
Multiple Semi-coarsening Techniques 

P.M. de Zeeuw 
CWI 

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands 

Abstract 

Departing from Mulder's semi-coarsening technique for first-order PDEs, the no
tion of a grid of grids is introduced and a multi-level finite-volume technique for 
second order elliptic PDEs is developed. Various grid-transfer operators are in
vestigated, in combination with damped Jacobi-relaxation. Convergence rates as 
they are predicted by Fourier local mode analysis are compared with practical 
measurements. The wide variety of grids at our disposal leads to the notion of 
coherent representations of a function on different grids. A sawtooth multi-level 
algorithm is proposed for the case of multiple semi-coarsening. A hierarchical set 
of basis-functions for finite volumes on sparse grids is briefly discussed. 

Note: Major parts of this paper were already published in1 

1 Introduction 

In multigrid methods we have to take care of obtaining adequate coarse grid corrections 
to accelerate an iterative solution process. The standard procedure of grid coarsen
ing, i.e. doubling the mesh-size in each space-dimension, is known to be not robust in 
more-dimensional cases where flow-alignment or anisotropic diffusion occurs (see (3, 10]). 
These are examples of phenomena, defined in more space dimensions, that are locally 
one-dimensional in essence and do not really allow for coarsening in all directions. Here, 
a classical coarse grid correction (CGC) fails to yield proper corrections, simply because 
these cannot be represented on the standard-coarsened grid. This has to be compen
sated for by powerful smoothing procedures. E.g. in 2D one applies line-wise instead 
of point-wise relaxation methods, or one resorts to incomplete factorizations. Indeed, 
in (21, § 7.12] the best smoothing methods that can handle both the (rotated) anisotropic 
Poisson equation and convection-diffusion equations are exactly of this type. A similar 
story goes for the solution of Navier-Stokes equations when the unknowns are strongly 
coupled in one direction due to high mesh aspect ratios in for instance high-Reynolds 
boundary layer and wake flows and also in far-field flows. 

Where multigrid standard coarsening in 2D lacks the possibility of representing com
ponents in the error that are low-frequent in one direction but very high-frequent in the 
other, this holds even more in three space dimensions. 

One rigorous remedy is to apply semi-coarsening, i.e. coarsening merely in the di
rection of the strongest coupling [3, 10]. Thus, at the expense of a larger number of 

1 DE ZEEUW, P.M.: Development of semi-coarsening techniques, Appl. Numer. Math. 19 (1996) 
433-465. 
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grid-points on the coarse grid, we can represent components in the correction which are 
of low frequency in the direction of the strong coupling and of high frequency in the 
other directions. In this manner, the CGC is effective and we do not need to put too 
high demands to the smoother and can therefore rely on simple procedures. In Figure 1 
a piecewise constant grid-function is shown that is of the highest frequency in one di
rection and of the lowest in the other (a so-called washboard function). Restriction (by 
integration) to the standard coarsened grid annihilates the function whereas restriction 
to the semi-coarsened grid is clearly representative. 
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-1 -1 

+1 +1 
0 0 

-1 -1 

standard coarsened grid semi-coarsened grid 

+l +1 +l +l 

-1 -1 -1 -1 
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-1 -1 -1 -1 

fine grid 

Figure 1: Coarsening of a washboard grid-function. 

Another, but related, remedy is the frequency decomposition multigrid method (FD
MGM) of Hackbusch (see [11, 12]). In 2D, through shifting the standard coarse grid one 
obtains three further grids for the representation of corrections corresponding to four dif
ferent types of frequencies. Depending on the type, the grids are recursively coarsened. 
In 3D this approach can be generalised to the creation of seven further coarse grids, 
shifting the standard coarse grid. Evaluation of the defect equations on all the coarse 
grids leads to a multiple, intertwined, coarse grid correction. Again, at the expense of a 
larger complexity on the coarse grid, one obtains an effective CGC which clears the way 
for a simple smoothing operator. 

In 2D, Mulder proposed to perform semi-coarsening in two directions simultane
ously [15, 16]. A fine grid is coarsened in the x- and y-direction respectively. Vice versa, 
each coarse grid is linked to two finer grids, refined in the x- and y-direction respec
tively. Similar information from different coarse grids is combined in order to limit the 
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complexity _to '?(N)~ where N is t~e number of cells on the finest grid. This combining 
of informat10n implies the averagmg of residuals. For the transfer of corrections from 
c~arse_ grids to ~ne grids _Mulder proposes alternating prolongations, in the x- and y
direct10n respect1ve~y. N_a1k and Van Rosendale [17] propose a weighted average of the 
interpolated correct10ns m the x- and y-direction. 

A related, but different, approach can be found in [6] where on different subspaces 
in parallel, a PDE is discretized and solved (on e.g. a four colour division of the spac~ 
of grid-functions). 

In 3D, semi-coarsening in three directions takes an extra storage of 7 N cells for the 
coarse grids. Though this amount of storage is only proportional to the number of 
unknowns, it still may become prohibitive in practice. Zenger [26] launched the idea 
of defining a specific set of hierarchical basis-functions within a FE-space. The set is 
chosen in a way that N reduces significantly with only a slight deterioration of accuracy 
of (smooth) solutions. The supports of the hierarchical basis-functions relate to each 
other by semi-coarsening (and semi-refinement) in the same way as the semi-coarsened 
finite volumes. 

In this paper we consider finite volumes rather than finite elements. We confine 
ourselves to linear problems, but we indicate where a generalisation is possible. First, 
in Section 2 we describe a multi-level method on a complete grid of grids, this is in 
contrast with the classical approach of a sequence of standard coarsened grids. The use 
of some particular grid-transfer operators is discussed and numerical results are given 
for the (an)isotropic diffusion equation. In Section 3 we touch upon the possibility 
of developing a multi-level method for sparse grids which should be the finite-volume 
counterpart of algorithms already developed for finite elements (see e.g. [9]). The use 
of hierarchical basis-functions in the context of finite volumes, is also described in this 
section. In Section 4 conclusions are summarized. 

2 The multi-level method on a grid of grids 

Before we arrive at the proposed multi-level algorithm and its results (in the Sections 2.6-
2.9), we first introduce general notions (and notations) in Section 2.1 and, specifically, 
grid-transfer operators in Sections 2.2-2.3. In Section 2.4 we describe the notion of 
what will be called 'coherence' of grid-functions. Hereby we can describe an important 
possible difference between a representation of a function on multiple semi-coarsened 
grids on one hand and on sparse grids on the other. In Section 2.5 we investigate 
the Galerkin approach for the discretization on coarser grids; for linear problems with 
constant coefficients we can give a detailed analysis of the stencils resulting from the 
Galerkin approach. 

2 .1 Grids of grids 

For convenience we introduce the notation. used for the two-dimensional case. The anal
ogous notation is used for three space dimensions, but the explanation would, ~ossi~ly, 
be less clear by the abundance of indices. The set of natural numbers, supplied with 
zero, is written as N. By n we denote a pair of integers (n1,n2) in N2. By n :"::: m we 
mean that ni ::::; mi for j = 1, 2. The inequalities <, 2'., > between n a~d m are 
defined analogously. The domain of definition, n, is assumed to be the open umt square. 

