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Introduction 

It is generally accepted that graphical representations are helpful in communicating 
information. In the technical sciences and engineering the use of graphical represen-
tation techniques for describing the objects under study or for describing relations 
between such objects is quite common. In cases where only few aspects of reality are 
of interest, the use of a graphical notation for expressing ideas can be of great help 
in understanding those. 

Roughly speaking, there are two types of pictorial representations that are used in 
software engineering practice [F JM94]. These are pictures representing the structure 
of the system's description and pictures representing behavioral aspects of the sys-
tem. Well-known and frequently used pictorial representations for behavioral aspects 
of systems are flow charts, Nassi-Shneidermann diagrams [NS73], transition diagram-
s [Kel76], Petri nets [Rei85], Statecharts [Har87], SDL [IT94], and sequence charts. 

Advantages of pictorial representations can be that they are easy to learn, intuitively 
comprehensible, and that no mathematical background is required for obtaining an 
understanding of them. An important drawback of graphical representations is that 
different users of the notation can have different intuitions about the meaning of the 
picture. Very often it then suffices to explain in a few words what the intention 
of the drawing is. As a pictorial language grows, due to extensions, it becomes 
harder to find pictorial representations that are still intuitively clear to the users of 
the language. Also, with the growth of a language, there is an increased chance of 
misinterpretation due to the interaction of language features. Then, the development 
of a formal semantics might be a useful tool to control the language and to support 
its usage. 

The subject of this thesis is the language Message Sequence Chart (MSC) and the 
definition of its formal semantics. Message Sequence Chart is a graphical language 
for the description of the interactions between system components. Every system 
component is represented by a vertical line called an instance. Along an instance, 

1 



2 Introduction 

time runs from top to bottom. Communication is asynchrano11,s and no assumptions 
are made on the way in which this communication is achieved. Exchange of messages 
between the system components is described by arrows between the instances repre-
senting those components. The arrow is directed from the sending instance to the 
receiving instance. Implicitly, it is assumed that the sending of a message precedes 
the receiving of the message. In its simplest form, an MSC describes a class of traces 
of the system under consideration. In Chapter 2 the language MSC is introduced in 
its full complexity. 

An example of an MSC is given in Figure 1.1. This MSC contains the instances il, 
i2, i3, and i4. These instances exchange the messages ml, m2, and m3. Message ml 
is sent by instance il to instance i2, message m2 is sent by instance i3 to instance 
i2, and message m3 is sent by instance i3 to instance i4. The MSC describes the 
transitive closure of the following orderings between the events contained: 

1. the sending of message ml precedes its receiving; 

2. the sending of message m2 precedes its receiving; 

3. the sending of message m3 precedes its receiving; 

4. the receiving of message ml precedes the receiving of message m2; 

5. the sending of message m3 precedes the sending of message m2. 

msc example 
il i2 i3 i4 

ml m3 

m2 

Figure 1.1: Simple Message Sequence Chart. 

MSC is applied mostly in telecommunications and in software engineering, but the 
use of MSC is not restricted to these areas. In this introduction we present a short 
view on the developments that have led to the definition of the language MSC and its 
formal semantics. Furthermore, we indicate how the language MSC is used in the life 
cycle and discuss some related formalisms. At the end of this introduction we give 
the structure of the other chapters of this thesis. 
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Historical perspective: the ITU line 

The language MSC is standardised by the International Telecommunication Union 
(ITU). The ITU is subdivided into sectors. A sector consists of study groups and 
a study group consists of questions. The development and standardization of MSC 
resides under question 9 of study group 10 of the Telecommunications sector of the 
ITU. Besides the language MSC the ITU standardizes a number of formalisms for 
use in the telecommunications domain. Examples of such standardised languages are 
SDL (IT94], CHILL (IT96c], and ASN.l (IT88]. The standardization activities of MSC 
are an offspring of the standardization activities for the Specification and Description 
Language (SDL) by question 6 of study group 10 ofITU. For this reason, we first give 
a short (and rather incomplete) description of SDL. 

The language SDL can be used to describe both the internal behavior of concurrent 
processes and the interaction between their interfaces. It is a state-oriented, formal 
language which is especially suited for event-driven real-time systems. The language 
SDL can be used with various design methodologies and many tools are available. S-
DL has two concrete representations: a program-like representation (PR form) and a 
graphical representation (GR form). In SDL a system is composed of blocks, channel-
s, signal routes. and processes contained in these blocks. Channels and signal routes 
are the media through which signals are exchanged. Blocks describe a grouping of a 
number of smaller blocks or processes. In the block several processes may be includ-
ed. The behavior of processes in telecommunication systems is modeled by, so called, 
communicating extended finite state machines. A process reacts by changing its state 
when accepting external stimuli. They are called extended because they can do more 
than just change state, such as generating responses, store and retrieve information, 
etc. An important assumption with respect to the communication mechanism in SDL 
is the following: An unbounded FIFO (First In First Out) input queue is associated 
with each process. If more than one signal arrives at the same time these are arbitrar-
ily ordered. In Figure 1.2 some process descriptions are given. For more information 
on SDL we refer to (BHS91] and (FO94]. 

The SDL User Guidelines (CCI88c] contain a short section -on sequence charts as 
one of the auxiliary diagrams that can be used in combination with SDL. At the 
SDL Forum held in Lisbon (Portugal) in 1989, Ekkart Rudolph and Jens Grabowski 
present a paper entitled "Putting Extended Sequence Charts to Practice" (GR89]. 
These Extended Sequence Charts are sequence charts extended with SDL symbols 
and other constructs. 

In SDL, systems are described by providing an extended finite state machine for each 
of the processes. As a consequence, there is no good view on the interaction between 
the processes. In a sequence chart however, the focus is on the interaction between 
the processes and not so much on the internal behavior of these. The relation between 
an SDL description and an MSC is sketched informally in Figure 1.3. The MSC has 
been given in Figure 1.1 and the SDL process descriptions have already been given in 
Figure 1.2. 



4 Introduction 

process il process i2 process i3 process i4 

Figure 1.2: Example SDL description. 

process il process i2 process i3 process i4 

Figure 1.3: Sketch of the relation between SDL and MSC. 
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As a consequence of the increasing interest in sequence charts, the CCITT1 approves 
the standardization of a new langu.age called Message Sequence Chart in June 1990. 
The standardization activities for MSC are intended to be part of the new SDL 
Methodology Guidelines [Bel92) and not a recommendation on its own. The emphasis 
is on the basic constructs and an intuitively clear semantics for those. 

Soon it is recognized that the standardization efforts for Message Sequence Chart go 
beyond the SDL methodology guidelines and the feeling that MSC should not only 
be related to SDL spreads. The formal decision to have a separate recommendation 
for Message Sequence Chart is taken at the study group 10 meeting in Geneva in 
February 1991. 

At the closing session of the CCITT study period 1989-1992 in March 1993 the first 
recommendation for Message Sequence Chart, recommendation Z.120 [IT93), is ap-
proved by the World Telecommunication Standardization Conference (WTSC). Ac-
cording to popular belief, this recommendation has largely been written in a Span-
ish pub in Geneva. This first recommendation of MSC contains a rather informal 
graphical syntax definition, an abstract syntax definition, a concrete textual syntax 
definition, an informal explanation of the language, and several examples of MSC 
diagrams. This first recommendation for MSC contains the following features: MSC, 
instance, environment, message, timer set, timer reset, timeout, local action, coregion, 
condition, process creation, process stop, instance decomposition, and subMSC. We 
refer to Chapter 2 for an informal treatment of these notions. 

A formal semantics definition is missing in the first recommendation for the language 
MSC. The most important reason for having a formal semantics for a language that 
is used to specify systems is the need for an unambiguous description of the meaning 
of a system description. Later we will return to the use of a formal semantics. 

At the CCITT interims meeting in November 1992 it is recognised that the next study 
period (1993-1996) should be used to provide a formal semantics definition for the 
existing MSC recommendation. 

Historical perspective: the Philips line 

More or less independently of the developments on the language MSC within the ITU, 
in 1992, Philips Research Laboratories Eindhoven, Philips Kommunikations Industrie 
Niirnberg (PKI) and Eindhoven University of Technology start a project which aims ' 
for the definition of a formal syntax and semantics of the language Interworking and 
the development of tools. 

The language Interworking is a graphical language in the style of MSC. In this lan-
guage processes or system components are represented by vertical lines called entities. 
The interworking between the system components is indicated by means of horizontal 
arrows indicating synchronous communication. These arrows are drawn horizontally 

1 CCITT is an abbreviation of Comite Consultatif International Telegraphique et Telephonique. 
Nowadays the CCITT is called ITU-T. 
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from an entity to an entity. An Interworking concentrates mainly on the interactions 
of the involved entities and not so much on the internal behavior of the entities. An 
example of an Interworking is given in Figure 1.4 below2 • 

iw example 

il i2 i3 i4 

ml m3 .. .. 
m2 

1 .. 

