
Prime Factorizations of Abstract Domains
Using First-Order Logic

Elena Marchiori

CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
and

University of Leiden, P.O. Box 9512, 2300 RA Leiden, The Netherlands
e-mail: elena@cwi.nl

Abstract. A methodology is introduced based on first-order logic, for
the design and decomposition of abstract domains for abstract interpre
tation. First, an assertion language is chosen that describes the proper
ties of interest. Next, abstract domains are defined to be suitably chosen
sets of assertions. Finally, computer representations of abstract domains
are defined in the expected way, as isomorphic copies of their specifica
tion in the assertion language. In order to decompose abstract domains,
the notion of prime (conjunctive) factorization of sets of assertions is
introduced. We illustrate this approach by considering typical abstract
domains for ground-dependency and aliasing analysis in logic program
ming.

1 Introduction

In the theory of abstract interpretation [3], abstract domains are (computer)
representations of prnperties. The semantics of an abstract domain is given by
a function called concretization, that maps elements of the abstract domain
into elements of a 'concrete domain'. Two fundamental aspects of the study
of abstract domains are the investigation of representations supporting efficient
implementations, and the comparative analysis of the properties represented by
abstract domains. This paper is concerned with the latter aspect.

Previous work on this subject is mainly based on two equivalent techniques
(cf. [3]): Galois connections and closure operators. In [3] comparison of abstract
domains is defined by means of the notion of abstraction, where an abstract
domain is more abstract than another one if there is a Galois insertion from
the first into the latter. This notion is weakened in [7], where the comparison
is defined w .r. t. a given property, by means of the notion of quotient of one
abstract domain w.r.t. another one, describing the part of the former abstract
domain that is useful for computing the information described by the latter
one. In [4], the approach based on closure operators is used for investigating
domain complementation in abstract interpretation. The authors formalize the
concept of decomposition of an abstract domain, as a set of abstract domains
whose reduced product yields the initial abstract domain and use the notion of
pseudo-complement for decomposing abstract domains.

210

In this paper we propose a method based on first-order logic for the design
and decomposition of abstract domains. First, an assertion language is chosen
whose syntax specifies the properties of interest, and whose semantics is fixed by
means of a structure characterizing the meaning of the predicates in accordance
with the properties they are supposed to describe. Next, an abstract domain
is defined to be a suitably chosen set of assertions. Finally, computer represen
tations of abstract domains are defined in the expected way, i.e., they have to
respect (i.e., be isomorphic to) their specification in the assertion language. In
order to decompose abstract domains, the notion of prime (conjunctive) factor
ization of sets of assertions is introduced. This is a standard algebraic notion of
factorization, where an abstract domain is factorized in pairwise 'disjoint' parts.

This method has various benefits. First, it allows one to focus only on the ab
stract domains that describe the properties of interest, that are those expressible
in the chosen assertion language. This is not the case for the standard methods
above mentioned, where all possible abstract domains (on the concrete domain)
are taken into account. Moreover, using our method abstract domains can be de
composed in 'disjoint' factors. This desirable property i.s not guaranteed in the
decompositions obtained using the approach of [4]. Finally, the two phases of
design and computer representation of an abstract domain are neatly separated,
where the design phase is performed at the logical level.

We illustrate this approach by considering typical abstract domains for
ground-dependency and aliasing analysis in logic programming. The fragment .C
of a first-order assertion language introduced in [13] (actually, a slight extension
of this) is used. Logical descriptions of various abstract domains are given: Def
[8] and Pos [14, 15] for ground-dependency analysis; Sharing [10) and ASub [18)
for aliasing analysis. Maximal factorizations for these domains are obtained by
inspecting the structure of the assertions in the abstract domains, and they are
used for analyzing and comparing the abstract domains.

The paper is organized as follows. The next section introduces our method
ology. Section 3 presents an assertion language for the design of typical abstract
domains for logic programming, and Section 4 contains a comparative study of
various abstract domains for logic programming. Finally, Section 5 contains a
discussion on related work and some conclusive remarks.

2 Abstract Domains in Assertion Form

First-order logic is a familiar formalism, used for specifying as well as for reason
ing about properties. We show in this section how first-order logic can be used
for the design and decomposition of abstract domains for abstract interpretation.

Here and in the sequel C denotes a generic assertion language. We assume
that the semantics of the predicates in .C is fixed according to their intended
meaning, by a given structure denoted by M. Assertions are indicated by</>, '1/J.
As already mentioned, abstract domains represent properties of some syntactic
objects, usually a subset of the variables of the considered program. Thus, the
definition of abstract domain we give is parametric with respect to a set V

211

of syntactic objects. We adopt the following convenient assumptions: 1. V is
(identified with) a set of distinct variables of C; 2. in the definition of abstract
domain, only the set of assertions of C whose free variables are contained in
V is considered, denoted by A(C, V); 3. assertions with the same meaning are
identified.

