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Recently, there has been a tendency to see natural phenomena as resulting from 
the action of dynamical processes. These processes (and the objects to which 
they give rise) are surprisingly often well characterised using some sort of hierar
chical approach. 
It is also one of the key features of fractal geometry that the action of dynam
ical systems can result in intrinsically hierarchical structures. In this paper we 
shortly outline the rapid progress which was made in analysis of fractals with the 
wavelet transform (often, but not exclusively, making use of the derivatives of 
the Gaussian kernel). 
We demonstrate that the natural ability of the wavelet transform to analyse ob
jects using both position and scale localised filters proves ideal in the context of 
hierarchical formalism of fractal geometry. In addition to this, the inherent ro
bustness of the transform provides reliable access to multi-scale representations. 

1. INTRODUCTION 

Just a selection of the titles of monographs or collected works: The Fractal 
Geometry of Nature [1], Fmctals Everywhere [2], Fractal Reviews in the Nat
ural and Applied Sciences [3], would quickly give the reader an idea of the 
universality of the concept of fractal geometry. Going through the subjects 
of these books would confirm this impression. Indeed, fractals are found just 
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about everywhere in natural phenomena, problems in engineering sciences, or 
in works of art. Having realised this fact, one would expect that clear and 
reliable recipes exist for the purpose of isolating and characterising fractals. 
Unfortunately, in practical cases, the task of proving that the particular object 
at hand is fractal, with the tools available, is to say the least unreliable. 

Still, the intuition of common sense perception of fractals would indicate 
something very different - it is enough to perform a simple experiment of break
ing off the smaller and smaller branches from the broccoli bought in the nearby 
greengrocer to get the feeling of the primary characteristic of its parts or frac
tions. In case observations become difficult one might use a magnifying glass, 
ideally bringing the size of the magnified branch to that of the original broccoli. 
While we encourage the reader to convince himself, let us just point out that 
the magnified branches would be very similar to the original broccoli, and this 
feature, called self-similarity, turns out to be universal for fractal objects. 

This is also the notion which, in all practical terms, loosely defines the 
fractal, in spite of the existence of a variety of more or less advanced criteria 
which generally can be referred to as fractal dimensions. Without going into 
details, the dimensional characterisation of fractals although definitely of great 
value, has one major shortcoming - it remains global in its very nature and 
assigns, not always reliably, the object in question to some universality class. 

Even though an admittedly complex structure, the broccoli in our exper
iment is undoubtedly neither random, nor is it exactly self-similar. Yet the 
dimensional characterisation would fail to distinguish it from these extremal 
cases. Under successive magnifications, the complex structure appears to con
sistently follow some principle, within the rather obvious finite size bounds of 
flower resolution and the broccoli size. This thought is the key idea of the work 
we shortly report here - there must be some construction rule apparently hidden 
in the complex structure of a fractal. It can vary from completely deterministic 
to completely random, still we propose that it is there! 

This is also the problem formulation posed in the thesis work [4]. The 
methodology we developed there is supposed to provide answers to the exis
tence of a fractal problem through the recovery of the original construction rule 
or its main characteristics. In its essence going to the very fundamental way 
of looking at fractal objects, the main tool used to make this proposition plau
sible is similar to that we used in our broccoli experiment - the mathematical 
microscope - this is how the Continuous Wavelet Transform (CWT) was first 
referred to in the context of fractal analysis [5]. 

We employed it to perform the analysis of some example fractal structures, 
which we introduce in Section 2 of this work, and reveal their consistent scaling 
behaviour - renormalisation structure, leading in turn to the construction rule 
recovery. This approach is shown to extend the available dimensional charac
terisation of fractals outlined in Section 3. 

We introduce the CWT in Section 4, first shortly showing how it proved 
to be particulary useful in local characterisation of singular detail essentially 
contributing to a fractal's shape. But more interestingly for our purpose, the 
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property of inheriting the renormalisation properties of the invariant fractal ob
ject by the wavelet transform is next used to build a bifurcation-based WTMB 
representation representing the information on the scale-position localised (in
variant) grid, allowing tracing the actions of the renormalisation group in the 
wavelet decomposition. 

The major feature of this approach, outlined further in Section 4, is the 
possibility of verifying such a scale-space similarity in terms of invariance with 
respect to some iterative functions (maps). Contrary to the methods known 
from the field of fractal compression of images, which use a predefined class of 
Iterated Function System functions [2] to approximate the invariance in ques
tion, the approach we present aims at revealing the renormalisation involved in 
the creation of the fractal, possibly bearing relevance to the underlying physical 
phenomena. 

Our hypothesis is therefore, that an object can be classified as a pre-fractal 
if there exists a solution to the related inverse fractal problem; in other words, 
if a set of construction rules can be found, which would define main (scaling) 
characteristics of the object. Ultimately, the construction rule can, of course, 
be expected to fully define the object within the scales where it is observed and 
which allows arbitrary extrapolation in the scale domain. 

As already mentioned, solving the inverse fractal problem for self-affine 
functions is done by means of testing the invariance of the wavelet transform 
modulus maxima representation of the function. For this purpose, several algo
rithm designs are possible. The most reliable and powerful approach to date, 
which we will also describe in some detail in Section 4, uses the topological 
structure of the maxima lines and characteristic invariant points like bifur
cations, inherently present in the wavelet transform in the form of relating 
bifurcations to the maxima lines. 1 This data-structure rather than a model 
driven approach is, therefore, able to recover non-linear maps by its very virtue 
of not being bound to a particular model. 

Two and three dimensional fractals occur frequently in the real world, and 
parameterization or cuts reducing dimensionality but retaining the fractal as
pects of the object are not always straightforward or even possible. The ex
tension to an intrinsically two dimensional analysis of fractals on one- to two
dimensional support (embedded in 2D) is shortly discussed in Section 5. 

2. VARIETY OF FRACTAL TYPES 

2.1. Some well-known fractal sets 
We will begin with the von Koch curve, perhaps the most familiar example of 
fractal construction. It can be created by dividing a line segment L (constitut
ing the so-called initiator, L = Fo) into three equal parts and then replacing 
the middle one with two identical ones, which are joined to form an equilateral 
triangle without a base, which fits precisely in the space left by the one re
moved. The generator made in this way is next scaled by a factor 1 /3 and used 

1 A tree-matching technique for recovering maps was also developed by Arneodo et al. [6] 
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recursively to replace each of the line segments of the previous constr~cti~n 

stage. See Figure 1. The procedure can be carried on indefinitely, res.ultmg m 

an object, the so-called attractor set with somewhat strange properties: .ev:n 

though the von Koch attractor is a curve, it has an infinite length in the hm1~, 

as a simple calculation can show. On the other hand, its area in the plane ~s 

zero thus neither length nor area provide a useful measure of it. Moreover, it 

is n~where differentiable in the sense that one cannot define tangents to it at 

any point. 

FIGURE 1. The first four stages of generation (Fi, i = 0 ... 3) of the von Koch 
curve. The von Koch island or snowflake is also shown. 

Somewhat less attractive in appearance and probably the simplest fractal 

structure, our next example is the middle third Cantor set. Nevertheless, it can 

be generalised to one of the theoretically most important class of fractals as we 

will demonstrate in the following Subsection 2.3. The construction proceeds 

as follows: from the line segment L = Fo divided into three equal parts, we 

remove the middle third. This action is next performed on the remaining parts. 

The result of this action of middle third removal to infinity, in the limit does, 

however, leave some fractal 'dust', the Cantor set; see Figure 2. 

The Sierpinski triangle, yet another well-known example, has in its construc

tion much in common with the Cantor set except that its creation happens in 

two dimensions resulting in a generic 2D fractal. It can be obtained by repeat

edly removing triangles from the initial filled triangle, as is demonstrated in 
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FIGURE 2. Starting from the line segment Fo, five generation steps of the 
Cantor set follow, up to F6. 

Figure 3. The same Sierpiri.ski triangle will be obtained if the initial object is a 
square which is next divided into four equal squares of which one (e.g. bottom 
right) is removed, see Figure 4. This is not a rare duality of Sierpinski con
struction, but a universal property behind the fractal (attractor) construction. 
It is the transformations of similarity, expressed in the idea of the generator 
and containing the scaling and translating transformations which fully define 
the resulting object. 

Indeed, recursively repeating the similarity transformations to infinity re
sults in the fractal object, provided the transformations contract space (notice 
that the rescaling factor is always less than one). The shape of the initial object 
used to 'feed' the generator is not so important;2 all initially distant points will 
be 'squeezed' by the contracting similitudes into the limit fractal shape, which 
for this reason is also called the fractal attractor. 

