Message Sequence Chart

Syntax and Semantics

M.A. Reniers

Message Sequence Chart

Syntax and Semantics

Reniers, Michel Adriaan

Message Sequence Chart: Syntax and Semantics / Michel Adriaan Reniers. -
Eindhoven : Eindhoven University of Technology, 1999. - viii, 216 p.
Proefschrift. -

With summary in Dutch

IPA Dissertation Series 1999-07.

druk: UniversiteitsDrukkerij, Eindhoven

(©1999 by Michel Adriaan Reniers, Eindhoven, The Netherlands.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without prior permission of the author.

INSTIT,,
Uy

This thesis has been supported by the Philips Research Laboratories Eindhoven. It
has been carried out under the auspices of the Institute for Programming Research
and Algorithmics (IPA).

Message Sequence Chart

Syntax and Semantics
PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de
Rector Magnificus, prof. dr. M. Rem, voor een
commissie aangewezen door het College voor
Promoties in het openbaar te verdedigen
op maandag 7 juni 1999 om 16.00 uur

door
Michel Adriaan Reniers

geboren te Eindhoven

Dit proefschrift is goedgekeurd door de promotoren:

prof. dr. J. C. M. Baeten
en
prof. dr. ir. L. M. G. Feijs

Copromotor:

dr. S. Mauw

Preface

My stay at Eindhoven University of Technology has been an interesting experience in
many ways. First of all, I felt at home right away. This is not surprising considering
the following. I was born in Eindhoven, I have lived in Valkenswaard (close to Eind-
hoven) for twenty-three years, I graduated from Eindhoven University of Technology
in the same department as where I became a Ph.D. student, I live in Eindhoven since
the summer of 1994 and I am planning to stay in Eindhoven for several more years.

At all times during the period that I was a Ph.D. student I have had the opportunity
to learn a lot. This has changed my outlook on computing science considerably. The
freedom given to me by my supervisors has enabled me to focus on different topics
in computing science from time to time. The willingness of my colleagues to discuss
their or my work has created a nice working environment.

In very different ways, numerous people have contributed to the writing of this thesis.
It goes too far to thank all of them separately. Therefore, I would like to express my
gratitude to all who have contributed to the research and hard work that have been
collected in this thesis.

Special thanks go to my family and girlfriend Evelien, and my supervisors Jos Baeten,
Loe Feijs and Sjouke Mauw. Jos and Loe are my promotors and rightly so. I admire
Jos for the work he has performed in process algebra and for the way in which he
deals with his staff and Ph.D. students. I admire Loe for the way in which he pursues
the application of formal methods to questions and problems from practice. I thank
Sjouke for the way in which he has acted as a daily supervisor.

I would like to express my gratitude to Philips Research Laboratories Eindhoven for
funding my Ph.D. position, for their interest in the topic of this thesis and for showing
me their daily practice through two projects that took place at Philips Research
Laboratories Eindhoven. This last experience has learned me that doing research in
a university and doing research in an industrial setting are different issues.

I enjoyed the meetings of the MSC standardization group that took place regularly
in Geneva. The participants from different companies were all very kind and made it
very easy to integrate with them. The dinner and drinking sessions made it definitely
worthwile to travel to Geneva (by train) once in a while.

ii

Finally, I would like to thank the members of my promotion committee for finding
the time to read my thesis, to give me recommendations for improvements and for

finding mistakes.

Michel Reniers,
April 20, 1999

Contents

Preface
Contents
Introduction

Introduction to the language MSC

2.1 Introduction.

2.2 Basic Message Sequence Charts
2.2.1 Graphical representation L.
2.2.2 Intuitive semantics L.
2.2.3 Textual representation

2.3 Additional basic concepts
2.3.1 Process creation and process termination
2.3.2 Timer handling L L
2.3.3 Incomplete message events
2.3.4 Conditions

2.4 Ordering facilities
241 Coregionso i e
24.2 Causalorderings

2.5 Combining MSCs with composition constructs

iii

iii

iv Contents
2.5.1 Vertical, horizontal and alternative composition 45
2.5.2 MSCdocuments 50
2.5.3 Inlineexpressions. al
2.5.4 MSC reference expressions 56
2.5.5 High-level Message Sequence Charts 61

26 Gatesl 68
2.6.1 Formal gate definitions L. 68
2.6.2 MSC reference expressions and gates 73
2.6.3 Inline expressions and gates 79

2.7 Comments oo e 82

2.8 Instance decomposition L Lo 83

2.9 Remarks on recommendation 2.120o oL 84
2.9.1 Informal parts of the recommendation 84
2.9.2 Process creation and termination with composition 85
2.9.3 Thekeywordafter 86

3 Process theory for Message Sequence Charts 89

3.1 Introduction e 89

3.2 Operational semantics 90
3.2.1 Process expressions i i e e u e e e 90
3.2.2 State transformations 91

3.3 Deadlock, empty process and atomic actions 94

3.4 Delayed choice e 94

3.5 Delayed parallel composition 96

3.6 Weak sequential composition 99

3.7 Generalization of the composition operators 104

3.8 Renamingoperatoro 107

3.9 Repetitive behavior L 108

Contents

3.9.1 Tteration.,
3.9.2 Unbounded repetition

3.10 Congruence and determinism

4 Semantics of Message Sequence Charts

4.1 Introduction
4.2 Theapproach
4.2.1 MSC documents e
4.2.2 Message Sequence Charts
4.2.3 Message Sequence Chart bodies
424 Events
42,5 Coreglons e
4.2.6 MSC reference expressions
427 Inlineexpressions. ‘. .
4.2.8 High-level Message Sequence Charts
4.3 Semantics of an MSC document
44 Semanticsofevents
441 Localactions
442 Messageevents

