
A Methodology for Proving Termination of General Logic Programs

Elena Marchiori
CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
e-mail: elena©cwi. nl

Abstract
This paper introduces a methodology for prov
ing termination of general logic programs, when
the Prolog selection rule is considered. This
methodology combines the approaches by Apt
and Bezem [1] and Apt and Pedreschi [2J, and
provides a simple and flexible tool for proving
termination.

1 Introduction
General logic programs (glp's for short) provide formal
izations and implementations for special forms of non
monotonic reasoning. For example, the Prolog negation
as finite failure operator has been used to implement a
formulation as logic program of the temporal persistence
problem in AI (see [9; 8; 1]). Termination of glp's is a
relevant topic (see [7]), also because the implementation
of the operators for the negation, like Clark's negation
as failure [5] and Chan's constructive negation [4], are
based on termination conditions. Two typical examples
of glp's which behave well w.r.t. termination are the so
called acyclic and acceptable programs ([1], [2]). In fact,
it was proven in [l] that when negation as finite failure is
incorporated into the proof theory, a program is acyclic
iff all sld-derivations with arbitrary selection rule of non
ftoundering ground queries are finite. Floundering is an
abnormal form of termination which arises as soon as a
non-ground negative literal is selected. A similar result
was proven in [2] for acceptable programs, this time with
the selection rule restricted to be the Prolog one, which
selects always the leftmost literal of a query. In [10] it
was shown how one can obtain a complete characteri
zation (i.e. to overcome the drawback of floundering)
by considering Chan's constructive negation procedure
instead of negation as finite failure.

The notion of acceptability combines the definition of
acyclicity with a semantic condition, that uses a model of
the program which has also to be a model of the comple
tion of its "negative part" (see Definition 3.2). Because
of this semantic condition, the proof of acceptability may
become rather cumbersome. Moreover, finding a model
which satisfies the above requirement may be rather dif
ficult.

In this paper we refine the notion of acceptability, by
using a semantic condition which refers only to that part

366 AUTOMATED REASONING

of the program which is not acyclic. More specifically, a
program P is split into two parts, say P1 and P2; then
one part is proven to be acyclic, the other one to be
acceptable, and these results are combined to conclude
that the original program is terminating w .r. t. the Pro
log selection rule. The decomposition of P is done in
such a way that no relations defined in P1 occur in P2.
We introduce the notion of up-acceptability, where P1 is
proven to be acceptable and P2 to be acyclic, and the
one of low-acceptability which treats the converse case
(P1 acyclic and P2 acceptable). We illustrate the useful
ness of this approach by means of examples of programs
which formalize problems in non-monotonic reasoning.

Even though our main results deal with Chan's con
structive negation only, a simple inspection of the proofs
shows that they hold equally well for the case of negation
as finite failure.

Our approach provides a simple methodology for prov
ing termination of glp's, which combines the results of
Bezem, Apt and Pedreschi on acyclic and acceptable pro
grams, results widely considered as a main theoretical
foundation for the study of termination of logic programs
([7]). We believe that this methodology is relevant for at
least two reasons: it overcomes the drawback of [2] for
proving termination due to the use of too much semantic
information, and it allows to identify for which part of
the program termination does or does not depend on the
fixed Prolog selection rule.

The remaining of this paper is organized as follows.
The next section contains some preliminaries; in Section
3 we explain the notions of acyclicity and acceptability.
In Section 4, the notions of up-flow-acceptability are
introduced. In Section 5, we introduce a methodology
for proving termination of glp's, based on these notions.
Finally, in Section 6 we give some examples. For lack of
space, proofs of the results have been omitted. They can
be found in the full version of the paper.

2 Preliminaries
We follow Prolog syntax and assume that a string start
ing with a capital letter denotes a variable, while other
strings denote constants, terms and relations. A (ex·
tended) general logic program, called for brevity pro·
gram and denoted by P, is a finite set of (universally
quantified) clauses of the form H ...- L1, ... , Lm, where

m ?: 0, H is an atom, and the Li's, called literals, are
either atoms p(s), or negative literals •p(s), or equali
ties s = t, or inequalities 'V(s =/= t), where \;/quantifies
over some (perhaps none) of the variables occurring in
the inequality. Equalities and inequalities are also called
constraints, denoted by c. An inequality 'V(s -:f. t) is said
to be primitive if it is satisfiable but not valid. For in
stance, X -:f. a is primitive. In the following, the letters
A, B indicate atoms, while C and Q denote a clause and
a query, respectively.

