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Quantum Computation 

Andre Berthiaume1 

"Because nature isn't classical, dammit ... " 
Richard P. Feynman 

ABSTRACT Historically, Turing machines have been the paradigm by which we 
define computability and efficiency. This is based on Church's thesis that every­
thing effectively computable can also be computed on a Turing machine. However, 
since our world behaves quantum mechanically, it seems reasonable also to consider 
computing models that make use of quantum mechanical properties. First stated by 
Benioff and Feynman, this idea was formalized by Deutsch when he introduced his 
quantum computer and, later on, quantum gate arrays. This article gives an introduc­
tion to quantum computing and briefly looks at a few results in quantum computation, 
not the least of which is Shor's polynomial-time factoring algorithm. 

1 The Need for Quantum Mechanics 

Why introduce quantum mechanics in computation? The opening quotation, if a 
little blunt, captures the essence of the answer. At the center of computer science 
are two questions: What problems are computa:~ze and How efficiently can they be 
computed? Historically, (probabilistic) Turing machines have been the paradigm 
by which we defined computability and efficiency. This is based on Church's thesis 
that everything effectively computable can also be computed on a Turing machine. 
However, since our world behaves quantum mechanically, it seems reasonable also 
to consider computing models that make use of quantum mechanical properties. 
First stated by Benioff [Ben82] and Feynman [Fey82], this idea was formalized by 
Deutsch [Deu85] when he defined the first quantum computing model that made 
full use of quantum superposition. This article gives an introduction to Deutsch's 
quantum computing model and briefly looks at a few results in quantum compu­
tation, not the least of which is Shor's polynomial-time factoring algorithm. 

Before defining a quantum computing model, some basic notions of quantum 
mechanics must be introduced. A comprehensive presentation of quantum me­
chanics is beyond the scope of this article, but fortunately only the very simplest 
systems are used for quantum computation: two-state systems or finite groups of 
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two-state systems. The next section introduces the relevant notions for these spe­
cial cases. Quantum gate arrays will be defined next and, after a few examples of 
their capabilities, the results leading to Shor's algorithm will be briefly reviewed. 
The last section addresses some of the practical obstacles to the actual construction 
of a quantum computer. 

Due to space restrictions, it will not be possible to include the historical context 
that led to many of the subjects discussed here. Where possible, we will give 
references to more detailed accounts. For a more exhaustive review of the history 
of quantum computation (dating back almost fifty years), the reader should consult 
[Ben]. 

2 Basic Principles of Quantum Mechanics 

We now introduce the basic rules of quantum mechanics through a series of princi­
ples. Young's celebrated two-slit experiment will serve as background to illustrate 
these principles. 

In Young's experiment (Figure 1 ), light coming out of a hole in the left wall must 
go through two small holes in the center wall. A detector on the right wall measures 
the light intensity at different positions along the length of the wall. If only one hole 
is open, the intensity reaches its maximum at a position directly in line with that 
hole and the sources. As the detector moves away from that position, the intensity 
slowly fades and eventually vanishes. When both holes are open, the intensity 
pattern is not the sum of the two one-hole intensities, as one would expect, but an 
alternation of bright and dark fringes. This effect is caused by the interference of 
the light coming out from both holes. Surprisingly, the interference persists even 

AIB C 

FIGURE 1. Young's two-slit experiment. Curves A and B show the light intensity when 
only one hole is open. Curve C shows the interference pattern when both holes are open. 
(The curves are exaggerated.) 
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when the source s is dim enough to send only one photon at a time; if many runs 
are made and a photon count is kept for various positions, the same pattern of 
bright and dark fringes appears. Each photon seems to interfere with itself. 

2.1 Probability Amplitudes 

The self-interference appearing in Young's experiment is just one example illus­
trating that classical intuition cannot be applied to quantum systems. The purpose 
of this section is not to explain why such strange behavior appears at the quantum 
level, but merely to state the rules for these behaviors. Following Feynman's ex­
ample [FLS64], these rules are presented as the principles of quantum mechanics. 

Definition 2.1 For a given experiment, an event is a set of initial and final condi­
tions. 

For example, an event in Young's experiment is "a photon leaves the sources 
and arrives in the detector at position x." The goal of quantum mechanics is to 
predict whether an event can happen. The first principle of quantum mechanics 
defines the probability of an event actually happening. 

First Principle: The probability p of an event is given by the square norm 
of a complex number a (called a probability amplitude or simply an 
amplitude). 

The probability amplitude of an event will be notated as follows: 

{final condition I initial condition ) . 

For example, the event above can be written as 

(a photon is detected at position x I a photon leaves s ), 

or more succinctly {x Is). The bracket notation, due to Dirac, is reminiscent of 
conditional probabilities and can be read as "{xls) is the amplitude of detecting a 
photon at position x given that a photon left the sources." In fact, amplitudes can be 
treated in the same way as probabilities. Consider again Young's experiment. If a 
photon leaves the source and arrives at the detector, it must do so by going through 
the holes in the wall. That is to say, the event {x Is) can be broken down into two 
sequential events: The photon first leaves the source s and arrives at the middle 
wall, then the photon comes out of this middle wall and arrives at the detector. 
However, to go through the middle wall, the photon has two options: either going 
through hole 1 or going through hole 2. The following two principles indicate how 
the laws for addition and multiplication of probabilities also apply to amplitudes. 

Second Principle: If an event can be divided in two sequential sub-events, the 
amplitude of the event is the product of the amplitudes for each of the 
sub-events. 
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Third Principle: If an event can occur in several alternative ways, then the 
amplitude of the event is the sum of the amplitudes for each alternative 
taken separately. 

From these two principles, 

(xls) = (xJwall)(wallls) 

= (xll}(lls} + (xl2)(21s), 

(2.1) 

(2.2) 

where (xii) is the amplitude of a photon arriving at x given it came out of hole i, 
and (ils} is the amplitude of a photon entering hole i given that it left the sources. 
Equation 2.2 implicitly considers terms of the form (xl 1) (2Js) or (xl2} { l ls} to be 
equal to zero. lnfonnally speaking, these would be asking: "What is the amplitude 
that a photon leaves s, goes through hole 1, comes out of hole 2, and then arrives 
at x?" and similarly for the other case. The answer must include the amplitude of 
going from hole 1 to hole 2 ({211)) and vice versa ((l )2}). So the correct bracket 
form for the above questions should be (xl 1} (112){2Js} and (xl2} {211){1 ls}. One 
can verify experimentally that whenever a photon is detected entering one hole, it 
is never detected coming out of the opposite hole. Equations 2.3 and 2.4 express 
this situation in terms of amplitudes of events. 

{Ill}= {212} = 1. 

(112} = (211} = 0. 

(2.3) 

(2.4) 

No matter where the detector is positioned, the amplitude {xls} is completely 
determined by the amplitudes of transit to and from the two holes. For this reason, 
the holes are natural elements for expressing events. This leads to the following 
definitions. 

Definition 2.2 The set B = {i I i is the label of some condition} is a set of basis 
statesifforalli,j E B, 

{·1 '} { 1 ifi = j, 
1 1 = 0 otherwise, 

and for any initial condition Y and fin,al condition X, we have 

(XIY} = L {Xli)(ilY). 
ieB 

Fourth Principle: Any event can be described in terms of a set of basis states 
by giving the transition amplitudes to and from those basis states. 