I..., 

Figure 1.4: An example of an Interworking. 

A collection of Interworkings describes the behavior of a system on a high level of 
abstraction. Each Interworking is a projection of a part of the communication be-
havior of a system onto a set of entities. Depicting all entities involved in the same 
Interworking usually results in a diagram that does not fit on the page. In a telecom-
munication context where for example SDL is used as description language, an entity 
may be a process or a set of processes combined into one functional block. 

The language Interworking was developed in order to support the informal diagrams 
used at PKI which were used for requirements specification and design. Compared to 
other trace languages, Interworking has the advantage of a clear graphical layout and 
structuring. However, Interworkings are only suitable for the description of relatively 
small parts of the system behavior. In order to give a more complete description of 
the behavior of a system ways of combining Interworking diagrams into more complex 
processes are required. One of the reasons for developing an explicit language was 
that it turned out to be very hard to maintain a large collection of diagrams by hand. 
Several problems were encountered. First of all, manually drawing and updating 
large diagrams is a time-consuming and hence expensive activity, Secondly, diagrams 
that are linked to each other must be updated consistently. Therefore, consistency 
checks are needed. Thirdly, the relation between the diagrams in a collection is only 
implicit. Some diagrams describe successive behaviors of one part of the system, other 
diagrams define the concurrent behavior of different parts of the system, while still 
others describe the same behavior of the same part of the system, but at a different 
level of abstraction. Finally, there existed different interpretations of the meaning of 
even simple Interworkings. In order to solve the abovementioned problems, a formal 
semantics was proposed [MvWW93] and a tool set was developed [MW93]. The 
semantics is given via a translation into process algebra [BK84, BW90, BV95]. 

In [MR96] this semantics, which does not consider the notion of refinement and has 
some minor shortcomings, is extended. The use of process algebra for the semantics 

2 Graphically an Interworking is usually depicted without name, but textually an Interworking 
has a name [MvWW92). We find it more convenient to depict the name of the Interworking in the 
diagram as well. 
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of Interworkings has been proved useful. Based on the process algebra semantics a 
prototype tool was developed for implementing interworking sequencing and inter-
working merge, the vertical and horizontal composition operator respectively, and for 
the previously mentioned consistency check. 

The interworking sequencing (notation oiw) of two Interworkings refers to the vertical 
composition of them. In this composition entities with the same name are connected 
to form one entity. The interworking sequencing is illustrated in Figure 1.5. Note 
that the result of the vertical composition of the Interworkings exl and ex2 is the 
Interworking example from Figure 1.4. Hence, we can also say that the Interworking 
example can be decomposed vertically into the Interworkings exl and ex2. 

iw exl iw ex2 iw example 
il i2 i2 i3 i4 il i2 i3 i4 

ml m3 ml m3 ... ... ... ,.. ,.. ,.. 

Oiw m2 m2 
.... .... .... 

Figure 1.5: Vertical composition of Interworkings. 

The interworking merge (notation lliw) refers to the horizontal composition of two 
Interworkings. The interworking merge of two Interworkings is called consistent if 
the same messages are exchanged in the same order between every pair of entities the 
Interworkings have in common. The result of such a composition is an Interworking 
where the entities the Interworkings have in common are placed on top of each other 
such that similar messages are identified. This is illustrated in Figure 1.6. 

iw ex3 iw ex4 iw example 
il i2 i3 i2 i3 i4 il i2 i3 i4 

ml m3 ml m3 ... ... ... ... ,.. .. .. ,.. 

m2 lliw m2 m2 
1 .... .... 1 .... .... .... .... 

Figure 1.6: Horizontal composition of Interworkings. 

In 1992, the results of this project were reported in Geneva during one of the experts 
meetings of study group 10 of the ITU. At the time, the question of a formal semantics 
definition of MSC became a topic in the standardization committee for MSC. A dis-
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cussion on a proper model for the semantics of MSC is initiated and models based on 
automata theory [LL92c], Petri nets [GR92] and process algebra [Man93, MvWW92] 
are discussed. Partly due to the experiences gained with providing a formal semantics 
definition for the language Interworking the choice was made for a process algebra se-
mantics. This semantics was to be developed at Eindhoven University of Technology. 
In April 1994, this semantics definition was completed and accepted by study group 
10 for Annex B to recommendation Z.120 [MR94b]. In October 1994, "Z.120 Annex 
B: Algebraic Semantics of Message Sequence Charts" is published by ITU [IT95]. 

In September 1995, study group 10 accepts a formal definition of the syntax require-
ments (or static semantics) of Message Sequence Chart [Ren95b) for Annex C to rec-
ommendation Z.120 [IT96a). This document formalizes the informal well-formedness 
requirements, as described in recommendation Z.120, for the textual syntax of MSC 
using predicate logic. 

MSC takes off 

In the meantime, creative minds all over the world have been thinking of new concepts 
to put into the language. At the rapporteurs meeting in Geneva in April 1996 a draft 
recommendation for MSC is accepted by study group 10. In October 1996, the WTSC 
accepts "Z.120: Message Sequence Chart" [IT96b). In this new recommendation, the 
language MSC is extended with the following features: 

• causal orderings (see Section 2.4.2). Causal orderings describe the ordering of 
two arbitrarily orderable events in an MSC. This feature can be used to describe 
that two events are ordered in a certain way where this is not necessarily due 
to communication or process behavior. 

• composition operators. The 1996 recommendation contains operators for vertical 
and horizontal composition, and also for denoting alternatives and repetition. 
There are three ways of denoting these in the language MSC: 

- MSC reference expressions (see Section 2.5.4). MSC reference expressions 
are textual formulas describing the composition of a number of MSCs by 
referring to them by means of their names. 

- Inline expressions (see Section 2.5.3). In an inline expression the compo-
sition of a number of fragments of an MSC is indicated explicitly in the 
MSC. No references to the MSCs are used. 

- High-level Message Sequence Charts (HMSC) (see Section 2.5.5). In a 
HMSC the composition of a number of MSCs is described in a control-flow 
like format. MSCs are referenced by their names. 

The extension of the language MSC with features for describing the compo-
sition of MSCs has been influenced greatly by the operators in the language 
Interworking. A difference between the composition operators in MSC and in 
Interworking is that the language MSC offers a graphical means of describing 
these compositions instead of a textual one. 
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• gates (see Section 2.6). The concept of gates has been introduced in the language 
MSC in order to describe communication and causal orderings that are not in 
the same scope of description. For example an instance in one MSC wishes to 
communicate with an instance in another MSC which is composed horizontally 
with the former MSC. 

Besides these features also lost and found messages (see Section 2.3.3) are introduced 
and new symbols are defined for the timer events (see Section 2.3.2). 

The introduction of these features means that the formal semantics definition for the 
1992 recommendation has to be updated. Ideally, a feature should only be included 
in a language after its semantics has been researched, understood and accepted. This, 
however, is not the practice of standardization committees. 

The language MSC is finding its way into practice rapidly. It goes too far to attribute 
this success to the ongoing standardization activities. On the contrary, we are reaching 
the point where the language is getting so complex that we run the risk that its main 
advantages, simplicity and overview, are lost. 

Towards a formal semantics of MSC 

The development of a formal semantics for MSC is relevant from several perspec-
tives. From the perspective of language definition (and standardization), the devel-
opment of a formal semantics itself detects ambiguities, omissions and contradictions 
([Koy92]). Furthermore, a formal semantics enables the investigation of notions which 
are considered important for a proper language design, such as compositionality and 
orthogonality. 

From the perspective of tool builders, it can be convenient to have a formal semantics 
definition as this can be used as a specification for some types of tools. For example 
the BNF (Backus-Naur Form) rules defining a textual representation can be used as a 
specification for the development of a parser. Similarly, the semantics definition can 
be considered as a specification for the development of tools whose functionality is 
related to the semantics definition. For a dynamic semantics the first tool that comes 
to mind is a simulator. But also for checking properties (formulated in a formalism 
of a logical nature) which refer to the behavior, like a tool for model checking, it 
is necessary to have a formal semantics. The availability of a standardized formal 
semantics definition enables the development of independent tools that interpret a 
specification as intended. 