Suppose that all sld-derivations of Qare finite and do
not involve the selection of any negative literals. Then
there is a finite number of computed answer substitu
tions, say (Ji, ... ,(h, k ?: O; let FQ be the equality
formula 3(Ee1 V ... V Eek), where E91 is the substi
tution 01 written in equational form, and 3 quantifies
over the variables that do not occur in Q. Then the
Clark's completion of P logically implies 'V(Q - FQ)
i.e., comp(P) f= 'V(Q .- FQ)· To resolve negative non~
ground literals, Chan in [4] introduced a procedure, here
called sldcnf-resolution, where the answers for •Q are
obtained from the negation of FQ. However, this pro
cedure is undefined when Q has an infinite derivation.
Then, the notion of (infinite) derivation in this setting is
not always defined. Therefore in this paper we refer to
an alternative definition of the Chan's procedure intro
duced in [10], where the subsidiary trees used to resolve
negative literals are built in a top-down way, construct
ing their branches in parallel. We shall also consider
a fixed selection rule, where at every resolution step,
the leftmost possible literal is selected, where a literal is
called possible if it is not a primitive inequality. Intu
itively, the selection of primitive inequalities is delayed
until their free variables become enough instantiated to
render the inequalities valid or unsatisfiable. We call
with slight abuse Prolog selection rule this selection rule.
Then sldcnf-trees with Prolog selection rule are called
ldcnf-trees.

To prove termination of logic programs, functions
called level mappings have been used [1], which map
ground atoms to natural numbers. Their extension to
negated atoms was given in [2], where the level mapping
of -.A is simply defined to be equal to the level mapping
of A. Here, we have to consider also constraints. Con
straints are not themselves a problem for termination,
because they are atomic actions whose execution always
terminates. Therefore, we shall assume that the notion
of level mapping is only defined for literals which are
not constraints. However, note that the presence of con
straints in a query influences termination, because for
instance a derivation fails finitely if a constraint which
is not satisfiable is selected.

Definition 2.1 (Level Mapping) A level mapping is a
function I I from ground literals which are not constraints
to natural numbers s.t. l-iAI =IA[.

In the following sections we introduce the notions of
acyclic and acceptable program.

3 Acyclic and Acceptable Programs
In this section, the definitions of acyclic and acceptable
program are given, together with some useful results
from [10].

Definition 3.1 (Acyclic Program) A program P is
acyclic w. r. t. a level mapping I I if for all ground in
stances H +- L1, ... , Lm of clauses of P we have that
IHI> ILil holds for every i E [1,m] s.t. Li is not a con
straint. P is called acyclic if there exists a level mapping
11 s.t. P is acyclic w.r.t. 11·

With a query Q = Li, ... , Ln we associate n sets IQ Ii
of natural numbers s.t.

[Q[; = {IL~[I L~ is a ground instance of L;}.
Q is called bounded w.r.t. 11 if every [Q[; is finite.

Bounded queries characterize a class of queries s.t. ev
ery their sldcn:f-derivation is finite. We have proven in
[10] that if P is acyclic and Q is bounded then every
sldcnf-tree for Q in P is finite; and that also the con
verse of this result holds: call a program P terminating if
all sldcnf-derivations of ground queries are finite. Then,
for a terminating program P, there exists a level map
ping 11 s.t.: (i) P is acyclic w.r.t. [I; (ii) for every query
Q, Q is bounded w.r.t. I I iff all its sldcnf-derivations
are finite. Notice that when negation as finite failure is
assumed, (i) holds only if Q does not flounder ([1]). In
fact, simple programs, like

p(X) +- --, p(Y).