Young's experiment seems to have only one possible set of basis states (namely, 
B = {l, 2}), but actually, for any experiment, the number of sets of basis states is 
infinite. Some appear naturally, such as the two holes in this experiment, and others 
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less so. The notion of basis states can be better understood through an analogy with 
a three-dimensional real vector space V and the dot product in that space. Let the 
three vectors 

i1 = ( ~) .~ = (!),and~= ( ~) 
be the canonical basis of V, and let 

be two vectors ~n V. ~he following is a nonstandard yet valid expression for the 
dot product of A and B: 

A· B a1b1 + aib2 + a3b3 

= <A· i1)Cei · .8) +<A. ei)<ei. 8) + cA. ~)Ce3. B> 
3 

= :L)A'. · ei )(ei · B). 
i=I 

This last line is similar to the equation for (X If} in Definition 2.2. The vectors A 
and B correspond to the two conditions X and Y, and the set of canonical basis 
vectors corresponds to the set of basis states. In this sense, (XIY} = (XI ·If). The 
analogy can be pushed further still. Consider the following: 

B = b1 e~1 + bie'i + b3ej 
3 

L:eib; 
i=l 

3 

L:ei<ei · B). 
i=l 

This sim_ply is the previous equation for A· B, where we have removed A. In other 
words, B is the vector sum of its components along each of the basis vectors i1, 
e;, and e3. Similarly, the initial states f of {X I Y} can be expressed in terms of the 
set of basis states by removing X. 

If)= L li}(ilf). (2.5) 
iEB 

(Note: (·I·) is just a scalar number, so Ii) (i If} = (i If) Ii), but the second form is 
preferred.) The left and right halves of (·I·) are named bra and ket, respectively. 
Equation 2.5 defines the state of an initial condition Y as a function of B, the set 
of basis states. The ket If) is called a state vector, and it lies in a complex vector 
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space (Hilbert space) spanned by the basis vector associated with the basis states 
in B. Similarly, 

(XI = L (Xlj)(jl 
jEB 

defines the state of a final condition X as a function of B. The (X I and I Y) could 
also be written using another set of basis states, just as B can be written in a basis 
other than the canonical one. Sections 2.2 and 2.4 will present examples where 
multiple sets of basis states naturally appear. For a basis set B, the state I Y) is said 
to be in quantum superposition of the basis states in B if more than one (i I Y) is 
nonzero. 

By the first principle, the square norm of an amplitude gives the probability of 
the corresponding event. By the fourth principle, any event can be expressed as 
a function of the amplitude corresponding to each basis state. Since probabilities 
must add up to I, there should be some constraint on the amplitudes: 

Fifth Principle: For any set of basis states B and for any initial condition Y, 

.L: 11(i1n112 =i. 
ieB 

This follows from Definition 2.2, which required completeness (all possibilities 
are accounted for) and orthogonality ((ijj) = 0 if i =fa j, l otherwise). 

We leave as an exercise the proof of the following theorem (recall that a* is the 
complex conjugate of a). 

Theorem 2.1 For any condition A and B, (BIA)= (AJB)*. 
From this we derive that if l1p) = L;es a;li), then 

(<pj = .L:a;(il. 
ieB 

All these principles can be put together in the following situation: Consider a 
system whose initial condition is expressed by the state vector 

in = .L: ,8;Ji), 
ieB 

where ,8; = (i I Y), the amplitude of the system under consideration in each of the 
basis states i. Now consider a general final condition 

(XI = Laj(jl, 
jEB 

where a; = (Xii). What is the amplitude of finding the system in condition X 
given that it was initially prepared in Y? 

(x1n = (I>ju1) (I: .B;Ji)) =I: a,.,a,.. 
JEB 1EB 1EB 

(by Def. 2.2) 
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2.2 Qubits and How to Observe Them 

The five principles presented in Section 2.1 are completely general and apply to 
any quantum system. However, for the sake of clarity, we will limit our attention to 
systems of interest for quantum computation, namely qubits and quantum registers. 
We begin by defining a qubit, the quantum version of bit, as defined by Schumacher 
[Sch]. 

Definition 2.3 A qubit is a quantum state l'P} of the form 

l'P} = alO} + ,811}, 

where a, f3 EC and llall 2 + 11,811 2 = 1. 
The definition above leaves the actual medium of a qubit completely undefined. 

It is of no importance whether the qubit is encoded in the polarization of a photon, 
the spin of an atom, the up/down orientation of a lamppost, or the alive/dead 
state of Schrodinger's poor cat, as long as the object is treated according to the 
principles given in this introduction. There is nothing in principle that forbids 
one from getting quantum mechanical effects with lampposts or cats. In practice, 
however, it might be easier to use photons or atoms. The word "easier" should be 
taken loosely; in the last section, we will discuss briefly the issues regarding actual 
implementations of qubits and, more generally, quantum computers. 

The main difference between qubits and classical bits is that a bit can only be 
set to either 0 or l but a qubit l'P) can take on any quantum superposition of 10} 
and 11) (there are an uncountable number of such superpositions). This means an 
infinite amount of information could potentially be encoded in a single qubit by 
appropriately defining the amplitudes a and ,B. Unfortunately, what goes in does 
not necessarily come out. Quantum mechanics imposes very strict rules as to how 
to extract information out of quantum state. This is done through a mathematical 
construct called an observable. Let l'P) be the state of a quantum system. We have 
a probe P at our disposal to measure some property of I <p). This property could 
be the direction, the position, or even a simple yes/no question. We need to model 
the action of the probe Pon the state l<p). 

Definition 2.4 Let H be the Hilbert space used to represent the state vectors of 
a quantum system. An observable 0 is a set of subspaces E1, E2, ... , Ek S:; H 
such that these subspaces completely partition H. That is, 

and 

\Ii, j E {I, ... , k), i # j: E; J_ Ej· 

An observable is the mathematical representation of the probes P. The next 
principle defines the effect of an observation of a state vector. 
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s· th PrinciiJle: Let jcp} be a state vector in a state space H, and let 0 
ix {E E Ek} be an observable. Since 0 partitions H, lr,o} can be 1, 2, ... ' 

expressed as a linear superposition of its components along each of the 

E;'s: 
k 

lrp) = :La;J<,oE;), 
i=I 

where lr,oE;) lies in E;. Observing the state jrp) with 0 will cause the 

following: 

1. One of the E; will be selected with probability llai 11 2 . 

2. The state jrp) will "collapse" to l'PE;) (renormalized). 

3. The only classical information given by 0 is which subspace (i) 

was selected. All information not in l<.oE;} is lost. 

To each possible output value of the probe there corresponds a subspace in the 

observable. Since all these values are different from each other, the corresponding 

subspace must be orthogonal. Again, any observable is allowed in principle for 

observing a quantum state. Whether the physical apparatus that corresponds to that 
specific observable is easy to build is a different matter entirely. 

The standard observable for a qubit is B = {Eo, Ei}, where Eo and E1 are 

spanned by the two basis vectors 10) and 11), respectively. An example of a non­

standard observable on a qubit is 0 = { EO', El'}, where Eo' and El' are spanned 
by 

1 1 
10') = J2(10) + 11)) and II')= J2(10) -11)), 

respectively. The reader can check that ECY and Er have the correct properties of 

an observable. The next section will emphasize how the information in a qubit is 
linked to which observable is used to read it. 

2.3 Digression on Quantum Cryptography 

If qubits are encoded in the polarization of photons, the two observables B and 

0 in Section 2.2 have simple physical implementations. Define 10} and 11} as 

horizontally and vertically polarized photons. Then Bis a horizontally positioned 

polarizing filter, and 0 is a polarizing filter set at 45 degrees from the horizontal. 