The construction process for each of the examples introduced can, therefore, 
be fully described by a set of rules involving the transformations of similarity. 
In the Cantor set case, these will be only two transformations (similitudes) 
acting on the line: 

l. 510 - scale by 1/3 and place at x' = 0 x; 

2. 520 - scale the 1/3 and place at x' = 2/3 x. 

2 it has to be a compact set 
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FIGURE 3. The Sierpinski triangle: From a filled triangle F0 , an inverted 
triangle is removed in the first generation step to give F1. The three remaining, 
still filled triangles are next subject to the same transformation of inverted 
triangle removal to give F2. The followings generations are shown, Fo through 
F3 and twice enlarged F5 . 

For the Sierpinski triangle, the transformations will be three affine trans-
formations in the plane {X, Y} : 

1. 81 5 - scale by 1/2 (along x and y) and translate by x' = 0 x, y' = 0 y; 

2. 825 - scale by 1/2 and translate by x' = 1/2 x, y' = 0 y; 

3. 835 - scale by 1/2 and translate by x' = 0 x, y' = 1/2 y. 

And for our first fractal example, the von Koch curve, we need four transfor
mations: 

1. Six - scale by 1/3 (along x and y) and translate by x' = 0 x, y' = O y; 

2. B2x - scale by 1/3, rotate by rr /6 and translate by x' = 1/3 x, y' = O y; 

3. S3x - scale by 1/3, rotate by rr/6 and transl. by x' = 1/2 x,y' = ../(3)/2y; 

4. S4x - scale by 1/3 and translate by x' = 2/3 x, y' = 0 y. 
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FIGURE 4. The Sierpinski triangle: starting from a perimeter of a square F0 , 

the two first generation steps F1 and F2 are shown, followed by F4 and twice 
enlarged F7 . 

2.2. Self-similarity and self-affinity 
As is to be expected, the above rules defining the well-known examples in
troduced can be represented in a somewhat more appropriate flexible general 
formalism. It represents the set of construction actions as parameterizable 
similitudes which can be used to generate a variety of fractals. The central 
formal concept here is that of the affine transformation or an affinity. which 
we will call a mapping S : IR.n -+ !Rn of the form: 

S(.r) = T(x) + b, 

where T is a non-singular linear transformation on JR." (often represented by 
an n x n matrix) and bis a vector in JR.11 • 

Generally, an affinity is a shearing transformation; its contracting or ex
panding effect do not need to be the same in all directions. For our con
siderations we will allow only such transformations S which have the con
tracting property, which is saitisfied if there is a number c with 0 < c < 1, 
such that IS(x) - S(y)J ::=; cJx - YI for all x, y in IR.11 • Such a transformation 
S: !Rn -+ lR.11 is then called a contraction and it still has the freedom to contract 
with differing ratios in different directions. As a special case constituting an 
important class, we have (contracting) similarities contracting isotropically: if 
JS(x) - S(y)I = cjx - yJ for all :r,y in JR.11 then Sis a similarity. 
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All the examples shown so far used similarity transformations. Let us 
demonstrate how the presented examples fit in this formalism. The Cantor 
set construction can be simply described by two one-dimensional transforma
tions: 

x151 = S1 (x) = (1/3)(x) + (1/3)(0); 
x152 = S2 (x) = (1/3)(x) + (1/3)(2). (1) 

The matrix notation of the transformation leading to the Sierpinski triangle is 
similarly defined with respect to (x, y) coordinates: 

Si ( ~) = ( 1/2 0 ) 
0 1/2 (~)+(~); 

S2 ( ~ ) ( 1/2 0 ) 
0 1/2 ( ~ ) + ( 1&2 ) 

S3 ( : ) ( 1/2 0 ) 
0 1/2 ( ~ ) + ( 1~2 ) (2) 

The von Koch curve is best represented by a set of four transformations in the 
plane,3 for which the matrix notation is: 

Si (:) ( ~/~/~ ) ( ~ ) + ( ~ ) ; 
S2 (:) = ( 1/2 - J(3)/2 ) ( 1/3 0 ) ( x ) ( 1/3 ) 

/(3)/2 1/2 0 1/3 y + 0 

S3 ( ~) ( 1/2 J(3)/2 ) ( 1/3 0 ) ( x ) ( 1/2 ) 
-/(3)/2 1/2 0 1/3 y + J(3)/2 

S4 (;) ( 1/3 0 ) ( x ) ( 2/3 ) 
0 1/3 y + 0 . (3) 

Our first fractal example again requires not only the highest number of simil
itudes, their form is also slightly more complicated since it includes rotations. 
We indicated this by writing separately the rotation and dilation transforma
tion. 

Suppose we apply the transformations Equation (1) to generate the Cantor 
set. After the first generation we have {Si (F0 ), S2(F0 )}. The second action 
leads to {Si oSi, Si 0S2, S20Si, S20S2}, where we neglected indicating the initial 
object F0 , and denoted the transformation of composition of transformations 
Si with o. The effective contraction rate of each of these four combinations 
of transformations in the second stage of generation is, of course, 1/3 1/3 = 
1/9. Moreover, each combination defines uniquely the resulting 'object' - Si o 
SJ(F0 ), i,j E {1,2}. 

3 Since it is generically a curve, the von Koch construction can be also parameterized to give 
one-dimensional function. 
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This means each object is also designated an unique combination of indexes 
{(l, 1), (1, 2), (2, 1), (2, 2)}. Had we used numbering starting from zero for in
dexing the similitudes, we would have recovered a unique binary address of each 
element of the Cantor set, respectively 00, 01, 10, 11. The third generation adds 
the rightmost (least meaningful) bit, and so on ... Similar consideration for the 
Sierpinski triangle would lead to unique triadic addresses, and for the von Koch 
curve, quadric. These sequences of transformations will also be referred to as 
the kneading sequences the terminology which stems from the theory of chaotic 
dynamical systems. 

Repetitively applying the set of contraction transformations Sn, n = 1 ... N 
to infinity does not, perhaps surprisingly, lead to the vanishing of the fractal 
shape. We have already shown some examples of the limit shapes of example 
constructions, the so-called (fractal) attractors. Indeed, each element of the 
attractor can still be identified by its, now infinitely long, address. 

For the rigorous proof of this conjecture see, for example [10). By this 
standard result, if S1 , .•• , SN are affine contractions on an, the unique compact 
set F invariant with respect to Sn is guaranteed to exist and is termed a self
affine set or an attractor of Sn, n = 1, ... , N. 
Therefore, the following invariance relation is satisfied: 

N 

F= LJ Sn(F) (4) 
n=l 

for the self-affine set F obtained by 

[ 
N l ok 

Fk = ldi Sn (B) for any B c an ; (5) 

where o denotes the composition of contractions, so that 

If F is a fractal, the subsequent approximations Fk of the set F will be called 
pre-fractals. 

In the following we will restrict ourselves to non-overlapping transforma
tions that is such that the union in (4) is disjoint or they do not overlap 
'too much'. For this we will require the components S; to satisfy an open set 
condition; i.e. there must exist a non-empty bounded open set i · such that 
V ::> U~=i Sn CV) with the union disjoint. 

Naturally, in the case where the set satisfies the invariance relation (4), in 
which all the transformations Sn are similarities, the set F is called self-similar. 
Whether self-similar or self-affine, the fractals defined so far can generally be 
described as sets. The applicability of the concept of set is, however, somehow 
restricted in the natural sciences. Observables from the real world are often 
more appropriately represented as (fractal) functions or measures like prob
ability distributions, all possessing an intrinsic independently scaling density 
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component. Such measures and functions, which also need to account for dis
tributions (and this generalisation we will take by default), will often - but not 
necessarily be defined on fractal support. 

2.3. Fractal functions (IFP formulation) 
Generally speaking there is no restrictions on the class of functions which graphs 
can posess fractal properties. Both continuous mappings and tempered distri
butions include fractal examples. Time series, from medicine, technology or 
economics, density distributions in geology, astronomy or physics provide an 
unlimited source of potentially fractal functions. We have already seen how 
the affine transformation can be used to construct sets, let us in the following 
demonstrate how the concept of the fractal function or measure distribution is 
intimately related to the affine transformation and self-affinity. We will con
sider the continuous contraction transformations Si : JR2 -+ JR2 , i = 1, ... , N, 
in short to be called maps, like those defined in the previous subsection. 

The crucial extension to the formalism of fractal sets was the introduction 
of the measure's (mass) density component, the scaling of which is independent 
of the scaling of its support. In particular, this generalisation over measures 
following multiplicative scaling rules, gave rise to the extension of the fractal 
formalism of sets. over the multi-fractal formalism. 

The first construction to be introduced, the so-called Besicovitch measure, 
has become practically a standard illustration of the concept in works treating 
the multi-fractal formalism. Not without importance here is the fact that it 
remains one of the few analytically tractable examples of multi-fractals. Nev
ertheless, although conceptually simple, the Besicovitch measure example can 
be considered fundamental to many physical phenomena. 