terminate because floundering, but are not acyclic.
For studying termination of general logic programs

with respect to the Prolog selection rule, the notion
of acceptable program ([2]) was introduced. Its defi
nition is based on the same condition used to define
acyclic programs, except that, for a ground instance
H +- L1, ... , Ln of a clause, the test IHI > IL;I is per
formed only till the first literal L;;r which fails. This is
sufficient since, due to the Prolog selection rule, literals
after Ln; will not be executed. To compute n, a class of
models of P, here called good models, is used. A model
of P is good if its restriction to the relations from N egj,
is a model of comp(P-), where p- is the set of clauses
in P whose head contains a relation from N egj,, and
N egj, is defined as follows. Let N egp denote the set of
relations in P which occur in a negative literal in the
body of a clause from P. Say that p refers to q if there
is a clause in P that uses the relation p in its head and
q in its body, and say that p depends on q if (p, q) is in
the reflexive, transitive closure of the relation refers to.
Then N egj, denotes the set of relations in P on which
the relations in Neg p depend on.

Definition 3.2 (Acceptable Program) Let I [be a
level mapping for P and let I be a good model of P. P
is acceptable w.r.t. I I and I if for all ground instances
H +- L1, ... , £ 71 of clauses of P we have that

IHI> ILil
holds for i E [1, n] s. t. Li is not a constraint, where

n = min({n} U {i E [1,n] I I~ L;}).
P is called acceptable if it is acceptable w.r.t. some level
mapping and a good model of P.

MARCHIORI 357

Let Q = £1 , ... , L,. be a query, let 11 be a level map
ping and let J be a good model of P. Then! with Q we
U1110Cia.te n sets of natural numbers s.t. for i E [1, n],

IQI[= {IL~I I LL ... , L~ is a ground instance of Q
a.nd If= L~ A ... /\ L:_1}·

Then Q ii called bounded if every IQI[is finite.
Bounded queries characterize those queries s.t. all

their ldcnf-deriva.tions are finite. In [10], we have
shown that similar results as those for terminating pro
gra.ma hold also for left-terminating programs, where a
program is left-terminating if all ldcnf-derivations of
ground queries are finite.

4 Up- and Low-Acceptability
To prove that a program P is acceptable is in general
more difficult than to prove that it is acyclic, because
one has to find a. good model of the program. Therefore
in this section we introduce two equivalent definitions of
acceptability, called up- and low-acceptability, which are
simpler to be used, since one has only to find a good
model of a subprogram, which is obtained discarding
those clauses forming an acyclic program. Informally,
to prove that a program is left-terminating, it is decom
poaed into two suitable parts: then, one part is shown to
be acyclic and the other one acceptable. The following
notion is used to specify the relationship between these
two parts. Recall that a relation is said to be defined in
a program if it occurs in the head of at least one clause
of the program.

Definition 4.1 Let P and R be two programs. We say
that P exten.d.s R, written P > R, if no relation defined
in P occurs in R.

Informally, P extends R if P defines new relations pos
sibly using the relations defined already in R. Then one
can imagine the program P U R as formed by an upper
part P and a lower part R, and investigate the cases
~hen ei.ther t~e _lower o~ the upper part of the program
is acyc~1c. This is. done m the following sections, by in
troducing th~ notions of up- and low-acceptability. For
a level mapping 11, we shall denote by I IJR its restriction
to the relations defined in the program R.

In t~e following definition, the upper part of the pro
gram 18 proven to be acceptable and the lower part to
be acyclic. Fort~ programs P, R, let P \ R denote
the program obta.i.ned from P by deleting all clauses of
R a.nd all literals defined in R.

Defi~ition 4.2 (up-acceptability) Let I I be a level
mapping for P. Let R be a set of clauses s.t. P = p1 u R
for. l!IOme P1 , and let I be an interpretation of p \ R.
P 11 . ~p-caeceptable w. r. t. I I, R and I if the following
conditions hold:
l) Pi ~ends~; 2) P\R is acceptable w.r.t. I liP\R and
I; S) R 11 acychc w.r.t. 1 JiRi 4) for every ground instance
H - Li.'···, L ... ~fa clause of P1, for i E [l, n], if Li is
defined in R 8:11-d is not a constraint, then IHI ~ ILil·

A progra.rn.. 18 called up-acceptable if there exists 11, R
a.nd I s.t. P is up-acceptable w.r.t. 11, R and /.