This last assumption amounts to consider equivalence classes of assertions of
A(C, V), where (4>] denotes all the assertions that are logically equivalent to </J.
For simplicity, in the sequel the squares in [4>] are often omitted.

Definition l. (Abstract Domain on£) An abstract domain (on .C), denoted
by A (possibly subscripted), is a set of assertions of A(C, V) containing false,
and closed under conjunction and variance1 • 0

Observe that this definition of abstract domain is consistent with the original
one given by the Cousots (cf. [3]): the 'concrete domain' is the set of sets of
valuations, and the 'concretization function' maps an assertion 4> into the set of
valuations that satisfy <f> .

. In the sequel, for simplicity, we shall often avoid to mention the element false
when specifying the set of assertions of an abstract domain.

Example 1. A simple abstract domain for the study of the sign of program vari
ables assuming integer values is given in [3]. For a considered set V of program
variables, this domain can be specified in our formalism as follows: £ contains
the constants and function symbols of the program, and the unary predicates ?:,
:::;; M maps terms into integers according with their intended interpretation, and
specify the semantics of ?: , ~ in the expected way. Then the abstract domain
for the study of the sign of the variables in V can be described by the set Signv
of assertions that are conjunctions of atoms of the form x ?: 0, or x ~ 0, with x
in V. 0

Viewing abstract domains as sets of assertions allows us to use the following
notion of (conjunctive) factorization for decomposing (in£) an abstract domain
in 'disjoint' parts.

The notation Ai = A2 is used, meaning that A1 and A2 contain the same
equivalence classes. Moreover, for two sets Ai, A2 of assertions, Ai AA2 denotes
the set {[<Pi A 4>2] I 4>1 E Ai, 4>2 E A2}·

Definition 2. (Prime Factorization on £) The set {Ai, ... , An} is a (con
junctive) prime factorization of A if the following conditions hold:
(a) If n > 1 then Ai =J. {true,false}, for i E [l,n];
(b) for every i =J. j A; n Ai = {true, false};
(c) Ai A ... A An= A.

We call A reduced if it has only one factorization. Moreover, a factorization
of A is maximal if Ai is reduced, for i E [l, n]. D

1 Recall that a. variant of an assertion <P is a.ny assertion <Pu obtained by applying to
tjJ a. substitution u that renames the variables of tjJ

212

The name 'prime' in the above definition is used to underline the similarity
of our definition with the standard algebraic notion of factorization of integers
in relatively prime factors. For simplicity, in the sequel we write 'factorization'
instead of 'prime factorization'. Clearly, if A is reduced then {A} is its only
factorization, and it is maximal.

Example 2. It is easy to check that { Sign~0 , Sign~0 } is a maximal factorization
of Signy, where Sign<o is the set of assertions that are conjunctions of atoms
of the form x < O with x in V, and where Sign>o is defined analogously. - , -

0

In order to improve the precision of the static analysis of logic programs,
abstract domains can be composed by means of the notion of reduced-product
([3]). Intuitively, the reduced product of two domains is obtained from the car
dinal product of the domains by identifying pairs of elements whose conjunction
represent the same information. A factorization yields a reduced-product in the
expected way.

Proposition 3. If { A1 , ... , A.,} is a factorization of A then A is the reduced
product of .A1, . .. , .A.,.

Proof. Let Val denote the set of valuations. M provides a Galois insertion of an
abstract domain .A into the concrete domain 2 Va.I consisting of sets of valuations.
This Galois insertion is determined by the concretization function rA that maps
an assertion </J of .A into the set of valuations that satisfy </>. Observe that 'M
is injective because equivalent assertions are identified. Then the operator /\ on
abstract domains (on .C) is a reduced-product operator. D

The benefit of using this first-order framework is that the definition, decom
position and comparison of abstract domains can be performed in a uniform
and familiar setting. However, (computer) representations of abstract domains
for their efficient manipulation ([9)) often need different lattice structures (see,
e.g., [2] for ground-dependency analysis). Therefore the notion of representation
of an abstract domain is defined as follows. First, we need some preliminary
terminology. The following notion of embedding of an abstract domain into .C is
used. Here and in the the sequel 'D denotes an abstract domain (on any complete
lattice) and /'D denotes its concretization function (cf. [3)).

Definition 4. (Embedding) An embedding of 'D in .C is an injective mapping
e:v : 'D-+ £ s.t. for every Din D, o: is in 1v(D) if and only if e:(D) is true under
o:. 0

Thus an embedding of a domain into .C consists of the (equivalence classes of
the) assertions <!>D characterizing the sets 1v(D) of valuations, with D in D.
The following result is an easy consequence of the definition of concretization
function ([3]).

213

Proposition 5. The image e:v('D) of an embedding is an abstract domain on£.