513 



Now we introduce the following notation: 

0 = (0, 0) E N2 ; 

e1 (1,0) E N2; 
e2 = (0, 1) E N2; 
e = e1 +e2 E N2; 

Jn! = n1 +n2 EN; 
x = (xi, X2) E lR.2; 

h..k = rnk E R for k = 1, 2; 
Nn = { (x1, X2) J Xk = ikhnk> (i1, i2) E N2}; 
!1n = OnNn; 
G = {nn In E N2}; 

Gn = {nm I m:::;; n, m E N2}; 

Cn = { (x1,x2) I Xk = (ik + !)hnk> (i1,i2) E N2}; 
nc n = OnCn; 
gn n~-+ JR; 

gn,i = (gn)i = gn(x) with x = ((i1 + !)hnu (i2 + !)hn2 ) E !1~; 
Sn = {gn I gn: n~-+ IR}; 

Rm,n Sn -+ Sm (m < n) a linear surjection; 
Pn,m Sm-+ Sn (m < n) a linear injection; 
!1n,i = the interior of an elementary rectangle with vertices defined on 

On, with center ((i1 + !)hn1, (i2 + !)hn2 ) E !1~ and dimensions: 
h...,k = 1,2. 

Here On,i is called a cell and gn E Sn is called a grid-function. The set of values of gn can be interpreted as components of a vector in JR21n1• The set !1~ is called the set of cell-centers of On. The symbol Sn denotes the linear space of real-valued functions on n~. The 2-tuple n is called the index of !1n. The integer l = lnl is called a grid-level. Rm,n is a restriction and Pn,m is a prolongation. G is called the infinite grid of grids. A finite subset F of G is called a (finite) grid of grids. Gn is called a complete grid of grids (it follows at once that such a complete grid of grids is finite). A specific grid in the grid of grids is identified as On. See Figure 2 for an illustration of a complete grid of grids. Within some of the coarser grids, in the upper left corner of this diagram, the cells, covering the grids, are indicated. Enumerated in Table 1, we recognize four types of straight lines in the grid of grids, each with their own meaning. We observe that semi-coarsening in either direction (Type 1, 2} and standard-coarsening (Type 3) are included. Grids with the same grid-level correspond to lines of Type 4. Grid-levels will be of use in the description of algorithms to come. An example of a set of grids belonging to the same grid-level l is shown in Figure 2 by the dashed line. Note that grids on the same grid-level l count the same number of cells. 
When a grid of grids F can be written as F = { On1 , ••• , On~}, then the least common multiple (LCM(F)) of F, is the grid On with 

nk = .max {k-th component of n;}, 3=l, ... ,7 
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and the greatest common divisor (GCD(F)) of F is the grid Orn with 

mk = .min {k-th component ofnj}. 
J=l,. .. ;y 

An incomplete grid of grids is a grid of grids that is not complete. An enclosure E of a 
finite grid F of grids is a complete grid of grids that includes F. The smallest enclosure 

En of a finite grid F of grids is an enclosure of F such that for no m < n another 
enclosure exists. One can show there exists exactly one smallest enclosure, viz. En such 
that On is the least common multiple of F. The grid On is then also called the finest grid 

of the smallest enclosure. An incomplete grid of grids of the first kind is an incomplete 
grid of grids which nevertheless includes the finest grid of its smallest enclosure. An 
incomplete grid of grids of the second kind is a grid of grids which does not include the 
finest grid of its smallest enclosure. See Figure 12 for a specific example of a grid of grids 
that is incomplete of the second kind. It corresponds to Zenger's sparse grids [26]. 

~~ B ~ D D 
Oco,o) Oco,1) Oco,2) l = 5 

rn EE o~-o 0 
Ocr,o) Oc1,1) • + / 

I r-V 
D~-LJ D 

/ 

D D 00 D 
~ i / 

D-00 D D 
/ 0(4,4) 

Figure 2: A complete grid, Gc4,4i, of grids in JR.2. 

The equation and its discretization We investigate the two-dimensional case of 

the general (single) second-order (elliptic) equation 

Lu= f on 0, (1) 

with suitable boundary conditions. For a complete grid of grids Gn we can obtain 
discrete versions of equation (1) on each grid Orn with m Sn 

(2) 
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Table 1: Substructures in the grid of grids 
I Type II Definition I Meaning 

1 n2 ~ 0 /\ ni = c ~ 0 x1 semi-coarsening 
2 n1 ~ 0 /\ n2 = c ~ 0 x2 semi-coarsening 
3 ni, n2 ~ 0 /\ n1 - n2 = c standard-coarsening 
4 ni, n2 ~ 0 /\ n1 + n2 = l grid-level l 

In the rest of Section 2 we consider a multi-level approach for the solution of this equation on the finest grid. 

2.2 Restriction operators 
Let f E L 2(f2) be a square-integrable function, then we define the operator Rn by 

Rn 

fn,i = (Rn/h 

(3a) 

(3b) 

i.e. the function f is integrated over each cell On,i (see Section 2.1). Thus, grid-function f n corresponds to the finite-volume discretization of function f on f2n. Definition (3) leads to a natural definition of the restriction operation between grid-functions within this context of finite-volume discretization. The definition reads: 

~,n+er. Sn+er.-+ Sn, 
fn,i = (.Rii,n+eJn+e,.)i = fn+e,.,2i + fn+e,.,2i+er.· 

(4a) 
(4b) 

By the definition of integration, the integral off over a box on the coarse grid is the sum of integrals of f over the two constituting boxes on the semi-refined grid. This explains definition ( 4): this restriction can be seen as a Riemann-sum over sub-domains. In the multi-level method to be described in Section 2.6 this restriction will be applied to grid-functions that represent the right-hand side of (2). 
The grids On are nested in the sense that On ::) nm when n ~ m. In Figure 2 nesting takes place horizontally and vertically. Grids nn which are on the same grid-level lni = l cannot be nested. Suppose we have some complete grid of grids Gn. We note that for all grids Om E Gn it holds true that f2m c On. Due to this nesting, restriction (4) (based on integration) is commutative w.r.t. the Xk-directions: 

(5) 
See the dashed arrows in Figure 2. 

Definition 2.1 Let s = { m~e,.,n I n E N2, ek E { ei, e2}} be a set of lD restriction 
operators. If the restriction 

R(S) 
n,.,n1 

R(S) = n7,n1 
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with 

n1 s; n 1-1 · · · :::; n1 

is uniquely defined (i. e. independent of n~_ 1 · · · n2 for ,., > 2) the restriction R(S) is 
, 1 1 n.,.,n 1 

called path-independent. 

We note that R~0 ,n 1 is an example ofa path-independent restriction because of (5). When 
f is a rapidly varying function, the restriction (4) yields an appropriate discretization 
procedure for f on the coarser grids [23]. 

2.3 Prolongation operators 

Some prolongation operators are indicated as un-dashed arrows in Figure 2. 

Piecewise constant prolongation The definition of piecewise constant prolongation 
in the Xk-direction reads: 

P~+e.,n 
Un+e.,2i = ( P~+e;,n Un hi 

Un+e;,2i+e• = ( P~+e.,n Unhi+e; 

Un,i 

(7a) 

(7b) 

(7c) 

We note that the the standard piecewise constant prolongation in R2 can be seen as the 
subsequent application of lD piecewise constant prolongations. We also note that 

(8) 

Second order prolongation The definition of second order prolongation in the Xk

direction reads: 

P~+e;,n Sn__.. Sn+e,, 

Un+e.,2i = (P~+e;,n Unhi = ~Un,i-e• + ~Un,i. 
Un+e;,2i+e• = ( P~+e.,n Unhi+e• = ~Un,i + ~Un,i+e• · 

(9a) 

(9b) 

(9c) 

This is shown in Figure 3. The definition can also be applied (with cyclic numbering of 
i) at the boundary of On when periodic boundary conditions are prescribed. 