HI AUTOMATED REASONING

Observe that for R equal to the empty set of clauses, we
obtain the original definition of acceptability. Now, we
introduce the notion of up-bounded query. Suppose that
P is up-acceptable w.r.t. 11, Rand J. Consider a query
Q = L 1 , •.. , L.,,. Then, with Q we associate n sets of
natural numbers s.t. for i E [1, n],

IQl:p,I = {IL~I I Li, ... , L~ is ~ground instance of Q
and I f= LA,1 /\ ••• /\ L,.,),

where LA,1 , ••• , L~1 are all those literals of Li, . .. , L~-l
(whose relations are) defined in P1. Then Q is called up
bounded if every IQl:p,I is finite. The following result
holds.

Theorem 4.3 Suppose that P is up-acceptable w. r. t.
11, Rand I. Let Q be an up-bounded query. Then every
ldcnf-tree for Q in P contains only up-bounded queries
and is finite.

The following corollary establishes the equivalence of the
notions of acceptability and up-acceptability.

Corollary 4.4 Let P be a general logic program. Then:
(i) If P is up-acceptable then P is acceptable. (ii) If P
is acceptable then it is up-acceptable.

Now, we consider the converse case, where the lower
pa.rt of the program is proven to be acceptable and the
upper part to be acyclic.

Definition 4.5 (low-acceptability) Let I I be a level
mapping for P. Let R be a set of clauses s.t. P =
P1 U R for some P1, and let I be an interpretation of R.
P is low-acceptable w.r.t. I j, R and I if the following
conditions hold: 1) P1 extends R; 2) P \ R is acyclic
w.r.t. I l1P\Ri 3) R is acceptable w.r.t. I llR and I; 4)
for every ground instance H +- L 1 , •.. , L.,, of a clause
of P1, for i E [l, n], if L; is defined in R and is not a
constraint, then IHI~ ILil·

A program is low-acceptable if there exists I I, R and
I s.t. P is low-acceptable w.r.t.11, Rand J.

Suppose that P is low-acceptable w.r.t. I j, R and I.
Then the notion of low-boundedness is defined as in the
previous section, where IQl~p,I is replaced by the set

IQl l,.ow,I = {!L'j I £' I i 1 • ... , L.,, is a ground instance of
Q and If= £~1 /\ ... I\ L~1 },

where LA,1 , ••• , LA,1 are all those literals of L~, ... , L~_ 1
~whose relations are) defined in R. Then the correspond
ing of Theorem 4.3 and Corollary 4.4 hold, where up is
replaced by low.

5 A Methodology
Definitions 4.2 and 4.5 provide us with a method for
proving left-termination of general logic programs. For
a program P, the method can be informally illustrated
as follows:
1) Fi?d a maximal set R of clauses of P s.t. R forms an
acyclic program and P = P1 UR is s.t. either P 1 extends
R or vice versa.
2) If R extends P1 then:

2.1) Prove that P \ R is acceptable w.r.t. a level map
ping, say I \ 1, and an interpretation.
2.2) Use I \1 to define a level mapping I \2 for R s.t. R
is acyclic w.r.t. I 12, and s.t. for every ground instance
H - L1, ... , Ln of a clause of R, if Li is defined in P1
and it is not a constraint, then IHl2 ;::: \Li\t holds.
3) If P1 extends R then:
3.1) Prove that R is acyclic w.r.t. a level mapping, say
I \1.
3.2) Use \ 11 to define a level mapping I 12 for P \ R
s.t. P \ R is acceptable w.r.t. \ \2 and an interpreta
tion, and s.t. for every ground instance H +- L1, ... , Ln
of a clause of Pi, if Li is defined in R and it is not a
constraint, then \Hl2 2: \Lilt holds.

This method overcomes a drawback of the original
method of Apt and Pedreschi to prove left-termination,
where one has to find a good model of all the program.