We can now formalize the concept of representation domain.

Defi.nition6. (Representation Domain) V is a representation of A (or
equivalently A and V are isomorphic, denoted by A :::: 'D) if there exists an
embedding e:v s.t. A= e:v(V).

0

The definition of representation domain clarifies the role of domains in as
sertion form, as those used in the design phase, in contrast to the representation
domains used in the (efficient) implementation.

Example 3. Suppose V = { x }. Then a representation of Signv is the familiar
lattice pictured below

0

We conclude this section with a discussion on the relationship of our approach
with the one based on closure operators. Following [3], one can associate with
each abstract domain an (upper) closure operator (on sets of valuations) by
means of the concretization function r mapping an assertion into the set of
valuations that satisfy that assertion. The closure operator associated with an
abstract domain is the set of sets of valuations obtained by applying / to each of
its assertions. In the standard approach, also the vice versa holds, i.e., the lattice
of abstract domains is isomorphic to the lattice of upper closure operators. This
result does not hold when Definition 1 is considered, for two reasons. One is the
hypothesis of closure under variance w.r.t. V: a set of valuations that is not closed
under variance (w.r.t. V) 2 is an (upper) closure operator, but it is not an abstract
domain (on £). The other reason is related to the expressivity of the chosen
assertion language £: (the image of) a closure operator is an abstract domain
(on£) only if it can be described by means of a set of assertions (of£). However,
if one assumes that the assertion language allows to describe all sets of valuations
closed under variance (w.r.t. V), then the lattice of abstract domains (according
with Definition 1) is isomorphic to the lattice of upper closure operators on sets
of valuations closed under variance (w.r.t. V).

2 The notion of variant w.r.t. V of a set d of valuations is defined in the expected way:
let p be a substitution that renames the variables of V with other variables of V.
Then a variance of d is obtained by applying p to the domain of every valuation

214

3 Abstract Domains for Logic Programming

In this section, we show how a slight extension of the first-order assertion lan
guage C introduced in (13] can be used for the design and decomposition of
typical abstract domains for the static analysis of logic programs.

Term properties, like groundness and sharing, have been identified as crucial
when analyzing the run-time behaviour of logic programs. For instance, ground
dependency analysis can be used for compile optimization, by using matching
instead of unification when it is known that at a given program point a variable
is bound to a ground term every time the execution reaches that point. Informa
tion on the sharing among variables in a logic program is useful for important
optimizations, like and-parallelism. The assertion language here considered al
lows to express properties of terms, like groundness, freeness, linearity, sharing,
covering and independency. Informally, a term is ground if it does not contain
variables, it is free if it is a variable, and it is linear if every variable occurs in
it at most once. Moreover, !!- set of terms share if they have at least one com
mon variable, while they are independent if they do not share. Finally, a term
is covered by a set of terms if the set of its variables is contained in the union
of the sets of variables of the terms in that set. For instance, the term f(x, y) is
covered by the set {g(x),g(y)}.

In order to define C, a countable set Var of {logical) variables is used, denoted
by v, x, y, z, possibly subscripted. Here and in the sequel, S represents a finite
set of logical variables, and !SI its cardinality. Moreover, the notation S C S'
indicates that S is a proper subset of S'.

Definition 7. (The Assertion Language) Let C' be the smallest set F of
formulas containing atoms of the form var(x), ground(x), linear(x), share(S),
and s.t. if </>1 and </>2 are in F then -i</>1 and </>1 /\ </>2 are also in F. The assertion
language .C consists of all the formulas of the form Vxi, ... , xn(</>), with <f> E .C',
andn~Q O

The formula </> V t/J is used as a shorthand for -.(-.<!J /\ -.'ljJ), <f> :::} t/J denotes
...,</> V 1/;, and</><:? 1/J stands for(</>:::} 'if;)/\ (t/J:::} <f>). Moreover, the propositional
constants true and false are assumed to be in .C, where true is identified with
the conjunction over the emtpy set of assertions /\0 and false with V0. In the
sequel, the notation share(x,y) is used as shorthand of share({x,y}), with x,y
distinct.

Observe that only a weak form of universal quantification is allowed, where V
does not occur in the scope of any-.. For instance, Vz (var(z) /\-.share({z, x}))
is in .C, but -,'fz (var(z) /\-.share({z, x})) is not in .C.

The meaning of assertions in .C is specified by means of the following struc
ture M. Let OVar be the set of {object) variables, here identified for simplicity
with Var, and let Fun be a set of functors with rank (constants are identified
with functors of rank 0). In the following, occ(x, r) denotes the number of occur
rences of the variable x in the term r, and OVar(r) the set of (object) variables
occurring in r.