Bilinear prolongation The definition of the standard bilinear prolongation in R2 

reads: 

Un+e,e+2i 

Un+e,e+2i+e 

Sn__.. Sn+e, 

(P~ie,nun)e+2i = 
9 u . + 3 u . + 1..u . + .l.u ·+ 16 n,1 16 n,1+e1 16 n,1+e2 16 n,1 ei 

( P~ie,n Un)e+2i+e1 = 
3 u · + 9 u · + ..l.u · + 1-u ·+ I6 n,1 I6 n,1+e1 16 n,1+e2 16 n,1 e i 

(P~ie,nun)e+2i+e2 = 
3 u . + 1 u . + 1..u . + 1..u ·+ i6 n,1 16 n 11+e1 16 n,1+e2 16 n,1 e, 

(phi u ) . -n+e,n n e+21+e -

1 u + 3 u . + 1..u . + 1..u ·+ I6 n,i i6 n 11+e1 16 n,1+e2 16 n,1 e· 

(lOa) 

(lOb) 

(10c) 

(lOd) 

(lOe) 
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/\: ·w 4 1 4 3 \:j '4 
I 

\I 

~ I I 0 I 0 I I On+e1 

Figure 3: Prolongations in the x1 -direction in R2. 

This is symbolically shown in Figure 4. Here, the cell-centers of the respective coarser grids On, !"!n+e1 , On+e2 are indicated by •, whereas cell-centers of On+e are indicated by o. The latter are also depicted in the coarser grids in order to demonstrate how the second order prolongations are determined. The definition can also be applied . (with cyclic numbering of i) at the boundary of On when periodic boundary conditions are prescribed. We note that the bilinear prolongation can be decomposed into the second order lD prolongations defined in (9): 

(11) 

Definition 2.2 Let S = { P~~Le. In E N2 ,ek E {e1,e2}} be a set of JD prolongation 
operators. If the prolongation 

with 

n1 :5 n2 · · · :5 ny 

(12a) 

(12b) 

is uniquely defined (i.e. independent of n 2 • • • ny_1 for 'Y > 2), then the prolongation P~~~n1 is called path-independent. 

Of course, P~,n1 is a path-independent prolongation. Also P~,ni is a path-independent prolongation because of (11). 

Combination of coarse-grid corrections We want to solve (2) on On by a multilevel approach. We define the residual: 

(13) 
We consider the grids On-q 

(14) 
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• • 
0 0 • 0 0 • 

0 0 • 0 0 • 
• ill 

• • 
0 0 0 0 

0 0 +1 0 0 

• • 

Figure 4: Some second order prolongations in R2 . 

for acceleration of convergence by coarse grid correction. A picture is shown in Figure 4 of 
prolongations stemming from the various coarser grids. We assume that the correction
equations are solved exactly on the coarser grids, which means that we compute 

(15) 

At first we might consider the following coarse grid correction 

Un = Un + Pn,n-qCn-q (16) 

for the three different possibilities given by (14). When q = e we have the classical 
coarse grid correction in 2D for standard coarsened grids; when q = ek (k = 1 or 2) we 
have a coarse grid correction going with semi-coarsening. However, instead of (16) we 
apply the following coarse grid correction 

where a weighted combination of the corrections is chosen with weights: 

The correction as given by (17) is an example of additive subspace correction. We 
demand at least first order accuracy, i.e. when the Cn-q represent one and the same 
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constant function then the weighted combination of the corrections should represent the 
same constant function, hence: 

(18) 

We note that both the approach of Naik and Van Rosendale [17]: 

(19) 

and the proposal of Riide [18, p. 290] and Hemker [14]: 

We1 = 1, We2 = 1, We= -1. (20) 

fit within this framework. We examine how the multiple corrections reduce the residual, also involving the choice of the weights in (17). We write the amplification-matrices for the residual due to the coarser-grid corrections: 

Mn,n-q,n 

Mn,n-q,n 

Sn--> Sn 

In - Ln(Pn,n-qL;:;2.qRn-q,n), 

where In is the identity-operator for grid-functions in Sn. When we define: 

i.e. the residual after the coarse grid correction (17), it follows from (15) that: 

fn = (I: WqMn,n-q,n)Tn· 
qEQ 

(21a) 

(2lb) 

(22) 

(23) 

If we employ the Galerkin coarse grid approximation (GCA, see e.g. [21]) on all coarser grids, i.e. 

(24) 
then it follows at once that 

Rn-q,nMn,n-q,n = 0n-q, (25) 

i.e. the nil-operator that annihilates all grid-functions in Bn-q· We apply this result for the examination of the following grid-functions: 

i.e. the transfer by restriction of the new residual onto the coarser grids from which the coarser grid corrections originate. We assume the restriction operators to be pathindependent (see Definition 2.1). Firstly, we easily establish that 

Rn-e,nfn = On-e 

i.e. the zero grid-function in the space Sn-e· Secondly, we can prove that 
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Rn-e1,nTn = Rn-e1,n( 
(we2 + We)In - LnPn,n-e2 (we2 L;:;2.e2 + WePn-e2 ,n-eL;:;2.eRn-e,n-e2 ) 

)Rn-e.,nTn 

(26) 

(27) 



under the. ~ditional assumption that t~e prolongation operators are path-independent 
(see Defimt10n 2.2). We define the followmgoperator, associated with the approximation 
property (see Hackbusch [10]): 

An,m,n Sn --> Sn (m < n) 
An,m,n = L;;1- Pn,mL-;;1 Rm,n· 

When We = -We2 , the equality (27) reduces to: 

(28a) 
(28b) 

When the approximation property would hold between Ln-e2 and Ln-e up to a high 
order-this results into a 'small' grid-function. Analogously, when we= -Weu we derive 

It follows from (18) and We == -well We== -We2 that 

We1 = 1, We, = 1, We = -1. 

Hence, equations (29) and (30) apply specifically to proposal (20). 

2.4 Coherence 

Definition 2.3 A grid-function f m is called a coherent right-hand side representation 
of fn, n > m, when by means of a path-independent restriction Rm,n it holds that 

Rm,nfn = fm· (31) 

For Rm,n we only consider Rin,n, see (4) and (6). For the elementary example: m == n - e 
we observe that apparently 

when fm is a coherent right-hand side representation of fn· Note that when in JR.3 , 

instead of R 2, there would be six instead of two ways of determining f m which, again, 
should all yield the same grid-function. 

A set of grid-functions Um}, defined on a grid of grids V, is called a coherent set 
when all f m are, simultaneously, coherent representations of one grid-function defined 
on the finest grid of the smallest enclosure of V. 

For a complete grid of grids the coherence of right-hand sides (and of the residual 
and its transfers to coarser grids) can always be enforced if we choose to do so. This 
holds also true for an incomplete grid of the first kind (see Section 2.1). This is because 
all the coarser grid-functions can be derived from one and only grid, namely the finest 
grid of the smallest enclosure. 

The grid-functions f ni, ... , f n~ are called mutually coherent {on the right) when for 
the least common multiple of {On,, ... , n~} it holds that a grid-function fn exists such 
that all j n;, j = 1, ... , 'Y are coherent right-hand representations of fn· Note that by 
this definition grid-functions f nu f n 2 might be mutual coherent while neither n1 < n2, 
nor n 2 < ni, nor n 1 = n 2. 
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Example 2.1 Suppose that f n-e1 = Rn-e,,nf n and f n-e2 = Rn-e.,nf n {with pathindependent Rm,n) then J n-e, and f n-e2 are mutually coherent. 
We derive the following 

Proposition 2.1 Let Sln be the common divisor of Sln, and Dn2 , then the grid-functions f n, and f n, are mutually coherent if and only if 

Proof. 