This forms the basic setup for quantum cryptography. Alice, the sender, wants to 
send her secret bit to Bob, the receiver. They agree that O will be encoded as a 

photon either in state 10) or 10') (based on a coin flip), and a I is similarly sent as 

either 11) or 11'). Bob must read the photons either with B or 0. Figure 2 shows the 

various outcomes for each possible choice of encoding (by Alice) and observable 

(by Bob). As an example, assume that Alice's bit is a zero. Her coin flip says to 

encode it as a 10). If Bob chooses the observable B to observe Alice's incoming 
photon, he will get a 0 outcome with certainty and will know Alice's bit (assume 
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Alice Bob Alice's state result Correctness 
sends uses relative to Bob and probability 

10) B 10) 0 (prob l) correct 

0 ...!...(10') + 11')) .Ji. O'/l' (prob50%) random 

10') B }i<IO) + 11)) 0/1 (prob 50%) random 

0 10') O' (prob 1) correct 

11) B 11) 1 (prob l) correct 

0 ...!...(10') - 11')) .Ji. O' /l' (prob 50%) random 

11') B }i<IO) -11)) 0/1 (prob 50%) random 

0 11') 11 (prob 1) correct 

FIGURE 2. Depending on how Alice will encode her secret bit and what observable will be 
used by Bob, Bob's read-out of the photon sent by Alice will either be correct or completely 
randomized. 

Alice discloses her basis to Bob in a later discussion). However, Bob could choose 
the 0 observable to read the incoming photon. The reader can check that 

10) = .Jz<IO') + 11') ). 

Bob thus has a 50% probability of getting the O' outcome and a 50% probability 
of getting the 1' outcome. Similar arguments hold for each case of Figure 2. To 
learn more about the importance of this situation, see [BBB+92], [BBE92], and 
[Bra93]. The point of this digression was to demonstrate that the information of 
a quantum state is a function of the observable used. The same state lcp) observed 
with two different observables can give a definite answer in one case and a totally 
randomized answer in the other. 

2.4 Evolution of a Quantum System 

The situations considered up to now were static in the sense that the initial state 
did not change after being set. Once the initial state vector I Y) was defined, we 
considered amplitudes of the form (XIY) for some (XI. However, to compute 
something with quantum states, some transformation of the initial state will have 
to be performed. Suppose an apparatus A is used to execute this transformation 
on the initial state I Y). The events of interest are now of the type: What is the 
amplitude for the final condition X given that the initial condition Y went through 
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apparatus A? In the bracket notation, this is written as 

(XIAIY). 

The next principle gives the mathematical representation of A. 

! Seventh Principle: State vectors are transformed by unitary matrices. Relative 
· to a set of basis states B, A;,j (i, j E B) is the amplitude of going from 

state i to state j. 

A matrix U is unitary if U ut = utu == 1 (Ut is the conjugate transpose of 
U). In principle, any unitary transformation on a quantum state is allowed, but 
constructing a physical device corresponding to any given matrix U might pose 
some technological problems. 

A simple example of qubit transformation can be made with polarized photons. 
A polarized photon going through a transparent tank of sugar water will have its 
polarization slowly rotated. 2 The amount of rotation depends on the length of the 
tank and the density of sugar. By appropriately setting these parameters, the tank 
can be made to induce a 45-degree rotation on incoming photons. If JO) and Jl), 
respectively, correspond to horizontally and vertically polarized photons, then the 
tank has the following effect: 

10) will be transformed into 
1 

J2(10) + 11)); (2.6) 

1 
J2(-JO) + Jl)). Jl) will be transformed into (2.7) 

The transformation induced on the basis states completely determines the matrix 
A. If lc,o) = ajO) + ,BJl) is shot through the tank, it will come out transformed into 
state ic,o'), where 

icp') = AJc,o) 

A(aJO) + ,811)) 

= a A JO)+ ,BAil) (by linearity) 

= a (~(10) + Jl))) 
+ ,B (~(-JO)+ 11))) (by eqs. 2.6, 2.7) 

l 1 
= J2(a - ,8)10) + J2(a + ,B)Jl), 

or, in more familiar matrix-and-vector style: 

1 ( 1 -1 ) 
A=J2 1 1' lcp) = ( ~ ) , 

. 
2 Actually, more 1!1an just the polarization will be affected, but for simplicity we will 

ignore these other effects. 
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and 

/ 1 ( l l\O)=Al\O)= .j2 1 -1 ) ( a ) = ( }zCa - f3) ) 
1 f3 }ica + f3) · 

Another transformation very similar to that induced by A is "square root of not." 
The name is derived from the fact that a qubit going through two identical .;;;­
apparatuses comes out in a state corresponding to the boolean inverse of its initial 
value. The ..fi:: transformation is given below; the reader is encouraged to check 
that it performs as stated. 

1 +;). 
1 - i 

A qubit can be set, transformed, and observed. However, to do serious compu­
tation, more than a single qubit is required. The next section introduces the last 
few mathematical tools needed for quantum computation. 

2.5 Quantum Registers 

Quantum computations generally use more than just one qubit. The mathematical 
formalism introduced so far must be adapted to the treatment of groups of qubits. 

Definition 2.5 A quantum register is an ordered set of a finite number of qubits. 

Definition 2.6 The standard basis l3 of an n-qubit quantum register is 

l3 = {Ii) I i is an n-bit binary string). 

Let lcp1) = a 0 10) + ai[l) and 1\02) = .BolO) + ,8111) be two qubits composing 
a 2-qubit quantum register. The state vector 11/r) of the register is defined as the 
tensor product of the states l\01) and l\02): 

l 

2= a;,B1(1i) ® ij)). 
i,j=O 

By definition, the tensor product maps Ji)® lj) (where i and j are basis states to 
lij). This allows us to write 11/t) as 

u,fi, Ii)) 

11/t) = 2= 
i,j=O 
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Similarly, let A and B be two unitary matrices corresponding to two apparatuses 
operating on lcp1) and lq.iz) separately. The combin~d action of A and B on the joint 
state 11/r) = lcp1) ® lq.iz) is defined as a 4 x 4 matnx C, where 

( a11B a12B ) 
C=A®B= B B · 

a11 a12 

It is easily verified that the tensor product has the property 

(A® B)(icp1) ® iq.iz)) = (Alcp1)) ® (Blqi2)) 

and that it preserves unitarity. 
So far, we seem only to complicate the notation for a basically simple situation: 

Two independent qubits are acted upon by two independent apparatuses. However, 
the point in joining two qubits is specifically to allow them to be dependent. In 
fact, not all states of a 2-qubit quantum register can be expressed as the tensor 
product of single qubit states. An example of such a state is 

1 
11/r) = vri<IOO) + 111)). 

If 11/r) is observed with the observable corresponding to the standard basis, the 
results "00" or "11" will be seen each with probability 50%, but the results "01" 
or "10" will never be observed. When the state of an n-qubit register cannot be 
expressed as the tensor product of n qubit states, the register is said to be entangled. 
Similarly, not all 4 x 4 unitary matrices can be expressed as the tensor product of 
two 2 x 2 unitary matrices. One such matrix is 

( 
1 0 0 0 ) 0 1 0 0 

C= 0 0 0 1 ' 
0 0 1 0 

which effects the following mapping of the basis states of the register. If the 
register's state is such that the firstqubit is 0, then no action is performed; otherwise, 
the value of the second qubit is negated. The matrix above performs the operation 
called controlled-not on two qubits. As such, it is the first example of a quantum 
computation introduced here. For the importance of the controlled-not operation, 
see [BBC+9s]. 

It is a simple matter to generalize what has been presented in this section to 
represent the state of an n-qubit register. The general state vector 11/r) of an n-qubit 
quantum register is 

2"-1 
iv>= :L aili), 

i=O 

and the 2" vectors Ii) fonn the set of basis states of the register (note that within 
I·), the i stands for the binary expansion of the value i).This means that 11/r) is a 
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vector in a 2n -dimensional Hilbert space, and operations are defined by 2n x 2" 
unitary matrices. Observables for extracting information from the state vectors are 
partitions of the 2n-dimensional Hilbert space. 