215

Definition 8. The structure M contains the universe U consisting of the {ob
ject) terms built on OVar and Fun. Moreover, for each predicate symbol p of C,
M contains a predicate in U, also denoted by p, with the following semantics:

MI= var(r) if r E OVar
M I= ground(r) if OVar(r) = 0
MI= linear(r) if occ(x, r} = 1 for every x in OVar(r)
MI= share({ri, . .. ,rn}) ifn~=l OVar(ri) =fa 0

D

Example4. The assertion -ishare({x,y, z})V share({x,y}) is valid in M. In fact,
for every valuation a, if OVar(xa) n OVar(ya) =fa 0 then MI= share({x,y})a,
otherwise M I= -ishare({ :z:, y, z})a. D

Note that even if share is not first-order (its argument is a set), it can be ex
pressed in first-order logic by means of a family of first-order predicates sharen
of rank n, with n ~ 0. The set of valid (in M) assertions of.Chas been charac
terized by means of a complete and decidable theory T, by means of a simple
axiomatization (see (13]}.

The completeness and decidability of T provides an automatic tool for prov
ing properties of some elements of an abstract domain, in the following way. In
order to prove that an element 4> of a domain satisfies a property P, specified
in £ by means of the assertion '!/;, it is sufficient to check the validity of the
implication tj> => '!/;.

In order to use C for the static analysis of logic programs, it is necessary to
assume that U contains the constants and function symbols of the considered
class of programs. Moreover, we adopt the notation of the previous section: V
denotes the set of (logical) variables representing the considered (program) .varl.
ables, and A(.C, V) the set of assertions of£ whose free variables are contai~ed
in V. Therefore substitutions are identified with valuations.

An abstract domain (on .C} is specified according with Definition 1. Observe
that we obtain a more specific notion of abstract domain than the original one
(cf. (3]), because of the choice of the assertion language, and because of the
condition of closure under variance. For instance, {ground(x), true, false} would
represent an abstract domain in the original definition, but it is not a legal one in
our definition (unless V = { :z:}). The condition of closure under variance w.r.t. V
has been implicitly assumed in the literature on abstract interpretation of logic
programs, but it has not been taken into account when reasoning about these
domains using the standard techniques based on Galois insertions or closure
operator (cf. (4]).

We conclude this section with a simple example.

Example 5. Consider the abstract domain Con introduced by Mellish (17) and
used in early mode and groundness analyzers (12]. Con consists of the bottom
element ..L, and of the sets S = {x1 , ••• , :z:n} of variables ofV, with concretization
function mapping ..L into 0 and 'YCon.(S) = {u I OVar(xu) = 0 for all x ES}.

216

Let Aeon be the set of assertions that are conjunctions of atoms of the form
ground(x), with x in V. It is easy to show that Aeon satisfies Definition 1, and
that Con is a representation of Aeon, by considering the embedding f.Con that
maps J_ into false and a set {x1, ... ,xn} into the assertion ground(x1) /\ •.. /\

ground(xn)· 0

4 Ground-Dependency and Aliasing Analysis

This section contains a comparative analysis of various abstract domains for the
static analysis of logic programs, namely Def, Pos, Sharing and ASub. Each of
these domains is shown to be the representation of an abstract domain on £.
These logical characterizations in £ of the domains are used for deriving their
maximal factorizations, for studying and comparing the original domains, as well
as for defining new ones.

4.1 Def in Logical Form

The abstract domain Def was introduced by Marriott and S~ndergaard for
ground-dependency analysis in [15], based on previous work by Dart ([8]) on
groundness analysis in deductive databases. We show that Def can be factor
ized into two reduced domains, describing groundness and covering, respectively.

First, we recall the definition of Def. Def is the largest class of posi
tive boolean functions whose models are closed under intersection, augmented
with the bottom element false. Recall that a boolean function F is positive if
F(true, ... , true) = true. Here boolean functions are represented by (equiva
lence classes of) propositional formulas, as e.g. in [15]. In order to define the
concretization function /Def, substitutions are viewed as truth assignments as
follows. For a substitution u, the truth assignment groundsu maps a proposi
tional variable x to true iff xr:; is ground, and to false otherwise. Moreover, the
notion of instance ff1 of a substitution u is used, meaning that u' is obtained
by composing r:; with some substitution. The concretization function /Def maps
an element F of Def into the set /Det(F) of those substitutions r:; s.t. for every
instance u' of u, F under the truth assignment groundsu' is true. Intuitively,
/DeJ(F) extracts the 'monotonic' (in the sense that its truth is preserved under
instantiation) information described by the propositional formula F.

Consider the following abstract domain Avef on £.

Definition 9. Ave/ is the set of assertions that are conjunctions of formulas of
the form l:/z (var(z) /\ share(z, x):::} share(z, Y1) V ... V share(z, Yn)), with n ~ 0,
where x, y1 , ... , Yn are in V, and z is a fresh variable. 0

We show that Def is a representation of Avef, and provide a maximal fac
torization of Avef.