L Let f n, and fn 2 be mutually coherent, then, by definition, for some m with m ~ n1, m ~ n 2 a grid-function f m exists such that 

It follows that 

Rn,n,fn, = 
Rn,n,Rn,,mfm = Rn,mfm = Rn,n2Rn.,mfm = Rn,n2fn2· 

2. We assume 
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Rn,n1 fn 1 = Rn,n2fn2· 
First we consider the canonical grids, i.e. n1 = n + e 1 and n 2 = n + e2 . Then the least common multiple of S1 01 and Dn2 is Slm with rn = n +e. We consider merely the canonical cells, see Figure 5. Geometrically, the four sub-figures are at the same location in ~2 . The values of the respective grid-functions f n, and f n, at the canonical cells are given in this picture. Either grid-function f n•, k = 1, 2 yields the value E on the cell at the common divisor S10 after application of Rn,n•· We show that fn., k = 1, 2 are mutually coherent w.r.t. some f m to be constructed. In order to satisfy 

Rn,,mf m, 

Rn,,mf m· 

it is sufficient that the values p, q, r, s E Roff m satisfy the following system of linear equations: 

( H : : ) (;) = ( ! ~: _:) (:) 
0 1 0 1 s ~ 0 +l 

(32) 

The general solution reads: 



In this manner we construct fm· 

Other cases than the canonical grids follow by induction for n1 , n2 in N2 , as 
follows. Suppose that nk > n + ek k = 1, 2 (the most general case, special cases 
can be treated analogously). We start by considering the grid-functions 

on the corresponding grids with the common divisor On. It holds that 

because of the basic assumption. By means of the construction (33) we create a 
grid-function fn+e w.r.t. to which f n+ek are mutually coherent. By repeating this 
procedure, we construct f n+e+e•, etcetera until we have filled the smallest enclosure 
of On• k = 1, 2 one by one. W.r.t. the grid-function fm on the finest grid Om of 
this smallest enclosure the f n. k = 1, 2 are now mutually coherent. D 

Remark 2.1 Note the degrees of freedom in constructing fm because of the possible 
choices ofµ. If we choose µ = 0 in {33) then we choose the vector with the smallest 
2-norm. Thus, when we apply µ = 0 throughout at Orn, we construct the fm with the 
smallest 2-norm. 

Figure 5: Cells in the canonical case in R2• 

The second part of Proposition 2.1 implies that also for a set of grid-functions defined 
on an incomplete grid of grids of the second kind, we can easily establish (looking at the 
common divisors) whether those grid-functions are a coherent set. 

Coherence on the left-hand side A similar notion of coherence can be defined as 
well for grid-functions that e.g. represent a solution. Firstly, we define the restriction 
operator: 

I;. 

Un,i = (fnu)i 

(34a) 

(34b) 
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with u E L2(f2) an integrable function; Rn is as defined by (3); JOn,il denotes the area 
in JR2 (the volume in 1,3) of the cell i at the grid On. We can interpret Un,i as the average 
value of u at cell i. Secondly, we define a restriction operator: 

In,n+e• (35a) 

(35b) 

Again we integrated the grid-function, but we divided by the cell-area (the cell-volume) 
for each cell in order to find the average value. Then, analogously to ( 6), we can uniquely 
define 

I n"n' Sn7 ---+ Sn, 
In7 ,n1 = In,,n7 -1 In,-1,nr2 · · · In,,n1 

for 
n-y<n-y-1···<n1. 

(36a) 

(36b) 

A grid-function Um is called a coherent left-hand side representation of Un, n > m, when 
by means of the path-independent restriction, defined by (35) and (36), it holds that 

(37) 

Now that we have defined coherent left- and right-hand side representations we pose and 
answer the question whether coherence remains after application of the operator Ln (or 
its inverse). Firstly, we define the following projection (a 'high-pass' filter): 

Hn,m,n 

Hn,m,n 

Sn ---+Sn (m < n) 

In - Pn,mlm,n· 

Secondly, we define the following (operator-dependent) restriction operator: 

(38a) 

(38b) 

(39) 

This restriction operator depends on the discretization-operators and is of theoretical 
value only. We observe that, like some other restriction operators, it is the left-inverse 
of a prolongation operator: 

In-q = fn-q,nPn,n-q· (40) 

Thirdly, we define the grid-functions rn-q (see (13)) which represent residuals: 

rn-q = fn-q - Ln-qUn-q 1 Q E Q, (41) 

where f n-q are coherent representations of fn· We now state the following 

Proposition 2.2 Let us assume that the coarse grid discrete operators are defined by 
GCA {24) and that both restrictions and prolongations are path-independent; 
Q = { e1, e2, e} (see {14)). We assume that the inverse of Ln-q exists for all q E Q. 

1. If Un-q, q E Q are coherent {left-hand side) representations of Un, then 

(42) 
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2. If rn-q, q E Q are coherent {right-hand side) representations of rn, then 

Un-q - ln-q,nUn = fn-q,nHn,n-q,nUn· (43) 

Proof. 

1. From the coherence of the Un-q it follows by definition that 

Un-q - In-q,nUn = On-q· 

The derivation of ( 42) is straightforward. 

2. From the coherence of the rn-q it follows by definition that 

rn-q - Rn-q,nrn = On-q· 

The derivation of ( 43) is straightforward. D 

When we consider the set of discretizations (2) with m s-; n for a complete grid of grids 
Gn, we deduce from Proposition 2.2 that when the grid-functions f m on the right-hand 
side are a coherent set, it does not follow that the corresponding solutions Um are a 
coherent set; nor the other way round. 

2.5 Galerkin approximations 

When we disregard the use of mixed derivatives we can confine ourselves to discretization
stencils not larger than five-point ones (seven-point in 3D). We consider the following 
typical equation: 

a2 a2 a a 
Lu = (-t-2 - µ-2 +a- + (3- + o1)u = f. 

OX1 OX2 OX1 OX2 
(44) 

On structured and rectangular grids in 2D the discretization that we employ, boils down 
to: 

h.hm [ 

0 -µh;;,2 0 

- ch:;;2 2( ch:;; 2 + µh;;,2) -€h:;;_2 (45a) 
0 -µh;;,2 0 

(diffusion-stencil) 

h.h,,. [ -a(2~)-' 
+fJ(2hm)-l 

+a(2:h,.)-' 1 0 ( 45b) 

-fJ(2hmJ-1 

(convection-stencil) 

h.hm [ 

0 0 0 

l 0 0 0 (45c) 
0 0 0 

(identity-stencil) 
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for n = (n, m). Actually, this symbolizes the discretization in use on all grids. In this section we compare (45) to the use of GCA (24). If Rn,,n, and Pn,,n, are pathindependent then we observe that 

L~ = R~,n1 Ln1 Pni,n, (46) 
is uniquely defined (path-independent). In the particular case that 

(47) 
the Galerkin approximation generates the following stencils at the grid n(n-l,m) (with hn-1 = 2hn): 

,,__,h., [ 
0 -µ,h;_2 0 

l - 2eh;;-.:1 2(2eh;;-.:1 + µh-;;.2) -2eh;;-.:1 (48a) 
0 -µ,h;_2 0 

(diffusion-stencil) 

h.->h.. [ -a(2~-d-' 
+,8(2hmt1 

+a(2~_,)-' ] 0 (48b) 
-,8(2hm)-l 

(convection-stencil) 

,,__,h., [ 
0 0 0 

]-0 (j 0 (48c) 
0 0 0 

(identity-stencil) 
We observe that the convection-stencil ( 48b) is consistent with ( 45b) and that the identity-stencil (48c) is consistent with (45c), but also that the diffusion-stencil (48a) is not consistent with ( 45a). This observation is in accordance with an accuracy condition for transfer operators that needs to be satisfied: 

mp+mR >2m, (49) 
(see [2, 10, 13, 21]) where 2m is the order of the PDE, and mp,mR the highest order plus one of polynomials that are interpolated exactly by the prolongations P and sRT where sis a scaling factor. When the prolongation and restriction are given by ( 4 7) then mp = mR = 1 and rule (49) is violated for the (second order) diffusion term in (44). For the convection (first order) and the identity term (zeroth order) the prolongation and restriction are sufficiently accurate. 