From the perspective of the user of the language, a formal semantics does not seem to 
have many advantages at first sight. In general most users of the language appreciate 
an informal 1--)xplanation backed with a lot of examples more than a precise formal 
definition of the semantics. However, for a language for which commercial tools are 
available which are used in combination with a number of other formalisms and tools, 
it is essential that these tools are based on a formal definition of the language. This 
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does not only apply to the appearance of the language in, for example, a graphical or 
textual representation; it also applies to the dynamic behavior as is visible in tools via 
a simulator, a code generator, or in a testing tool. A formal semantics also enables 
the comparison of specifications through their semantics. This can be useful to relate 
specifications at different levels of abstraction. Formal verification or validation is 
only possible if a formal semantics is available. Specifications are often not used by 
only one user. They are communicated to other users as well. It is important that 
all users of the specification and the tools that are used in connection with such a 
specification have the same interpretation of the specification. 

The development of a formal semantics definition requires the selection of an ap-
propriate model. As the language MSC is used to describe the communication 
between distributed systems, it seems reasonable to restrict the choice for the se-
mantics of MSC to well-known models of concurrency. Without attempting to be 
complete, these include Petri nets [Rei85], Mazurkiewicz traces [Maz88], event struc-
tures [Win87], labeled transition systems [Kel76], Biichi automata [Tho90], process 
algebras [Mi180, Hoa85, BW90], stream functions [Bro85], and I/O automata [Lyn96]. 
There exist many classifications of models of concurrency based on different criteria. 
A frequently used division of models of concurrency is into total order and partial 
order models. 

In total order models all executions of actions are totally ordered in time. As a 
consequence there are no unrelated actions at the same time. In most total order 
theories concurrency is modeled by means of a notion of alternative composition and 
a notion of sequential composition. Partial order models do allow the simultaneous 
execution of events. Examples of partial order models are the already mentioned Petri 
nets, Mazurkiewicz traces, and event structures. 

For the formal semantics of MSC92 the process algebra approach was chosen by study 
group 10 question 9 of ITU. There are several reasons for this choice: 

•·the process algebra semantics of the language Interworking was easy to under-
stand and written down elegantly; 

• the composition mechanisms interworking sequencing and interworking merge 
used in the semantics of Interworking seemed a reasonable basis for the devel-
opment of similar operators for MSC; 

• a clear commitment of the Formal Methods Group of Eindhoven University of 
Technology and of Philips Research Laboratories Eindhoven to actively partic-
ipate in the standardization committee was given. 

As mentioned before this has led to the standardization of a formal semantics of 
MSC92. This thesis reports on the research that has been performed in order to 
define a semantics for the language MSC96. 
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Message Sequence Chart in the life cycle 

So far, we have only discussed the way in which the language MSC evolved in the 
past few years and in what way it has been influenced by the development of the 
language Interworking. Now, we will discuss the use of MSC in practice. MSC 
can be used in many phases of the software development process. Judging from the 
literature, especially the SDL Forums held biannually since 1981, we believe that the 
language MSC is most frequently used for requirements specification, visualization and 
simulation, verification and validation purposes, and the description of test cases. In 
Figure 1.7 this use of MSC is projected onto the well-known V-model. In this figure, 
time is going from left to right and the level of detail increases downwards. 

Figure 1.7: The use of MSC projected onto the V-model. 

Requirements specification When initiating the development process for a system, 
one of the first things to do is to describe the behavior of the system on a high, level 
of abstraction. The systems that are developed in the telecommunications industry 
are complex. Therefore, it is most often not feasible to give complete specifications of 
the system. In order to express at least some of the required behaviors of the system, 
scenarios can be given using the language MSC. In later stages of the development 
process, these MSCs can be used again for conformance testing, i.e., checking whether 
the system meets the requirements. In the literature several authors have indicated 
this use of MSC to be valuable in the system development process [Tak93, HBM93, 
Hau95, AN95, FMMvW98]. 

Related to the use of MSC for the description of requirements is the use of MSC 
in connection with use cases [JCJ092]. In the Unifying Modeling Language (UM-
L) [BJR96] and related object oriented methods, use cases are a key ingredient in 
the development process. Use cases describe the typical interactions between the user 
and a system. Most of the time, use cases are simply described in natural language. 
In UML, sequence diagrams are used for visualizing a single use case. These sequence 
diagrams are very close to MSC. Currently, there is a debate on using MSCs for the 
formalization of use cases [AB95]. 

Visualization and simulation Because of their emphasis on communication and not 
on internal process behavior MS Cs are. very useful for presenting an overview of the 
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communication between the processes in a distributed system as for example results 
from a simulation. Examples of this use of MSC are the SDL Design Tool (SDT) by 
Telelogic [Tel96] and Object Geode by Verilog [Ver96] in the context of SDL, and the 
model checker Spin by Holzmann [Hol91]. In [TGH95), MSCs are used to visualize the 
execution sequences that result from partial order simulations of SDL descriptions. 
For this rather informal way of using MSC the language as it has been defined in the 
1992 recommendation already contains sufficient features. 

Validation and verification It is common practice to use MSCs for validation pur-
poses. In such a case, an MSC is drawn and it is checked that the system ( which is 
described in some formal language, for example SDL) can execute this sequence of 
events. Typically, MSCs which are generated during requirements specification can 
be used for this purpose. 

In [Ek93], an algorithm is presented to perform a consistency check between an MSC 
and an SDL description. An MSC is considered consistent with an execution of an 
SDL description if the SDL execution contains all events that are contained in the 
MSC and the sequence of these events in the SOL execution is consistent with the 
partial ordering of these events as described by the MSC [Ren96a]. This algorithm 
is based on state space exploration techniques [Hol91] and has been implemented in 
the tool SOT. The notion of consistency between an SOL description and an MSC is 
also discussed in [Nah91]. 

Conformance testing In contrast to verification, which considers internals of the 
system, conformance testing performs a functional black box testing. The following 
explanation is mainly based on [Tog95]. Conformance testing is used when the in-
ternal structure of an implementation is not known or not known in full detail. A 
typical situation in which conformance testing is applied is the following. Suppose a 
manufacturer decides to develop a product for which it is required that it conforms 
to a standard - a situation which applies often in the telecommunications industry. 
In this case the specification is the set of requirements put down in the standard and 
the implementation is the product developed by the manufacturer. Through confor-
mance testing it is checked if the product conforms to the requirements put down in 
the specification. 

In conformance testing the expected behavior, in terms of observable events of the 
implementation, is described in a test suite, i.e. a set of test cases. A test case 
describes a tree of observable events and to each path in the tree it assigns a verdicr 
which specifies whether the described behavior is correct or incorrect. Execution of 
the test case results in feeding the implementation with inputs and observing the 
generated observable events. This execution sequence of the implementation is then 
compared with the test case. The verdict of the corresponding path in the test tree 
is the outcome of the test execution. 

Conformance testing consists of three tasks: the specification of the test suite, the 
execution of the test case, and the analysis of the verdicts. The first task describes 
what is expected of the conformance test, the second task is actually executing the test 
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cases on the implementation, and the third task is comparing the expected behavior 
with the actual behavior and obtaining a conclusion from the comparison. One of the 
biggest problems in conformance testing is obtaining a test suite from the specification. 
In the ITU recommendation Z.500 [IT97], this can be subdivided into two steps. The 
first step is the identification of a test purpose and the second is the derivation of a 
test suite. 

A test purpose is a statement that describes what is to be tested. Test purposes should 
identify the 'important' behavior of the specification. Frequently used formalisms for 
the formalization of test purposes are temporal logic formulas and Message Sequence 
Charts. The use of MSC for the description of test purposes is advocated by the 
method SaMsTaG [GHN93, Gra94, Nah94, GSDH97] which has been developed at 
University of Berne in association with the Swiss PTT. A test purpose is a statement 
indicating what is to be tested. 

From the specification and the test purposes the test suite is derived. A test case 
specifies all sequences of events that must be observed in order to achieve the test 
purpose ( the test body). Furthermore, it specifies at least one sequence that leads the 
implementation under test (IUT) from the initial state to the initial state of the test 
purpose ( the test preamble), and at least one sequence that leads the IUT back to 
the initial state (test postamble). For the (semi-)automated derivation of test cases 
it is important that the test purpose is formalized first. In the SaMsTaG method a 
complete test case can be generated from a system specification in SDL and a test 
purpose description in MSC. The test case is described using the Tree and Tabular 
Combined Notation (TTCN) [ISO9la]. A similar approach is followed by the HARPO 
toolkit [AMPV97, PAM97]. 

Among others the papers [GHNS95, FJ96, CLM97] use MSC for the description of 
test cases. In [EFM97] synchronous sequence charts, i.e. Interworkings, are used for 
this purpose. Another paper using MSC for testing is [SST97]. 