A drawback of our method one immediately observes
is its lack of incrementality. In fact, it would be nice
to have an incremental, bottom-up method, where the
decomposition step 1. is applied iteratively to the sub
programs until possible (i.e., until the partition of a sub
program becomes trivial). This is possible, because a
program is up-flow-acceptable iff it is acceptable. Then
in the conditions 2 of Definition 4.2 and 3 of Definition
4.5 we can prove up-/low-acceptability instead of accept
ability. The resulting method is informally illustrated as
follows.
• Find a partition of P, say P1 , ... , Pn s.t. for every
i E [1, n - 1]: - Pi+1 > Pi (Pi+l extends Pi)i - either
Pi or Pi+t is acyclic; and - if Pi+l is acyclic then it is a
maximal set of clauses from P 1 U ... U Pi+t which forms
an acyclic program.
•Prove that for every i E [1,n], the program PoU .. . UPi
is up- or low-acceptable.

We can prove that Po U ... U Pi is up- or low-acceptable
in an incremental way, as follows. Suppose that for an
i < n, P1 U ... U Pi has been proven up- or low-acceptable
w.r.t. \ 11 and I. Then:
1) If Pi+1 is acyclic then use I \1 to define a level mapping
\ 12 for Pi+1 \P; s.t. Pi+l \Pi is acyclic w.r.t. \ \2, and s.t.
for every ground instance H - L1, ... , Ln of a clause of
Pi+l• if Lj is defined in Pi and it is not a constraint,
then \Hl2 ~ IL; \1 holds.
2) If Pi is acyclic then use I \ 1 to define a level mapping
\ \2 for P;+1 \Pi s.t. Pi+t \Pi is acceptable w.r.t. I \2
and an interpretation, and s.t. for every ground instance
H +- Li, ... , Ln of a clause of Pi+l • if L; is defined in
Pi and it is not a constraint, then \H\2 ~ \L;l1 holds.

Observe that by using this incremental bottom-up ap
proach, one obtains the subprogram R to be used to
prove up-/low-acceptability (either P1 or Pn), together
with a potential level mapping\ I (the union of the level
mappings of the Pi's). However, the interpretation I is
not obtained. Thus this method is less powerful than
the non-incremental one, because it does not allow to
deal with non-ground queries (by means of the notion
of boundedness) except for those consisting of only one
literal.

Apt and Pedreschi in [3] introduced a modular ap
proach for proving acceptability of pure Prolog pro-

grams, i.e. without negation. The extension of this
approach to programs containing negated atoms is not
treated, and also our method does not solve this problem.
Instead, our approach provides an alternative methodol
ogy for proving acceptability, where one tries to simplify
the proof by using as minimal semantic information as
possible.

6 Application
In this section we illustrate by means of some examples
how various problems in non-monotonic reasoning can be
formalized by means of acyclic or acceptable programs.
We consider the blocks-world problem, planning in the
blocks-world, and search in graph structures.

Blocks World
The blocks world is a formulation of a simple problem

in AI, where a robot is allowed to perform a number of
primitive actions in a simple world (see e.g. [11]). Here
we consider a simple version of this problem, where there
are three blocks, say a, b, c, and three different places
of a table, say p, q and r. A block is allowed to lay
either above another block or on one of these places.
Blocks can be moved from one to another location. The
problem consists of specifying when a configuration in
the blocks world is possible, i.e., if it can be obtained
from the initial situation by performing a sequence of
possible moves. We use McCarthy and Hayes situation
calculus to formulate the problem, in terms of facts,
events and situations. One can distinguish three types of
facts: Zoe(X, L) stands for a block X is in the location L;
on(X, Y) for a block X is on a block Y; and clear(L) for
there is no block in the location L. It is sufficient to con
sider only one type of event, namely move a block X into
a location L, denoted by move(X, L). Finally, we repre
sent situations by means of lists: [] stands for the initial
situation, and [Xe\Xs] for the one corresponding to the
occurrence of the event X e in the situation X s. Based
on the above representation, one can formalize the blocks
world by means of the following program blocks-world,
where top(X) denotes the top of the block X, and
B = {a,b,c}, 'P = {p,q,r,top(a),top(b),top(c)}, and
.C = {loc(a,p),loc(b,q),loc(c,r)}:

(loc) holds(l,[]) +-. lEC
(blo) block(bl) +-. bl E B
(pla) place(pl) +-. pl E 'P
(hl) holds(loc(X,L),[move(X,L)IIs]) +

block(X),
place(L),
holds(clear(top(X)),Xs),
holds(clear(L),Xs),
L :/= top(X) .