In order to mend the consistency of the Galerkin-approximation on the coarse grid of the second order part of equation (44) we may employ the same restriction operator but the prolongation operator of second order (see Section 2.3): 

(50) 
Hereby rule (49) is now satisfied. By choosing (50), the Galerkin approximation generates the following stencils at the grid fl(n-l,m): 

0 0 0 

l (5la) - eh;;-.:1 2eh;;-.: 1 -ch;;-.:1 

0 0 0 
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(51b) 

(51c) 

(convection-stencil) 

hn-1hm [ !Oo- ~Oo- !: l · 
0 0 0 

(5ld) 

(identity-stencil) 

Stencil (45a) is turned into the sum of stencils (5la) and (51b). We observe that for 
the diffusion in the x2-direction a nine-point stencil (51b) comes into being. When we 
perform a lumping procedure for the stencil (51 b) (thus averaging out the x1-dependence) 
we observe consistency between Galerkin approximation (51) and discretization (45). A 
disadvantage of this central differencing type of discretization is that each time the grid is 
x1-coarsened by the factor 2 the mesh Peclet number in the x 1-direction is multiplied by 
the same factor, which is reflected by the Galerkin coarse grid approximation (51) (it can 
be observed most clearly from the derivation below of (56)). For a substantial number of 
grid-levels this may cause divergence for a multi-level algorithm, as was already observed 
in [25]. A remedy may be to use upwind differencing for the separate discretization on 
each coarse grid individually or the use of Galerkin coarse grid approximation (24) in 
connection with upwind prolongation (see e.g. [22]). 

When we employ discretization (45) also on all coarser grids together with the pro
longation as given by (17) and (20) where the said first and second order prolongation 
can be plugged into, then both experiments and Fourier local mode analysis [14] show 
that first order prolongation is sufficiently accurate even for the case of a second order 
PDE. 

Further analysis of the Galerkin approach for constant coefficients We per
form an analysis of the behaviour of the Galerkin coarse grid approximations for the 
advection-diffusion equation ( 44). This analysis is the analogue of the one introduced 
and performed in [24] for bilinear finite elements. In the analysis we confine ourselves 
to constant coefficients and therefore the matrix Ln is represented by a single nine-point 
stencil only. Note that here we consider a five-point stencil as a special case of a nine
point stencil. With the one choice for the restriction and the respective two choices for 
the prolongation (first order and second order) in the x 1-direction we obtain a coarse grid 
matrix Ln-ei which is also represented by a nine-point stencil. Because of the constant 
coefficients the construction (24) can be seen as the linear transformation 

Gf = c, with f,c E JR9 , (52) 
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where G can be represented by a 9 x 9-matrix. The vectors f and c correspond with the 
stencils 

f* "' [ ~: ~: ~: ] , c* "' [ :: :: : ] · 
h h h ~ ~ ~ 

(53) 

The stencil f* is defined on the finer, the stencil c! is defined on the coarser grid. The matrix G describes what stencil c* is obtained on the semi-coarsened grid, from an arbitrary stencil j*, ~hen stencil c* is constructed by GCA, see (24). Let G 1 correspond to the case of (47) i.e. first order prolongation and G2 correspond to the case of (50) i.e. second order prolongation. An eigenvalue decomposition of G1 exists and reads: 

where D1 is a diagonal matrix showing the eigenvalues of G1 and 

v.-1 
I 

-1 0 0 -t 0 0 0 
2 0 0 0 0 0 -1 

-1 0 0 +t 0 0 0 
0 -1 0 0 -t 0 0 
0 2 0 0 0 0 2 
0 -1 0 0 +t 0 0 
0 0 -1 0 0 -t 0 
0 

0 
_l 

2 

0 2 
0 -1 

0 0 0 -1 
0 0 +t 0 
0 0 0 0 

-t 0 -t 0 
0 0 0 0 0 0 -t 

0 -t 
0 0 0 

-1 0 +1 0 0 0 0 
0 0 0 -1 0 +1 0 
0 0 0 0 0 0 -1 

0 

0 

0 

0 

0 
+l 

2 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 
0 

0 -t 
0 0 

0 0 

0 +1 
_l 1 _! Q Q Q __ 21 1 I 2 -2 2 -2 -2 
-1 -1 -1 0 0 0 +l +l +1 

1111111 1 1 
D1 = diag ( 1 1 1 1 1 1 2 2 

(54) 

(55a) 

(55b) 

(55c) 
The matrix G1 and its decomposition follow from a straightforward evaluation. The column-vectors of Vi are the right-eigenvectors of G1, the row-vectors of Vt1 are the left-eigenvectors of G1. When we write the column-vectors of V1 as stencils (53) we immediately recognize some standard central differences. Thus, by Gi, the Galerkin coarse grid approximation after q times coarsening in the x1-direction is now fully described for the case of constant coefficients. 
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A similar eigenvalue decomposition of G2 exists with: 

-1 0 0 1 0 0 1 1 1 -2 -6 -12 36 
2 0 0 0 0 0 2 1 1 -3 -3 9 

-1 0 0 +! 0 0 1 1 1 
2 -6 -12 36 

0 -1 0 0 1 0 1 0 1 -2 3 9 
V2 0 2 0 0 0 0 4 0 4 (56a) 3 9 

0 -1 0 0 +! 0 1 0 1 
2 3 9 

0 0 -1 0 0 1 1 1 I -2 -6 12 36 
0 0 2 0 0 0 2 1 ! -3 3 9 

0 0 -1 0 0 +! 1 1 1 
2 -6 12 36 

1 +! 1 0 0 0 0 0 0 -3 6 -3 
0 0 0 l +! 1 0 0 0 -3 6 -3 
0 0 0 0 0 0 1 +! l -3 6 -3 

-1 0 +1 0 0 0 0 0 0 
v;-1 

2 0 0 0 -1 0 +1 0 0 0 (56b) 
0 0 0 0 0 0 -1 0 +1 
1 1 1 +! +! +! 1 1 1 -3 -3 -3 6 6 6 -3 -3 -3 

-1 -1 -1 0 0 0 +1 +1 +1 
1 1 1 l 1 1 1 1 1 

D2 = diag ( ~ 1 1 1 1 1 2 2 2). (56c) 2 2 

The multiplicity of all the different eigenvalues of both decompositions is larger than 1, 
so clearly these decompositions are not quite uniquely defined. 

We observe that with (56) the mesh Peclet number in the x1-direction is multiplied 
by the factor 2 and the mesh Peclet number in the xrdirection remains unchanged; 
with (55) the mesh Peclet numbers in both x 1- and x2-direction remain unchanged. 

2.6 Sawtooth multi-level method 

We make a deliberate choice for sawtooth-multigrid. This type of multigrid employs 
a V-cycle without pre-relaxation, hence there is no interfering of smoothing when the 
residual is transferred to subsequent coarser grids. This guarantees the coherence wished 
for w.r.t. the residuals (see Section 2.4). For an introduction to sawtooth-multigrid 
see [20]. An additional advantage is that this cycle can be programmed in a simple 
way without recursion. Here, the algorithm is written in a fashion of the FAS and/or 
NMGM algorithms [3, 10]. This is immaterial for the linear problems that we have under 
consideration, it merely indicates a possible generalisation for nonlinear problems. Due 
to this nonlinear approach we need to store an (old) approximation of the solution on each 
coarser grid: u~d. These coarse solutions are chosen to be fixed throughout execution of 
the algorithm. The finest grid, i.e. the grid with the highest level of refinement in each 
x;-direction, is essentially the one grid of interest where we want to obtain a solution. 
This one grid is denoted by n' (with n' > 0). We want to solve the following linear 
system stemming from the discretization of a PDE on the finest grid 

(57) 
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We have some starting solution Un' and employ the following scheme to improve it (we 
use the grids On with n s n' to accelerate convergence): 

Sawtooth Multi-Level(SML): 
Stage A: 

Stage B: 