First, Def is characterized in logical form by means of the following trans
formation. We use the representation of an element F in Def as a conjunction
of formulas, called definite clauses, of the form y1 /\ ... /\ Yn -+ x with n ~ 0 (see
[8, 2]).

217

Definition 10. The transformation eve/ : De/ - J:, maps Finto <PF, defined as
follows:

- <PF = 'v'z(var(z) /\ share(z,x) => share(z,y1) V ... V share(z,yn)) if F =Yi/\

· · · /\ Yn - x.
- <PF = <PF1 /\ ..• /\ <PF,. if F = F1 /\ ... /\ F1r., k ~ 0, and all the Fi's are definite

clauses.
D

Observe that, for n = 0 we obtain the assertion 'v'z (var(z) /\ share(z, x) =>false),
that is equivalent to ground(x).

Example 6. The element x /\ (y +-+ w) is mapped by eve/ into the assertion
ground(x) /\ 'v'z (var(z) /\ share(z,w) => share(z, y)) /\ 'v'z (var(z) /\ share(z, y) =>
share(z, w)). o

Next, the transformation of Definition 10 is shown to be correct.

Lemma 11. eoer is an embedding of Def into C.

Finally, using the above Lemma we can prove that De/ is a representation
of AveJ·

Theorem12. Def '.::::'. Aoef·

In order to analyze De/ and to compare it with other abstract domains, a
maximal factorization of Avef is given. To this end, we use the following domains.
For every IVI ~ n ~ 0, consider the domain Avef." consisting of the conjunctions
of formulas of the form 'v'z (var(z)/\share(z, x) => share(z, y1)V ... V share(z, Yn)),
with Yi. ... , Yn distinct variables of V. The following result holds.

Lemma13. {Aoef" I n E [O, IVI]} is a maximal factorization of Aoef·

Let Avef+ = /\ne[l,IVIJADe/"· A representation of Avef+ is provided by the
set De/+ of positive boolean functions that can be represented as conjunctions
of clauses y1 /\ •.• /\ Yn --+ x, with n ~ 1, plus the bottom element false, with
concretization function the one of De/. Then by Lemma 13 it follows that Def
is (isomorphic to) the reduced-product of the domain Con and De/+.

It has been recently shown in [4) that De/ characterizes the ground
dependency information on V described by the domain Sharing. We shall see
that this result is easily derived from the logical descriptions of these domains.

4.2 Pos in Logical Form

In order to study ground-dependency analysis, the abstract domain Pos was
introduced by Marriott and S~ndergaard [14, 15), consisting of the positive
boolean functions, plus the bottom element false, with concretization function
equal to /De/·

Consider the following abstract domain APoa.

218

Definition 14. Ap08 is the set of assertions that are conjunctions of for
mulas of the form \fz(var(z) /\ share(z,x1) => Q(z,y1, · · · ,yn)) V ... V
V'z(var(z)/\share(z,xm) => Q(z,y1, ... ,y,.)), with m ~ 1, and n ~ 0, where
x1 , ..• , Xm, y1 , ••• , Yn are in V, and z is a fresh variable. 0

We show that Pos is a representation of APos, and provide a maximal fac
torization (on C) of APos.

First, Posis characterized in logical form by means of the following transfor
mation. We use the representation of an element F of Pos as a conjunction of
clauses, of the form y1 /\ •.• /\ Yn---+ X1 V ... V Xm, m ~ 1, n ~ 0 (cf. [2]). In the
sequel Q(z, y1 , ... , y,.) denotes the assertion share(z, Y1) V ... V share(z, Yn)·

Definition 15. The transformation €.Pos : Pos ---+ .C maps Finto </>F, defined as
follows:

- </>F = \fz(var(z) /\ share(z,x1) => Q(z,yi, ... ,yn)) V ... V \lz(var(z) /\
share(z,xm)::} Q(z,y1, . .. ,yn)) if F =Yi/\ ... Ayn---+ X1 V ... V Xrn.

- </>F = <i>F, /\ .. . /\</Jp. if F =Fi/\ ... /\Fk, k ~ 0, and all the F;'s are clauses. 0

It is easy to check that the above transformation restricted to the elements
of De/ coincides with f.De/·

Example 7. The element x Vy is mapped by €.p08 into the assertion Vz (var(z) /\
share(z, x) ::} false) V\lz (var(z) /\ share(z, y) ::} false), equivalent to ground(x) V
ground(y). D

Next, the transformation of Definition 15 is shown to be correct.

Lemma 16. £p08 is an embedding of Pos into .C.