4.4.3 Incomplete messageevents

4.4.4 Instance create and instance stop events

4.4.5 Timer events
44.6 Conditions
4.5 Semantics of causally ordered events
4.6 Vertical and horizontal composition.
4.7 Semantics of coregions
4.8 Semantics of MSC bodies

4.9 Semantics of MSC reference expressions

Contents

vi
4.10 Semantics of inline expressions0 150
4.11 Semanticsof HMSCso o 152
4.12 Related work on the semanticsof MSC 158
4.12.1 Petri-net semantics L 158
4.12.2 Biichi automata semantics Lo 158
4.12.3 Process algebraapproach 159
4.12.4 Partial order semantics L. 160
5 Concluding remarks 161
Bibliography 167
A Textual syntax of MSC 177
A1 Changes to the textual syntax 177
A.1.1 Parts of the language that are not treated 178
A.1.2 Irrelevant information 179
A.1.3 Shorthands L. 180
Al4 Extensions 181
A L5 Assumptionso o e e e 182
A.2 Textual syntax for semantics definition 182
B Proofs 187
B.1 Bisimulation modulo equational reasoning 187
B.2 Propertiesof F 191
B.2.1 Unitelementforx 191
B.2.2 Commutativity of F+ 191
B.2.3 Associativityof F 192
B.24 Idempotency of + 193
................ 193

B.3 Propertiesof ||

Contents vii
B.3.1 Unitelementfor || 193
B.3.2 Commutativity of || 194
B.3.3 Distributivity of || overo 194
B.3.4 Associativityof || oL 194

B4 Propertiesof o 195
B.4.1 Unitelementforo 195
B.4.2 Left-zeroelement foro 196
B.4.3 Distributivity of oover ¥ L. 196
B.4.4 Associativityofo L 196

B.5 Properties of generalized operators 198
B.5.1 Commutativity of || S 198
B.5.2 Distributivity of | over £ 198
B.5.3 Left-zero element for o T 199
B.5.4 Distributivity of oS over + 199

B.6 Properties of the repetition operators. 201
B.6.1 Unfolding of iteration 201
B.6.2 Unfolding of unbounded repetition 202
B.6.3 Inclusion 203
B.6.4 Other properties 204
B.6.5 Other properties (II) 204

Samenvatting 207

Curriculum Vitae 211

viii Contents

Introduction

It is generally accepted that graphical representations are helpful in communicating
information. In the technical sciences and engineering the use of graphical represen-
tation techniques for describing the objects under study or for describing relations
between such objects is quite common. In cases where only few aspects of reality are
of interest, the use of a graphical notation for expressing ideas can be of great help
in understanding those.

Roughly speaking, there are two types of pictorial representations that are used in
software engineering practice [FJM94]. These are pictures representing the structure
of the system’s description and pictures representing behavioral aspects of the sys-
tem. Well-known and frequently used pictorial representations for behavioral aspects
of systems are flow charts, Nassi-Shneidermann diagrams [NS73], transition diagram-
s [Kel76], Petri nets [Rei85], Statecharts [Har87], SDL [IT94], and sequence charts.

Advantages of pictorial representations can be that they are easy to learn, intuitively
comprehensible, and that no mathematical background is required for obtaining an
understanding of them. An important drawback of graphical representations is that
different users of the notation can have different intuitions about the meaning of the
picture. Very often it then suffices to explain in a few words what the intention
of the drawing is. As a pictorial language grows, due to extensions, it becomes
harder to find pictorial representations that are still intuitively clear to the users of
the language. Also, with the growth of a language, there is an increased chance of
misinterpretation due to the interaction of language features. Then, the development
of a formal semantics might be a useful tool to control the language and to support
its usage.

The subject of this thesis is the language Message Sequence Chart (MSC) and the
definition of its formal semantics. Message Sequence Chart is a graphical language
for the description of the interactions between system components. Every system
component is represented by a vertical line called an instance. Along an instance,

2 Introduction

time runs from top to bottom. Communication is asynchronous and no assumptions
are made on the way in which this communication is achieved. Exchange of messages
between the system components is described by arrows between the instances repre-
senting those components. The arrow is directed from the sending instance to the
receiving instance. Implicitly, it is assumed that the sending of a message precedes
the receiving of the message. In its simplest form, an MSC describes a class of traces
of the system under consideration. In Chapter 2 the language MSC is introduced in
its full complexity.

An example of an MSC is given in Figure 1.1. This MSC contains the instances i1,
12, 13, and 4. These instances exchange the messages m1l, m2, and m3. Message m1
is sent by instance {1 to instance ¢2, message m2 is sent by instance i3 to instance
12, and message m3 is sent by instance 23 to instance i4. The MSC describes the
transitive closure of the following orderings between the events contained:

1. the sending of message m1 precedes its receiving;
the sending of message m2 precedes its receiving;

the sending of message m3 precedes its receiving;

the receiving of message m1 precedes the receiving of message m2;

orok W

the sending of message m3 precedes the sending of message m2.

msc ezample
il 12 i3 4
o J L] 1

ml "m3

ﬁ-_—

Figure 1.1: Simple Message Sequence Chart.

MSC is applied mostly in telecommunications and in software engineering, but the
use of MSC is not restricted to these areas. In this introduction we present a short
view on the developments that have led to the definition of the language MSC and its
formal semantics. Furthermore, we indicate how the language MSC is used in the life
cycle and discuss some related formalisms. At the end of this introduction we give
the structure of the other chapters of this thesis.

