 
clauses, of the form y1 /\ •.• /\ Yn---+ X1 V ... V Xm, m ~ 1, n ~ 0 (cf. [2]). In the 
sequel Q(z, y1 , ... , y,.) denotes the assertion share(z, Y1) V ... V share(z, Yn)· 

Definition 15. The transformation €.Pos : Pos ---+ .C maps Finto </>F, defined as 
follows: 

- </>F = \fz(var(z) /\ share(z,x1) => Q(z,yi, ... ,yn)) V ... V \lz(var(z) /\ 
share(z,xm)::} Q(z,y1, . .. ,yn)) if F =Yi/\ ... Ayn---+ X1 V ... V Xrn. 

- </>F = <i>F, /\ .. . /\</Jp. if F =Fi/\ ... /\Fk, k ~ 0, and all the F;'s are clauses. 0 

It is easy to check that the above transformation restricted to the elements 
of De/ coincides with f.De/· 

Example 7. The element x Vy is mapped by €.p08 into the assertion Vz ( var(z) /\ 
share(z, x) ::} false) V\lz ( var(z) /\ share(z, y) ::} false), equivalent to ground(x) V 
ground(y). D 

Next, the transformation of Definition 15 is shown to be correct. 

Lemma 16. £p08 is an embedding of Pos into .C. 

Finally, uising Lemma 16, we can prove that Pos is a representation of Ap08 • 

Theorem 17. Pos ~ Ap0 •• 

In order to give a maximal factorization of APoH we use the decomposition of 
Av01, and the following domains. For every !VI ~ n ~ 0 and !VI ~ m ~ 2, con
sider the domain APos""" consisting of the conjunctions of formulas of the form 
Yz ( var(z) /I. share(z, xi) => Q(z, Yi, ... , Yn)) V ... V \fz ( var(z) /\ share(z, xrn) => 
Q(z,yi, ... ,yn)) with x1, ... ,Xm and Y1, ... ,yn distinct variables•of V. The 
following result holds. 

Lemma18. {Aoef",APos~•" In E [O,JVl],m E [2,JVJ]} is a maximal factoriza
tion of Ap08 • 

Let APosV = An~O,jVIJ,mE[2,jVl]APosm·n. A representation of APosV is pro
vided by the set Pas of positive boolean functions that can be represented as 
conjunctions of clauses YI /\ ... /\ Yn ---+ x1 V ... V Xm, with n ~ 0, m 2 2, plus 
the bottom element false, with concretization function the one of Pas. Then 
by Lemma 18 it follows that Pas is (isomorphic to) the reduced-product of the 
domains Con, Def+ and Pos v. It has been shown in [6] that Def is properly 
contained in Pos. Lemma 18 characterizes logically the other part of Pos. 
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4.3 Sharing in Logical Form 

In order to study information on the possible sharing among abstract variables, 
an abstract domain extensively used in abstract interpretation is the domain 
Sharing by Jacobs and Langen [10]. Sharing is the set of sets Ll E 22v s.t. if 
Ll ¥- 0 then 0 E Ll. Its concretization function 'YSharing maps an element Ll of 
Sharing into the set 'YSharing(Ll) of those substitutions q whose approximation 
set A( u) is an element of Ll. The approximation set A( a) consists of all the sets 
occ(u, x) = { v I v in the domain of a s.t. x occurs in vu}, for all the variables 
x occurring in the range of q. 

Consider the following abstract domain Asharing. 

Defi.nition.19. Asharing is the set of assertions of .C that are conjunctions of 
formulas of the form Vz ( var(z)Ashare(z, x1)A .. . /\share(z, Xm) => share(z, y1)V 
... V share(z, Yn)) with m 2::: 1, n 2::: 0, where x1, ... , Xm, y1, ... , Yk are in V, and 
z is a fresh variable. D 

. We show that Sharing is a representation of Asharing, and provide a maximal 
fact<;>rization (on .C) of Asharing· 

First, Sharing is characterized in logical form by means of the following 
transformation. In the sequel, for the sake of simplicity, we write share(x, S) 
instead of share({x} US). 