Finally, uising Lemma 16, we can prove that Pos is a representation of Ap08 •

Theorem 17. Pos ~ Ap0 ••

In order to give a maximal factorization of APoH we use the decomposition of
Av01, and the following domains. For every !VI ~ n ~ 0 and !VI ~ m ~ 2, con
sider the domain APos""" consisting of the conjunctions of formulas of the form
Yz (var(z) /I. share(z, xi) => Q(z, Yi, ... , Yn)) V ... V \fz (var(z) /\ share(z, xrn) =>
Q(z,yi, ... ,yn)) with x1, ... ,Xm and Y1, ... ,yn distinct variables•of V. The
following result holds.

Lemma18. {Aoef",APos~•" In E [O,JVl],m E [2,JVJ]} is a maximal factoriza
tion of Ap08 •

Let APosV = An~O,jVIJ,mE[2,jVl]APosm·n. A representation of APosV is pro
vided by the set Pas of positive boolean functions that can be represented as
conjunctions of clauses YI /\ ... /\ Yn ---+ x1 V ... V Xm, with n ~ 0, m 2 2, plus
the bottom element false, with concretization function the one of Pas. Then
by Lemma 18 it follows that Pas is (isomorphic to) the reduced-product of the
domains Con, Def+ and Pos v. It has been shown in [6] that Def is properly
contained in Pos. Lemma 18 characterizes logically the other part of Pos.

219

4.3 Sharing in Logical Form

In order to study information on the possible sharing among abstract variables,
an abstract domain extensively used in abstract interpretation is the domain
Sharing by Jacobs and Langen [10]. Sharing is the set of sets Ll E 22v s.t. if
Ll ¥- 0 then 0 E Ll. Its concretization function 'YSharing maps an element Ll of
Sharing into the set 'YSharing(Ll) of those substitutions q whose approximation
set A(u) is an element of Ll. The approximation set A(a) consists of all the sets
occ(u, x) = { v I v in the domain of a s.t. x occurs in vu}, for all the variables
x occurring in the range of q.

Consider the following abstract domain Asharing.

Defi.nition.19. Asharing is the set of assertions of .C that are conjunctions of
formulas of the form Vz (var(z)Ashare(z, x1)A .. . /\share(z, Xm) => share(z, y1)V
... V share(z, Yn)) with m 2::: 1, n 2::: 0, where x1, ... , Xm, y1, ... , Yk are in V, and
z is a fresh variable. D

. We show that Sharing is a representation of Asharing, and provide a maximal
fact<;>rization (on .C) of Asharing·

First, Sharing is characterized in logical form by means of the following
transformation. In the sequel, for the sake of simplicity, we write share(x, S)
instead of share({x} US).

Definition 20. The transformation esharing maps Ll into the assertion

rP.tl = /\ Vz (var(z) A share(z, S) => share(z, S1) V ... V share(z, Sk)),
S~V

with {S1, ... , Sk} = {S' IS' E Ll s.t. S ~ S'}.
0

Let </>s denote the conjunct of </>.a. corresponding to the subset S of V.
Observe that if S is not contained in any set of Ll, then <Ps is the assertion

Vz (var(z) /\ share(z, S) =>false), which says that the variables of Scan only be
bound to terms sharing no variables. If Sis a singleton, say S = {x}, then </>s
describes information on ground-dependency for x. Indeed, it is not difficult to
see that in this case </>s can be rewritten into an assertion of Ave/· The other
assertions </>s, for S not singleton and k > O, describe information about sharing
of sets containing at least three variables.

Example B. Consider .Ll = {0,{x},{:c,y},{y,z}}, and V = {x,y,z}. Then <P.a.
is (equivalent to) -.share(x,z) A -.share({x,y,z}) /\ Vv(var(v) /\ share(v,y) =>
share(v, z) V sh~re(v, x)) /\ Vv(var(v) A share(v, z) => share(v, y)). 0

Next, the correctness of this transformation is shown.

Lemma21. E:Sharing is an embedding of Sharing into .C.

220

Finally, Lemma 21 is used to prove that Sharing is a representation
of .Asharing· In the proof, we use the fact that the assertion Vz(var(z) /\
share(z, S) '* share(z, S1) V ... V share(z, Sk)) is equivalent to the assertion
consisting of the conjunction of the formulas V z (var(z) /\ share (z, x1) /\ ... /\
share(z, Xm) '* share(z, Y1) V ... V share(z, Yk)), for all (Y1, ... , Yk) occurring in
s1 x ... x sk.

Theorem 22. Sharing~ .Asharing·

In order to give a maximal factorization of .Asharing , we use the follow
ing domains. For every !VI ?: n ?: 0 and !VI ?: m ?: 1, consider the
domain .Asharing""n consisting of the conjunctions of formulas of the form
'Vz (var(z) /\ share(z, x1) /\ ... /\ share(z, Xm) =* share(z, Y1) V ... V share(z, Yn)),
with x 1 , ... , Xm and y1, ... , Yn distinct variables of V. The following result holds.