Stage C: 

for l from jn'j - 1 to l by -1 
do 

for all n s n' Yith jnl = l A n 2 0 
do 

choose an ej0 E { e1, e2} Yi th On+e,0 i= 0 
dn := Rn,n+ejo dn+e;0 

! temp ·- L old+ d n ·- nUn n 
Un:= u~ld 

end do 
end do 

to 2 
do 

RELAX( Lo, uo, j~emp) 
end do 
co := uo - u81d 

for l from 1 to jn'j 
do 

for all n s n' Yi th jnj = l A n 2 0 
do 

if n > 0 then 
Un := Un + LqEQ WqPn,n-qCn-q 

else if n 1 > 0 then 
Un :=Un+ Pn,n-e1 Cn-e1 

else 

Un := Un + Pn,n-e2 Cn-e2 

end if 

RELAX(Ln, un, J!emp) 
if l < In'! then 

c ·= u - uold n · n n 
end if 

end do 
end do 

(1) 
(2) 

(3) 
(4) 
(5) 
(6) 
(7) 
(8) 
(9) 

(10) 
(11) 
(12) 

(13) 
(14) 
(15) 
(16) 
(17) 

(18) 
(19) 
(20) 
(21) 
(22) 
(23) 
(24) 
(25) 
(26) 
(27) 
(28) 
(29) 
(30) 
(31) 
(32) 
(33) 
(34) 

For the meaning of Q; Wq see (14) and (17). We recognize three stages within this 
scheme; A, B and C. In stage A the residual on the finest grid On' is transferred to all subsequent coarser grids. In stage B we determine the coarsest-grid correction. In stage C corrections are transferred to finer grids. Post-relaxation follows. The three stages 
together constitute one (sawtooth-) multigrid cycle. 
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The stages A, B are built up such. that the various operations on the grid-functions 
involved are partitioned per grid-level l. The designation 'for all. . .' in the lines (5) 
& (20) of the description of the algorithm means that the ranking order is arbitrary. 
Consequently the operations involved are suitable for parallelization. When we use 
Jacobi-type iterations for RELAX() we can moreover vectorize each. parallel process. 

In the lines (7-8) we notice that a freedom of choice exists for the restriction of a 
fine-grid-residual onto a coarser grid. This is because the dn (0 ~ n $ n') constitute, 
by definition, a coherent set of right-hand side grid-functions (see also Section 2.4). E.g. 
when in 2D and n > 0, the following holds: 

Rn,n+e1 dn+e1 = 
Rn,n+e1 Rn+e1,n+edn+e = Rn,n+e2 Rn+e.,n+edn+e = Rn,n+e2 dn+e2 • 

Hence we observe that in the lines (7-8) the grid-function dn is uniquely defined, though 
the result can be obtained in (two) different ways. 

When we would have chosen a multigrid-algorithm which includes pre-relaxation on 
lower levels, then because of the smoothing of the solutions in stage A, this would involve 
the updating of dn+ek for k = 1, 2: 

d ·- Jtemp L n+ek .- n+e• - n+ek Un+e• 

before the transfer to coarser grids. But then, in general, the grid-function dn is not 
uniquely defined anymore because 

and some weighted averaging of these restricted residuals would have to be introduced 
for the computation of dn. It is not clear in advance that equal weighting: 

(see e.g. [15, 17]) would be the appropriate choice in all cases possible. E.g. consider 
the particular situation that lldn+eill ~ lldn+e2 ll due to some odd behaviour of the pre
relaxation method. Equal weighting for the restricted residuals in stage A then results in 
a too large correction for Un+e2 and a too small correction for Un+e1 in stage C. Anyway, 
such an algorithm would become far less transparent than in its present form. Speaking 
in terms of coherence (see Section 2.4), we conclude that in the multi-level method 
without pre-relaxation we do obtain coherent representations of the finest-grid-residual 
on all levels, but with pre-relaxation we do not. 

In a direct line with our approach. we prefer the combination of prolongations with 
the weights (20) (see line (23) of the description of the algorithm). By our approach 
of handling restricted residuals and interpolated corrections we avoid that we have to 
determine weights for providing a way of switching to an appropriate coarse grid as 
in [17]. Obviously, all previous arguments for the 2D case hold for the 3D case as well. 

The domain reduction method The SML-algorithm can be conceived as an algo
rithm that solves the problem (57) in the space Sn' in parallel in the subspaces Sn with 
lnl = l < ln'I (and 0 $ n) for subsequent l. I.e. we are (approximately) solving in 
parallel 

Rn,n'Ln•Pn1,nUn = Rn,n•fn• 
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for the above mentioned n (with zero initial guess and using GCA, see (24)). This 
shows a similarity to the domain reduction method [4, 5, 6] which uses a finite group 
of symmetries of the system of linear equations (57) to obtain a decomposition into 
independent subproblems, which can be solved in parallel. This decomposition involves 
the concept of additive subspace correction, though it is not stated as such. However, 
the grids are chosen quite differently from the ones in this paper and are not nested 
(compare to §2.2). Correspondingly, the weights within the additive subspace corrections 
are chosen differently (compare (17)- (18) to the CGC of Algorithm 3 in [4, § 2]). 

2. 7 The accuracy condition for grid transfer operators 
It is well-known for multigrid methods with standard coarsening that we have to satisfy 
the accuracy condition ( 49) for grid transfer operators on penalty of lack of convergence 
(see e.g. [2, 10, 13, 21]). Therefore, in the context of multiple semi-coarsening we address 
the question of the order of accuracy when prolongations from various grids are combined 
(see (17)). 

Proposition 2.3 Consider the function 

JR2 -t JR. 

aoo + a10x1 + ao1X2. 

Let Vn = l;,v and Vn-q = In-qV for q E Q = {e1,e2, e}. 

1. When {20} is valid, then 

Vn = L WqP~,n-qVn-q· 
qEQ 

2. When {19} is valid, then (58} holds (generally) only for a 10 = a01 = 0. 

(58) 

Proof. Both parts of the proof follow from straightforward evaluation for the functions 
1, X1i x 2 separately. D 

Remark 2.2 1. The first part of the proposition states that the combined piecewise 
constant prolongation is of second order accuracy for (20 ), the second part of the 
proposition states that the combined piecewise constant prolongation is of first order 
accuracy for {19 ). 

2. For neither (19} nor {20} functions of type 

are interpolated exactly. 

Along the boundary of the grid of grids (i.e. n1 = 0 or n2 = 0) the SML-algorithm 
acts differently than somewhere amidst the grid of grids (i.e. n > 0. The weighted 
averaging of corrections stemming from different grids does not take place, simply for 
lack of coarse grids across the boundary of the grid of grids. Thus, a correction stems 
from one coarse grid only (see lines (25) and (27) of SML). When we study the transfer of 
defects and corrections for n1 = 0, n2 = 1, 2, ... , l we observe that, along this boundary 
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of the grid of grids, the SML-algorithm degenerates to multigrid for an essentially one
dimensional problem (during one sweep, results from grids with n1 > O have no influence whatsoever). This leads to the conjecture that for elliptic problems and with the use of a 
restriction operator as defined in Section 2.2 we need a second order prolongation for the correction (at lines (25) and (27) of SML). However, in practice we did not perceive any 
difference in convergence rate for the SML-algorithm as a whole when such a second order prolongation was applied at the boundary of the grid of grids. For purely convection 
problems piecewise constant prolongation should be sufficiently accurate anyway. 