Definition 20. The transformation esharing maps Ll into the assertion 

rP.tl = /\ Vz ( var(z) A share(z, S) => share(z, S1) V ... V share(z, Sk)), 
S~V 

with {S1, ... , Sk} = {S' IS' E Ll s.t. S ~ S'}. 
0 

Let </>s denote the conjunct of </>.a. corresponding to the subset S of V. 
Observe that if S is not contained in any set of Ll, then <Ps is the assertion 

Vz (var(z) /\ share(z, S) =>false), which says that the variables of Scan only be 
bound to terms sharing no variables. If Sis a singleton, say S = {x}, then </>s 
describes information on ground-dependency for x. Indeed, it is not difficult to 
see that in this case </>s can be rewritten into an assertion of Ave/· The other 
assertions </>s, for S not singleton and k > O, describe information about sharing 
of sets containing at least three variables. 

Example B. Consider .Ll = {0,{x},{:c,y},{y,z}}, and V = {x,y,z}. Then <P.a. 
is (equivalent to) -.share(x,z) A -.share({x,y,z}) /\ Vv(var(v) /\ share(v,y) => 
share(v, z) V sh~re(v, x)) /\ Vv( var(v) A share(v, z) => share(v, y)). 0 

Next, the correctness of this transformation is shown. 

Lemma21. E:Sharing is an embedding of Sharing into .C. 
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Finally, Lemma 21 is used to prove that Sharing is a representation 
of .Asharing· In the proof, we use the fact that the assertion Vz(var(z) /\ 
share(z, S) '* share(z, S1) V ... V share(z, Sk)) is equivalent to the assertion 
consisting of the conjunction of the formulas V z ( var( z) /\ share ( z, x1) /\ ... /\ 
share(z, Xm) '* share(z, Y1) V ... V share(z, Yk)), for all (Y1, ... , Yk) occurring in 
s1 x ... x sk. 

Theorem 22. Sharing~ .Asharing· 

In order to give a maximal factorization of .Asharing , we use the follow
ing domains. For every !VI ?: n ?: 0 and !VI ?: m ?: 1, consider the 
domain .Asharing""n consisting of the conjunctions of formulas of the form 
'Vz ( var(z) /\ share(z, x1 ) /\ ... /\ share(z, Xm) =* share(z, Y1) V ... V share(z, Yn)), 
with x 1 , ... , Xm and y1, ... , Yn distinct variables of V. The following result holds. 

Lemma23. {.Asharingm·" I n E [O, !VI], m E [1, !VI]} is a maximal factorization 
of .Asharing · 

Consider the abstract domain Sharing+ introduced in [4], containing as ele
ments the empty set, and the sets L1+ of the form L1 U T, with L1 in Sharing and 
T = {{x} I x E V} U {0}. One can prove that Sharing+ is a representation of 
/\m>2,n>o .Asharing"""'. Moreover, Def is a representation of /\n?_O .Asharing'·". 
Therefore, by Lemma 23 it follows that Sharing is (isomorphic to) the reduced 
product of Sharing+ ,Def+ and Con. 

4.4 ASub in Logical Form 

The pair-sharing domain ASub was introduced by S~ndergaard (18] for sharing 
and linearity analysis. Its elements are pairs (G, R) where the first component is 
a subset of V, and the second one is a symmetric binary relation on V, s. t. ( G x 
V)nR = 0. Moreover, the element .l, representing the empty set of substitutions, 
is in ASub. Its concretization function /ASu.b maps an element (G, R) of ASub 
into the set of substitutions <T s.t. for all (x, y) in V: (i) x in G implies x<T 
ground; (ii) x,y distinct and OVar(x<T) n OVar(y<T) -=fa 0 implies (x,y) in R; (iii) 
(x,x) rf. R implies x<T linear. 

Consider the following abstract domain .AAsu.b· 

Definition 24 . .AAsu.b is the set of assertions that are conjunctions of literals of 
the form ground(x), -,share(x, y), and linear(x), with x, y in V. 0 

We show that ASub is a representation of .AASv.b, and provide a maximal 
factorization of .AAsub· 

First, ASub is characterized in logical form by means of the following trans
formation. 