Introduction 3

Historical perspective: the ITU line

The language MSC is standardised by the International Telecommunication Union
(ITU). The ITU is subdivided into sectors. A sector consists of study groups and
a study group consists of questions. The development and standardization of MSC
resides under question 9 of study group 10 of the Telecommunications sector of the
ITU. Besides the language MSC the ITU standardizes a number of formalisms for
use in the telecommunications domain. Examples of such standardised languages are
SDL [IT94], CHILL [IT96c], and ASN.1 [IT88]. The standardization activities of MSC
are an offspring of the standardization activities for the Specification and Description
Language (SDL) by question 6 of study group 10 of ITU. For this reason, we first give
a short (and rather incomplete) description of SDL.

The language SDL can be used to describe both the internal behavior of concurrent
processes and the interaction between their interfaces. It is a state-oriented, formal
language which is especially suited for event-driven real-time systems. The language
SDL can be used with various design methodologies and many tools are available. S-
DL has two concrete representations: a program-like representation (PR form) and a
graphical representation (GR form). In SDL a system is composed of blocks, channel-
s, signal routes. and processes contained in these blocks. Channels and signal routes
are the media through which signals are exchanged. Blocks describe a grouping of a
number of smaller blocks or processes. In the block several processes may be includ-
ed. The behavior of processes in telecommunication systems is modeled by, so called,
communicating extended finite state machines. A process reacts by changing its state
when accepting external stimuli. They are called extended because they can do more
than just change state, such as generating responses, store and retrieve information,
etc. An important assumption with respect to the communication mechanism in SDL
is the following: An unbounded FIFO (First In First Out) input queue is associated
with each process. If more than one signal arrives at the same time these are arbitrar-
ily ordered. In Figure 1.2 some process descriptions are given. For more information
on SDL we refer to [BHS91] and [FO94].

The SDL User Guidelines [CCI88c| contain a short section .on sequence charts as
one of the auxiliary diagrams that can be used in combination with SDL. At the
SDL Forum held in Lisbon (Portugal) in 1989, Ekkart Rudolph and Jens Grabowski
present a paper entitled “Putting Extended Sequence Charts to Practice” [GR&9].
These Extended Sequence Charts are sequence charts extended with SDL symbols
and other constructs.

In SDL, systems are described by providing an extended finite state machine for each
of the processes. As a consequence, there is no good view on the interaction between
the processes. In a sequence chart however, the focus is on the interaction between
the processes and not so much on the internal behavior of these. The relation between
an SDL description and an MSC is sketched informally in Figure 1.3. The MSC has
been given in Figure 1.1 and the SDL process descriptions have already been given in
Figure 1.2.

Introduction

process i3 process i4

process i2

process il

Figure 1.2: Example SDL description.

process i4

C)

=

process i2 process i3

CD

S|

process il

-

s)
(=
"

]

end

ORERG

die

m2

[(=]

end

end end

Figure 1.3: Sketch of the relation between SDL and MSC.

Introduction ; 5

As a consequence of the increasing interest in sequence charts, the CCITT! approves
the standardization of a new language called Message Sequence Chart in June 1990.
The standardization activities for MSC are intended to be part of the new SDL
Methodology Guidelines [Bel92] and not a recommendation on its own. The emphasis
is on the basic constructs and an intuitively clear semantics for those.

Soon it is recognized that the standardization efforts for Message Sequence Chart go
beyond the SDL methodology guidelines and the feeling that MSC should not only
be related to SDL spreads. The formal decision to have a separate recommendation
for Message Sequence Chart is taken at the study group 10 meeting in Geneva in
February 1991.

At the closing session of the CCITT study period 1989-1992 in March 1993 the first
recommendation for Message Sequence Chart, recommendation Z.120 [IT93], is ap-
proved by the World Telecommunication Standardization Conference (WTSC). Ac-
cording to popular belief, this recommendation has largely been written in a Span-
ish pub in Geneva. This first recommendation of MSC contains a rather informal
graphical syntax definition, an abstract syntax definition, a concrete textual syntax
definition, an informal explanation of the language, and several examples of MSC
diagrams. This first recommendation for MSC contains the following features: MSC,
instance, environment, message, timer set, timer reset, timeout, local action, coregion,
condition, process creation, process stop, instance decomposition, and subMSC. We
refer to Chapter 2 for an informal treatment of these notions.

A formal semantics definition is missing in the first recommendation for the language
MSC. The most important reason for having a formal semantics for a language that
is used to specify systems is the need for an unambiguous description of the meaning
of a system description. Later we will return to the use of a formal semantics.

At the CCITT interims meeting in November 1992 it is recognised that the next study
period (1993-1996) should be used to provide a formal semantics definition for the
existing MSC recommendation.

Historical perspective: the Philips line

More or less independently of the developments on the language MSC within the ITU,
in 1992, Philips Research Laboratories Eindhoven, Philips Kommunikations Industrie
Niirnberg (PKI) and Eindhoven University of Technology start a project which aims
for the definition of a formal syntax and semantics of the language Interworking and
the development of tools.

The language Interworking is a graphical language in the style of MSC. In this lan-
guage processes or system components are represented by vertical lines called entities.
The interworking between the system components is indicated by means of horizontal
arrows indicating synchronous communication. These arrows are drawn horizontally

LCCITT is an abbreviation of Comité Consultatif International Télégraphique et Téléphonique.
Nowadays the CCITT is called ITU-T.

6 Introduction

from an entity to an entity. An Interworking concentrates mainly on the interactions
of the involved entities and not so much on the internal behavior of the entities. An
example of an Interworking is given in Figure 1.4 below?.

iw ezample
il 2 23 4

ml m3

m2

Figure 1.4: An example of an Interworking.