The Besicovitch measure is actually a simple extension to the previously 
introduced Cantor set through equipping it with multiplicative measure. At 
each generation step the normalised measure is being consistently transferred 
with some fixed repartition ratio over the elements of the set constituting the 
current generation. It is easy to check that each step of generation increases 
the density of the measure by the factor 3/2, while the total measure remains 
constant. 

Beyond this homogeneous and uniform case, there is a possibility of gener
alising this construction through non-equal factors defining non-uniform, mul
tiplicative repartitioning of the measure. To do this, one again takes a unit 
measure and distributes it with the arbitrary ratios p1 and p2 over the two 
remaining sections of the line at each construction step. Naturally, the ratios 
c!1 = c2 1 = 1/3 defining the middle-third Cantor set can as well be set to 
non-uniform. Also, the number of divisions, which is equivalent to the number 
of transformations, see (1), can be subject to alteration (increase). 

The set of transformations describing the Besicovitch construction can be 
expressed as: 
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f(x) 

0 

0 

FIGURE 5. The triadic Cantor measure, generation Fa, and the devil's staircase 
created by integrating the Cantor measure. 

x + b1 
= BI f(x) =PI /(--) ; 

Ct 

x+lJ..i 
= B2 f(x) = r>i f(--), 

C2 

with the normalisation requirement 

(6) 

(7) 

Additionally, we put conditions ensuring non-overlapping of the transforma
tions: 

1 +bi 0 + b2 --<--
C1 C2 

while all the respective values bif c1, b2 /c2 , c1 1, c;-1 are from the interval (0, 1). 
For equal ratios, PI = P2 = 1/2 and c1 = c2 = 3 with bi = 0 and ~ = 

2 we recover the middle-third, homogeneous distribution of measure on the 
Cantor set (Cantor generalised function). It can be integrated to give a related 
fractal object: the devil's staircase, see Figure 5. For non-equal p; the resulting 
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p2p1 
p2p2 - -

II I 11 

FIGURE 6. The Besicovitch measure on the Cantor set, generations Fa through 
F3 and the generation F6 • Distribution of weights is P1 = 0.4 and P2 = 0.6. 
The standard middle third Cantor division is retained. 

multiplicative distribution of the measure constitutes the classical example of 
multi-fractal object, an example of which is given in Figure 6. 

A straightforward extension to this concept of measure distribution is the 
slightly more involved construction of a self-affine function. Ironically, despite 
the simplicity of their construction, general self-affine functions proved to be 
relatively difficult to analyse in terms of fractal geometry. Leaving the aspects 
of fractal analysis to the next section, we would like to discuss a scheme of 
generation of this, our last example of a deterministic fractal function. It is 
a generalisation of the above introduced self-affine fractal construction involv
ing intrinsically two-dimensional components in the affine transformation, and 
resulting in a genuine fractal function. 

Suppose we place on the set of similitudes the requirement that the fractal 
attractor they define constitutes a functional mapping f : lR --+ JR. This is 
easily achieved by imposing the following constraints on the similitudes Sn: 
Let Sn (I ::; n ::; N) be affine transformations, represented in matrix notation 
with respect to (x, y) coordinates by 

Sn ( X ) = ( O"n-l 0 ) ( X ) + ( (n - 1) O"n -l ) 

Y 'Yn °'n Y Dn 

Next, let to= (O,Si/(1- a1)) and tN = (1, (SN+ 'YN)/(l - aN)) be the fixed 
points of S1 and SN (i.e. such that S(t) = t). We assume that the matrix 
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coefficients have been chosen so that 

l:::;;n:::;;N-1, 

in order to ensure that the segments [Sn(t0 ), Sn(tN )] join up to form an (open) 
p~lygon Ei. The invariant set F of the Sn can be constructed, at each gener
ation step k, by recursively replacing line segments [[Sn] 0 k(t0 ), [Sn] 0 k(tN)] by 
affine images of E 1 . 

F(lc) 

. . . 

F(x) 

F(x) 

$1(P) ••• / •• 

/ ./ .. 
/./ 

/ 

F(lc) 

FIGURE 7. The initial set of data points F0 , interpolated using the self-affine 
construction. In the middle figures two cases of F1 , in the left for different values 
of the vertical scaling free parameter an, and in the right for the same O:n = 0.5, 
for all n = 1 ... 4. Right below the plots of the ( F1) of the corresponding 
self-affine attractors. 

The above scheme of generation of a self-affine attractor is often referred 
to as a fractal interpolation scheme (IFS) [2]. Indeed, the initial set of points 
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; 
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! ,./ 

\ .......... ~ .. 
\ -.~ .. 

FIGURE 8. The self-affine attractor is invariant with respect to the operators 
Sn, l ... n used to construct the attractor. 

ti, i = 0 ... N, is interpolated by the attractor F according to the 'construction 
rule' implicitly contained in this set. 

An example of a self-affine function with four maps, to which reference is 
made in the following part of this work, is shown in Figure 7 (right). The 
majority of parameters implied through the data set {ti},i = 0, ... ,N, the 
vertical, in they direction, scaling an, n = 1, ... , N remain free. The influence 
of this scaling factor on the form of the attractor is demonstrated for two cases; 
in the left branch of Figure 7, the attractor is created for several different values 
of an, while in the right branch an is chosen to be the same for all the affine 
transformations. The infinitely developed fractal attractor is invariant with 
respect to the affine transformations Sn, n = 1, ... , 4, see Figure 8. 

3. STANDARD WAYS OF CHARACTERISING FRACTALS 

3.1. Fractal dimension(s) of sets 
We have already pointed out that classical geometry concepts are not suited 
to characterising fractal shapes: the von Koch curve is neither a line in strict 
sense nor does it fill the plane, the Cantor dust an invisible part of straight line 
but still it exists. 1 The main tool which proved useful in characterising fractal 
objects is the dimension in many forms, starting from similarity dimension 
used for illustrative purposes, through the Hausdorff dimension - a strictly 

1 This of course applies to the infinitely developed fractals, not to pre-fractals! 
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mathematically oriented tool, to the box dimension, the concept thus far most 
widely used practically. 

Let us use the concept of similarity as the starting point in defining a way of 
characterising fractal objects and introduce the potentially fractional similarity 
dimension. Many fractals exhibit some sort of similarity - they contain parts 
which are similar to the complete object in some way. By similarity, we can, 
for a start, mean the concept traditionally defined in geometry. Two geomet
rical objects would be similar if, in result of uniform rescaling (and perhaps 
translation), one could resolve identity between them. In this way a piece of 
straight line is similar to its one-third part by the factor three, and one-fourth 
part of a filled square would have to be rescaled by the factor two to revert to 
the original. 

It is a matter of course that the scaling (renormalising) ratios used to relate 
the complete object to its parts are somehow related to the dimension of the 
objects. Indeed, in the case of a line segment, it can be split in, for example, 
three equal parts, each constituting 1/3 of the original. Similarly, in the case 
of the rectangle, if divided in four identical rectangles, each part would be a 
copy of the original by the factor 1/2. If the similarity dimension is defined as 
the rate of filling the embedding space: 

D . . . __ log(number of subparts of the object) 
sim(ilartty) - log(scaling factor) 

we immediately recover Dsim = -log(3)/log(l/3) = 1 for the piece of line, 
and Dsim = - log (4)/ log (1/2) = 2 for the square piece of plane. 

The intuitive feeling of the dimension would tell us that for the examples 
introduced in the previous section, the dimension of the von Koch curve should 
be somewhere between Dline = 1 and Dptane = 2, that is the dimensions of 
line and plane respectively. For the Cantor set, it should be found somewhere 
between Dpoint = 0 and Dline = 1, which are the topological dimensions of 
point and line. In order to give a quantitative measure to the intuition outlined 
above, let us analyse the rate at which the example fractals fill their embedding 
dimensions. 

Again, this can be observed by comparing the scaling characteristic to the 
self-similar components of the fractal to the corresponding scaling of the em
bedding space. In the case of the von Koch curve, the total shape can be 
divided into four similar parts. Each of these parts is, however, a 1/3 size 
copy of the original shape, thus the rate of filling the embedding 2D plane can 
be expressed with Dsirn = -log(4)/log(l/3) = 1.2619 .... The middle third 
Cantor set can be analysed in a similar way. At each construction stage, there 
are two copies of the original scaled by 1/3 factor. Thus for the Cantor set 
Dsirn = - log(2)/ log(l/3) = 0.6309 .... As expected this number lies between 

Dvoint = 0 and Dune = 1. 
The scope of such a characterisation is, however, limited to the class of 

strictly self-similar fractal sets, (hence we denote the dimension so obtained as 
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FIGURE 9. Calculating similarity dimension. Notice that due to the finite 
generation depth of the original, the rescaled parts are quasi-similar. 