2.8 The smoothing method 
For smoothing procedure within the Sawtooth Multi-Level procedure we employ damped point-wise Jacobi( o:) relaxation 

(59) 
with °' the damping parameter and D0 the main diagonal of the discrete operator L 0 • The amplification matrix J0 (0:) for the error reads: 

enew = J (ll)eold = (I _ aD-1 L )eold n n n n nnn (60) 
This simple procedure is not fit for standard MG-methods, see e.g. [21, § 7.6]. In the case of anisotropy for standard MG-methods one needs to resort to line-wise relaxation or incomplete factorization for smoothing in order to obtain satisfactory MG-convergence. For MG-methods which use multiple semi-coarsening such as SML, we may expect that 
damped Jacobi becomes an appropriate smoother again. When washboard functions are present in the error the:)! cannot hamper convergence as with standard multigrid for now they are resolved on the semi-coarsened grids. Indeed, two-level Fourier-analysis, 
see [14], shows that this is the case. For o: = t the Jacobi-method is known to annihilate 
completely the pure chess-board component in the error. Hemker [14] favours o: = ~ due to Fourier-analysis. When we apply two subsequent Jacobi( a:) relaxation sweeps we can 
use different o:1, o:2 as damping parameters. A proper choice of such a combination of two 
different o:'s may prove to be more effective than the application of two Jacobi( o: )-sweeps 
with one and the same o:. We propose to use as subsequent values °'I = t, a2 = ~- This proposal is examined in the next section. 

2. 9 Numerical results 

As test-problem we consider the following 

Model-problem 

()2 ()2 
Lu=:(-E---)u = fonSl, axy &x~ 

1 2:: ( ?': 0, 
n = (0,1) x (0,1) 

with periodic boundary conditions and right-hand side 

case (a) f = +6ca,b) - D(b,a), 

case (b) f = +6ca,b) + D(b,a) - 6ca,a) - 6(b,b) 
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where 
1 7 a, b E JR, a = B - 11, b = S - 11, v > 0 

with v a small positive real number. We treat the diffusion coefficient e as a parameter that determines the degree of anisotropy in our test-problems. The 8:x denotes the wellknown Dirac fix-distribution which can be defined by 

see e.g. [19]. We may consider the Dirac distribution 8,. as a function with a support around x that vanishes and with an integral that is equal to 1. In this way we model sinks and sources in the right-hand side f of the model-problem. 
After discretization in the manner of ( 45a) the corresponding stencils on the grids 

nm,n read as follows: 

(61) 

Also if e = 1 we observe an anisotropic appearance of this stencil as soon as n ¥- m. Because 11 is a small positive number, the sinks and sources are not located at either boundary of the cells but well in the inside. 
First we discuss the ( discretized) model-problem. Solvability requires that f E 'R(L), i.e. the right-hand side f is within the range of the operator L (in the discrete case fn E 'R(Ln) for fn in Sn)· Fore> 0 both case (a) and case (b) satisfy this requirement. In the discrete case the requirement boils down to that the sum of the elements of f n needs to vanish. For e = 0 only case (b) is solvable. For this value of e a complete decoupling takes place of the solution in the x1-direction. Here, in the discrete case, the requirement boils down to that the sum of the elements of f n needs to vanish along each individual grid-line with x 1 = constant. Only case (b) satisfies this requirement. Of course, with Dirichlet boundary conditions, case (a) is solvable as well. The foregoing demonstrates that fore l 0 case (a) becomes a difficult test-problem to solve. Apart from these preliminary remarks we note that iterative methods will converge less easily for the model-problem (both case (a) and case (b)) than for the same problem with Dirichlet boundary conditions instead where only a substantial lower number of frequency components can hamper the convergence rate. 

Description of results At grid-level l = 12 we perform experiments for the Sawtooth Multi-Level procedure with n' = (6,6), (7,5), (8,4), (9,3), (10,2), (11, 1) respectively (for each such n' the number of grid-points is 4096). For prolongation and restriction we fix upon (47). For RELAX{) in SML we use two damped Jacobi iterations, namely Jacobi(a1), Jacobi(a2) with a 1 = a 2 = !· The convergence histories for the different n' are shown in Figure 6. Along the horizontal axis the number of SML-cycles is written, along the vertical axis the 10-logarithm of the maximum-norm of the residual rn'· The test-problem is the model-problem with e = 1, and f defined by case (a). We repeat the experiments, but now instead of l = 12 (Figure 6) we perform at gridlevel l = 14, see Figure 7. In this way we can check, grid by grid, whether the convergence rates do not slow down after reducing the mesh-size in both directions. Indeed, in this sense the convergence rates turn out to be perfectly grid-independent. 
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The foregoing experiments (see Figure 6,7) are repeated but for different values of the a's, namely the combination a 1 = t, a2 = ~· The results are shown in Figure 8 and 9. We observe a general improvement of the convergence rate, and less variance between convergence rates at different grids Dn' on the same grid-level l = In'!. Experiments were also performed for a 1 = a 2 = ~ (results not shown). However, th~ results with 0< 1 = ~, 0;2 = ~ exhibit far better convergence rates. 
The next experiment involves the anisotropic (1 > c > 0) case of model-problem (a). We use SML with the combination a 1 = !, ao2 = ~ as damping-parameters for Jacobi. We perform experiments for fixed n = (7, 7) and vary the Xi-diffusion coefficient from 1 to 10-10 • For decreasing E the solution develops increasing gradients. The respective convergence histories are given by Figure 10. The convergence behaviour proves to be satisfying. The sudden flattening of the curves for small E after several iterations is due to the finite machine-precision and the growing magnitude of the solution which is inversely proportional to E. 
The last experiment is repeated for right-hand side (b). For this right-hand side the solution does not grow with decreasing E. In Figure 11 we observe that the convergence behaviour is without complication and independent of E, however small. 
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Figure 6: Convergence history of SML for Poisson (c = 1), right-hand side (a), periodic 
b.c., lnl = 12, 0:1 = 0:2 = ~· 
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Figure 7: Convergence history of SML for Poisson(<= 1), right-hand side (a), periodic 
b.c., lnl = 14, o:1 = o:2 = ~· 
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Figure 8: Convergence history of SML for Poisson (E == 1), right-hand side (a), periodic 
b.c., lnl == 12, a1 = !; a2 == ~-
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Figure 9: Convergence history of SML for Poisson ( E == 1), right-hand side (a), periodic 
b.c., lnl = 14, a 1 = ~; a2 = ~-
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Figure 10: Convergence history of SML for anisotropic Poisson (varying c), right-hand 
side (a), periodic b.c., n = (7, 7), a 1 = !; a 2 = ~· 
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Figure 11: Convergence history of SML for anisotropic Poisson (varying t:), right-hand 
side (b), periodic b.c., n = (7, 7), a 1 = !; a 2 = ~-
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3 Incomplete grid of grids 

In Section 2.6 we described the SML-algorithm which is designed for a complete grid 
of grids. In this section we consider a modification of SML, to make it suitable for an 
incomplete grid of grids of the second kind, namely Zenger's sparse grids [26]. We define 
the latter by 

ZA == {flm I !ml :SA /\ m ~ O}, /\. E N, (62) 

see Figure 12. /\.is called the highest grid-level. Note that here we consider finite volumes 
rather than finite elements. 

/ 

B~D0 
ITJEBD0 

/ 

ITlIJ D [Z( 
/ 

o0 
/ 

0 

/ 

r - -, 
I I 

L - _J 

Figure 12: ZA: Sparse grids in R2 . 

3.1 Sparse grids 

A 

We want to solve the following linear systems stemming from the discretization of a PDE 
on ZA. 