We are now ready to apply these notions of quantum mechanics to computation. 

3 Computing with Quantum Registers 

The original quantum computing model proposed by Deutsch was essentially a 
Turing machine, but with the added properties that tape cells and the head's state 
could be in quantum superposition. Deutsch also constrained the transition func­
tion by requiring it to induce a unitary evolution of the Turing machine. This was 
of course necessary to respect quantum mechanical principles, but it made pro­
gramming quantum Turing machines even more nightmarish than programming 
classical ones. Verifying that a given transition function corresponds to a unitary 
evolution is nontrivial. Bernstein and Vazirani give three rules for verifying that a 
transition function performs its computation in a unitary fashion [BV93], but even 
this method requires unnatural programming skills. 

In classical complexity theory, uniform circuit families are also commonly used 
as a computing model. Turing machine and uniform circuit families are effectively 
equivalent in computing power in that they can simulate one another with negligible 
complexity overhead. This makes the use of one or the other a matter of taste. There 
exists a quantum equivalent to uniform circuit families: quantum gate arrays. They 
were introduced by Deutsch [Deu89] and studied extensively by many authors (see 
[BBC+95] for a detailed review of quantum gate arrays). Yao [Yao93] has shown 
that acyclic quantum gate arrays can simulate quantum Turing machines, thus 
making the use of one or the other a matter of choice. However, since quantum 
gate arrays allow a more natural way to introduce unitarity in computation, they 
are emerging as the standard quantum computing model. In what follows, the 
diagrams and gate array notation are as in [BBC+95]. 

Quantum Gate Arrays 

The diagram below represents a general quantum gate array. The initial (basis) 
state of the register is on the left and time flows from left to right. One might think 
of the particles composing the register as traveling through the different gates. At 
the right end is the observable that extracts information from the register after it 
has gone through all the gates. 
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The sequence of A; 's with observable 0 is what constitutes a quantum progr~m. 
F maliy speaking, the A; gate should be of some well-defined form corresponding 
t::ome definition of elementary steps. For the purpose of this article, it is sufficient 
to consider any quantum gate acting on only one or two qubits to be such an 
elementary step. The reader is encouraged to consult [BBC+95] for more details on 
the notion of elementary quantum gates. Also, in our gate arrays, we will not always 
specify all the elementary gates; in some cases, we will simply convince ourselves 
that the necessary elementary gates could be written down. This procedure is 
analogous to writing pseudo-code for a classical Turing machine and will provide 
a better intuitive approach. 

To illustrate the programming of quantum gate arrays, we will use a variation 
of the Deutsch-Jozsa Problem [DJ92]. First, we define two properties of functions 
from {O, 1}" to {O, 1}. 

Definition 3.1 A function f: {O, l}n -+ {O, 1} is nonbalanced if one of the two 
values off has majority. 

Definition 3.2 A function f : {O, lt -+ {O, 1} is nonconstant if there exist 
x, y E {O, W such that f(x) /:- f(y). 

Notice that most (but not all) functions from {O, l}n to {O, 1} have both properties 
simultaneously. The modified Deutsch-Jozsa problem is described as follows: 

Modified Deutsch-Jozsa Problem (MDJP): 

Input: A computable function f : {0, l}n -+ {O, l}. 

Problem: To answer either "non balanced" or "nonconstant," but the answer must 
apply to f. 

The original Deutsch-Jozsa problem dealt with strings rather than functions and 
was the first example of a problem that could be solved exponentially faster on 
a quantum computer than on a Turing machine [DJ92]. By recasting the original 
problem in the context of promise problems, Berthiaume and Brassard in [BB94], 
[BB92a], and [BB92b] proved some early results in relativized quantum com­
plexity theory. These results were improved upon first by Bernstein and Vazirani 
[BV93] and then by Simon [Sim94], who proved the following theorem. 

Theorem 3.1 (Simon) There exists an oracle relative to which there is a prob­
lem solvable in polynomial time (with bounded error probability) on a quantum 
computer, but any probabilistic Turing machine with bounded error probability 
claiming to solve this problem (using the oracle) will require exponential time on 
infinitely many inputs. 

Simon's theorem is the strongest argument in favor of the superiority of quan­
tum computers over Turing machines. Moreover, the quantum gate array used in 
Simon ·s proof is similar to the one used by Shor for his factoring algorithm. In this 
section, we present a solution to the MDJP using quantum gate arrays. This allows 
us to introduce, in Section 4, the gate array used in the proof of Theorem 3 .1. In 
Section 5, we outline the quantum component of Shor's factoring algorithm. 
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We now present a quantum solution to the MDJP. According to the principles 
given in Section 2, a valid quantum algorithm corresponds to a unitary matrix. 
However, programming in terms of unitary matrices is unnatural to humans, as we 
prefer to think in terms of sequential steps. We need to break down the MDJP into a 
sequence of unitary operations. If each of these sequential steps is simple enough, 
asserting their unitarity should be a relatively easy task. Just how simple need be 
these steps? Ideally, they should be broken down to what we defined as elementary 
gates, but in some cases this will be unnecessary. The following theorem (Lecerf 
[Lec63] and Bennett [Ben73]) greatly simplifies quantum thinking. 

Theorem 3.2 (Lecerf-Bennett) For any Turing machine T computing a function 
f there exists a reversible Turing machine T' computing (x, f(x)) on input x and 
whose running time is within a constant factor of the running time ofT. The cost 
in space is also polynomial in Ix I. but all the tape cells used in the process of 
computing (x, f(x)) will be reset back to zero (reversibly). These tape cells are 
collectively referred to as the workspace. 

Reversible Turing machines are such that at any point in the computation, two 
operations are possible: continue the computation forward one step or undo the 
previous step. For a more precise definition, see [Lan6 l] or the review in [BL85]. 
Benioff [Ben82] and Deutsch [Deu85] have shown that quantum Turing machines 
can directly simulate reversible Turing machines. Since quantum Turing machines 
(and thus also quantum gate arrays) are reversible,3 we have the following corol­
lary: 

Corollary 3.3 A Turing-computable function f is always computable on a quan­
tum gate array (with a negligible increase in the time complexity). 

Consider the MDJP. The input function is computable, so by the Lecerf-Bennett 
theorem, there exists a reversible Turing machine that computes (x, f(x)) on input 
x. By definition of the problem, x is an n-bit value and f(x) is a single bit. By 
corollary 3.3, this implies the existence of a unitary matrix F that computes f on 
n-bit values in the following sense. Consider the quantum gate corresponding to 
F: 

Flx,0,0m)---? !x,f(x),0"'). 

3 Apart from the observation, which is inherently irreversible. 
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This gate works on an (n + 1 + m)-qubit register; the top n qubits encode the 
input x E {O. l}n. Those qubits must have th~ sa'.11e values before and after the 
gate: If they are changed during the computation itself, they must be returned to 
;heir initial values. The next qubit, initially set to 0, will have the value of f(x) at 
the output of the gate. The last m qubits are the "workspace" that comes about in 
Theorem 3.2; before and after the computation, they are set to om, but within the 
oate itself, those qubits will be used and reversibly reset to zero afterwards. We 
do not specify the exact circuitry of elementary gates within the F gate, but by 
Theorem 3.2 and Corollary 3.3 we are certain that it can be done in accordance with 
the quantum principles. Also, for clarity, we will not usually display the qubits used 
as workspace since they serve no purpose outside the gates themselves. Therefore, 
the above gate F will displayed as follows: 

Fix, 0)--+ Ix, f(x)). 