Dsim)· Universally applicable concepts of dimension are the Hausdorff dimen
sion and box counting dimension in its many variations. 

Fundamental to these definitions of dimension is the idea of 'measurement 
at scale t:'. For each particular E, we measure a set in a way that ignores 
detail of size less than E, and while gradually changing c., we observe how the 
measurements behave as E --+ 0. 

Let us define the so-called c.-covering of the set F, used to perform the 
measurement at scale t:, as 

that is as the covering for which the sum of the s-th powers of the diameters of 
covering balls U; is minimal (inf stands for infimum). For the collection {Ud 
to be E - cover of F, it must be countable (of finite) and of diameter at most 
c. and, of course, it must contain F, i.e. F c LJ~=l Un. The limit value 1-ls(F) 
is called the s-dimensional Hausdorff measure of F: 

1-l 8 (F) = lim<-+o 1-l~(F). 
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FIGURE 10. The Hausdorff dimension is the value of s for which the jump of 
Hausdorff measure takes place. 

For most values of the parameters, the Hausdorff measure equals 0 or oo. 
There is, however, a critical value of s for which the jump occurs between these 
two values (which can easily be verified for the case when F is a non-fractal 
set). This value of the parameters is referred to as the Hausdorff dimension. 

While a perfectly good mathematical tool, this dimension is completely 
unsuitable for experimental purposes. Conveniently, there exists a commonly 
used alternative definition which is readily suitable for implementing on digital 
computers. With its many names (e.g. Kolmogorov entropy, entropy dimen
sion, capacity dimension [10]), it is, however, best referred to as box or box 
counting dimension. 

In its equivalent formulations, which differ in the way the €-cover by means 
of boxes is performed, the box dimension is defined as the common value of 
the lower and upper bounds on the box counting dimension in the case that 
these are equal (FALCONER [10]). 2 Denoting supremum value with overline 
and infimum with underline, the lower and upper box-counting dimensions of 
a subset F of JRn can be given by 

1. logNE(F) 
Im 0 
-e-+ - logt: 

-1. log Ne ( F) 
= lme-+0 l - og€ 

and the box counting dimension of F by 

D F 1. log Ne(F) 
B = lme-+0 l - og€ 

2 In practical cases, we will rather be finding ways to identify an average value within the 
bounds, than determining the bounds, see e.g. (4]. 
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(if this limit exists), where N, ( F) is any of the following: 

1. the smallest number of closed balls of radius E that cover F; 

2. the smallest number of cubes of side E that cover F; 

3. the number of E-mesh cubes that intersect F; 

4. the smallest number of sets of diameter at most E that cover F; 

5. the largest number of disjoint balls of radius E with centres in F. 

This list is not exhaustive but covers the most frequently found applications of 
box counting. 

3.2. Extending the dimensional formalism to multiplicative fractal measures 
A variety of other definitions of dimensions can be introduced, still, in general, 
they all boil down to the concept of counting the E-covering of the fractal set. 
In such a case it makes no difference whether the items (of the fractal set) 
contained in the particular E-coverings belong to one class or differ drastically 
in some properties. One could give the example of the distribution of bank 
notes or coins within a certain region or country. Just counting the single 
occurrences yes or no of these items in an E-covering does not seems adequate 
even to a layman. Indeed, tracing the value contained in a certain E-covering 
would ring a bell with many. 

Back to our original purpose of characterising fractals, a multiplicative mea
sure like that on the Cantor set, scales differently from point to point. Recall, 
for the example of the Besicovitch measure, that for each point of the attractor 
an 'address' is known which corresponds with the unique sequence of trans
formations Si, thus with the product of ratios Pi/ Si, see ( 6) representing the 
density increase at each step of refinement. The product being a permutation 
(Abelian) group, the effective density is not unique for each point - there will 
be sets of points for which the scaling of density is the same. It is, therefore, 
straightforward to characterise the object through sets of points that follow the 
same scaling. 

The most sound and comprehensive formalism developed for characterisa
tion of multiplicative measures to date is the thermodymamical formalism by 
Arneodo et al. [6] In the micro-canonical formulation [6] which we outline first, 
the local scaling component is derived per point from scaling of the measure 
in the t box. The box Bx(t) is centered at the point x and the exponent a(x) 
indicates the rate of scaling at this point 

(8) 

This exponent is sometimes referred to as sing·ularity strength (and is loosely 
related to the Holder exponent in the case of functions). Now, the f(n) singu-
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larity spectrum describes the distribution of the singularities of the measure in 
the following sense: 3 

(9) 

Thus the f(a) describes the (logarithmic) evolution of the histogram of 
Na(f) when f. ---t 0, and can be identified with the fractal (Hausdorff) dimen
sion f(a) = DB(Sa) of a set of points supporting scaling equal So. = {x E 
supportµ, a(x) =a}. 

Conceptually straightforward, this (micro-canonical) characterisation is 
highly unstable in practice due to the naive expectation of uniform scaling of 
the local exponent a(xo). In fact, scaling of the measure contained in the box 
Bx(f) follows the complicated pattern of the corresponding kneading sequence 
- the difficulty which can only be surpassed using the canonical! ormalism. It 
employs the transformation of the global quantity - the partition function Z 
defined as 

N(<) 

Z(q,t) = L µ~(t) ~ Er(q), (10) 
i=O 

where µ.;(f) is the measure contained in the i-th box of the £-coverage. Scaling 
of this partition function Z(q, c) ~ 1,r(q) gives the mass exponents 

( ) 1. logZ(q,c:) 
T q = lm , 

<--+0 log E 
(11) 

which can be related to the spectrum of singularities through the so-called 
Legendre transformation (see e.g. [ll]): 

dT(q) =< 0: > (q) ' 
dq 

(f(q))(a) = q <a> (q) - T(q) . 

(12) 

(13) 

The derivation of the above relations proceeds as follows; let us introduce 
the Boltzmann weights arising from the partition function Z(q, f), (10) as: 

µI (t) 
µ;(q, c) = ""°'. q( ) 

L.1 µJ E 

The expectation for a, see Eq.(8), over the canonical ensemble is then: 

"'°' "'°' log J.L; ( E) <a> (q) = L..,aiµi(q,i:.) = ~ logf. µ;(q,t), 
z ., 

(14) 

3 Note that we use the same symbol f() for the singularity spectrum as in other context for 
an arbitrary function. This notation is standard in literature and should always be clear 
from the context. 
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which can next be directly related to the scaling exponents r( q) of the partition 
function (11) (in the thermodynamic limit of infinite volume E-+ oo which we 
assume below): 

dr(q) = lim d(log(Z(q,t:))/log(t:)) = _1_ ~ .!!:_ Z(q,t:) 
dq <-+0 dq log E Z dq 

since, from the definition of the partition function Z(q, t:) =Li µj, it equals: 

dr(q) = - 1- ~ .L:logµi(E)µi(E)q = ~ L lo~µ;(E) µi(t:)q =<a> (q) · 
~ ~gEZ i i ~t: 

If now f ( q) is defined as: 

!( ) _ L ·( )logµi(q,E) 
q - µ, q,E l ' . ogc: 

' 

(15) 

using (14), one obtains 

L logµi(t:) "'"°" logZ f (q) = q µi(q, E) - L,., µ;(q, E) -
. ~E . ~E 
z ' 

which, from (8) and (11) together with the normalisation requirement on the 
measure µ gives 

(f(q))(a) = q <a> (q) - r(q) . (16) 

The parameter q works as the mechanism to select the singularities of certain 
strength. For q > 0, the partition function is dominated by singularities scaling 
with a > l. Choosing q < 0 increases the role of the singularities of a < 1. 

Note that for q = 0 we recover the original box counting dimension of the 
set support of the measure. Moreover, it is easy to show that for homogeneous 
fractals, e.g. self-similar sets with uniformly distributed measure, the r(q) is 
a linear function. The Legendre transformation brings the spectrum of singu
larities of such measure to one point -- exactly the Hausdorff dimension of the 
support of the measure. It is the non-linearity of r(q) which for the generic 
case contains non-redundant information about the measure distribution and 
its spectrum of singularities. In the figure below we can see the example r(q) 
and the related f (a) spectrum of singularities for the Besicovitch measure with 
repartition ratio p = .3, q = .7, on the triadic Cantor set support. 

4. BEYOND THE DIMENSIONAL FORMALISM OF FRACTALS 

The multi-fractal analysis of multiplicative measures is a definitive step forward 
in describing fractals arising in many dynamical phenomena in nature. This 
is, however, still a global characterisation through the fractal dimension of 
subsets of the measure's support. The information it carries has only statistical 
meaning and gives only a global sense of the measure's scaling properties. Even 
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FIGURE 11. r(q) for the Besicovitch measure p = .3, q = .7. 
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FIGURE 12. /(a) for the Besicovitch measure p = .3,q == .7. 

though it generalises the approach to non-homogenl'ous measures. it is still 
unsuitable (in its traditional hox counting formulation) for analysing arbitrary 
fractal functions [6]. 