LnUn = fn, for all n E {n I lnl =A /\ n ~ O} (63) 

We have starting solutions Un on grid-level A and consider the following scheme to 
improve them simultaneously: 

Sparse Grids Sawtooth Multi-Level(SpG-SML): 
Stage A: 
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Stage !3: 

Stage C: 

for all n with lnl =A /\ n 2: 0 
do 

rn := fn - LnUn 

dn := Tn 

end do 

for l from A - 1 to 1 by -1 
do 

for all n with lnl = l /\ n 2: 0 
do 

dn := !Rn,n+e1 dn+e1 + ~Rn,n+e2dn+e2 
J!emp := Lnu~ld + dn 

Un := u~ld 
end do 

end do 

to 2 
do 

RELAX( Lo, uo, f~emp) 
end do 
co:= uo - ugld 

for l from 1 to A 
do 

for all n with lnl = l /\ n 2: 0 
do 

if n > 0 then 
Un :=Un+ l:qEQ WqPn,n-qCn-q 

else if n 1 > 0 then 
Un := Un + Pn,n-e1 Cn-e1 

else 

Un :=Un+ Pn,n-e2 Cn-e2 

end if 

RELAX(Ln, un, J!emp) 
if l <A then 

Cn := Un - u~ld 
end if 

end do 
end do 

( 1) 
(2) 
(3) 
(4) 
(5) 

(6) 
(7) 
(8) 
(9) 

(10) 
(11) 
(12) 
(13) 
(14) 

(15) 
(16) 
(17) 
( 18) 
(19) 

(20) 
(21) 
(22) 
(23) 
(24) 
(25) 
(26) 
(27) 
(28) 
(29) 
(30) 
(31) 
(32) 
(33) 
(34) 
(35) 
(36) 

Comparing to SML we note the following differences. In the lines (1-5) we now compute 
residuals on a whole sequence of grids at the same grid-level instead of at one finest grid 
only, see SML at lines (1-2). In the lines (8) and (22) we now perform operations on 
the whole grid-level, compare to SML at lines (5) and (20). At line (10) averaging of 
restricted residuals is happening, compare to SML at lines (7-8). 
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3.2 Numerical results 

We consider the same test-problem as in Section 2.9 and perform an experiment for 
A = 12. We may compare the results with Figure 8. The convergence history for the 
SpG-SML -algorithm is reported in Figure 13. In contrast with Figure 8, the norms of 
residuals on different grids are measured as they develop simultaneously per SpG-SML 
-cycle. In Figure 13 we observe that after rapid convergence for the first cycle(s), the 
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-18 ~~~--'-~~~--'-~~~...._~~--''----' 
0 5 10 15 20 

k = SpG-SML -iterations 

Figure 13: Convergence history of SpG-SML for A= 12, a 1 = ~; a2 = ~· 

convergence rate slows down. 

3.3 Explanation of results 

The numerical experiment in Section 3.2 has been performed by starting with zero so
lutions Un. The right-hand sides fn (lnl =A) are, by discretization, mutually coherent. 
Therefore the initial (i.e. k = 0) residuals are mutually coherent as well and line (10) of 
SpG-SML yields the same result as line (7-8) of SML. Already after the first SpG-SML 
-cycle on, the residuals rn are not mutually coherent any more, due to the relaxation 
sweep. That's why we have to compute some average of the defects dn+ek at line (10) 
(here equal weighting has been chosen, but other operator-dependent options might be 
considered as well). Due to the loss of coherence, two-level Fourier analysis does not 
apply to SpG-SML. 

3.4 Remedies and alternatives 

One remedy might be to enforce coherence also for SpG-SML. This can be done by 
computation of a solution un1., nA = (A, A), by means of interpolation (grid-level by 
grid-level) starting at grid-level A. After computation of 
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we transfer this residual by restriction to the grids 0 0 , In! =A. Then these transferred 
residuals are coherent and we may expect a good convergence rate as with SML. However, 
the explicit computation of UnA and Tn" involves a complexity of order 

2ln"I, 

which is the square of the order of similar operations at grid-level A. We therefore need 
to avoid the explicit execution of such an operation. Here, Proposition 2.1 may be of 
help. This may be a topic of future research. 

Another remedy might be the approach in Section 3.5. Within that particular ap
proach discretization takes place simultaneously on all grids in ZA, using hierarchical 
basis-functions. 

3.5 Hierarchical basis for finite volumes 

Zenger [26], Griebel [8] and Bungartz [1] applied a hierarchical basis for sparse grids 
in the context of finite element methods. Using a variational formulation this leads for 
linear elliptic PDEs to linear systems that can be solved efficiently by cycling sequentially 
through the sparse grid of grids, see [9]. 

Here we formulate an orthogonal set of hierarchical basis-functions which might be 
used in the search for the finite-volume counterpart of the said approach. First we define 
the function 

'P 

ip(x) 

R-+R 

{ 
-1 
+l 

0 

if 0 < x < ~, 
if!< x < 1, 
otherwise. 

Next we define the function 

.1.(0,0) 
'1'(0,0) 

.1.(0,0) ( ) 
'l"(O,O) X 1. 

Further we define 

for n 1 EN and 

•1,(i,O) 
'l'(n1 ,0) 

.1,(i,O) (x) 
'P(n1,0) 

.1.(0,j) 
'P(O,n2) 

.1,(0,j) (x) 
'P(O,n2) 

0-+R, 

<.p(2n1-IX1 - i), i == 0, ... ' (2n1-l - 1) 

0--+ JR., 

rp(2n2-lX2 - j), j == 0,' .. ' (2n2-l - 1). 

for n2 E N. Using definitions (65,66,67) we now define the functions 
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.1,(i,j) 
'l'(n1,n2) 

.1,(i,j) ( ) 
'l'(n1,n2) X 

0 -+ R, 

.1,(i,O) ( ) 0 1,(0,j) ( ) 
'l'(n1,0) X · 'l'(O,n2) X ' 

i = 0, .. ·, (2n1-l - l); 

j == 0,- · ", (2n,-l - 1). 

(64a) 

(64b) 

(65a) 

(65b) 

(66a) 

(66b) 

(67a) 

(67b) 

(68a) 

(68b) 



for (n1,n2 ) E N2• We define the space 

Wn(n) = {w~.il}, i = o,. · ·, (2"1 - 1 -1); j = 0, · · ·, (2n2- 1 -1). (69) 

Finally, we define the space of hierarchical basis-functions on ZA: 

VA(n) = {w~~:~~} Ee E9 Wn. (70) 
n;CO,lnl:SA 

4 Conclusions 

We examined the feasibility of multi-level methods based on multiple semi-coarsening. 
Within a grid of grids we have seen examples of path-independent prolongations and 
restrictions. This leads also to path-independent Galerkin coarse grid approximations 
(GCA) for the discretizations. For a discretized linear second order elliptic PDE with 
constant coefficients in two space dimensions the outcome of GCA was fully analysed. 
For a (standard) second order prolongation it turned out that with each GCA-coarsening 
the corresponding mesh Peclet number is multiplied by the factor 2. We applied additive 
subspace correction by weighted averaging of the corrections for the solution which stem 
from multiple semi-coarsened grids. Various choices are proposed by different authors, 
yet all fitted within the same framework. One such choice appeared to increase the order 
of accuracy of the underlying separate lD prolongations. We introduced the notion of 
coherence: it shows a relation that may hold between grid-functions that represent the 
same continuous function. When we consider the discretizations on a grid of grids, we 
showed that coherent grid-functions at the right-hand side do not imply coherent solu
tions, nor the other way round. We formulated a sawtooth multi-level algorithm (SML) 
which relies on simple Jacobi smoothing and additive subspace correction by multiple 
semi-coarsening. This algorithm is amenable to parallelization and vectorization. For 
SML averaging of residuals at coarser grids is not material (and superfluous). Coherence 
appears to be important for convergence of SML. For discrete problems with anisotropic 
stencils SML showed a satisfactory and grid-independent convergence, as had been pre
dicted by two-level Fourier-analysis. Especially the usage of Jacobi with alternating 
damping parameters ! and ~ exhibited good convergence rates. 

Multi-level methods for sparse grids within the context of finite elements already 
exist in the literature. The finite-volume counterpart of such methods may be subject to 
future research. For this purpose a set of hierarchical basis-functions within the context 
of finite volumes was formulated. 
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