A remark: Informally speaking, unitarity means that information cannot be lost. 
This means that the value f(x) cannot simply overwrite the 0 in the last qubit; 
those values (f(x) and 0) must be combined in a way that allows the recovery of 
both values. The exclusive-or function is commonly used for this purpose. In the 
Dirac notation, if the initial state of the register is Ix, b), then the action of the F 
gate is actually 

Fix, b) = Ix, b EEl f(x)). 

Of course, if b = 0, then Fix, 0) = Ix, f(x)), which is what we wanted. This 
property of nondestructive writing will be important later on. 

Computing a function on an input is fine, but the rules of quantum mechanics 
allow much more. Recall that, by linearity of quantum operations, if the input state 
is in quantum superposition }zClx, 0) + ly, 0)), then the F gate will compute the 
superposition off on both values: 

F (~(Ix, 0) + IY. 0))) = ~(Ix, f(x)) + ly, f(y))). 

Assume that there is a way to unitarily generate (through some matrix Sn) a su­
perposition of all possible values of an n-qubit register. That is, if the initial state 
of the register is all zeros, Sn transforms it into a superposition of all 2n values of 
the first n qubits. 

1 2"-1 

SnlO ... O) = - '"°'Ii). '-,,.--' 5 L., 
ll 1=0 
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We can see that by first applying Sn and then F, we can compute in one sweep all 
possible values for fin quantum superposition. 

O" { S,, F 

0 

( 
1 2"-1 ) 1 2"-1 

FS11 l~,O)---,)-F M,i'Lli,O) ----,)- M,i'Lli,f(i)). 
n v2" i=O v2" i=O 

The reader should take careful note of what is meant by the diagram above. While 
the operator Sn acts on n qubits, its mathematical representation is a 2" x 211 unitary 
matrix. Also, in the expressions below the diagram, it would be more accurate to 
use Sn 181 I (where I is the 2 x 2 identity matrix), since our gate array uses n + 1 
qubits. I trust that the reader will be comfortable with this small abuse of notation 
throughout the text. 

We now show how to implement an S,, gate to achieve this form of quantum 
parallelism. Consider the unitary matrix (and associated gate): 

1 ( 1 
S1 = vf2 l -~ ) -ID- . 

It is a simple matter to verify that S1 is indeed unitary. Note also that S! 1 = S1. 
An S1 gate is an elementary gate, as it acts only on a single qubit: it sends 10) 
to }i<IO) + 11)) and 11) to }i<IO) - 11)). The desired Sn gate acts on a quantum 
register by sending each qubit individually into a separate S1 gate (an example on 
six qubits is shown here). 

The unitary transformation induced by an S,, gate is given by the formula Sn = 
0,. S1• This has a nice recursive definition: 4 If n > I then 

s,, = ( Sn-I ) 
-Sn-I . 

In gate form: for any x E {O, 1}11 , 

4Note: S,, is a special case of Hadamard matrices. 
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1 2"-1 . 

s,, Ix) ---+ irp) = r,:;;; L <-1r lil, 
v2" i=O 

where the operation x · i is the XOR of the bitwise AND of the strings x and i. Clearly, 
if x is set to 0", S,, perfonns the desired transformation. When outlining the proof 
of Simon's theorem, the transformation induced by S,, will be more fully used. 

With the conjunction of S,, and F gates, a single computation produces all 
possible values of the function f for each input. However, these values are in 
quantum superposition, and we have seen (by the sixth principle) that only an 
observable can obtain information from a superposition (and this act destroys the 
original superposition). If our aim is to compute various outputs (x, f (x)) for all 
x, then the only observable that could be used is the standard one, B (see Definition 
2.6). 

However, B will produce only a single pair (x, f (x)), where x is chosen randomly 
(uniformly). To obtain all values off in this fashion would require (on average) 
an exponential number of such runs. This could have been done just as easily 
using a probabilistic Turing machine by choosing x randomly and computing 
f (x). Deutsch [Deu85] proved that quantum parallelism used in this simplistic 
way cannot produce values of f any faster than classical machines. To get some 
form of benefit from superpositions, a more subtle use of quantum parallelism is 
needed. 

Consider the following unitary transformation (and associated gate): 

--0- . 

qubit is set to 0 nothing happens, but if it is set to 1 then the amplitude is 
,tiplied by -1. This gate "encodes" the "value" of the qubit into the sign of the 
.plitude. Now consider the following gate array: 
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(where the observable D will be defined shortly). From our gate definitions, we 
know that the state l<p) of the register just after the P gate is 

l 2"-1 

lcp) = -n I: <-1)f(i)1i. J(i)}. 
fr i=O 

When that state goes through the final F gate, the values for f are again computed 
and nondestructively combined using (in our case) the XOR function. Since f(i) EB 
f (i) = 0 for all i E {O, 1}", the final state before observation is 

1 2"-1 

lcp> = -" I: c-1)f(i)1i, o}. 
fr i=O 

All the manipulations done so far had only one purpose: to transfer the values of 
f into the amplitudes relative to each of the basis states. The power of quantum 
computation resides in the interference of these amplitudes and the observable used 
to read the quantum states. We now define that observable. Consider D = {Ea, Eb}, 
where the subspace Ea is the one-dimensional space spanned by 

1 2"-1 

ll/r} = fr ~ Ii, O} 

and Eb = (Ea)J., the orthogonal complement of Ea· Using D in the gate array 
above allows us to answer the MDJP, that is, to determine without errors whether 
f is nonbalanced or nonconstant. To see this, recall that D will give the answer 
a orb with probabilities depending on the amplitudes of lcp) in the subspaces Ea 
and Eb· We must find the expression of lcp) in the basis defined by D. This is easy 
since D has only two subspaces, one being one-dimensional. Let ot and f3 be the 
projections of lcp} in Ea and Eb. Then 

where ll/rb} is a vector in Eb and, of course, llfr) 1- ll/rb}· Observing the final state lcp) 
with D will give the answer a orb with probability Ila 11 2 and 11{311 2 , respectively. 
Since the observable has only two possible answers, 11{311 2 = I - llall 2 • Also, 
finding the projection of lcp} in the one-dimensional subspace Ea is simple. We 
now compute the exact expression for a, the projection of lcp} along llfr}. 

Ol = {lfrlcp} 
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(~I: (i,O[) ( ~ I:(-l)JU>[j,0)) 
fr i=oO ..;2·· ;=0 

2"-12"-1 

= ~ z= I:<-l)f(j)(i, O[j, 0). 
2 i=O j=oO 

However, since (i, O[j, 0) = 1 if and only i = j and zero otherwise, the expression 

for a simplifies to 

2"-1 

Ci = 2- " (- l)f(jl_ 
2" f...J 

i=O 

We now look at the value of a for different functions f. If f is a balanced function, 
the sum for a will contain exactly as many l 's as -1 's, so in this case a = 0 and 
V v.. ill always give a b answer and never a. If f is a constant function, the value 
for a will be either 1 or -1, so in this case V always gives the answer a and never 
b. If f is of any other type, V will answer a orb with various probabilities. 

To demonstrate that the quantum gate array above solves the MDJP, we need 
to take the above reasoning backwards. If the answer received from V is a, we 
know for certain that f could not have been a balanced function (since a is never 
given in that case), so answering "nonbalanced" is correct. Similarly, ifV gives the 
answer b, then we know for certain that f could not have been a constant function, 
so answering "nonconstant" is correct. For cases where f is neither of these, V 
might give any of a and b, but this is not a problem since both "non balanced" and 
"nonconstant" are correct answers. 