There is. howen'r, a way of diaracterising fractals through their primary 
property. their intrinsic renormalisation. which is reflected in self-similarity or 
self-affinity. The basic transformations of renormalisation characterising the 
fractal object are those which are used to cn'ate it. In this sense. we can 
speak of the ·eonstruction rulP' associated with the fractal object. Obviously, 
n~e1)wry of such a unique construction rule would provide the most complew 
ehara('terisation of tlw fractal. \Vhat is perhaps even more striking is the 

129 



Quarierly ~-----------

fact that the 'rule' (subject to an iterative process) could give insight into the 
dynamics of the process of creation of the fractal object! This is a rather far 
going expectation, but the primary results obtained are rather promising. 

The problem of recovering the invariant renormalisation transformations 
is generally known as the inverse fractal problem. It was first defined in the 
context of image compression by BARNSLEY [2], and in its original formulation 
was only intended to provide a rough approximation tool with a controllable 
error. This could be achieved through the so-called collage theorem [2]. Various 
approaches were developed, mostly oriented at the decomposition of the entire 
rectangular image through Manhattan (or affine) sub-divisions, while other 
methods often claiming to solve the Inverse Fractal Problem (IFP) uniquely, 
aim at finding optimal transformations for isolated objects. In both classes 
of methods there is no intention for the transformations to bear any physical 
meaning whatsoever. Nor do, to the best of our knowledge, any of the ap
proaches use methods allowing unrestricted recovery of transformations. The 
restrictions include ad hoe limits on the number of transformations, but also 
extend over some intrinsic limitations which are inherent to fractal functions, 
like the inability to single out the scaling behaviour masked by polynomial 
behaviour. 

In our opinion, the problems traditionally encountered in the IFP can suc
cessfully be dealt with within the wavelet transformation based approach. Not 
only does it provide the means to generalise over arbitrary fractal functions and 
arbitrary type of singularities as recently demonstrated in [7] in the context of 
multi-fractal formalism but, it also constitutes a representation particularly 
convenient for localised assessment of renormalisation properties of fractals. 

4 .1. Wavelet trnw;form in singidarity analy8i.s 

Of many transforms which can be used to decompose a function, thE're is one 
particularly suited to provide localised posit.ion-frequency decomposition. 

It is the recently introduced wavelet transform, see e.g. [12], which differs 
from other localised transforms like the Gabor transform in the ability to zoom 
in on \'ery short-lived high frequency phenomena, be it transients in signals or 
singularities in (fractal) functions. 

This ability is achieved in a very simple way through introducing the scale 
parameter s which 'adapts' the width of the wavelet kernel to the microscopic 
re.sol'Ution required, thus changing its frequency contents. This action can be 
performed locally on the investigated function and the location of the analysing 
wavelet is determined by the other parameter b 

x-b 
U(s, b)?j;(x) = 1/J(-) , 

s 

where s, b E lR and s > 0 for the continuous version (CWT). 

(17) 

The transform is defined as the inner product of the function f (x) and the 
thus dilated and translated wavelet U ( s, b )'1/,>( x): 
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(W f)(s, b) = ~ j dx f (x) U(s, b) 'l/J(x) . (18) 

The power given to the normalising factor s, it is often chosen to serve a 
particular purpose. In this work, in the one dimensional case we choose a 
default factor s-1 , which conserves the integral f dx l'l/J(x)I and thus leaves the 
£ 1 measure invariant. 4 This also seems to be the choice generally favoured in 
most applications of wavelets in fractals to date. 

The natural requirement for the wavelet transform would be that of re
versibility, that is to say the original function f could be reconstructed from 
its wavelet transform W f. This is indeed satisfied as a consequence of the 
fact that the wavelet transform is an isometric transformation, which can be 
expressed in the so-called resolution of identity for the inner product of the 
function f and g and their wavelet transforms W f and W g: 5 

J oo Joo ds db 
_

00 
_

00 
- 8-(W f)(s, b)(W g)(s, b) =Cw < f, g > . (19) 

The analysis of the local singular properties of a function with the wavelet 
transform can be illustrated by the following. The singularity strength is 
often characterised by the so-called Lipschitz-Holder exponent. If there ex
ists a polynomial Pn ( x) of the degree n such that 

lf(x) - Pn(x - xo)I :S: Clx - xolh, 

the function f (x) is said be Lipschitz h in x0 , or to have the Holder exponent 
h in the point x0 , for n < h::; n + 1. Suppose, the polynomial Pn corresponds 
to the Taylor series expansion of f around x 0 up to the order n. 

It follows directly that if f is equal to a positive integer n + I it is n times 
continuosly differentiable in x0 . Alternatively, if n < h < n + 1 the function 
f is continuous and singular in x0 . In that case f is n times differentiable, 
but its nth derivative is singular in x 0 and the exponent h characterises this 
singularity. The exponent h, therefore, gives the indication of how regular the 
function f is in xo, that is the higher the h, the more regular the function f. 
The wavelet transform of the function f in x = x0 with the wavelet of at least n 
vanishing moments, i.e. orthogonal to polynomials up to (maximum possible) 
degree n: 

J+oo 
-oo xn 'lf;(x) dx = 0 'in, 0 ::; n < rn , 

4 Of course, in the pa.rticular case of fractional support of the measure, the invariant measure 
should be rescaled as s-D, where D is the fractal dimension of the support. However, 
since this is usually a priori unknown, we will use the default value equal to the embedding 
dimension of the support, allowing for later possible readjustment. 

·5 It can be shown that ( 19) leads to the so-called admissibility condition on the wavelet 

J::, dx'lj,(x) == 0, which excludes low-pass filters (e.g. the Gaussian). However, since we 

are only focusing on the renormalisation properties of the object's CWT, we will disregard 

this restriction. 
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reduces to 

w(n) f(s,xo) "'c J 'ljJ(x)ls xlh(xo) dx,....., c lslh(xo) J 'ljJ(x')lx'lh(xo) dx'. 

Therefore, we have the following proportionality of the wavelet transform of 
the singularity n :::; h :::; n + 1, with the wavelet with n vanishing moments, 
adequately refered to as an oscillatory box: 

w(n) f(s,xo)"' lslh(xo). 

The consequences of the ability of accessing the singular scaling behaviour 
with the wavelet transform and in particular with the modulus maxima rep
resentation [13] of the CWT are in fact two-fold. One is the possibility of 
extending (and correcting) the traditional statistical formalism of fractals [6]. 
The second, which we would like to pursue further here, is the possibility of 
recovering the actual renormalisation (scaling) parameters involved in the cre
ation of the fractal attractor through the original construction rule. 

4.2. Renormalisation recovery from the CWT 
Let us first investigate the action of the two element group of our most simple 
fractal example - the uniform measure on a triadic Cantor set. 

• 1.6 

s"(l-log(2 )/log(3) )W(Cantor_gen6) 

FIGURE 13. The top view on the wavelet transform of the uniform mea
sure on a triadic Cantor set. Note the correction factor equal s1-D, where 
D = log( 2) / log( 3) is the fractal dimension of the uniform measure on a triadic 
Cantor set. 
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For the uniform measure on a triadic Cantor set we have the transformation 
T1(1/3, 0) and T2(1/3, 2/3 l), where l is the length of the initiator L = F0 , and 
T(a, b)(x) = ax + b = u-1 (a, b). The function reflecting homogeneous measure 
distribution on a triadic Cantor set f c is thus invariant with respect to these 
two transformations, see theorem 1 in chapter 2: 

Jc= LJr1,2fc (20) 
1,2 

The wavelet transform of the uniform measure on a triadic Cantor set Jc is 
thus for T2: 

(Wj)(8,b) = j 8-1dx f(x) U(8,b) 'lj;(x) 

= J 8- 1dx T2 (1/3, 2/3 l)f(x) U(8, b) 'lj;(x) 

= j s- 1dx f(l/3 x + 2/3 l) 'l/Jt ~ b) . 

On taking x' = 1/3 x + 2/3 l we obtain 

(Wf)(8,b) = J 8- 11/3-1dx' f(x') 'ljJ(x ~ b) 

= J 8 _ 1113_1dx' f(x') 'l/J(x' - 2/~ l - 1/3 b) 
1 3 s 

= (W !)(1/3 8, 2/3 l + 1/3 b) . 