A collection of Interworkings describes the behavior of a system on a high level of
abstraction. -Each Interworking is a projection of a part of the communication be-
havior of a system onto a set of entities. Depicting all entities involved in the same
Interworking usually results in a diagram that does not fit on the page. In a telecom-
munication context where for example SDL is used as description language, an entity
may be a process or a set of processes combined into one functional block.

The language Interworking was developed in order to support the informal diagrams
used at PKI which were used for requirements specification and design. Compared to
other trace languages, Interworking has the advantage of a clear graphical layout and
structuring. However, Interworkings are only suitable for the description of relatively
small parts of the system behavior. In order to give a more complete description of
the behavior of a system ways of combining Interworking diagrams into more complex
processes are required. One of the reasons for developing an explicit language was
that it turned out to be very hard to maintain a large collection of diagrams by hand.
Several problems were encountered. First of all, manually drawing and updating
large diagrams is a time-consuming and hence expensive activity. Secondly, diagrams
that are linked to each other must be updated consistently. Therefore, consistency
checks are needed. Thirdly, the relation between the diagrams in a collection is only
implicit. Some diagrams describe successive behaviors of one part of the system, other
diagrams define the concurrent behavior of different parts of the system, while still
others describe the same behavior of the same part of the system, but at a different
level of abstraction. Finally, there existed different interpretations of the meaning of
even simple Interworkings. In order to solve the abovementioned problems, a formal
semantics was proposed [MvWWO93] and a tool set was developed [MW93]. The
semantics is given via a translation into process algebra [BK84, BW90, BV95].

In [MR96] this semantics, which does not consider the notion of refinement and has
some minor shortcomings, is extended. The use of process algebra for the semantics

2Graphically an Interworking is usually depicted without name, but textually an Interworking
has a name [MvWW92]. We find it more convenient to depict the name of the Interworking in the
diagram as well.

Introduction 7

of Interworkings has been proved useful. Based on the process algebra semantics a
prototype tool was developed for implementing interworking sequencing and inter-
working merge, the vertical and horizontal composition operator respectively, and for
the previously mentioned consistency check.

The interworking sequencing (notation o;,) of two Interworkings refers to the vertical
composition of them. In this composition entities with the same name are connected
to form one entity. The interworking sequencing is illustrated in Figure 1.5. Note
that the result of the vertical composition of the Interworkings ezl and ez2 is the
Interworking example from Figure 1.4. Hence, we can also say that the Interworking
example can be decomposed vertically into the Interworkings ezl and ex?.

iw ezl iw ez2 iw ezample
21 12 12 13 4 21 12 13 4
ml m3 ml m3
Oiw m2 = m2

Figure 1.5: Vertical composition of Interworkings.

The interworking merge (notation |[|,,) refers to the horizontal composition of two
Interworkings. The interworking merge of two Interworkings is called consistent if
the same messages are exchanged in the same order between every pair of entities the
Interworkings have in common. The result of such a composition is an Interworking
where the entities the Interworkings have in common are placed on top of each other
such that similar messages are identified. This is illustrated in Figure 1.6.

iw ezd iw ez4 iw ezample

i1 12 13 12 13 4 71 12 i3 i4
ml m3 ml m3

m2 ”iw m2 m2

F

Figure 1.6: Horizontal composition of Interworkings.

In 1992, the results of this project were reported in Geneva during one of the experts
meetings of study group 10 of the ITU. At the time, the question of a formal semantics
definition of MSC became a topic in the standardization committee for MSC. A dis-

8 Introduction

cussion on a proper model for the semantics of MSC is initiated and models based on
automata theory [LL92c], Petri nets [GR92] and process algebra [Man93, MvWW92]
are discussed. Partly due to the experiences gained with providing a formal semantics
definition for the language Interworking the choice was made for a process algebra se-
mantics. This semantics was to be developed at Eindhoven University of Technology.
In April 1994, this semantics definition was completed and accepted by study group
10 for Annex B to recommendation Z.120 [MR94b]. In October 1994, “Z.120 Annex
B: Algebraic Semantics of Message Sequence Charts” is published by ITU [IT95].

In September 1995, study group 10 accepts a formal definition of the syntax require-
ments (or static semantics) of Message Sequence Chart [Ren95b] for Annex C to rec-
ommendation Z.120 [IT96a). This document formalizes the informal well-formedness
requirements, as described in recommendation Z.120, for the textual syntax of MSC
using predicate logic.

MSC takes off

In the meantime, creative minds all over the world have been thinking of new concepts
to put into the language. At the rapporteurs meeting in Geneva in April 1996 a draft
recommendation for MSC is accepted by study group 10. In October 1996, the WTSC
accepts “Z.120: Message Sequence Chart” [IT96b]. In this new recommendation, the
language MSC is extended with the following features:

o causal orderings (see Section 2.4.2). Causal orderings describe the ordering of
two arbitrarily orderable events in an MSC. This feature can be used to describe
that two events are ordered in a certain way where this is not necessarily due
to communication or process behavior.

o composition operators. The 1996 recommendation contains operators for vertical
and horizontal composition, and also for denoting alternatives and repetition.
There are three ways of denoting these in the language MSC:

— MSC reference expressions (see Section 2.5.4). MSC reference expressions
are textual formulas describing the composition of a number of MSCs by
referring to them by means of their names.

— Inline expressions (see Section 2.5.3). In an inline expression the compo-
sition of a number of fragments of an MSC is indicated explicitly in the
MSC. No references to the MSCs are used.

— High-level Message Sequence Charts (HMSC) (see Section 2.5.5). In a
HMSC the composition of a number of MSCs is described in a control-flow
like format. MSCs are referenced by their names.

The extension of the language MSC with features for describing the compo-
sition of MSCs has been influenced greatly by the operators in the language
Interworking. A difference between the composition operators in MSC and in
Interworking is that the language MSC offers a graphical means of describing
these compositions instead of a textual one.