4 Separating Two Classes of Functions 

The solution to the modified Deutsch-Jozsa problem, like most interesting quantum 
algorithms (or gate arrays), depends on the ability to evolve an n-qubit register in 
superposition of all 2" values. In the solution that we presented, this operation was 
performed by the S,, gate. But the transformation induced by Sn is much more 
subtle. Recall that 

I ( 1 
S1 = J2 l 

and 

S _ S '°" S _ ( S,,_1 Sn-1 ) 
n - I '<Y n-1 - . 

S11-1 -Sn-I 

If an n-qubit register, initially set to x E {O, 1}1', goes through an Sn gate, the 
transformation will be 

1 2"-1 . 

S,,fx) = - L (-1r1i) 
5n i=ol , 
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where x · i is the XOR of the bitwise AND of the two strings. We now show how 
Simon [Sim94] used this transformation to prove Theorem 3.1. 

Assume that we have a computable function f : {O, 1}'1 --+ {O, 1r, where 
m ~ n. The Lecerf-Bennett theorem still applies, so there exists a quantum gate 
F that transforms Ix, b) into Ix, b E9 f (x)) for all x E {0, l}n and b E {O, l}m. 
Consider the following gate array: 

1 2"-12"-1 

SnFSnlOn' om)-+ zn L L (-l)i·jlj, f(i)). 
i=O j=O 

The first application of Sn allows all values of f to be computed using quantum 
superposition (with the F gate). The second application of Sn creates an elaborate 
entanglement of the states lj, /(i)) whose phases are a function of both i and j. In 
fact, the output state of the gate array is a form of Fourier spectrum of the function 
f. With this gate array, Simon was able to distinguish efficiently two classes of 
function: 1-to-l versus 2-to- l with a mask. 

A function f : {O, l}n --+ {O, l}m is said to be 2-to-l with a masks if there 
exists a nontrivial s E (0, l}n such that for all x # x', f(x) = f(x') if and only if 
x' = x E9 s (where E9 is the bitwise XOR). Suppose that we are given a computable 
function f : {O, l}n --+ {O, l}m with a promise that it is either l-to-1 or 2-to-l with 
a mask. The task is to determine which of these holds for f and, in the second 
case, to produce s. Simon proved that this problem can be solved in expected time 
O(nT1(n) + G(n)), where T1(n) is the time to compute f on inputs of size n and 
G(n) is the time required to solve an n x n linear system of equations over Z2. The 
algorithm will call (on average) n times the following gate array: 

To see how this gate array works, we must do an analysis similar to the one for the 
MDJP in the quantum gate arrays discussion in Section 3. Let lg:>) be ~estate of the 
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register just before the observation. 

211 -1211 -l 

tcp) = ;,, I: I: c-1)i.j u. t (i)). 
i=O j=O 

If f is l-to-1, then all [j,f(i)) configurations are different'.each ':ith ampli~u~e 
± l /2". The observable B will yield any of those configurat10ns with probability 
1;2211 , and k repetitions of this subroutine will result ink configurations of [j, f (i)) 

distributed uniformly and independently. 
However, if there exists a nontrivial s such that for all x E {O, l}", /(x) = 

f(x') if and only if x' = x EB s, then for all i, j E (0, I}", the configurations 
f (i)) and [j, f (i ffis)) are identical. Therefore, the amplitude a;,j for a particular 

configuration is 

a;,j = 
2" 

Two values are possible: If j · s = 0 then i · s = (i EB s) · j, so a;,J = 1/211 - 1• 

Otherwise, a;,J = 0. This means that when the register is observed, only config­
urations such that j . s = O can be seen. Repeating this subroutine k times will 
result ink configurations of this type chosen uniformly arid independently. 

In both of these cases, after an expected O(n) repetitions, we can find n config­
urations lh, f(i 1)), ••• , [j11 , f(i,,)) such that the equations j; · s = 0 are linearly 
independent. Solving this linear system yields a nontrivial s'. If f is l-to-1, this s' 
is a random string, and if f is 2-to-l with a mask, s' is that mask. Computing f (0") 
and f(s') and comparing the values determines the status off: if f(O") =I= f(s'), 
then f is l-to-1, otherwise f is 2-to- l with s = s' as the mask. 

The proof of Simon's theorem rests on the interaction of phases induced by the 
double application of S11 (with a relativized version of the problem given above). 
Shor's factoring algorithm uses the same trick but with a refined version of S,,, 
called the quantum discrete Fourier transform, and more number theory. The next 
section will go over the quantum component of the factoring algorithm; the reader 
may consult [Sim94] to see how the relativized version of the problem above is 
used to prove Simon's theorem. 

5 Shor's Factoring Algorithm 

Every integer n has a uaique decomposition into prime factors. However, finding 
this decomposition when n is large is a difficult computational problem. All known 
classical methods are resolutely inefficient (see (Adl94]), and even the best known 
classical algorithm, the number field sieve (see [LLMP90], [LL93]), requires time 
0( c(logn)1•'\loglogn)'ll) h' h · . . e , w 1c 1s exponential m the size (the number of digits, i.e., 
logn) of n. Whether the factoring problem is polynomial or not (classically) is 
still unknown. Yet the faith in hardness of this problem is such that the security of 
many classical cryptographic protocols is based on the impossibility of factoring 
efficiently. 
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Number theory offers another interesting problem: finding the order of an ele­
ment. Given integers x and n, find the least positive integer r (called the order) 
such that xr = 1 (mod n). As with the factoring problem, no efficient algorithm 
is known for solving this problem. While these problems appear very different, 
they are closely related. Miller [Mil76] has shown that, using randomization, one 
could solve the factoring problem if one had access to an oracle for finding the 
order of an element. His reduction works as follows: First, make sure that n is 
odd and not a prime (there are efficient randomized primality testing algorithms). 
Then, use the following algorithm: 

Program One-Factor (input: n odd integer) 
x +- random{O, ... ,n} 
r +- use the oracle to find the order of x (mod n) 
Output: if r is odd or xr/2 = -1 (mod n) then fail 

else return gcd(x'/2 - 1, n) 

Choosing a random number in the range {O, ... , n}, doing the modular exponenti­
ation, and finding the gcd (greatest common divisor) can all be done in polynomial 
time (see [Knu8 l ]). Let k be the number of odd prime factors of n. One can prove 
that, provided n is odd and non prime, the above algorithm will return a prime factor 
of n with probability at least 1 - l/2k-I. Repeating this algorithm a polynomial 
number of times will produce a complete factorization of n. 

Shor's breakthrough was to discover an efficient quantum algorithm to find the 
order of an element. The factoring algorithm is simply Miller's reduction, where 
the oracle call is replaced by a call to this quantum algorithm. The next section 
describes how to find the order of an element using quantum superpositions. 

Finding the Order of an Element 

We describe Shor's algorithm to find the order r of an element x (mod n ). There 
are two distinct parts to the algorithm: The first is the quantum component, de­
scribed next, which produces a value c. Thanks to appropriately chosen amplitudes, 
this c has a relationship to r such that a little (purely classical) postprocessing in 
the second part can efficiently determine r. We describe the quantum component 
using quantum gate arrays. First, we need to find m such that n2 :;:: 2m :S 2n2 • The 
gate array operates on a 2m-qubit quantum register. Next, we need a gate such that 
on input la, 0), it computes la, x0 mod n}. We know that modular exponentiation 
can be done classically in polynomial time. So, by the Lecerf-Bennett theorem 
and Corollary 3.3, there exists a quantum gate E~ that efficiently implements this 
operation. This E~ gate is shown below. 