Related formalisms 

The language MSC is a member of a large class of similar graphical notations, most 
of which are only defined informally. Examples are the previously mentioned Ex-
tended Sequence Charts and Interworkings, and also Siemens-SCs [Sie92], Time Se-
quence Diagrams (TSD) [ISO87, CCI88b, ISO91b, Fac95b], Information Flow Dia-
grams [CCI89], Message Flow Diagrams [CCHvK90], Arrow Diagrams [CCI88a], and 
use case diagrams [JCJO92, AB95]. Below we discuss some of these. 

Time Sequence Diagrams Time Sequence Diagrams are a graphical representation 
employed to clarify the communication between service users and a server provider 
in the ISO/OSI basic reference model. Time Sequence Diagrams are a semi-formal 
means of describing a property of a service specification. Time Sequence Diagrams 
are defined in [ISO87, CCI88b] by means of some examples. Facchi has provided 
this formalism with a formal semantics [Fac95a]. With Time Sequence Diagrams 
timing precedences between service primitives, or events, can be expressed. Service 



14 Introduction 

Access Points (SAP) are separated by means of vertical lines. These vertical lines also 
indicate an increase in time downwards. Two service primitives at different SAPs can 
be related by a solid line, which indicates an ordering in time (see Figure 1.8). If two 
events are connected by means of a wavy line, then these are not related with respect 
to time. A TSD expression describes a set of traces of events. 

Service user Service provider Service user 

request 

indication 

confirmation response 

Figure 1.8: Example of a Time Sequence Diagram. 

A service specification is described by means of a set of Time Sequence Diagram-
s. Therefore, the combination of Time Sequence Diagrams must be defined. These 
composition mechanisms are sequential composition, interleaving, conjunctive com-
position, alternative composition and repetition. The conjunctive composition of two 
TSDs gives all traces that are a trace of both TSDs. The repetition operator describes 
any arbitrary, possibly infinite fair interleaving of the TSD it is applied to. 

Extended Sequence Charts Extended sequence charts are MSCs extended with some 
SDL symbols. A typical use of these ESCs is in a four phase refinement method 
to develop SDL specifications [GR89]. Starting from an ESC standard form (only 
instances, messages, and bidirectional arrows representing dialogs), a first refinement 
is to obtain an ESC in state form. This is an ESC extended with among others 
SDL state symbols. In this refinement step also the dialogs must be resolved by 
asynchronous communications. In the second refinement step an MSC in state input 
form is obtained by adding SDL input symbols to model the way in which SDL treats 
communication (an SDL input symbol represents the receipt of the message in the 
input queue of the instance). A final refinement step is to translate this state input 
form into SDL process descriptions. A simple example of the first three phases is 
given in Figure 1.9. 

Structure of this thesis 

This thesis is structured as follows. In Chapter 2, the language MSC as it is standard-
ised by the ITU in October 1996 is introduced. The language elements are introduced 
piecewise and for each language element the graphical syntax is explained and illus-
trated, an informal explanation of the semantics is provided, and the textual syntax 
is explained and illustrated. This chapter presents the language MSC in an informal 
but nevertheless rigorous way. After finishing this chapter the reader should have a 
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env service env 

env service env 

comm 

(a) standard form (b) state form 

env service env 

ind 

resp 

(c) state input form 

Figure 1.9: The refinement method of Extended Sequence Charts. 
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good impression of the possibilities offered by the language MSC and of the meaning 
of an MSC diagram. 

The core language of MSC, called Basic Message Sequence Chart (BMSC), is intro-
duced first. A Basic Message Sequence Chart consists of communications between 
instances and local actions on instances only. In most languages comparable to M-
SC these features are present. Second, the additional basic concepts are introduced. 
These are the following: process creation and termination, timer events, incomplete 
messages and conditions. After these, the means offered by MSC to describe the 
ordering of events other than the orderings imposed via communication and the total 
ordering of events on an instance, are introduced. These are the coregion for inter-
leaved execution of events on an instance and causal orderings for the description of 
orderings between events (possibly from different instances). Then, the means offered 
by the language MSC to describe more complex systems are explained. These are in-
line expressions, MSC reference expressions and High-level Message Sequence Charts. 
All of these describe the composition of MSCs by means of operators. They differ 
in their graphical appearance and possibilities for application. Finally, the extension 
with gates is given. In connection with the composition mechanisms offered by MSC 
gates are used to describe communication between instances in different MSCs and 
the causal ordering of events on instances in different MSCs. 

In Chapter 3 the process theory is developed that is used for the definition of the for-
mal semantics of MSC in Chapter 4. This process theory consists of terms constructed 
from constant and function symbols (operators). The constants represent the events 
of the MSCs and the operators are used to describe the composition of these into 
more complex processes. The operators that are used are all close to the composition 
mechanisms of the language MSC. For example, the delayed choice operator defined 
in Section 3.4 represents the alternative composition of MSCs. The operators used in 
this thesis are all based on operators that can be found in the literature. By means 
of Plotkin-style deduction rules the dynamic behavior of processes described by these 
terms is defined in terms of the subsequent execution of actions (events). A notion 
of equivalence for the processes is defined similar to the notion of (strong) bisimilar-
ity. Several equations between processes are given and these are proven bisimilar in 
Appendix B. 

In Chapter 4 a denotational semantics of MSCs is defined. It consists of mappings [ ] 
which transform ( a part of) an MSC in textual representation into a process term. 
The textual representation of MSC is reduced for the purpose of a concise description 
of the semantics definition. The reasoning that led to this reduced textual syntax 
and the resulting textual syntax are given in Appendix A. In the final section of this 
chapter we give a short review of some other approaches to the semantics of MSC. 
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Introduction to the language 
Message Sequence Chart 

2.1 Introduction 

In this chapter, the language Message Sequence Chart is introduced. First, the core 
language of Message Sequence Chart is introduced. This core language is called Basic 
Message Sequence Chart (BMSC). A Basic Message Sequence Chart is concerned 
with communications and local actions only. These are the features encountered in 
most languages comparable to Message Sequence Chart. The static requirements 
imposed on Basic Message Sequence Chart, as far as they are of importance to the 
definition of the formal semantics in Chapter 4, are given. These static requirements 
are not formalized. For MSC92 the static requirements are formalized in Annex C to 
recommendation Z.120 [Ren95a, Ren96b, IT96a]. 

Then, the additional basic concepts are introduced. These are process creation and 
termination, timer handling, incomplete message events and conditions. Next, core-
gions and causal orderings are introduced. These are the means offered by MSC to 
describe ordering of events other than the orderings imposed via communication and 
the total ordering of events on an instance. Then, the more intricate possibilities of 
describing complex systems are considered. These are inline expressions, MSC refer-
ence expressions and High-level Message Sequence Charts. Finally, the extension of 
the language MSC with gates is given. 

17 
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2.2 Basic Message Sequence Charts 

A Basic Message Sequence Chart contains a finite collection of instances. An instance 
is an abstract entity on which message outputs, message inputs and local actions may 
be specified. The user of the language should determine for himself which instances 
have to be included in the description. This depends amongst others on his intentions. 
The collection of instances can, for example, reflect the physically available system 
components or, in other situations, supposedly logically based partitionings of the 
system. A first example of a Basic Message Sequence Chart is given in Figure 2.1. 
The vertical lines labeled by il, ... , i4 describe the instances of the MSC progressing 
in time from top to bottom. The arrows labelled by mO ... m4 between the instances 
describe messages that are exchanged. The frame surrounding the instances describes 
the border of the system. This frame is also used to describe interaction with the 
environment. For example, message mO is sent to the environment by instance il. 
The box labelled by a denotes internal activity of instance i2. 

msc examplei 
il i2 i3 i4 

mO 
ml 

m2 
m3 

Figure 2.1: Example Basic Message Sequence Chart. 

Next, we explain the graphical representation of Basic Message Sequence Chart. Then 
we describe their meaning, and finally we introduce the textual representation. 

2.2.1 Graphical representation 

Graphically an MSC is given by a frame containing a graphical representation of the 
instances. The name of the MSC following the keyword msc is placed inside this 
frame, usually above the instances. For an example see Figure 2.1. 

In the graphical representation there are two ways to describe an instance. These 
are given in Figure 2.2 below. The first is a single vertical axis (line-form) and the 
second is the so-called column-form. The description of the instance starts with the 
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instance head symbol and ends with the instance end symbol. These do not describe 
creation and termination of the instance, but the start and end of the description. 
The representation of the instance and the instance head and instance end symbols 
should be aligned as indicated in Figure 2.2. Within one BMSC both representations 
of instances, line-form and column-form, may appear. 

ID 
Figure 2.2: Instances: line-form and column-form. 