Introduction 9

e gates (see Section 2.6). The concept of gates has been introduced in the language
MSC in order to describe communication and causal orderings that are not in
the same scope of description. For example an instance in one MSC wishes to
communicate with an instance in another MSC which is composed horizontally
with the former MSC.

Besides these features also lost and found messages (see Section 2.3.3) are introduced
and new symbols are defined for the timer events (see Section 2.3.2).

The introduction of these features means that the formal semantics definition for the
1992 recommendation has to be updated. Ideally, a feature should only be included
in a language after its semantics has been researched, understood and accepted. This,
however, is not the practice of standardization committees.

The language MSC is finding its way into practice rapidly. It goes too far to attribute
this success to the ongoing standardization activities. On the contrary, we are reaching
the point where the language is getting so complex that we run the risk that its main
advantages, simplicity and overview, are lost.

Towards a formal semantics of MSC

The development of a formal semantics for MSC is relevant from several perspec-
tives. From the perspective of language definition (and standardization), the devel-
opment of a formal semantics itself detects ambiguities, omissions and contradictions
([Koy92]). Furthermore, a formal semantics enables the investigation of notions which
are considered important for a proper language design, such as compositionality and
orthogonality.

From the perspective of tool builders, it can be convenient to have a formal semantics
definition as this can be used as a specification for some types of tools. For example
the BNF (Backus-Naur Form) rules defining a textual representation can be used as a
specification for the development of a parser. Similarly, the semantics definition can
be considered as a specification for the development of tools whose functionality is
related to the semantics definition. For a dynamic semantics the first tool that comes
to mind is a simulator. But also for checking properties (formulated in a formalism
of a logical nature) which refer to the behavior, like a tool for model checking, it
is necessary to have a formal semantics. The availability of a standardized formal
semantics definition enables the development of independent tools that interpret a
specification as intended.

From the perspective of the user of the language, a formal semantics does not seem to
have many advantages at first sight. In general most users of the language appreciate
an informal =xplanation backed with a lot of examples more than a precise formal
definition of the semantics. However, for a language for which commercial tools are
available which are used in combination with a number of other formalisms and tools,
it is essential that these tools are based on a formal definition of the language. This

10 Introduction

does not only apply to the appearance of the language in, for example, a graphical or
textual representation; it also applies to the dynamic behavior as is visible in tools via
a simulator, a code generator, or in a testing tool. A formal semantics also enables
the comparison of specifications through their semantics. This can be useful to relate
specifications at different levels of abstraction. Formal verification or validation is
only possible if a formal semantics is available. Specifications are often not used by
only one user. They are communicated to other users as well. It is important that
all users of the specification and the tools that are used in connection with such a
specification have the same interpretation of the specification.

The development of a formal semantics definition requires the selection of an ap-
propriate model. As the language MSC is used to describe the communication
between distributed systems, it seems reasonable to restrict the choice for the se-
mantics of MSC to well-known models of concurrency. Without attempting to be
complete, these include Petri nets [Rei85], Mazurkiewicz traces [Maz88], event struc-
tures [Win87], labeled transition systems [Kel76], Biichi automata [Tho90], process
algebras [Mil80, Hoa85, BW90], stream functions [Bro85], and I/O automata [Lyn96].
There exist many classifications of models of concurrency based on different criteria.
A frequently used division of models of concurrency is into total order and partial
order models.

In total order models all executions of actions are totally ordered in time. As a
consequence there are no unrelated actions at the same time. In most total order
theories concurrency is modeled by means of a notion of alternative composition and
a notion of sequential composition. Partial order models do allow the simultaneous
execution of events. Examples of partial order models are the already mentioned Petri
nets, Mazurkiewicz traces, and event structures.

For the formal semantics of MSC92 the process algebra approach was chosen by study
group 10 question 9 of ITU. There are several reasons for this choice:

e the process algebra semantics of the language Interworking was easy to under-
stand and written down elegantly;

e the composition mechanisms interworking sequencing and interworking merge
used in the semantics of Interworking seemed a reasonable basis for the devel-
opment of similar operators for MSC;

e a clear commitment of the Formal Methods Group of Eindhoven University of
Technology and of Philips Research Laboratories Eindhoven to actively partic-
ipate in the standardization committee was given.

As mentioned before this has led to the standardization of a formal semantics of
MSC92. This thesis reports on the research that has been performed in order to
define a semantics for the language MSC96.

Introduction 11

Message Sequence Chart in the life cycle

So far, we have only discussed the way in which the language MSC evolved in the
past few years and in what way it has been influenced by the development of the
language Interworking. Now, we will discuss the use of MSC in practice. MSC
can be used in many phases of the software development process. Judging from the
literature, especially the SDL Forums held biannually since 1981, we believe that the
language MSC is most frequently used for requirements specification, visualization and
simulation, verification and validation purposes, and the description of test cases. In
Figure 1.7 this use of MSC is projected onto the well-known V-model. In this figure,
time is going from left to right and the level of detail increases downwards.

requiremaqts conformdnce
specificatio estin

\% idatw
verficatio

Figure 1.7: The use of MSC projected onto the V-model.

Requirements specification When initiating the development process for a system,
one of the first things to do is to describe the behavior of the system on a high level
of abstraction. The systems that are developed in the telecommunications industry
are complex. Therefore, it is most often not feasible to give complete specifications of
the system. In order to express at least some of the required behaviors of the system,
scenarios can be given using the language MSC. In later stages of the development
process, these MSCs can be used again for conformance testing, i.e., checking whether
the system meets the requirements. In the literature several authors have indicated
this use of MSC to be valuable in the system development process [Tak93, HBM93,
Hau95, AN95, FMMvW98].