EX 
n 
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we need only one more quantum operation. Shor refined the S" transformation 
used by [BV93] and [Sim94] in the following way: Instead of using phases that 
are ± 1 /fr, we now make use of the full spectrum of complex amplitudes. The 
transfonnation Am sends an m-qubit register in basis state la) to 

2"'-1 

_1_ I>~1c). 
fr c=O 

(Recall that for any a +bi e C ofnorm 1, there exists an angle e e [O, 2ir] such that 
a+ bi ::::: COS() + i sine :::::: eiB .) This transformation is Called the discrete quantum 
Fourier transfonn. The fact that one can efficiently implement such a quantum gate 
is not immediately clear, as the amplitudes seem to require increasing precision as 
m grows large. However, Deutsch and Coppersmith [Cop94] independently found 
an efficient solution based on the Fast Fourier Transform algorithm [Knu81], which 
requires only O(m2) elementary quantum gates. 

The following is the gate array for Shor's algorithm to find the order r of an 
element x (mod n): 

The Sn gate was defined in the previous section and serves only to generate a 
~uperposition of all possible values for the top half of the register. We then compute 
m quantum parallel the modular exponentiation of x for all these values and then 
apply the Fourier transfonn Am. The state of the register just prior to the observation 
is (omitting the (mod n) in the ket for clarity): 

Since we are using the standard observable, the observation will yield any basis 
state le, xk) with probability 

Peter Shor proves that this probability vanishes everywhere except for basis states 
le. xk) such that there exists an integer d satisfying 

I c di 1 
2m - -;: 5 2m+l' 
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where the probability is at least 1 /3r2• This means that reading the final state of 
the register will yield with high probability a value c such that the fraction c/2m 
is close to d / r. Since 2m > n2 , there is only one fraction d / r that satisfies the 
equality above while keeping r < n. The algorithm for finding that fraction d/r 
from c ;2m is the postprocessing we referred to earlier and can be done efficiently 
by continued fraction expansion (see [Knu8 l ]). This produces the r we needed. 

For a more detailed study of Shor's algorithm including the necessary number 
theory that was left out here, see [Sho] and [EJ]. Shor's algorithm and Simon's 
theorem are two of the most important results in quantum complexity theory. Both 
are strong arguments in favor of the superiority of quantum computing models over 
classical ones. However, if new efficient algorithms are developed on quantum 
machines, it would be nice to have actual quantum machines on which to run 
them! The next section considers the obstacles to building quantum mechanical 
computers. 

6 Building a Quantum Computer 

Quantum computers offer capabilities unmatched by classical Turing machines. 
However, there are enormous practical issues still to overcome before reaching the 
goal of actual physical construction of quantum computers. The most serious of 
these obstacles is the preparation and manipulation of macroscopic physical sys­
tems in quantum superposition. This section outlines the difficulties and possible 
solutions to this problem. 

The notion of a qubit was defined in Section 2.2 as any object having two dis­
tinct states whose evolution is considered according to the principles of quantum 
mechanics. Following those principles, it is possible to have this object in quantum 
superposition, which permits quantum parallelism. However, though experimen­
tal physicists have observed and manipulated atomic and sub-atomic particles in 
quantum superposition, no one has yet claimed to have observed a lamppost ex­
hibiting similar behavior. Why? The explanation has to do with decoherence: the 
process by which a system in quantum superposition decays to a classical state 
because of interaction with the environment. 

We illustrate the problem as follows. A qubit in state lcp} = alO} + tlll} is put 
inside a black box. If the box is perfectly sealed, shielding its interior from the 
rest of the universe, the qubit remains in state lcp} indefinitely. However, perfect 
isolation is impossible: some energy in one form or another always leaks through 
the box, carrying traces of information about the box's content. Consider a very 
simple case: A stray electron in state le.r} enters the box and interacts with the 
qubit. The interaction is such that the electron leaves the box either in state leo} or 
in state le1} depending on whether the qubit was in basis state 10} or 11}. In Dirac 
notation, this sequence of events is described as follows. Initially, we have two 
independent systems: a qubit in state lcp} and the electron in state les}. Since they 



48 AndrC Berthiaume 

are independent, their joint state is 

Jcp) ® les} = (alO} + ,811}) ® les}. 

However, once the electron enters the box, it interacts with the qubits. As it leaves 
the box, the joint state becomes 

a(IO} ® leo}) + ,8(11) ®lei}). 

The qubit is still in the box, and the electron is on its way elsewhere, but they now 
form an entangled system. If the state of the electron is now observed in any way 
(and here any interaction with an object in the lab is considered an observation). 
the states of the electron will collapse. For simplicity, assume that the electron 
collapses to either leo} or lei}. Since the electron and the qubit are entangled, the 
collapse of one causes the collapse of the other: the electron-qubit system will be 
in state 10) ® leo) with probability Ila 11 2 and in state 11} ® lei) with probability 
lltJll2• The qubit spontaneously collapses to either 10) or 11} (in accordance with 
the electron's collapse), and the quantum superposition is lost. 

No matter how well qubits are isolated, random energy exchanges between the 
environment and the qubits will cause some decoherence on a time scale that de­
pends on the medium used for a qubit and the conditions under which it operates­
In the best cases, coherence is kept for some 104 seconds, and in the worst cases, 
hardly 10-10 seconds. These figures are for a single qubit only; some decoher­
ence models show the decoherence time dropping exponentially as the number of 
qubits increases (see [Unr95] and [MSE95]). However, keeping a qubit in quan­
tum superposition is only part of the problem. A quantum computer will have to 
perform operations on that qubit. The time needed to perform an operation also 
depends on the medium used for a qubit and the conditions under which it operates. 
Unfortunately, the quick-action qubits are precisely those that interact easily with 
the environment, i.e., those having the shortest coherence time (see [DiV95]). The 
faster the operations can be performed, the less time there is to perform them! 

Yet hope still remains. Shor's discovery attracted enough attention that more 
and more breakthroughs are coming from experimental physics. Many proposals 
for constructing a quantum computer already exist, such as [Fey86], [SW94], 
[CY94], [Llo93], or [DiV95]. Currently, a proposal by Pellizzari, Gardener, Cirac, 
and Zoller using trapped ions technology appears very promising [PGCZ], and 
the authors even suggest a way to control to a certain extent the decoherence in 
their implementation. An alternative approach proposed by Deutsch could allow 
computation on a less than perfect quantum state through a stabilizing scheme (the 
scheme is outlined in [BDJ94], and a preliminary analysis is given in [Ber95]). 

In view of this, it seems unlikely that a general-purpose quantum computer will 
be available in the near future. However, technological advances in this field are 
appearing at an increasing rate. Some researchers are already wondering whether 
~ithin te? years it may be possible to control three or four qubits for a few opera­
tions. This may not be much of a computer, but it would still be quite an achieve­
ment! A more reasonable goal could be to have small, special-purpose quantum 
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machines. For example, considering that cryptography plays such an important 
role in today's world, a quantum factoring module would have important conse­
quences. History does have a tendency to repeat itself; were not the first classical 
computers used for code breaking? 

Acknowledgments: I would like to thank the many people who attended my sem­
inar on quantum computation at CWI in the spring of 1995. Their questions and 
comments helped to put together the material for Sections 2 and 3. I would also 
like to thank Janos Simon, Lance Fortnow, Stuart Kurtz, Amber Settle, and Sophie 
Laplante for many interesting discussions as well as for providing me with an of­
fice during my short visit to the computer science department of the University of 
Chicago, where part of this article was written. Also, many thanks to Gilles Bras­
sard, Paul Vitanyi, Jim Royer, Amber Settle, Sophie Laplante, Harry Buhrman, 
Jaap-Henk Hoepman, Barbara Terhal, and Alain Tapp for their numerous com­
ments and improvements on early drafts. 