Lemma23. {.Asharingm·" I n E [O, !VI], m E [1, !VI]} is a maximal factorization
of .Asharing ·

Consider the abstract domain Sharing+ introduced in [4], containing as ele
ments the empty set, and the sets L1+ of the form L1 U T, with L1 in Sharing and
T = {{x} I x E V} U {0}. One can prove that Sharing+ is a representation of
/\m>2,n>o .Asharing"""'. Moreover, Def is a representation of /\n?_O .Asharing'·".
Therefore, by Lemma 23 it follows that Sharing is (isomorphic to) the reduced
product of Sharing+ ,Def+ and Con.

4.4 ASub in Logical Form

The pair-sharing domain ASub was introduced by S~ndergaard (18] for sharing
and linearity analysis. Its elements are pairs (G, R) where the first component is
a subset of V, and the second one is a symmetric binary relation on V, s. t. (G x
V)nR = 0. Moreover, the element .l, representing the empty set of substitutions,
is in ASub. Its concretization function /ASu.b maps an element (G, R) of ASub
into the set of substitutions <T s.t. for all (x, y) in V: (i) x in G implies x<T
ground; (ii) x,y distinct and OVar(x<T) n OVar(y<T) -=fa 0 implies (x,y) in R; (iii)
(x,x) rf. R implies x<T linear.

Consider the following abstract domain .AAsu.b·

Definition 24 . .AAsu.b is the set of assertions that are conjunctions of literals of
the form ground(x), -,share(x, y), and linear(x), with x, y in V. 0

We show that ASub is a representation of .AASv.b, and provide a maximal
factorization of .AAsub·

First, ASub is characterized in logical form by means of the following trans
formation.

Definition 25. The transformation eASu.b maps .l into false, and (G, R) into
the assertion if>(G,R) = ef>1 /\ <P2 /\ if>3 , where:

221

1. <P1 is the conjunction of the atoms ground(x), for all x in G.
2. <P2 is the conjunction of the literals -.share(x, y), for all (x, y) not in R with

x, y distinct.
3. </J3 is the conjunction of the atoms linear(x), for all (x, x) not in R. O

Assertions <P1, <P2 and <f>3 characterize ASub in logical form, by means of its
information on groundness, independence, and linearity, respectively.

Example9. Consider the element (G,R) of ASub, with G = {x} and R =
{(y,z), (z,z),(z,w)} and suppose that V = {x,y,z,w}. Then <f>(G,R) is (equiva
lent to) ground(x) /\ linear(y) /\ linear(w) /\ -.share(y, w). O

Next, this transformation is shown to be correct.

Lemma26. €ASub is an embedding of ASub into C.

Finally, Lemma 26 is used to prove that A Sub is a representation of AAsub.

Theorem27. ASub:::::: AAsub·

In order to give a maximal factorization of AAsub, the domain A Linear is
used, consisting of the conjunctions of atoms the form linear(x), with x in V.

Lemma 28. { Asharingm,o, A Linear I m E [1, 2]} is a maximal factorization of
AASub·

5 Conclusion

In this paper a simple framework based on first-order logic has been proposed
for reasoning about abstract domains for static analysis. The notions of domain
representation and of conjunctive factorization have been introduced for ana
lyzing and comparing abstract domains. The usefulness of this framework has
been illustrated by considering a number of abstract domains used in abstract
interpretation of logic programs.

We discuss now some related work.
In [7], the Galois insertion approach is used to define the notion of quotient

of a domain D w.r.t. another domain P, describing the part of D that is useful
for computing the information described by P. In this paper the logical charac
terization and factorization of the domains allows to perform a similar analysis,
where D and Pare first characterized logically, and next factorized. Then the re
duced product of the common factors of the domains corresponds to the quotient
of D w.r.t. P.

In [4] the approach based on closure operators is used. To this end, the lattice
of all the abstract domains (according with the original definition of the Cousots,
cf. [3]) is considered. Abstract domains are decomposed by means of the notion
of pseudo-complement, a kind of inverse of the reduced-product. Instead, in our
method the set of abstract domains considered depends on the set V of the

222

program variables, as well as on the class of properties described in the assertion
language. Moreover, we use a direct approach for decomposing a domain, by
inspecting the syntactic form of the relative set of assertions.

The abstract domains analysed in Section 4 have been extensively studied in
previous work. In [6] it is proven that the part of Sharing describing groundness
dependencies is contained in Pos. In (4] this result is strengthen by showing that
this part coincides with Def, and that Sharing+ is the pseudo-complement of
Def in Sharing. In this paper these results are directly derived from the logical
characterization of Sharing. Moreover, we have obtained the finest (in L) decom
position of Sharing. Finally, the factors of this decomposition have been used
for other purposes, e.g. for comparing Sharing with ASub.