To every instance an instance heading is associated. It consists of an instance name 
and optionally an instance kind. The instance kind consists of an optional kind de-
nominator and an identifier. The kind denominator can be either one of the keywords 
block, process, service or system or an arbitrary name. The predefined kind de-
nominators refer to the corresponding SDL constructs [IT94]. The identifier can be 
used to associate with an instance the name of the entity it represents. Semantically 
no meaning is attached to the use of these kind denominators and instance kinds. 

The instance head may be placed above or inside the instance head symbol. It is 
also allowed to place the instance name inside the instance start symbol and the 
kind denominator above. In Figure 2.3 some valid placements are given where i is 
the instance name, d is the identifier of the instance kind, and process is the kind 
denominator of the instance kind. Between the instance name and the instance kind 
a colon may be placed. If the instance name is placed inside the instance start symbol 
and the instance kind is placed above, the colon should appear above the instance 
start symbol. In this thesis, we will only use the instance name. In all MSCs we place 
it above the instance head symbol. 

i process d process d 

i process d 

Figure 2.3: Placements of instance head. 

Instances are referred to by means of the instance name. Therefore, the instance 
name must be unique within an MSC. 
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A local action is denoted by an action symbol on the axis with the action character 
string placed in it. A local action describes an internal activity of an instance. The 
action character string is an informal description for this internal activity. The precise 
syntax for action character strings is consider irrelevant in this thesis. When an action 
symbol is placed on an instance in line-form the instance axis is hidden. If the column-
form is used for an instance, the width of the action symbol must coincide with the 
width of the column-form of the instance. Multiple actions on an instance must not 
overlap. See Figure 2.4 for examples. 

a 
a 

b 

Figure 2.4: Placement of local actions on line-form and column-form instances. 

A message between two instances is represented by an arrow which starts at the send-
ing instance and ends at the receiving instance. An arrow representing a message 
may be horizontal or with downward slope. A message sent by an instance to the 
environment is represented by an arrow from the sending instance to the exterior of 
the Message Sequence Chart, i.e. the surrounding frame. A message received from the 
environment is represented by an arrow from the exterior of the Message Sequence 
Chart to the receiving instance. To every message a message identification is associ-
ated. It consists of a message name and optionally a message instance name and/ or 
a parameter list. A message name and a message instance name are separated by a 
comma. The message instance name is used in the textual syntax for distinguishing 
between multiple occurrences of the same message name. The parameter list is denot-
ed between brackets after the message name and possibly the message instance name. 
The message identification should be placed close to the message arrow. In Figure 2.5 
some examples of the graphical syntax of messages are given. In this thesis, we will 
only use the message name. 

Figure 2.5: Appearance and placement of messages. 

In general it is not allowed to have two or more events attached to one point of the 
instance axis in line-form and column-form or at the same height of the instance axes 
in the column-form. However, there is one exception to this rule. An incoming event 
and an outgoing event may be attached to the same point or at the same height. This 
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is interpreted as if the incoming event is drawn above the outgoing event. A message 
input event is an incoming event and a message output event is an outgoing event. 
Also the yet to be introduced found message events and timeout events are considered 
to be incoming events. The yet to be introduced lost message events, process creation 
events and timer set and reset events are outgoing events. In Figure 2.6 some examples 
are given. 

-------¾>--

Figure 2.6: Interpretation of events at the same height. 

With the use of the column-form instance the suggestion is put forward that each of 
the two vertical lines describes a total ordering of the events attached and that the 
events attached to different vertical lines are not ordered. This, however, is not the 
case. This is depicted in Figure 2. 7 below. It is possible to draw events on an instance 
for which it can hardly be seen that they are not drawn at the same height. 

i} 
Figure 2.7: Interpretation of orderings on an instance in column-form. 

2.2.2 Intuitive semantics 

An MSC is intended to describe a number of executions of the events contained. As 
we have seen before these events can be local actions, message outputs and message 
inputs. An MSC does not only describe the events to be executed, it also contains 
information concerning the sequences in which they may be executed. One of the 
basic assumptions is that all events are executed instantaneously, i.e. it is assumed 
that the execution of an event consumes no time. Another important assumption is 
that no two events can be executed at the same time. 

As explained before, an MSC consists of a number of instances on which events are 
specified. The meaning of such an instance is that it executes the events specified in 
the same ordering as they are given on the vertical axis from top to bottom. Thus 
one can say that the time along each instance axis is running from top to bottom. 
Therefore, the events specified on an instance are totally ordered in time. If we 
consider, for example, instance i2 from the MSC given in Figure 2.1, then this means 
that instance i2 executes the events "input of ml from instance j", "output of m2 to 
instance i3", "action a", and "output of m4 to instance il", and also that these events 
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are executed in this order. Although an instance thus describes the execution of events 
while time progresses, the instance does not specify the elapse of time in between two 
consecutive events. It might be the case that the first event is executed after 5 minutes 
and that the second event is executed after 25 minutes. But alternatively, it could 
also be the case that the second event only happens somewhere next year. 

The instances of an MSC operate independently of each other. No global notion of 
time is assumed. The only dependencies between the timing of the instances come 
from the restriction that a message must be sent before it is consumed. In Figure 2 .1 
this implies that message m3 is received by i4 only after it has been sent by i3, and, 
consequently, after the consumption of m2 by i3. Thus the events concerning ml and 
m3 are ordered in time, while for the events of m4 and m3 no ordering is specified 
apart from the requirement that the output of a message occurs before its input. 
Because of the asynchronous communication, it would even be possible to first send 
m3, then send and receive m4, and finally receive m3. The execution of a local action 
is only restricted by the ordering of events on the instance it is defined on. The Basic 
Message Sequence Chart in Figure 2.8 defines the same execution sequences (from a 
semantic point of view) as the BMSC in Figure 2.1, but in an alternative drawing. 

msc examplel 
il i2 i3 i4 

Figure 2.8: Example Basic Message Sequence Chart. 

In MSC there is no notion of channels or buffering of communication. In [EMR97], a 
number of communication models for MSC is considered. The communication model 
adopted by recommendation Z.120 ( without saying so) is that for every message there 
is an unbounded FIFO queue. 

Another consequence of this mode of communication is that overtaking of messages 
is allowed, as expressed in Figure 2.9. 

It is not allowed that a message output is causally depending on its corresponding 
message input, directly or via other messages [IT96b, IT96a, Ren95a]. This is the case 
if the temporal ordering of the events imposed by the Basic Message Sequence Chart 
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msc overtaking 

il i2 

ml 

m2 

Figure 2.9: Basic Message Sequence Chart with overtaking. 

specifies that a message input is executed before its corresponding message output. 
Such MSCs are often called inconsistent. 

Consider the first diagram in Figure 2.10. Since the events which are specified on one 
instance are temporally ordered from top to bottom, the message input is executed 
before the corresponding message output. The diagram therefore violates the static 
requirement of consistency. In this example the message output is depending on its 
corresponding message input in a direct way. 

msc depl msc dep2 

Figure 2.10: Two diagrams that violate the static requirements. 

As an example of the indirect causal dependency between a message output and a 
message input the second diagram in Figure 2.10 is considered. Amongst others, there 
are the following temporal orderings: 

1. the input of message m precedes the output of message n, 

2. the output of message n precedes the input of message n, and 

3. the input of message n precedes the output of message rn. 

Therefore, the diagram specifies that the input of message m precedes the output 
of message m. So the diagram violates the static requirements, and is therefore not 
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a (Basic) Message Sequence Chart. The drawing rules for messages [IT96b] already 
exclude this MSC. At this point it is impossible to draw an MSC which is inconsistent 
and does not violate the drawing rules. This example is given here because later 1 when 
causal orderings are introduced in Section 2.4.2, the drawing rules no longer prohibit 
the drawing of inconsistent MSCs. 

2.2.3 Textual representation 

Although the application of Message Sequence Charts is mainly focussed on the graph-
ical representation, they have a concrete textual syntax. This representation was o-
riginally intended for exchanging Message Sequence Charts between computer tools 
only, but in this thesis it is used for the definition of the semantics. 

With respect to the textual description, the language MSC offers two principal means 
to describe MSCs. First of all an MSC can be described by describing the behavior of 
all its instances in isolation. This way of describing an MSC is called instance-oriented 
and has been incorporated in the language from the beginning. In instance-oriented 
representation, the MSC from Figure 2.1 can be given by 

msc examplel ; 
instance il ; 

out mO to env ; 
out ml to i2; 
in m4 from i2 ; 

endinstance ; 
instance i2 ; 

in ml from il ; 
out m2 to i3; 
action' a' ; 
out m4 toil ; 

endinstance ; 
instance i3 ; 

in m2 from i2 ; 
out m3 to i4; 

endinstance ; 
instance i4 ; 

in m3 from i3 ; 
endinstance ; 

endmsc; 

In this example the instances are described in the order in which they are represented 
in the MSC. This is not required by the recommendation. 