We see that the invariance in the fractal attractor reflects in the invariance of 
the wavelet transform with respect to the operator T2 . Analogically, for the 
operator T1 we obtain (W f)(s, b) = (W f)(l/3 s, 1/3 b). While this fact can be 
verified in the figure showing CWT of the investigated attractor, it is much more 
convenient to observe it in the so-called wavelet transform modulus maxima 
(WTMM) representation - as pointed out by MALLAT (13], a representation 
reduced to the local (modulus) maxima in x of the wavelet transformation 
(W f)(8, x) of a function f (x) can be considered to be complete for a large 
class of functions. 

In the figure showing the WTMM of uniform measure on a triadic Can
tor set, Figure 14, the invariance with respect to the operators T1 and T2 is 
immediately apparent and is emphasised with the help of windows. 

While perhaps not most spectacular for the uniform measure on the Can
tor set exactly the same reasoning can also be applied to more complicated 
measures and in general to arbitrary functions. Let us now take the example 
of the Besicovitch measure. The continuous wavelet transform (CWT) of the 
example mass repartitioning using 0.3/0. 7 ratio, on the support of the uniform 
triadic Cantor set, is shown in Figure 15 below. 
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FIGURE 14. The top view of the maxima representation of the wavelet trans
form of the uniform measure on a triadic Cantor set. The two renormalisation 
transformations are shown and the corresponding renormalised windows can 
be compared by overlaying. 

Recall that (6) describes the transformation used to create this invariant 
self-affine object. At the same time, they constitute the invariance transforma
tions corresponding with the object. If we now identify two operators acting 
on scale and position as T(c11,bifci) and T((c:;,1,b2/c2)), we directly have 

(Wf)(s,x) = (W)[p1,2T1,2(u,v) j](s,x) =P1,2(WJ)(s1,x'), (21) 

for the scale-position coordinates of the related bifurcations: 

(22) 

Thus the pair of vectors (ss', xx') constitutes the two components (position, 
scale) of the invariance vector in the scale-position domain. An illustration of 
this is given in Figure 16. The top window and its two images renormalised 
back for comparison are shown overlayed on top of one another. The task of 
tracing the invariance in question is now easier since the scaling component ss' 
becomes a vector in the scale-position plane just like the translation component 
xx'. If we follow the resultant vector (after renormalisation, up to finite size 
distortions) we find the same pattern again. 

However, the invariance in the scale position plane only defines the two 
components of the invariance vector. The renormalisation transformations for 
the investigated measure take their complete form only if we include the infor
mation (regarding the repartitioning of measure) contained in the values of the 
wavelet transform in the corresponding renormalising bifurcations, as evident 
from (21): 
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sA(-l)W(Besicovitch(pl=.3,p2=.7)) 

FIGURE 15. The wavelet representation of the Besicovitch measure with mass 
repartition 0.3/0.7, on the support of the uniform triadic Cantor set. The 
wavelet used is the Gaussian. 

(W f)(s, x) 
(wf)( I ) = Pl,2 . 

8 1,2, xL2 (23) 

It is, therefore, possible to reveal all the original renormalisation parame
ters (constituting the originally addressed 'construction rule') from the wavelet 
transform bifurcation representation of the investigated fractal. 

Recovering the invariance in question and determining the degree of its uni
formity is the main challenge in solving the Inverse Fractal Problem. The actual 
key to the solution of the inverse fractal problem using the CWT is utilising the 
invariant 'landmarks' in the wavelet landscape - the bifurcations [3, 8]. The 
coordinates of these objects are subject to the transformations to be identified; 
therefore, finding sets of bifurcations following the same transformation gives 
access to the transformation itself. Let us therefore state the following: If an 
object is invariant with respect to some construction rule S, it is self-affine 
(self-similar) and is a fractal. The Inverse Fractal Problem aims at re
covering the unknown construction rule in order to prove that the object F is 
self-affine (self-similar). 

This is in general a rather difficult task, but we will demonstrate that it is 
a feasible one - the possibility to do this is contained in the invariant represen
tation such as the bifurcation representation. The rationale behind focusing 
on the bifurcation points is similar to that for the modulus maxima - the par
ticularly convenient feature of this representation is its translation invariance, 
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FIGURE 16. The wavelet bifurcation and maxima representation of the Besicov
itch measure with mass repartition 0.3/0.7, on support of the uniform triadic 
Cantor set. 

which is of great importance in pattern recognition problems. Since fractal 
functions are a special class of functions where the translation invariance is 
accompanied by scale invariance, representation invariant with respect to both 
scale and position shift is required. In searching for a representation featuring 
such unique 'landmarks', we found very suitable the bifurcations of the maxima 
lines, defined to be the points in the scale-space domain where a new maxima 
line begins while going towards smaller scales. These points can be identified 
as general maxima of the wavelet transform i.e. as points where IW f (s, x) I is 
locally maximum in a two dimensional neighbourhood of (so, xo) in the scale
position plane. 

The necessary condition for the general maximum is the zero of the deriva
tives along both the position x and the scale s directions. 

{ 
d(Wf)(s,x) 

d(w1j(s,x) 
ds 

= 0 
= 0. 

(24) 

In Figure 17, we indicate the action of the transformation 8 1 on two bi
furcations B1 and B2. Although arbitrary in principle, we prefer to choose 
bifurcations most upward in scale/hierarchy; the explanation of the reasons for 
this will be given in the next chapter. The action of both the transformations 
results in the bifurcations B~ = 81(B1) and B~ = 81(B2 ) respectively. Next, 
B~' and B~ are indicated as the results ofrespectively, 81 (BD and 8 1 (B~), and 
so on .... In the right figure we find a similar analysis in the case of 82 . 

This means, that for each pair of bifurcations there is a sequence of trans
formations S; relating them, and vice versa, there are subsets of bifurcations, 
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FIGURE 17. The action of the transformation S1 on two arbitrary bifurcations 
B1 and B2 results in the bifurcations B~ = Si(B1) and B~ = S 1 (B2 ) respec
tively. Next, B~' and B~ are indicated as the results of respectively, Si(BD 
and S1 (B~), and so on .... In the right figure, similar analysis for the case of 
S2. 

for which the transformation is either S1 or S2 - a few of which are shown in 
the figure above 1 7. 

If we were to check for all the possible pairs of bifurcations to which trans
formation their coordinates are subjected, we would discover that the most 
common transformations are in fact the pair S1 and S2 . Of course, there 
would be many combinations of the transformations occurring quite often, but 
always less frequently than the two primary ones. Moreover, once all the pairs 
of bifurcations subject to the 'strongest' pair of transformations are removed 
from the representation, there would be almost no bifurcations left (except for 
those not matched due to errors). 

This is a very intuitive description of the procedure we have developed 
to identify invariance in the bifurcation representation and it indicates the 
following facts: 6 

1. We seek for the most consistent transformations, that is such which trans
form the largest sets of bifurcations; later we will introduce measures for 
estimating this purpose; 

2. since any combination of the invariance transformations is again an in
variance transformation, our purpose is finding the irreducible elements of 
the group of transformations, therefore each pair of successfully matched 
bifurcations can in principle define only one invariance transformation. 

6 For the more complete description of the numerical algorithm, we refer the reader to the 
next subsection, as well as to [8, 4]. 

137 

1) 
82) 



x' 

-----·- 'Cluorie•lv _ _,...,,.,,...,,,,.,00,.._----------

The sets of bifurcations thus isolated, related through either of the trans
formation S1 and S2 , can be now used to reflect the original global invariance 
transformation in (probabilistic) distributions of parameters of the invariance 
model Figure 18. The modes of these parameter distributions evaluated for the 
inwstigatecl example show remarkable agreement with the original values. 

The infonnatiou contained in the modes of the parameter distributions is 
complemented b~· the particularly interesting information obtained by relat
ing the coordinates of the matched bifurcations. The coordinates transform 
according to T1•2 as indicated in (22), therefore if we sl?t off the position coor
dinate of the bifurcation upper in scale with the matching bifurcation lower in 
scale for all matched bifurcations, see Figure 18, we obtain the dynamic maps 
directly! The maps encompass the generation rule which governs the creation 
of the object in a dynamical process :J.:(t) -+ :r'(t + LJ..t), whr're t denotes time 
evolution. 

a.a 

0.6 

0.4 

0.2 

0 

I 'retest4.dat' • f 
3•x :::-f i 3"(x-2./3.) 

I I 
I 

I 
I 

, 
I 

I 

I // 
I 

I i 
/• 

I 
I J I • I 

0 0.2 0.4 0.6 0.8 ·3·2-1 O 1 2 34 5 5 7 B 9 1 ·13 ·11 ·S 0 1 2 3 4 5 64 5 6 7 a 9 1 
x 

FIGURE 18. The x coordinates of matched bifurcations transformed according 
to the linear mappings T1 and T2 (left). The modes of the parameters of the 
invariance transformations S1 and S2 . From left to right b1 ::::; 0/3, b2 ::::; 2/3, 
81.2::::; log(l/3), PI ~ 0.3, P2 ~ 0.7. (right) 

Note, that the distribution of the points on the maps reflects the structure of 
the support of the attractor - the uniform triadic Cantor set! 