REFERENCES 

[Adl94] L.M. Adleman. Algorithmic number theory- the complexity contribution. In 
Proceedings of the 35 th IEEE Symposium on Foundations of Computer Science, 
pages 88-113, IEEE Press, 1994. 

[BB92a] A. Berthiaume and G. Brassard. Oracle quantum computing. In Proceedings of 
the Workshop on Physics and Computation-Physcomp '92, pages 195-199. 
IEEE Press, October 1992. 

[BB92b) A. Berthiaume and G. Brassard. The quantum challenge to structural com­
plexity. In Proceedings of the 7th Annual IEEE Conference on Structure in 
Complexity, pages 132-137, IEEE Press, 1992. 

[BB94] A. Berthiaume and G. Brassard. Oracle quantum computing. Journal of Modern 
Optics, 41 (12):2521-2535, 1994. 

[BBB+92] C.H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin. Experimental 
quantum cryptography. Journal of Cryptology, 5(1):3-28, 1992. 

[BBC+95] A. Barenco, C.H. Bennett, R. Cleve, D.P. DiVincenzo, N. Margolus, P. Shor, 
T. Sleator, J. Smolin, and H. Weinfurter. Elementary gates for quantum com­
putation. Physical Review Letters A, 52:3457-3488, 1995. 

[BBE92] C.H. Bennett, G. Brassard, and A. Ekert. Quantum cryptography. Scientific 
American, 267( 4):50-57, October 1992. 

[BDJ94] A. Berthiaume, D. Deutsch, and R. Jozsa. The stabilisation of quantum com­
putations. In Proceedings of the Workshop on Physics and Computation -
Physcomp '94, pages 60-62, IEEE Press, 1994. 

[Ben73] C.H. Bennett. Logical reversibility of computations. IBM Journal of Research 
and Development, 17:525-532, 1973. 

[Ben82] P.A. Benioff. Quantum mechanical Hamiltonian models of Turing machines. 
Journal of Statistical Physics, 29(3):515-546, 1982. 

[Ben] P.A. Benioff. Review of quantum computation. In Trends in Statistical Physics 
by Council of Scientific Information, Trivandrum, India. To appear. 



50 AndrC Berthiaume 

(Bet9SJ 

(BL85] 

(Bra93} 

[BV93} 

B rth. e. L' ordinateur quantique: complexite et stabilisation des calculs. 
A. e 1aum , · 11 u· ''d Ph.D. thesis, Dept. d'infonnatique et de recherche operat1one e, mvers1te e 
Montreal, 1995. 
C.H. Bennett and R. Landauer. Physical limits of computation. Scientific Amer-

ican, 253(1):48-56, July 1985. . . 
G. Brassard. Cryptology column - Quantum cryptography: A btbltography. 
SIGACT News, 24{3): 16-20, 1993. 
E. Berstein and U. Vazirani. Quantum complexity theory. In Proceedings of the 
25th Annual ACM Symposium on the Theory of Computing, pages 11-20, ACM 
Press, 1993. 

(Cop94} D. Coppersmith. An approximate Fourier transform useful in quantum factor­
ing. Technical report, IBM Research Report RC 19642, July 1994. 

(CY94} I. Chuang and Y. Yamamoto. A simple quantum computer. Physical Review A, 
52:3489-3495, 1995. 

(Deu8SJ D. Deutsch. Quantum theory, the Church-Turing principle and the universal 
quantum computer. Proceedings of the Royal Society of London, A4-00: 97-117, 
1985. 

[Deu89) D. Deutsch. Quantum computational network. Proceedings of the Royal Society 
of London, A425:73-90, 1989. 

(D1V95J D.P. DiV'mcenzo. Two-bit gates are universal for quantum computation. Phys­
ical Review Letters A, 51:1015-1022, 1995. 

[DJ92) D. Deutsch and R. Jozsa. Rapid solutions of problems by quantum computation. 
In Proceedings of the Royal Society of London, A439:553-558, 1992. 

[EJJ A. Ekcrt and R. Jozsa. Shor's quantum algorithm for factorising numbers. Re­
views of Modern Physics. To appear. 

(Fcy82) R.P. Fcynman. Simulating physics with computers. International Journal of 
Theoretical Physics, 21(6/7):467-488, 1982. 

[Fey86] R.P. Feynman. Quantum mechanical computers. Foundation of Physics, 
16(6):507-531, 1986. 

[FLS64) R.P. Feynman, R.B. Leighton, and M. Sands. The Feynman Lectures on Physics, 
volume 3. Reading, MA: Addison-Wesley, 1964. 

(Knu81) D.E. Knuth. The Art of Computer Programming (volume 2): Seminumerical 
Algorithms. Reading, MA: Addison-Wesley, 1981. 

[Lan6 l I R. Landauer. Irreversibility and heat generation in the computing process. IBM 
Journal of Research and Development, 5:183-191, 1961. 

[Lec63) Y. Lecerf. Machines de Turing reversibles. Recursive insolubilite en n e N de 
!'equation u == 9" ou 9 est un isomorphisme de codes. In Comptes rendus de 
l' Academie franraise des sciences, 257:2597-2600, 1963. 

[LL93) A.K. Lenstraand H.W. Lenstra, Jr. The Development of the Number Field Sieve. 
Lecture Notes in Mathematics, No. 1554, Berlin: Springer-Verlag, 1993. 

[LLMP90] A.K. Lenstra, H.W. Lenstra, Jr., M.S. Manasse, and J.M. Pollard. The number 
field sieve. In Proceedings of the 22nd Annual ACM Symposium on the Theory 
of Computing, pages 564-572, ACM Press, 1990. 

[l'.>93 I S. Lloyd. A potentially realizable quantum computer. Science, 261: 1569-1571, 
September 1993. 

[M1176] G.L. Miller. Riemann's hypothesis and tests for primality. Journal of Computer 
Science, 13:300-317, 1976. 

IMSE95) G.M. Palma, K.-A. Suominen, and A. Ekert. Decoherence in quantum registers, 
1995. Unpublished manuscript. 



[PGCZ] 

[Sch] 
[Sho94] 

[Sho] 

[Sim94] 

[SW94] 

[Unr95] 

[Yao93] 

2. Quantum Computation 51 

T. Pellizzari, S.A. Gardiner, J.I. Cirac, and P. Zoller. Decoherence, continuous 
observation and quantum computing: A cavity QED model. Physical Review 
Letters. To appear. 
B. Schumacher. On quantum coding. Physical Review Letters A. To appear. 
P.W. Shor. Algorithms for quantum computation: Discrete logarithms and fac­
toring. In Proceedings of the 35 th IEEE Symposium on Foundations of Computer 
Science, pages 20-22, IEEE, 1994. 
P.W. Shor. Polynomial-time algorithms for prime factorisation and discrete 
logarithms on a quantum computer. SIAM Journal of Computing. To appear. 
D. Simon. On the power of quantum computation. In Proceedings of the 35th 
IEEE Symposium on Foundations ofCcmputer Science, pages 124-134, 1994. 
T. Sleator and H. Weinfurter. Realizable universal quantum logic gates, I 994. 
Unpublished manuscript. 
W.G. Unruh. Maintaining coherence in quantum computers. Physical Review 
Letters A, 51:992-997, The American Physical Society, 1995. 
A.C.-C. Yao. Quantum circuit complexity. In Proceedings of the 34th IEEE 
Symposium on Foundations of Computer Science, pages 352-361, 1993. 