With the appearance of MSC96 also. another way of representing MS Cs has been 
incorporated: the so-called event-oriented description [Ek94]. With the event-oriented 
descriptions, just a list of events is given, for example as they are expected to occur 
in a trace of the system or as they are encountered while scanning the MSC from 
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top-to-bottom. Besides these two ways of describing MSC there is also the 'artificial' 
means to describe an MSC by mixing these two descriptions. An example of such a 
mixing is the following: 

msc mixedsyntax ; 
: instance ; 
: action 'a' ; 

instance k; 
out m to i; 

endinstance ; 
: in m from k; 

i : endinstance ; 
endmsc; 

In this example, instance i is described in event-oriented syntax and instance k in 
instance-oriented syntax. 

In this thesis, the event-oriented textual syntax is used for the explanation of the 
textual syntax in this chapter and for the definition of a formal semantics in Chap-
ter 4. There are several reasons to choose for the event-oriented syntax and not for 
the instance-oriented syntax. First of all, with the event-oriented syntax the so-called 
multi-instance events, i.e. events that are described/ defined for a number of instances, 
need to be repeated for every instance they are defined on in the instance-oriented 
syntax. In the event-oriented syntax there is the possibility to describe them once for 
all instances involved. A second reason is related to the first one. For multi-instance 
events in the instance-oriented syntax, there necessarily are a lot of requirements 
which have to guarantee that a multi-instance event is defined for all involved in-
stances. This is not necessary in the event-oriented syntax, as it is per definition 
defined for all instances involved. 

The event-oriented syntax of MSC facilitates the description of the events contained 
in an MSC not per instance but in an arbitrary ordering which respects the ordering 
of events per instance. As a consequence it is even possible to describe a message 
input event before its corresponding message output event provided that these are 
attached to different instances. Although this seems counterintuitive there is a good 
reason to allow this (see Section 2.4.1). 

The textual representation of an MSC consists of the keywords msc and endmsc and 
in between those an msc head and an msc body. The MSC head contains the name 
of the MSC, the msc name, and optionally an msc inst interface, which contains a 
list of instance names. The MSC body is defined differently for the three previously 
mentioned description styles. In the event-oriented syntax an MSC body consists of 
a (possibly empty) list of MSC statements. An MSC statement consists of an event 
definition. An event definition is an instance name followed by a non-empty list of 
instance events. Instance events are message events, local actions, and instance head 
and end statements. The latter two are the textual counterparts of the instance head 
and instance end symbol from the graphical syntax. 
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Textually a message between instances is described by a message output event and 
a message input event. The sender of message m is the instance with which the 
message output event is associated and the receiver of message mis the instance with 
which the message input event is associated. In the textual syntax for message output 
events the receiver of the message is called the input address and the sender the output 
address. If m is a message that is sent from instance i to instance j, textually the 
corresponding event definitions for the message output event and the message input 
event are "i : out m to j" and "j : in m from i". 

A message that is sent to the environment is described by a message output event 
only. For example a message m from instance i to the environment is described as "i 
: out m to env". In this case the environment plays the role of output address of 
message m. Similarly a message that is received from the environment is described by 
the message input event only. For example, the receiving of a message m by instance 
j from the environment is described as: "j : in m from env". The environment is 
considered the output address of the message. 

In the graphical representation the correspondence between message output events 
and message input events is given by the arrow construction. In the textual repre-
sentation a message output event and a message input event are corresponding if and 
only if 

• the events have the same message identification, 

• the instance on which the message output event is specified is the same as the 
instance indicated by the output address of the message input event, and 

• the instance on which the message input event is specified is the same as the 
instance indicated by the input address of the message output event. 

Thus a natural requirement on the textual representation of MSC is that for every 
message output event there is at most one corresponding message input event, and 
vice versa, for every message input event there is at most one message output event. 
As no dangling message output arrows and message input arrows are allowed, another 
natural requirement is that for every message output (input) event there is at least 
one corresponding message input (output) event. Note that for messages that are 
sent to the environment or that are received from the environment and for lost and 
found messages (see Section 2.3.3) this requirement does not have to be satisfied. 

A local action is denoted by the keyword action followed by an action character 
string. 

The MSC from Figure 2.1 can textually be represented by 

msc examplel ; 
i 1 : instance ; 
i2 : instance ; 
i3 : instance ; 
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i4 : instance; 
'il : out mO to env ; 
il : out ml to i2 ; 
i2 : in ml from il ; 
i2 : out m2 to i3 ; 
i3 : in m2 from i2 ; 
i3 : out m3 to i4 ; 
i4 : in m3 from i3 ; 
i2 : action 'a' ; 
't2 : out m4 toil ; 
il : in m4 from i2 ; 
il : endinstance ; 
i2 : endinstance ; 
i3 : endinstance ; 
i4 : endinstance ; 
endmsc; 

The grammar defining the event-oriented textual syntax of Basic Message Sequence 
Charts is given in Table 2.1. In this thesis, textual syntax is defined by means of 
rules in Backus-Naur Form (BNF). Nonterminals are indicated by putting them in 
between ( and ) . Terminal productions are typeset using bold face. Words that are 
typeset using bold face are considered reserved keywords. A sequence of terminals 
or nonterminals denotes concatenation. Parts in between [ and ] are optional. The 
symbols { and } are used for grouping. Alternative productions for a nonterminal 
can be given using the symbol I. Repetition is indicated by means of * or +. The 
symbol * indicates that the group can be repeated any number of times (including 
zero) and the symbol + indicates that the group is repeated at least once. The symbol 
() denotes the empty string. If for one nonterminal more than one BNF rule is given, 
these should be considered alternative productions. 

The nonterminals that end with the word 'name', for example (msc name), are all 
defined to be the same as (name). They are included to indicate a semantical interpre-
tation, e.g., (msc name) represents the name of an MSC. Although recommendation 
Z.120 gives a number of BNF rules for the nonterminal (name), we will only mention 
that the productions of this nonterminal consist of sequences of letters, digits, several 
brackets and other symbols. For the explanation offered in this chapter it is only 
relevant to understand that it defines the name space for the different identifiers. The 
nonterminal (action character string) denotes a sequence of symbols between apos-
trophes. The action character string may contain spaces. Its precise definition is not 
interesting here. 

The occurrence of an instance name preceding an instance head statement is consid-
ered to be the defining occurrence of that instance name. As was already indicated 
for the graphical syntax, there cannot be two or more instances in the MSC with the 
same instance name. Translated to the textual syntax this means that there cannot 
be two or more defining occurrences of an instance name. For each defining occur-
rence of an instance name there must be exactly one instance end statement preceded 
by that same instance name. Furthermore, that instance end statement must not 



28 

(message sequence chart) 
(msc head) 
(msc body) 

(msc statement) 
( event definition) 
(instance event list) 
(instance event) 
( order able event) 
(non-orderable event) 

(message event) 
(message output) 
(message input) 
(msg identification) 

(parameter list) 
(output address) 
(input address) 
(action) 

(instance head statement) 
(instance end statement) 

(msc interface) 
(msc inst interface) 
(instance list) 

(instance kind) 
(kind denominator) 

(end) 

Introduction to the language MSC 

msc (msc head) (msc body) endmsc (end) 
(msc name) (end) [ (msc interface) ] 
(msc statement)* 

(event definition) 
(instance name) : (instance event list) 
{ (instance event) (end) } + 
(orderable event) I (non-orderable event) 
(message event) I (action) 
(instance head statement) I (instance end statement) 

(message output) I (message input) 
out (msg identification) to (input address) 
in (msg identification) from (output address) 
(message name) [ , (message instance name) ] 
[ ( (parameter list) ) ] 
(parameter name) [ , (parameter list) ] 
(instance name) I env 
(instance name) I env 
action (action character string) 

instance [ (instance kind) ] 
endinstance 

[ (msc inst interface) ] 
inst (instance list) ( end) 
(instance name) [ : (instance kind) ] 
[ , (instance list) ] 
[ (kind denominator) ] (identifier) 
system I block I process I service I (name) 

Table 2.1: The event-oriented textual syntax for Basic Message Sequence Charts. 
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occur before the instance head statement in the MSC. Instance names are used to 
associate events to instances in event definitions. All such occurrences of an instance 
name must be in between the corresponding instance head statement and instance 
end statement. 

The instance names are used in output and input addresses of message events. For 
each such a reference there must be a defining occurrence of that instance name. 