(h2) holds(loc(X,L),[XelXs]) +

block(X),
place(L),
~ abnormal(loc(X,L),Xe,Xs),
holds(loc(X,L),Is).

(h3) holds(on(I,Y),Is) +
holds(loc(X,top(Y)) ,Xs).

(h4) holds(on(X,Y),Xs) +
holds(loc(X,top(Z)),Xs),
holds(loc(Z,top(Y)),Xs).

MARCHIORI 359

,L), move(X,L'),Xs) <-.

,Is)+- holds(loc(X,L),Xs).
[(a,L1), (b,L2), (c ,L3)],Is) <

(loc(a,L1) ,Xs),
h~lds{loc(b,L2),Xs),
holds(loc(c,L3),Is).

situation is described by clauses (Zoe). The
holds is used to describe when a fact is pos-

in a situation, while the relation legal-s
when a configuration is possible in a certain sit

mi.Hon. It is easy to check that blocks-world is acyclic
t. the level mapping J J, where we use the

fm1ctmn : ; from ground terms to natural numbers s.t. if
::;; list then iY! is its length, otherwise IYI is 0.

+ 1 if x of form lac(r, s),
+ 3 if x of form clear(r, s),
+ 4 if x of form on(r, s),

otherwise.

z)I = o,
= 3,. IYI + 2.

Consider for instance the query holds (on (a, Y) , [Xs]):
It Is hence every its sldcnf-derivation is finite.
\Ve obtain the answers (Y = b/\ Xs = move(a,top(b)))
?.nd Y = c /\ Xs = move(a,top(c))).

Planning in the Blocks World
\\7e consider now plan-formations in the blocks world

which amounts to the specification of a sequence of pos~
sibie moves which yield a particular configuration. This

car,:i be solved by means of a nondeterministic
[12]): while the desired state is not reached

, . action., .update the current state, check that
nas tleen visited before. The following program

plan.ning follows this approach, where the clauses of
blocks-world which define the relation legal-s, whose
umonys,d.enoted by r-blocks-world, are supposed to be
mdm:1ea m the program, Note that here the initial con

is any situation which can be reached from
' . 1· •

• f m1t1:i..izat1on (which is de~cribed by the clauses (loc)
o. ~~o1cxs-worl~). Alter?-':t!vely, as done in [12], one
coma .et unspecified the m1ttalization which would be

every time the program is te~ted.
transform(Xs,St,Plan) <

state(StO), legal-s(StO,Xs),
trans(ls,St,[StO],Plan).

trans(Xs,St,Vis,[])
legal-s(St,Xs).

trans(Is,St,Vis,[ActlActs]) .._
state(Stl),
~ member(Stl Vis)
legal-s(St1,CActlXs]),
trans([Act1Xs],St,[St11Vis],Acts).

state([(a,L1),(b,L2),(c,L3)]) <
pm[p,q,r,top(a),top(b),top(c)]
member(L1 ,P), '
zember(L2,P),
member(L3,P).

380 AUTOMATED REASONING

(ml) member(X, [XIY]) <-.
(m2) member(X, [YI Z]) <

member(I, Z).

To prove that planning is left-termi.nating .using Defini
tion 3.2 is rather difficult, because it reqmres to find a
model of planning, which is a model of the completion
of the program consisting of the clauses (ml) and (m2)
and of all the clauses of blocks-world, but (h3), (h4),
(st).

We prove that planning is up-acceptable w.r.t. \ J,
r-blocks-world, and I defined as follows. The level
mapping \ \ for planning is the one of the previ<?us exam
ple when restricted to r-blocks-world, and is defined
as follows for the other relations.