Let us now move to the general self-affine function as shown in Figure 7. 
Such a function cannot be expressed as a simple multiplicative map, due to 
the fact that it contains a (piecewise linear) polynomial which constitutes the 
'background' of the multiplicatively scaling function. In general, the back
ground polynomials may or may not themselves be introduced by the iterative 
affine mapping. As such, they may well consist of relevant information, but 
also may well simply be completely irrelevant to renormalisation properties, 
and therefore ean often rightly be referred to as noise. However, they will al
ways be masking the multiplicative renormalising of the object, and removing 
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arbitrary noise of this kind is often crucial for the recovery of the renormalisa
tion properties of the object. 

The self-affine function can generally be described by a set of a finite number 
n of self-affine transformations of the generic form 

fn'(x) = Sn(/n(x)) = O:n fn((x - f3n)/an} + /n (x - f3n} +On, n EN. (25) 

Therefore taking the wavelet with two vanishing moments we will be able to 
capture the invariance of the operators acting on scale and position: 

log( scale) 

\ 

( 

position s3 

maxima 
bifurcations • 

(26) 

FIGURE 19. Windows on the wavelet maxima representation of the self-affine 
function (left). Comparison of the windows by means of renormalising and 
overlaying (right). 

See Figure 19 for the indication of the invariance present in the example dis
cussed. The remaining information can be assessed by decomposing the self
affine function into the wavelets with an increasing number of vanishing mo
ments '1j;<0l, '!j;< 1 l, '1j;C 2l. It allows us to solve the set of equations: 

{ 
f'(x) 

(D< 1l f')(x) 
(D<2 l f')(x) 

= O:n f ( :r:!n) + 'Yn (x - /Jn)+ On 
= O:n (D(l) f)( :r;/3n) O"n -1 + 'Yn 
= O'.n (D(Z) !)( :r:?") O"n - 2 

(27) 

by means of comparing corresponding f and f' values (and their D and n<2l 
derivatives) on the invariant structure of bifurcations recovered from wavelet 
transform performing the second derivative of the investigated function W(2l f: 
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FIGURE 20. A stack of wavelet transforms w<2l f, w< 1l f and w<0l f' sampled 
with the affine grid of bifurcations. 

{ x' 
s' = 

Using estimated parameters an, f3n, a,,, we can, in sequel, solve the set of equa
tions (27) by sampling the corresponding wavelet decompositions on the recov
ered invariant grid; see Figure 20 for an intuitive illustration of this idea. 

For all the parameters, expectations were obtained by estimating the mode 
of parameter distribution and have shown good agreement with the values 
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FIGURE 21. The original attractor, the attractor reconstructed using the set 
of revealed self-affine transformations and the difference in y between the two 
attractors. (The error on the orthogonal x coordinate not shown in the figure 
is of the same order.) 

used to construct the self-affine example. We refrained from displaying all the 
individual (twenty) modes. Instead, we show the result of the reconstruction 
of the self-affine attractor with the estimated maps, Figure 21. 

4.3. A General tree mapping algorithm 

The essence of this method lies in finding best matches in the hierarchy of bi
furcations derived from the structure of the wavelet maxima representation. In 
order to construct such a hierarchy, each maximum line of the wavelet maxima 
representation will be associated with a branch. We say that the bifurcation 
b( s, x) belongs to the branch hi (or is visible) if, at the scale s there is no other 
branch hj between hi and b(s, x): 

b(s, x) belongs to hJ {:} (line segm[b(s, x), h;] n h1 = r/J , \I j =f. i) . (29) 

One bifurcation will, therefore, belong to the two closest maxima lines hp and 
hq, on both sides of the bifurcation. (The boundary cases will be treated in a 
wrap-around fashion.) We will associate probability measures with this relation 
of bifurcations to branches as follows: the probability that the bifurcation 
b(s, x) belongs to the branch hp is: 
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FIGURE 22. Construction of a tree in the left figure, and the same tree now 
as a sub-tree (one of the main four) within the complete representation on the 
right. We used the example self-affine function from Figure 21. Maxima lines 
are left visible in order to facilitate perception of the trees. Only the more 
probable relationships are shown. 

distance(b, hq) 
P(b(s,x) belongs to hp) = d. (b h ) d" t (b h ) istance , P + is ance , q 

(30) 

where distance( a, b) = [xs(a) - x 8 (b)[ i.e. it equals the Euclidean distance 
between the x coordinates of the maxima lines at a certain scale s. Obviously, 
P(b(s,x) belongsto hq)=l-P(b(s,x) belongsto hp),andbyt.hisdefinition 
the probability P is drawn from a uniform distribution. 

Since a new branch originates from each bifurcation, we will define a tree as 
a couple consisting of a branch h and all trees originating from the bifurcations 
b1 belonging to the branch h 

tree(h)=(h,{tree(h1)}:(h1nb1:jr/JA(b1 belongsto h))). (31) 

In Figure 22, we illustrate the first few steps of the process of tree creation. 
It is apparent that since a new tree is defined for each maximum line, one 
bifurcation can belong to many trees. 

This completes the creation of the probability relationships in the bifurca
tion representation. For N 1.ot bifurcations, we have 2N10 ' - 1 arrangements which 
form a valid tree. The task of the algorithm is to explore the search space in 
order to find the most likely arrangement, while avoiding a combinatorial ex
plosion of the computation. 

The topology of the arrangement found determines which sub-trees are 
present in the tree, therefore determining the maps which characterise the 
system. Referring to a generic tree, see Figure 23, we will be able to distinguish 
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three main branches 
of the generic tree: 

two side branches 
and shift root 

pruned from the 
three main branches 
there are possible 
branches lower in 
the hierarchy 

Quarterly ---------------

the top root of the hierarchy 

means the branch is cut here 
and matched against the top-root 

FIGURE 23. The branching of a generic tree. See text for description. 

left and right branches and the root. The most obvious first match would be 
between the first side branch, that is the highest in the hierarchy, and the 
complete tree. In the same way, the next match would be with the side branch 
on the opposite side, assuming there is one there. The third step is perhaps 
less obvious; after pruning the first two side branches we can try matching 
the remaining radical shift sub-tree against the original top-tree. 7 In all these 
steps, each bifurcation can be used only once, thus its assignment becomes 
restricted to one sub-tree only, and therefore it takes part in defining only one 
map. 

Naturally, in most cases there will be bifurcations which do not match. The 
existence of trees stemming from these bifurcations indicates that potentially 
there are more than three maps in the system. Therefore, any sub-tree pruned 
in these three generic matches is next used for subsequent matching against 
the complete top-tree as before. A description of the tree/sub-tree matching 
algorithm used in the above procedure will follow. 

This hierarchical approach constitutes the first heuristic used to limit the 
search space. The motivation for this is that the higher the sub-tree is in the 
hierarchy, the more likely it is to acquire a large likelihood measure, due to the 
larger scale extent it can cover. Therefore, it can potentially contribute largely 
to the maximisation of the total likelihood measure. 
The likelihood measure being maximised is: 

°"M [ (.!lm..) a (IT~m p!ow phigh) l/nm f(am)] 
L...-m=l Ntot i=l i i 

Measure= Norm(a,b) (32) 

7 In practice it is this radical shift that is tried first, all pruned branches constituting the 
sub-trees. 
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where f(O-m) is a penalty factor 

!( - ) - -b /Ek"~ (J'm -e . 

The factor nm/ Ntot determines the fraction of the bifurcations used while 

rr ':m plow p~igh is the total likelihood of matched bifurcations. M is the num-
1=1 I l 

ber of maps extracted and N arm( a, b) is intended to normalise the measure 
with respect to parameters a and b. Since we obtained a reliable performance 
for constant, minimal assumption based values of a = 2 and b = 1, the opti
misation with respect to these parameters proved unnecessary and the norm 
N arm( a, b) could also be neglected. 

The argument for such a construction of the measure is as follows: the 'aver
age' likelihood is computed over all nm matched branches (i, j) as 
(rr ':m p!0 w p~igh)I/nm. This measure ingredient alone will however tend 

i=l i i ' ' 

to favour a minimal number of bifurcations per map nm. In order to compen-
sate for this, we introduced the (nm/ Ntottl2 factor. The measure constructed 
in this way can already be used quite reliably. 