The textual representation of an MSC can contain an MSC instance interface. This 
MSC instance interface contains a number of descriptions of the instances as they 
are defined in the MSC body. It is required that the information presented in the 
MSC instance interface is consistent with the information provided in the MSC body 
by means of the instance head statements [IT96a]. In this thesis, the MSC instance 
interface will not be-used. 

2.3 Additional basic concepts 

In this section, the other basic concepts are introduced. These are process creation 
and termination, timer handling, incomplete message events and conditions. 

2.3.1 Process creation and process termination 

In the language Message Sequence Chart a primitive is incorporated for the dynamic 
creation of an instance by another instance. Such a creation is denoted by a dashed 
arrow, the createline symbol, from the instance axis of the creating instance to the 
instance head symbol of the created instance. The createline symbol must be hori-
zontal. An example is given in Figure 2.11. An instance can be created only once. 
As was the case for message events, a create event may be labelled with a parameter 
list. In case of a process create event the parameter list is placed close to the create-
line symbol. The parameter list is not enclosed in brackets (see Figure 2.11 for an 
example). 

msc creation 
k 

Figure 2.11: Process creation and termination. 
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An instance can terminate by executing a process stop event. Execution of a process 
stop is allowed only as the last event in the description of an instance. A process stop 
is denoted by replacing the instance end symbol by a cross, the stop symbol. 

In Figure 2.11 a Message Sequence Chart with three instances is given. Instance i 
creates instance j, instance k sends a message m to instance j, and instance j receives 
the message m from instance k after it is created, and then terminates. 

(create) 
(stop) 

(orderable event) 
(non-orderable event) 

create (instance name) [ ( (parameter list) ) ] 
stop 

(create) 
(stop) 

Table 2.2: The textual syntax for process creation and termination. 

In the textual representation the creation of an instance with name j is denoted by 
"create j" and the termination of an instance by "stop". The textual grammar 
for Basic Message Sequence Charts in Table 2.1 is extended with the rules in Ta-
ble 2.2. The event-oriented textual representation of the Message Sequence Chart in 
Figure 2.11 is given by 

msc creation ; 
: instance; 

j : instance ; 
k : instance ; 

: create j(pl,p2) ; 
k : out m to j; 
j : in m from k ; 
j : stop ; 

: endinstance ; 
j : endinstance ; 
k : endinstance ; 
endmsc; 

With respect to process creation and termination the following static requirements 
are added. Only instances that are defined within a Message Sequence Chart may be 
created. An instance may be created only once and an instance may not create itself. 
A stop event may not be followed by other events from the same instance other than 
the instance end statement ( which is not considered an event). 
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2.3.2 Timer handling 

In a Message Sequence Chart several timer events can be described. These are the 
setting of a timer, a timer reset and the expiration of a timer. 

In Figure 2.12 on instance i the setting of a timer T with duration d and its subsequent 
timer reset are specified, and on instance j the setting of a timer T and its subsequent 
timeout are specified. Timer events with the same name attached to different instances 
denote different timers. 

msc timers 
j 

Figure 2.12: Message Sequence Chart with timer handling. 

In the graphical syntax the timer events can be used stand-alone but also in combi-
nations. We will first discuss the stand-alone occurrences of timer events. A timer 
set event is denoted by an hourglass symbol attached to the instance axis by means 
of a horizontal or bent line. A timer reset event is denoted by a cross symbol which 
is attached to the instance axis by means of a horizontal or bent line. A timeout is 
represented by an hourglass symbol which is attached to the instance axis by means 
of an horizontal or bent arrow from the hourglass symbol to the instance axis. 

T(d) 

T 
T' 

Figure 2.13: Timer events in stand-alone mode. 

Examples of the stand-alone occurrences of the timer events are given in Figure 2.13. 
A timer event is labelled by an identifier, the timer name and optionally a timer 
instance name, that is placed aside the hourglass symbol or cross. The timer name 
and, if present, the timer instance name, are separated by a comma. We will call this 
combination of timer name and possibly timer instance name the timer identifier for 
easy reference. The timer instance name is used in the textual representation to be 
able to distinguish between timer events with the same timer name in the graphical 
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syntax which however are not corresponding. A timer set event may be labelled 
with an identifier for the duration, the duration name. The duration name is placed 
between brackets after the timer identifier. 

T T T 
T(d) T 

T 

Figure 2.14: Combinations of timer events. 

The graphical syntax of MSC also leaves room for combining timer events. This is 
achieved by connecting the timer events by means of a vertical line. Examples of such 
combinations are given in Figure 2.14. Two timer events are corresponding if they 
are associated with the same instance and they have the same timer identification. 
If an instance has two or more corresponding timer events then these form a timer 
combination. Note that for these combinations the timer identifier may be omitted 
from all but one timer event. A timer event is local to the instance it is specified 
on. It is not allowed to specify a timer set and a subsequent timeout or timer reset 
on different instances. On different instances the same timer identifier may be used. 
These indicate different timers. 

The language MSC in its current form does not support the specification of a quan-
titative notion of time, the interpretation of the timer events is only symbolic. This 
means that set, reset and timeout are interpreted as events. Also, as no formal data 
language is available at the moment, the duration names that can be associated with 
a timer set event are symbolic. The user can write down any identifier there. 

With industrial applications in mind, especially telecom applications, this is not sat-
isfactory. The extension of the language MSC with a quantative notion of time is 
investigated by several researchers [Men93, Sch95, AHP96, BJR96, BL97] and the 
extension of MSC with time is considered an important issue by the MSC standard-
ization committee of the ITU. The approaches vary from associating time intervals 
with events, message delivery intervals with messages, time intervals with two con-
secutive events from the same instance, and time intervals with two arbitrary events 
in the MSC. In [AHP96] and [BL97] timing analysis is performed to determine if an 
MSC is timing consistent. An MSC is considered timing consistent if it is possible to 
give a timing assignment to the events that satisfies the timing constraints. 

In the textual representation a timer set event is denoted by the keyword set followed 
by the timer identifier and optionally followed by the duration name between brackets. 
For example, the setting of a timer with timer name T, timer instance name t and 
duration name d on an instance i is represented textually by the event definition "i 
: set T,t(d)". A reset event and a timeout event are represented similarly apart 
from that these cannot have a duration name. The reset and timeout events that 
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correspond to the timer set event "i: set T,t(d)" are given by "i: reset T,t" and "i 
: timeout T ,t", respectively. The grammar in Table 2.2 is extended with the rules 
in Table 2.3. 

( timer statement) 
(set) 

(reset) 
(timeout) 

( order able event) 

(set) I (reset) I (timeout) 
set (timer name) [ , (timer instance name) ] 
[ ( (duration name)) ] 
reset (timer name) [ , (timer instance name) ) 
timeout (timer name) [ , (timer instance name) ) 

(timer statement) 

Table 2.3: The textual syntax for timer handling. 

The Message Sequence Chart in Figure 2.12 is represented as follows: 

msc timer; 
: instance ; 

j : instance ; 
: set T(d) ; 
: reset T; 

j : set T; 
j : timeout T ; 

: endinstance ; 
j : endinstance ; 
endmsc; 

Recommendation Z.120 states that if the timer name is not sufficient for a unique 
mapping the timer instance name has to be employed and that the setting of a timer 
always has to precede the corresponding timer events. 

2.3.3 Incomplete message events 

Besides the specification of successful transmission of messages also a lost message 
and a spontaneously found message can be described. A lost message is a message 
which is sent but will never be received by the other party in the communication. 
Symmetrically, a found message is a message which is received but where the output 
is unknown. A message identification is associated with the lost and found messages 
similarly as to the message identification for messages. 

Graphically a lost message is indicated by a lost message symbol, i.e. an arrow from an 
instance axis to a black dot ( "black hole"). To the black dot an input address may be 
associated. This input address, which is either an instance name or the environment, 
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represents the original destination of the message. A found message is indicated by a 
found message symbol, i.e. an arrow from an open dot ( "white hole'') to an instance 
axis. An output address may be associated with the open dot. This output address 1 

which is either an instance name or the environment, is the original source of the 
message. An example of the graphical representation of lost and found messages is 
given in Figure 2.15. 

msc example 
j 

:f-o[ 
Figure 2.15: An MSC with lost and found messages. 

Semantically these events are treated just as atomic events. It is not the case that 
a dynamic semantics is associated with messages such that they can result in lost 
and/ or found messages. Thus these events are introduced to describe the situation 
where it is known that a message is lost or found. 