Related to the use of MSC for the description of requirements is the use of MSC
in connection with use cases [JCJO92]. In the Unifying Modeling Language (UM-
L) [BJR96] and related object oriented methods, use cases are a key ingredient in
the development process. Use cases describe the typical interactions between the user
and a system. Most of the time, use cases are simply described in natural language.
In UML, sequence diagrams are used for visualizing a single use case. These sequence
diagrams are very close to MSC. Currently, there is a debate on using MSCs for the
formalization of use cases [AB95].

Visualization and simulation Because of their emphasis on communication and not
on internal process behavior MSCs are very useful for presenting an overview of the

12 Introduction

communication between the processes in a distributed system as for example results
from a simulation. Examples of this use of MSC are the SDL Design Tool (SDT) by
Telelogic [Tel96] and Object Geode by Verilog [Ver96] in the context of SDL, and the
model checker Spin by Holzmann [Hol91]. In [TGH95], MSCs are used to visualize the
execution sequences that result from partial order simulations of SDIL descriptions.
For this rather informal way of using MSC the language as it has been defined in the
1992 recommendation already contains sufficient features.

Validation and verification It is common practice to use MSCs for validation pur-
poses. In such a case, an MSC is drawn and it is checked that the system (which is
described in some formal language, for example SDL) can execute this sequence of
events. Typically, MSCs which are generated during requirements specification can
be used for this purpose.

In [Ek93], an algorithm is presented to perform a consistency check between an MSC
and an SDL description. An MSC is considered consistent with an execution of an
SDL description if the SDL execution contains all events that are contained in the
MSC and the sequence of these events in the SDL execution is consistent with the
partial ordering of these events as described by the MSC [Ren96a]. This algorithm
is based on state space exploration techniques [Hol91] and has been implemented in
the tool SDT. The notion of consistency between an SDL description and an MSC is
also discussed in [Nah91].

Conformance testing In contrast to verification, which considers internals of the
system, conformance testing performs a functional black box testing. The following
explanation is mainly based on [Tog95]. Conformance testing is used when the in-
ternal structure of an implementation is not known or not known in full detail. A
typical situation in which conformance testing is applied is the following. Suppose a
manufacturer decides to develop a product for which it is required that it conforms
to a standard — a situation which applies often in the telecommunications industry.
In this case the specification is the set of requirements put down in the standard and
the implementation is the product developed by the manufacturer. Through confor-
mance testing it is checked if the product conforms to the requirements put down in
the specification.

In conformance testing the expected behavior, in terms of observable events of the
implementation, is described in a test suite, i.e. a set of test cases. A test case
describes a tree of observable events and to each path in the tree it assigns a verdicr
which specifies whether the described behavior is correct or incorrect. Execution of
the test case results in feeding the implementation with inputs and observing the
generated observable events. This execution sequence of the implementation is then
compared with the test case. The verdict of the corresponding path in the test tree
is the outcome of the test execution. '

Conformance testing consists of three tasks: the specification of the test suite, the
execution of the test case, and the analysis of the verdicts. The first task describes
what is expected of the conformance test, the second task is actually executing the test

Introduction 13

cases on the implementation, and the third task is comparing the expected behavior
with the actual behavior and obtaining a conclusion from the comparison. One of the
biggest problems in conformance testing is obtaining a test suite from the specification.
In the ITU recommendation Z.500 [IT97], this can be subdivided into two steps. The
first step is the identification of a test purpose and the second is the derivation of a
test suite.

A test purpose is a statement that describes what is to be tested. Test purposes should
identify the ‘important’ behavior of the specification. Frequently used formalisms for
the formalization of test purposes are temporal logic formulas and Message Sequence
Charts. The use of MSC for the description of test purposes is advocated by the
method SaMsTaG [GHN93, Gra94, Nah94, GSDH97] which has been developed at
University of Berne in association with the Swiss PTT. A test purpose is a statement
indicating what is to be tested.

From the specification and the test purposes the test suite is derived. A test case
specifies all sequences of events that must be observed in order to achieve the test
purpose (the test body). Furthermore, it specifies at least one sequence that leads the
implementation under test (IUT) from the initial state to the initial state of the test
purpose (the test preamble), and at least one sequence that leads the IUT back to
the initial state (test postamble). For the (semi-)automated derivation of test cases
it is important that the test purpose is formalized first. In the SaMsTaG method a
complete test case can be generated from a system specification in SDL and a test
purpose description in MSC. The test case is described using the Tree and Tabular
Combined Notation (TTCN) [ISO91a]. A similar approach is followed by the HARPO
toolkit [AMPV97, PAMO97).

Among others the papers [GHNS95, FJ96, CLM97] use MSC for the description of
test cases. In [EFM97] synchronous sequence charts, i.e. Interworkings, are used for
this purpose. Another paper using MSC for testing is [SST97].

Related formalisms

The language MSC is a member of a large class of similar graphical notations, most
of which are only defined informally. Examples are the previously mentioned Ex-
tended Sequence Charts and Interworkings, and also Siemens-SCs [Sie92], Time Se-
quence Diagrams (TSD) [ISO87, CCI88b, ISO91b, Fac95b], Information Flow Dia-
grams [CCI89], Message Flow Diagrams [CCHvK90], Arrow Diagrams [CCI88a], and
use case diagrams [JCJ092, AB95]. Below we discuss some of these.