Jtransf orm(x, y, z)\ = N + 3 * (\x\ + 1) + 2 + 3 + 1;
Jtrans(x, y, z, w)\ = N - card(el(z) n S) + 3 * (Jx\ + 1) +
2+3+ \zJ;
Jstate(x) I = 7;
\member(x, y)\ = \y\.
Here el(z) denotes set(z) if z is a list, the empty
set otherwise; card(el(z) n S) is the cardinality of the
set el(z) n S; Ix\ is defined as in the previous ex
ample; and N denotes the cardinality of S. Note
that (N - card(el (z) n S) is greater or equal than 0.
Then I \ is well defined. Let tras be the program
planning\r-blocks-world. We consider the following
interpretation I of tras: let set(y) be the set of ele
ments of the list y, and S = {[(a,pl), (b,p2), (c,p3)] \
for i E [l, 3],pi E {p, q, r, top(a), top(b), top(c)} }.

!transform= [transf orm(X, Y, Z)],
ltrans = [trans(X, Y, Z, W)],
!member= {member(x, y) j y list s.t. x E set(y)},
lstate = {state(x) I x ES}.

Then I= ltransformUltransUlmemberUI.tate· It is easy
to prove that I is a model of tras. Moreover, N egP\R =
{member}, and tras- is equal to {(ml), (m2)}. Then
it is easy to check that I restricted to {member} is a
model of comp(tras-). Moreover, conditions 1-4 of up
acceptability are satisfied: for instance, the proof of con
dition 2 (tras is acceptable w.r.t. I and \ I) is based on
the following properties of\ I: ltransform(x, y, z)\ ? 8,
\tran~(x, y, z, w)\ 2: 8, and Jtrans(x, y, z, w)\ > \z\).
~ons~der the query transform([] , st ,Plan), where at
is a given state. This query is up-bounded, hence by The
orem 4.3 all its ldcnf-derivations are finite, and produce
a plan of actions which transforms the initial state [J into
the final one st. Notice that this query has an infinite
sldcnf-derivation, which is obtained by selecting always
the rightmost literal of the clause (s).

Search in Graph Structures
Graph structures are used in many applications such

as ~epresenting relations, situations or problems.' Two
typical operations performed on graphs are find a path
betw~en two given nodes, and find a subgraph with some
~pecified properties. The following program specialize
is an exampl.e of the combination of these two operations.
Th~ relat10n spec is specified by clause (a), as the

negation of another relation, called unspec, where

unspec(nl, n2, n, g) is true if there is an acyclic path
of the graph g connecting the nodes nl and n2 and
containing n. Acyclic paths of a graph are described
by the relation path, defined by the clause (c), where
path(nl,n2,g,p) calls the query pathl(nl,[n2],g,p).
Here the second argument of pathl is used to construct
incrementally a path connecting nl with n2: using clause
(e), the partial path [xlpl] is transformed in [y, xlpl] if
there is an edge [y, x] in the graph 9 such that y is not
already present in [xlpl]. The construction terminates if
y is equal to nl, thanks to clause (d). The relation pathl
is defined inductively by the clauses (cl) and (e), using
the familiar relation member, specified by the clauses (f)
and (g).

Notice that, from (cl) it follows that if nl and n2 are
equal, then [nl] is assumed to be an acyclic path from
nl to n2, for any 9.

(a) spec(N1,N2,N,G) +-

~ unspec(N1,N2,N,G).
(b) unspec(N1, N2, N ,G) +

path(N1, N2, G ,P),
member(N,P).

(c) path(N1, N2, G, P) +

path1 (N1, [N2] ,G,P).
(d) path1(N1,[N1IP1],G,[N1IP1]) +-.
(e) path1(N1, [X1 IP1] ,G,P) +

member([Yi ,X1] , G),
~ member(Y1,[X1IP1]),
path1(N1, [Y1,X1IP1] ,G,P).

(!) member(X,[XIY]) +-.

(g) member(X, [YIZ]) +-

member(X,Z).

Here a graph is represented by means of a list of edges.
For instance
spec (a, b, c, [[a, b] , [b, c], [a, a]]) holds, where a, b, c
are constants and the graph [[a, b], [b, c], [a, a]] is repre
sented below.

Observe that specialize is not terminating: for in
stance, the query path1(a, [b,c] ,d,e) has an infinite
derivation obtained by choosing as input clause (a vari
ant of) the clause (e) and by selecting always its right
most literal.