Definition 25. The transformation eASu.b maps .l into false, and ( G, R) into 
the assertion if>(G,R) = ef>1 /\ <P2 /\ if>3 , where: 
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1. <P1 is the conjunction of the atoms ground(x), for all x in G. 
2. <P2 is the conjunction of the literals -.share(x, y), for all (x, y) not in R with 

x, y distinct. 
3. </J3 is the conjunction of the atoms linear(x), for all (x, x) not in R. O 

Assertions <P1, <P2 and <f>3 characterize ASub in logical form, by means of its 
information on groundness, independence, and linearity, respectively. 

Example9. Consider the element (G,R) of ASub, with G = {x} and R = 
{(y,z), (z,z),(z,w)} and suppose that V = {x,y,z,w}. Then <f>(G,R) is (equiva
lent to) ground(x) /\ linear(y) /\ linear(w) /\ -.share(y, w). O 

Next, this transformation is shown to be correct. 

Lemma26. €ASub is an embedding of ASub into C. 

Finally, Lemma 26 is used to prove that A Sub is a representation of AAsub. 

Theorem27. ASub:::::: AAsub· 

In order to give a maximal factorization of AAsub, the domain A Linear is 
used, consisting of the conjunctions of atoms the form linear(x), with x in V. 

Lemma 28. { Asharingm,o, A Linear I m E [1, 2]} is a maximal factorization of 
AASub· 

5 Conclusion 

In this paper a simple framework based on first-order logic has been proposed 
for reasoning about abstract domains for static analysis. The notions of domain 
representation and of conjunctive factorization have been introduced for ana
lyzing and comparing abstract domains. The usefulness of this framework has 
been illustrated by considering a number of abstract domains used in abstract 
interpretation of logic programs. 

We discuss now some related work. 
In [7], the Galois insertion approach is used to define the notion of quotient 

of a domain D w.r.t. another domain P, describing the part of D that is useful 
for computing the information described by P. In this paper the logical charac
terization and factorization of the domains allows to perform a similar analysis, 
where D and Pare first characterized logically, and next factorized. Then the re
duced product of the common factors of the domains corresponds to the quotient 
of D w.r.t. P. 

In [4] the approach based on closure operators is used. To this end, the lattice 
of all the abstract domains (according with the original definition of the Cousots, 
cf. [3]) is considered. Abstract domains are decomposed by means of the notion 
of pseudo-complement, a kind of inverse of the reduced-product. Instead, in our 
method the set of abstract domains considered depends on the set V of the 
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program variables, as well as on the class of properties described in the assertion 
language. Moreover, we use a direct approach for decomposing a domain, by 
inspecting the syntactic form of the relative set of assertions. 

The abstract domains analysed in Section 4 have been extensively studied in 
previous work. In [6] it is proven that the part of Sharing describing groundness 
dependencies is contained in Pos. In (4] this result is strengthen by showing that 
this part coincides with Def, and that Sharing+ is the pseudo-complement of 
Def in Sharing. In this paper these results are directly derived from the logical 
characterization of Sharing. Moreover, we have obtained the finest (in L) decom
position of Sharing. Finally, the factors of this decomposition have been used 
for other purposes, e.g. for comparing Sharing with ASub. 

The classes of Boolean functions used to represent Def and Pos have been 
extensively 'analyzed (e.g. [5, 2]). The difference from these works is that they 
focus on the representation, while we focus on the design and reasoning, by 
considering a syntactic characterization in first-order logic of their image under 
the concretization function. 

An interesting topic that seems worth of investigation, is the study of the 
relationship between abstract interpretations and proof methods. This topic has 
been tackled in the functional programming setting, where a domain-theoretic 
approach is used in [ll] for proving that strictness analysis by abstract interpre
tation and non-standard type inference are equivalent. For logic programming, 
our framework could be used for defining a program logic for the comparison of 
data-driveness analysis using type inference ( cf. e.g. [l]) and abstract interpre
tation ( cf. [16]). 
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