Time Sequence Diagrams Time Sequence Diagrams are a graphical representation
employed to clarify the communication between service users and a server provider
in the ISO/OSI basic reference model. Time Sequence Diagrams are a semi-formal
means of describing a property of a service specification. Time Sequence Diagrams
are defined in [ISO87, CCI88b] by means of some examples. Facchi has provided
this formalism with a formal semantics [Fac95a]. With Time Sequence Diagrams
timing precedences between service primitives, or events, can be expressed. Service

14 Introduction

Access Points (SAP) are separated by means of vertical lines. These vertical lines also
indicate an increase in time downwards. Two service primitives at different SAPs can
be related by a solid line, which indicates an ordering in time (see Figure 1.8). If two
events are connected by means of a wavy line, then these are not related with respect
to time. A TSD expression describes a set of traces of events.

Service user Service provider Service user
request

indication
confirmation response

Figure 1.8: Example of a Time Sequence Diagram.

A service specification is described by means of a set of Time Sequence Diagram-
s. Therefore, the combination of Time Sequence Diagrams must be defined. These
composition mechanisms are sequential composition, interleaving, conjunctive com-
position, alternative composition and repetition. The conjunctive composition of two
TSDs gives all traces that are a trace of both TSDs. The repetition operator describes
any arbitrary, possibly infinite fair interleaving of the TSD it is applied to.

Eztended Sequence Charts Extended sequence charts are MSCs extended with some
SDL symbols. A typical use of these ESCs is in a four phase refinement method
to develop SDL specifications [GR89]. Starting from an ESC standard form (only
instances, messages, and bidirectional arrows representing dialogs), a first refinement
is to obtain an ESC in state form. This is an ESC extended with among others
SDL state symbols. In this refinement step also the dialogs must be resolved by
asynchronous communications. In the second refinement step an MSC in state input
form is obtained by adding SDL input symbols to model the way in which SDL treats
communication (an SDL input symbol represents the receipt of the message in the
input queue of the instance). A final refinement step is to translate this state input
form into SDL process descriptions. A simple example of the first three phases is
given in Figure 1.9.

Structure of this thesis

This thesis is structured as follows. In Chapter 2, the language MSC as it is standard-
ised by the ITU in October 1996 is introduced. The language elements are introduced
piecewise and for each language element the graphical syntax is explained and illus-
trated, an informal explanation of the semantics is provided, and the textual syntax
is explained and illustrated. This chapter presents the language MSC in an informal
but nevertheless rigorous way. After finishing this chapter the reader should have a

15

Introduction
env service eny
env service env — 1 —
— 1] 1 disc
req req
> b—, ind
[
comm .) DUE——
confirmation resp
confirmation
| conn
] - [. E .
(a) standard form (b) state form
env service env
I 1
disc
req
I —
Lrea |
ind
:}-——>
resp
e |
confirmation
e |

(c) state input form

Figure 1.9: The refinement method of Extended Sequence Charts.

16 Introduction

good impression of the possibilities offered by the language MSC and of the meaning
of an MSC diagram.

The core language of MSC, called Basic Message Sequence Chart (BMSC), is intro-
duced first. A Basic Message Sequence Chart consists of communications between
instances and local actions on instances only. In most languages comparable to M-
SC these features are present. Second, the additional basic concepts are introduced.
These are the following: process creation and termination, timer events, incomplete
messages and conditions. After these, the means offered by MSC tc describe the
ordering of events other than the orderings imposed via communication and the total
ordering of events on an instance, are introduced. These are the coregion for inter-
leaved execution of events on an instance and causal orderings for the description of
orderings between events (possibly from different instances). Then, the means offered
by the language MSC to describe more complex systems are explained. These are in-
line expressions, MSC reference expressions and High-level Message Sequence Charts.
All of these describe the composition of MSCs by means of operators. They differ
in their graphical appearance and possibilities for application. Finally, the extension
with gates is given. In connection with the composition mechanisms offered by MSC
gates are used to describe communication between instances in different MSCs and
the causal ordering of events on instances in different MSCs.

In Chapter 3 the process theory is developed that is used for the definition of the for-
mal semantics of MSC in Chapter 4. This process theory consists of terms constructed
from constant and function symbols (operators). The constants represent the events
of the MSCs and the operators are used to describe the composition of these into
more complex processes. The operators that are used are all close to the composition
mechanisms of the language MSC. For example, the delayed choice operator defined
in Section 3.4 represents the alternative composition of MSCs. The operators used in
this thesis are all based on operators that can be found in the literature. By means
of Plotkin-style deduction rules the dynamic behavior of processes described by these
terms is defined in terms of the subsequent execution of actions (events). A notion
of equivalence for the processes is defined similar to the notion of (strong) bisimilar-
ity. Several equations between processes are given and these are proven bisimilar in
Appendix B.

In Chapter 4 a denotational semantics of MSCs is defined. It consists of mappings [|
which transform (a part of) an MSC in textual representation into a process term.
The textual representation of MSC is reduced for the purpose of a concise description
of the semantics definition. The reasoning that led to this reduced textual syntax
and the resulting textual syntax are given in Appendix A. In the final section of this
chapter we give a short review of some other approaches to the semantics of MSC.

Introduction to the language
Message Sequence Chart

2.1 Introduction

In this chapter, the language Message Sequence Chart is introduced. First, the core
language of Message Sequence Chart is introduced. This core language is called Basic
Message Sequence Chart (BMSC). A Basic Message Sequence Chart is concerned
with communications and local actions only. These are the features encountered in
most languages comparable to Message Sequence Chart. The static requirements
imposed on Basic Message Sequence Chart, as far as they are of importance to the
definition of the formal semantics in Chapter 4, are given. These static requirements
are not formalized. For MSC92 the static requirements are formalized in Annex C to
recommendation Z.120 [Ren95a, Ren96b, IT96a.