To improve the ability to avoid gross errors in the map construction, we 
introduced a penalty factor taking into account the standard deviation of the 
constructed maps with respect to a linear fit to the map. The total normalised 
standard deviation /Ek (]'~ in an exponent over e is used to suppress only 
large deviations. The factor b in f (0-m) was left at b = 1. This ingredient of 

the total measure also required compensation with the ( ;J,:, ) a/2 factor. And 

similarly as for b, we obtained the best results for the minimal choice of a= 2. 
In detail, the tree/sub-tree matching algorithm proceeds as follows: for 

the two roots, referred to as (l)ower and (h)igher, the bifurcations belong
ing to these roots, (j, k) respectively, are matched within a predefined depth 
(j+/-d,k+/-d). This is a very important restriction on the search space, 
since only the visible bifurcations (those for which the probability (30) can 
be defined) are taken into consideration. Now we check whether the selected 
pair (j, k) satisfies a number of criteria, ensuring a certain level of local scaling 
consistency. In the current version of the algorithm, we choose the following 
tests for the pairs bifurcations: they must lie on the same side of the root, the 
probability of the bifurcation at the (l)ower root is higher than the threshold 
parameter Tprob, the correlation of the probabilities exceeds the current value 
of the threshold parameter Tcorr, and the correlation of the wavelet transform 
values of both bifurcations is positive. 

If all the tests are passed, the two roots stemming from j and k are processed 
in the same fashion as the h and l roots above. The process, schematically 
illustrated in Figure 24, continues recursively in a depth-first fashion. Appar
ently there is no reason not to use the breath-first search here. In this case all 
the bifurcations belonging to the considered lower and upper roots would be 
processed before going down in hierarchy. 

The thresholds Tcorr and Tprob are then independently varied and the global 
maximum of the measure is sought. The maps obtained from the match with 
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higher_root 

compare trees 
(higher_root, lower_root) 

bif_k_root 

test the match 
dep. on current 
parameters: 

if match found 
compare trees 
(bif_j_root, 
bif_k_root) 

else 
j=j+l, 
k=k+l; 

FIGURE 24. The bifurcation matching algorithm. See text for description. 

the parameters corresponding with the maximum measure are supposed to be 
the most probable maps. 

A convenient way of visualising the maps (22) is plotting the coordinates 
x' and x of matched points against one another. In Figure 25, we show auto
matically recovered maps between x and x' for the self-affine function shown in 
Figure 7, using the tree matching algorithm. Indeed, the linearity of the maps 
is evident. 

Even though throughout this work we limited ourselves to linear transfor
mations, we would like to point out here that the methodology presented also 
works in case of small deviations from linearity. The ability to capture non
linear behaviour can be of great value in applying this methodology to physical 
sciences. As an example test case to test the ability of the algorithm to re
cover non-linear maps, we generated an attractor with maps modulated with 
x sin(x). The example result is shown in Figure 26 together with the plots of 
the original maps. We considered the agreement of the experiment with the 
original maps to be quite satisfactory. 

5. A NOTE ON TWO-DIMENSIONAL EXTENSION 

5.1. Fractal IFS functions in two-dimensions 
In this section, we will address only a few relevant facts about self-affine func
tions over two-dimensional (or fractal 1 < D < 2) support. We will consider 
continuous contraction transformations Si : IR3 --+ IR3 , in short to be called 
maps, chosen in such a way that the self-affine set they define is a functional 
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FIGURE 25. In the left figure, maps: x' = an x + f3n recovered automati
cally with the tree matching algorithm, and in the right figure, a cross-section 
through the measure (5.5) with the 'plateau' of maximum value indicated. The 
section is taken with Tcorr as free variable. The self-affine function is taken from 
Figure 21. 
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FIGURE 26. In the left figure, maps recovered from the attractor generated with 
maps modulated with x sin(x), in the right figure, a cross-section through the 
measure (Eq. (5.5)) with Tcorr as free variable. 
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f(xl,x2) 

FIGURE 27. The test case: Sierpinski triangle with non-uniformly distributed 
measure. 

mapping f : ~2 -+ JR. 
Let Sn (1 ~ n ~ N) be an affine transformation represented in matrix notation 
with respect to the coordinates ( x1 , x2 , y) by 

( 
X1 ) ( Un bn 0 ) ( X1 ) (en ) Sn X2 Cn dn 0 X2 + f n · 
y 'Yni 'Yn2 an y 8n 

(33) 

For the sub-transformation on the coordinates {x1, x2} of the function F(x1, x2): 

Sxn(Xi) =(an bn) (Xi) +(en) 
X2 Cn dn X2 fn 

(34) 

which describes an arbitrary affine transformation in ~2 , we will require 

where ISI = <let S, which ensures that Sxn is a similitude and the transformed 
surface does not vanish or flip over. We will also restrict Sxn to be a set of 
non-overlapping transformations: 

where A is a compact set. 
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Additional nmstraints cau lw specified for the purpose of generating a frac-
surfacP joining up of the transformed surfaces at the 

points. 8 For the complete v<>rsion of thP IFS surfaces genE'ration 
sd1Pnw on two dimensional support, the rPader may wish to consult Geronimo 

et al. P ·t]. 
The extPnsion of the wavelet transform to two dimensions is straightforward: 

tlu· wa\'det transform ff decomposes the function f(x) E 

) in thP basf• of E~lementary wavelets created by the action of the affine 

group on a function 

b):::: 1 J dx f(x) U(S, b)t;'.i(x) (35) 

where 

b)v(x) = -- -1 (S) (x - b)). 

As lwfore. the wavelet ir(x) is often chosen to be well localised both in scale 
and space, and if no directional sensitivity_ is required, uniform scaling in all 

directions is a natural choice. The ma!rix S can then be reduced to two equal 

scaling factors s on the diagonal and ISJ = s2 . This is the choice we will favour 
here. 

The necessary condition for the local extrema of the wavelet transform 
fff(s,x 1, of the function of two variables f(x 1 ,x2 ) is zero of the partial 

derivatives: 

0 

= 0 ~ 
(36) 

which points are further classified according to the sufficient condition for local 
extrema: 

{ N(s,x1.x2) > 0 

< 0 (> O) 
(3i) 

in the case of a local maximum (minimum), where 1-l( ·) is the Hessian 

Th<' bifurcation case is defined by: 

{ Equc~tion (36) _ 
f-l(sJ1. X2 - 0. 

(38) 

8 These rnnditious are. however, irrelevant for this work. ln fact, for the sake of simplicity, 
we will limit oursel\·es to examples without additional components in the function value 
which translates to ..,,, "'0 and °'" oo 0. 
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URE 28. Local maxima of the wavelet transform with associated bifurca
LS for the example from figure 1. The wavelet used is the Gaussian, m = 0. 

The tree structure apparent in the maxima representation serves as basis 
the parameter recovery algorithm utilised in the solution to the IFP. The 
: construction is similar to that described for the one-dimensional case. The 
t crucial step comprises the finding of the invariance of the bifurcation rep
!ntation. This can be done by means of tree matching, where the invariance 
he representation is sought in the optimal match of the tree to its branches. 
rn the match of pairs of bifurcations found invariant, the parameters of (33) 
estimated. 
For an elaboration on the differences with the one-dimensional case, we 
:r the reader to [4]; here we will restrict ourselves to presenting and inter
ting the results for the given example. The affine maps X{l,z} = f(x~, x;) 
resenting scaling and translation parameters of Sxn as shown in Figure 29. 
expected from the diagonal character of Sxn for the Sierpinski triangle the 
~ar dependence with consistent slope l/an = 1/0.5 shows in only one of the 
1rdinates. 

A WORD OF CONCLUSION 

e aim of this communication is to share our opinion that the application 
the CWT based maxima and bifurcation representations provides an ex
lent means of revealing renormalisation parameters of functions in one and 
) dimensions. In particular, the inverse problem of the recovery of invariant 
nsformations is shown to be feasible. The results presented should be con
ered as a first step in the direction of the general approach - application of 
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FIGURE 29. The maps recovered from matching the bifurcations in the rep
resentation in figure 2. Of the total of six two-dimensional maps, three maps 
x2 = f (x~, x2) are shown in the leftmost figure. The Sierpiriski triangle was 
rotated in order to disconnect the maps. The projection along x~ in the upper 
right shows consistent slope of l/<7n = 1/0.5 rate with respect to x2 for all 
three maps displayed. As expected from the diagonal Sxn for the Sierpiriski 
triangle, the linear dependence shows in only one of the coordinates, which is 
confirmed in the projection in the bottom right figure. 
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FIGURE 30. The histogram of the parameters en and f n shows the location 
of the peaks on a triangle corresponding with the translation vectors of the 
Sierpinski triangle (left). The modes of the parameter a:n responsible for the 
distribution of the measure on the triangle (right) show remarkable agreement 
with the true values. 

150 



·--------soo:a.,,....,,.., _ _,,..,.. Qu~rio-ir!y ~-----~-·-------

the scheme to real-life examples will certainly bring serious challenges. 
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