However specialize is left-terminating. Note that to
prove this result using Definition 3.2 requires to find a
suitable model of the completion of the program, which
is rather difficult. Therefore we prove left-termination
by means of low-acceptability.

We prove that specialize is low-acceptable w.r.t. 11,
spec1 and I, defined as follows. spec1 is the program
consisting of the all the clauses of specialize but (a).
Let spec2 be the program consisting of the clause (a) of
specialize. Define the level mapping 11 as follows:

lspec(nl, n2, n, 9)1 = lunspec(nl, n2, n, 9)1+1,
lunspec(nl, n2, n, g)I = 0,
lmember(s, t)I = ltl;
lpathl(nl,pl, g,p)I = IPll + lgl + 2(191 - lpl n gl) + 1,
lpath(nl,n2,9,p)I = 3lgl + 3,
lunspec(nl, n2, n, g)I = 3lgl + 4,

where for two lists p and g p n g denotes the list con
taining as elements those x which are elements of p and
such that there exists a y s.t. [x, y] is an element of g.

Let I= lunspec U lpath U lpath1 U I member, where:

lunspec = [unspec(Nl, N2, N, G)],
lpath = {path(nl, n2, g,p) I 191+1 ~ IPI},
lpathl = {pathl(nl,pl,g,p) I

IPll - IPl n 91 ~ IPI - IP n gl},
I member= {member(s, t) I t list s.t. s E set(t)}.
It is easy to prove that I is a model of specl. Moreover

N eg;pecl ={member} and specl- = {(!), (g)}. Then I

restricted to member is a model of comp(specl -) .
Conditions 1-4 of the definition of low-acceptability

are easy to check. Consider now the query
Q = spec(a,b,X, [[a,b], [b,c], [a,a]]). It is low
bounded. Then one obtains a finite ldcnf-tree for Q,
with answer (X -:f. a/\ X -:f. b). Notice that by using
negation as failure Q does flounder.

Acknowledgments
I would like to thank Krzysztof Apt, Jan Rutten, and
Frank Teusink, and the referees. This research was
partly supported by the Esprit Basic Research Action
6810 (Compulog 2).

References
[1] K. R. Apt, M. Bezem. Acyclic Programs. New Genera

tion Computing, Vol. 9, 335-363, 1991.

[2] K. R. Apt, D. Pedreschi. Proving Termination of Gen
eral Prolog Programs. In Proc. TACS'91, LNCS 526,
pp.265-289, 1991, Springer Verlag.

[3] K. R. Apt, D. Pedreschi. Modular Termination Proofs
for Logic and Pure Prolog Programs. In G. Levi, editor,
Advances in logic programming theory. Oxford Univer
sity Press, 1994.

[4] D.Chan. Constructive Negation Based on the Com
pleted Database. In Proc. of the Sth Int. Conf. and
Symp. on Logic Programming, pp. 111-125, 1988.

[5] K.L. Clark. Negation as Failure. In H. Gallaire and J.
Minker eds., Logic and Databases, pp. 293-322. Plenum
Press, NY, 1978.

[6] N. Dershowitz. Termination of Rewriting. Journal of
Symbolic Computation, 3, pp. 69-116, 1987.

[7] D. De Schreye, S. Decorte. Termination of Logic Pro
grams: The Never-Ending Story. Journal of Logic Pro
gramming, 19,20, 1994.

[8] C. Evans. Negation as Failure as an Approach to the
Hanks and McDermott Problem. Proc. of the 2nd Int.
Symp. on Al, pp. 23-27, 1990.

[9] R. Kowalski, M. Sergot. A Logic Based Calculus of
Events. New Generation Computing, 4, pp. 67-95, 1986.

[10] E. Marchiori. On Termination of General Logic Pro
grams w.r.t. Constructive Negation. Journal of Logic
Programming, 1995, to appear.

[11] N .J. Nilsson. Principles of Artificial Intelligence.
Springer-Verlag, 1982.

[12] L. Sterling and E. Shapiro. The Art of Prolog. MIT
Press, 1994. 2nd edition.

MARCHIORI 361