Then, the additional basic concepts are introduced. These are process creation and
termination, timer handling, incomplete message events and conditions. Next, core-
gions and causal orderings are introduced. These are the means offered by MSC to
describe ordering of events other than the orderings imposed via communication and
the total ordering of events on an instance. Then, the more intricate possibilities of
describing complex systems are considered. These are inline expressions, MSC refer-
ence expressions and High-level Message Sequence Charts. Finally, the extension of
the language MSC with gates is given.

17

18 Introduction to the language MSC

2.2 Basic Message Sequence Charts

A Basic Message Sequence Chart contains a finite collection of instances. An instance
is an abstract entity on which message outputs, message inputs and local actions may
be specified. The user of the language should determine for himself which instances
have to be included in the description. This depends amongst others on his intentions.
The collection of instances can, for example, reflect the physically available system
components or, in other situations, supposedly logically based partitionings of the
system. A first example of a Basic Message Sequence Chart is given in Figure 2.1.
The vertical lines labeled by 41, ...,i4 describe the instances of the MSC progressing
in time from top to bottom. The arrows labelled by m0 ... m4 between the instances
describe messages that are exchanged. The frame surrounding the instances describes
the border of the system. This frame is also used to describe interaction with the
environment. For example, message m0 is sent to the environment by instance 1.
The box labelled by a denotes internal activity of instance 72.

msc ezamplel!
il 12 13 14

m0

m3

e

Figure 2.1: Example Basic Message Sequence Chart.

Next, we explain the graphical representation of Basic Message Sequence Chart. Then
we describe their meaning, and finally we introduce the textual representation.

2.2.1 Graphical representation

Graphically an MSC is given by a frame containing a graphical representation of the
instances. The name of the MSC following the keyword msc is placed inside this
frame, usually above the instances. For an example see Figure 2.1.

In the graphical representation there are two ways to describe an instance. These
are given in Figure 2.2 below. The first is a single vertical axis (line-form) and the
second is the so-called column-form. The description of the instance starts with the

2.2 Basic Message Sequence Charts 19

instance head symbol and ends with the instance end symbol. These do not describe
creation and termination of the instance, but the start and end of the description.
The representation of the instance and the instance head and instance end symbols
should be aligned as indicated in Figure 2.2. Within one BMSC both representations
of instances, line-form and column-form, may appear.

Figure 2.2: Instances: line-form and column-form.

To every instance an instance heading is associated. It consists of an instance name
and optionally an instance kind. The instance kind consists of an optional kind de-
nominator and an identifier. The kind denominator can be either one of the keywords
block, process, service or system or an arbitrary name. The predefined kind de-
nominators refer to the corresponding SDL constructs [IT94]. The identifier can be
used to associate with an instance the name of the entity it represents. Semantically
no meaning is attached to the use of these kind denominators and instance kinds.

The instance head may be placed above or inside the instance head symbol. It is
also allowed to place the instance name inside the instance start symbol and the
kind denominator above. In Figure 2.3 some valid placements are given where i is
the instance name, d is the identifier of the instance kind, and process is the kind
denominator of the instance kind. Between the instance name and the instance kind
a colon may be placed. If the instance name is placed inside the instance start symbol
and the instance kind is placed above, the colon should appear above the instance
start symbol. In this thesis, we will only use the instance name. In all MSCs we place
it above the instance head symbol.

i process d process d

t process d .1

Figure 2.3: Placements of instance head.

Instances are referred to by means of the instance name. Therefore, the instance
name must be unique within an MSC.

20 . Introduction to the language MSC

A local action is denoted by an action symbol on the axis with the action character
string placed in it. A local action describes an internal activity of an instance. The
action character string is an informal description for this internal activity. The precise
syntax for action character strings is consider irrelevant in this thesis. When an action
symbol is placed on an instance in line-form the instance axis is hidden. If the column-
form is used for an instance, the width of the action symbol must coincide with the
width of the column-form of the instance. Multiple actions on an instance must not
overlap. See Figure 2.4 for examples.

]
a | a

b] b
—

Figure 2.4: Placement of local actions on line-form and column-form instances.

A message between two instances is represented by an arrow which starts at the send-
ing instance and ends at the receiving instance. An arrow representing a message
may be horizontal or with downward slope. A message sent by an instance to the
environment is represented by an arrow from the sending instance to the exterior of
the Message Sequence Chart, i.e. the surrounding frame. A message received from the
environment is represented by an arrow from the exterior of the Message Sequence
Chart to the receiving instance. To every message a message identification is associ-
ated. It consists of a message name and optionally a message instance name and/or
a parameter list. A message name and a message instance name are separated by a
comma. The message instance name is used in the textual syntax for distinguishing
between multiple occurrences of the same message name. The parameter list is denot-
ed between brackets after the message name and possibly the message instance name.
The message identification should be placed close to the message arrow. In Figure 2.5
some examples of the graphical syntax of messages are given. In this thesis, we will
only use the message name.

m,1(d)
m m,l m(d)

Figure 2.5: Appearance and placement of messages.

In general it is not allowed to have two or more events attached to one point of the
instance axis in line-form and column-form or at the same height of the instance axes
in the column-form. However, there is one exception to this rule. An incoming event
and an outgoing event may be attached to the same point or at the same height. This

2.2 Basic Message Sequence Charts 21

is interpreted as if the incoming event is drawn above the outgoing event. A message
input event is an incoming event and a message output event is an outgoing event.
Also the yet to be introduced found message events and timeout events are considered
to be incoming events. The yet to be introduced lost message events, process creation
events and timer set and reset events are outgoing events. In Figure 2.6 some examples
are given.

— -
m n m n m n —
I

- > - - F n
—

Figure 2.6: Interpretation of eve