The classes of Boolean functions used to represent Def and Pos have been
extensively 'analyzed (e.g. [5, 2]). The difference from these works is that they
focus on the representation, while we focus on the design and reasoning, by
considering a syntactic characterization in first-order logic of their image under
the concretization function.

An interesting topic that seems worth of investigation, is the study of the
relationship between abstract interpretations and proof methods. This topic has
been tackled in the functional programming setting, where a domain-theoretic
approach is used in [ll] for proving that strictness analysis by abstract interpre
tation and non-standard type inference are equivalent. For logic programming,
our framework could be used for defining a program logic for the comparison of
data-driveness analysis using type inference (cf. e.g. [l]) and abstract interpre
tation (cf. [16]).

Acknowledgements

This work was partially supported by NWO, the Dutch Organization for Scien
tific Research, under grant 612-32-001. I would like to thank the referees for their
useful comments; Livio Colussi, Tino Cortesi, Gilberto File, Maurizio Gabbrielli,
Massimo Marchiori, and Catuscia Palamidessi for stimulating discussions on the
subject of this paper; and Jan Rutten for his encouragement.

References

1. K.R. Apt and E. Marchiori. Reasoning about Prolog programs: from Modes
through types to assertions. In Formal Aspects of Computing, vol. 6A, pag. 743-
764, 1994.

2. T. Armstrong, K. Marriott, P. Schachte and H. Sizsndergaard. Boolean Functions
for Dependency Analysis: Algebraic Properties and Efficient Representation. Proc.
SAS'94, B. Le Charlier ed., Springer-Verlag, LNCS 864, pp. 266-280, 1994.

3. P. Cousot and R. Cousot. Systematic design of program analysis frameworks.
Proc. POPL '79, pp. 269-282. ACM Press, 1979.

4. A. Cortesi, G. File, R. Giacobazzi, C. Palamidessi, and F. Ranzato. Complemen
tation in abstract interpretation. Proc. SAS '95, A. Mycroft ed., LNCS Vol. 983,
pp. 100-117. Springer-Ver lag, 1995.

223

5. A. Cortesi, G. File, and W. Winsborough. Prop revised: propositional formula as
abstract domain for groundness analysis. Proc. LICS '91, G. Kahn ed., pp. 322-
327, 1991.

6. A. Cortesi, G. File, and W. Winsborough. Comparison of abstract interpretations.
Proc. ICALP '92, W. Kuich, ed. LNCS Vol. 623, pp. 521-532. Springer-Verlag,
1992.

7. A. Cortesi, G. File, and W. Winsborough. The quotient of an abstract interpre
tation. Technical Report 12/94, Dipartimento di Matematica Pura ed Applicata,
Universita di Padova, 1994.

8. P. Dart. On derived dependencies and connected databases. Journal of Logic
Programming, 11(2):163-188, 1991.

9. S. Debray. On the Complexity of Data:fiow Analysis of Logic Programs. Proc.
ICALP '92, Springer Verlag, pp. 509-520, LNCS 623, 1992.

10. D. Jacobs and A. Langen. Static analysis of logic programs for independent AND
parallelism. Journal of Logic Programming, 13(2,3):154-165, 1992.

11. T.P. Jensen. Strictness Analysis in Logical Form. Proc. Conference on Functional
Programming Languages and Computer Architectures, Springer Verlag, pp. 352-
366, LNCS 523, 1991.

12. N.D. Jones and H. S!1Sndergaard. A Semantics-Based Framework for the Abstract
Interpretation of Prolog. Abstract Interpretation of Declarative Languages, eds. S.
Abramsky and C. Hankin, Ellis Horwood, Chichester, U.K., pp. 123-142, 1987.

13. E. Marchiori. A Logic for Variable Aliasing in Logic Programs. Proc. ALP 'g4, G.
Levi, M. Rodriguez-Artalejo eds., Springer Verlag, pp. 287-304, LNCS 850, 1994.

14. K. Marriott and H. S!1Sndergaard. Notes for a tutorial on abstract interpretation
of logic programs. North American Conference on Logic Programming, 1989.

15. K. Marriott and H. S!1Sndergaard. Precise and efficient groundness analysis for logic
programs. ACM LoPLaS, 2(1-4):181-196, 1993.

16. K. Marriott, H. S!1Sndergaard and N.D. Jones. Denotational abstract interpretation
of logic programs. ACM Transactions on Programming Languages and Systems,
ACM-TOPLAS, 16(3):607-648, 1994.

17. C. Mellish. Some Global Optimizations for a Prolog Compiler. The Journal of
Logic Programming, 2(1):43-66, 1985.

18. H. S!1Sndergaard. An Application of Abstract Interpretation of Logic Programs: Oc
cur Check Reduction. Proc. ESOP '86, eds. B. Rob"inet and R. Wilhelm, Springer
Verlag, pp. 327-338, LNCS 213, 1986.