Consider the MSC from Figure 2.15. On instance i the sending of a message m with 
destination j is described. However the corresponding receive event on instance j is 
missing. Similarly, instance j receives a message m which should have been sent by 
instance i, but on instance i the corresponding send event is missing. Although the 
lost and found message in this example seem to be complementary, this is not the 
interpretation from the recommendation. Thus the events are totally unrelated. 

(incomplete message event) 

(incomplete message output) 

(incomplete message input) 

( orderable event) 

(incomplete message output) 
(incomplete message input) 
out (message identification) 
to lost [ (input address) ] 
in (message identification) 
from found [ (output address) ] 

(incomplete message event) 

Table 2.4: The textual syntax for incomplete messages. 

The textual representation of the incomplete messages is very similar to the textual 
representation of messages (see Table 2.4). The event-oriented textual representation 
of the MSC of Figure 2.15 is given as follows: 
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msc example ; 
: instance; 

j : instance ; 
: out m to lost j ; 

j : in m from found i ; 
: endinstance ; 

j : endinstance ; 
endmsc; 
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It is not clear from the recommendation if the input address of a lost message and the 
output address of a found message can be names of instances that are not contained 
in the MSC. As this is irrelevant for the formal semantics presented in this thesis, we 
will assume that any instance name is allowed as the input address of a lost message 
event or as the output address of a found message event. 

2.3.4 Conditions 

Graphically a condition is represented by a condition symbol overlapping a number 
of instances ( at least one) and containing a list of condition names ( at least one) 
separated by commas. If an instance is not involved in a condition it is drawn through 
(Z.120 terminology). In Figure 2.16 an example of an MSC with a condition is given. 
This condition is associated with the instances i and k, but not with instance j. 

msc example 
j k 

~CI -
Figure 2.16: Graphical representation of conditions. 

In the context of an HMSC conditions can be used to restrict the possible continu-
ations of an MSC by means of final and initial condition identification. We refer to 
Section 2.5.5 for a thorough treatment of this use of conditions. 

The textual representation of conditions is given in Table 2.5. A condition is a first 
example of an event that can be associated with more than one instance. This type of 
event is called a multi instance event. To facilitate the description of multi instance 
events without repeating them for every instance, the textual syntax is extended with 
the possibility to describe such an event for all instances involved. For example the 
condition from Figure 2.16 that involves the instances i and k can be described by 
"i , k : condition C". If a multi instance event is associated with all instances of 
the MSC then the list of instance names preceding the event can be replaced by the 
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keyword all. For example, a condition C that is associated with all instances of an 
MSC can be described by "all : condition C". The keyword all refers to all instances 
of the MSC [Ren95a, IT96a). 

(condition) 
( condition identification) 
(condition name list) 

( event definition) 
(instance name list) 
(multi instance event list) 
(multi instance event) 

( condition identification) 
condition (condition name list) 
(condition name) { , (condition name) }* 

(instance name list) : (multi instance event list) 
(instance name) { , (instance name) }* I all 
{ (multi instance event) (end) }+ 
(condition) 

Table 2.5: The textual syntax for conditions. 

In th-e formal semantics of conditions in MSC92, the semantics of a condition is that 
of a comment. The reason for this interpretation of conditions is that there are many 
different interpretations of conditions in practice and that it was hard to obtain an 
interpretation that was accepted by the users [MR95]. However, in the informal 
semantics of MSC as given in recommendation Z.120 [IT93], conditions play the role 
of continuation points (see the SDL Methodology Guidelines [Bel92]). 

In MSC96, basically nothing has changed. The only interpretation associated with 
conditions is the restrictive role for the vertical composition of MSCs as described 
in an HMSC (see Section 2.5.5). In practice however, several uses of conditions are 
found. 

• Amongst others, Haugen [Hau95] uses conditions in an informal way to indi-
cate a global initial system state or a global final system state. Informally, an 
MSC with a global initial condition that matches a global final condition of an 
MSC are considered to be possible continuations. If there are more possible 
continuations these are considered alternatives. The possible continuations can 
be displayed in a so-called roadmap. This is helpful in maintaining the collec-
tion of MSCs in an MSC document. A shortcoming of the roadmaps is that 
no starting point can be indicated. Roadmaps have later evolved into HMSC. 
Feijs [Fei97] suggests that conditions can be used for describing iteration. 

• Another typical use of conditions is to stress the relation between an SDL de-
scription and an MSC describing its communication behavior. A local condition 
is then used to represent the states of an SDL process on the instance repre-
senting this process in an MSC. Examples of this use of conditions can be found 
in [RGG96] and also in Extended Sequence Charts as explained in Chapter 1. 
In these cases the condition is used as an informal, though useful, notation to 
establish a connection with a corresponding SDL description. 
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• Conditions are also used to guard the possible execution of an MSC. In [Mei96], 
the author uses local conditions for defining pre- and postconditions for MSCs 
and describes several ways of connecting MSCs based on these pre- and postcon-
ditions. It is assumed that every instance has a single local state variable, local 
data variables and local auxiliary variables. Furthermore it is assumed that the 
MSC contains no action symbols. Changes of data variables are described by 
means of pre- and postconditions only. 

The top condition symbol of an instance describes the precondition and the 
bottom condition symbol the postcondition. The precondition can be described 
by means a proposition containing a conjunction of control state constraints 
and possibly a disjunction of data state constraints. A control state constraint 
is an equality of the control state variable and a control state identifier. The 
postcondition consists of exactly one control state constraint and possibly a 
conjunction of data state constraints. 

Two MSCs are strongly connected if the postcondition of the first MSC implies 
the precondition of the second. Two MSCs are weakly connected if there exists 
a substitution on control and data variables such that after substitution the 
postcondition implies the precondition. 

2.4 Ordering facilities 

2.4.1 Coregions 

So far the events specified on an instance were totally ordered in time. To enable 
the specification of unordered events on an instance the coregion is introduced. A 
coregion is a part of the instance axis for which the events specified within that part 
are assumed to be unordered in time. Within a coregion only orderable events may 
be specified such as message events, local actions, timer events, and process creates. 
An example of an event that may not be used in a coregion is the stop event. Also 
the instance head and end symbols cannot be allowed in a coregion. For MSC92 the 
only events that are allowed to be attached to a coregion are message events. 

I 

I I I I u 
(a) Legal forms (b) Illegal form 

Figure 2.17: Graphical representations of coregions. 
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Graphically, for instances in line-form a coregion is indicated by drawing a part of 
the instance axis as a dashed line and for instances in column-form by drawing the 
same parts of the two vertical lines of the instance as dashed lines. There is also the 
possibility to use a column-form coregion with a line-form instance. Although there 
does not seem to be a good reason, the other combination, a line-form coregion with 
a column-form instance, is not allowed by recommendation Z.120. In Figure 2.17, 
examples of these forms, also of the illegal combination, are given. 

I ·• L-----
I 

I l---0 
I 
I 

J I 
I 

[] 
I 

I I 
I 

I I 

J. J. I I -
Figure 2.18: Placement of events on coregions. 

The recommendation does not clearly state how the orderable events can be attached 
to a coregion for the three valid forms. The recommendation only illustrates this 
placement of events on a coregion for messages. Probably it is fair to assume that the 
placement of the orderable events on a coregion is similar as for instances. Examples 
of the placement of all orderable events on a coregion are given in Figure 2.18. 

msc coregion 
j 

k 

m 

n 

Figure 2.19: Message Sequence Chart with a coregion. 
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In Figure 2.19 an instance with a coregion is specified which contains an input of 
message m and an output of a message n. These two events are not ordered in time, 
but they are executed after the output of message k and before the input of message 
l. On instance j the events are totally ordered in time. 

(coregion) 
(coevent) 

(non-orderable event) 

concurrent (end) (coevent)* endconcurrent 
(orderable event) (end) 

(coregion) 

Table 2.6: The textual syntax for coregions. 

In the textual representation a coregion is denoted by a list of the orderable events 
specified within the coregion started with the keyword concurrent and ended by the 
keyword endconcurrent. In Table 2.6 the rules for the extension with coregions are 
given. Note that it is possible that a coregion contains no events at all. The textual 
representation of the MSC from Figure 2.19 is as follows: 

msc coregion ; 
: instance; 

j : instance ; 
: out k to j; 
: concurrent ; 

in m from j; 
out n to j; 

endconcurrent ; 
: in l from j; 

J : in k from i ; 
j : out m to i; 
j : in n from i ; 
j : out l to i ; 

: endinstance ; 
j : endinstance ; 
endmsc; 

In Section 2.2 we mentioned that in the event-oriented textual representation it is 
possible to describe a message input event before its corresponding message output 
event. The MSC given in Figure 2.20 explains the necessity of this. 

A textual representation of this MSC is the following: 

msc in_before_out ; 
: instance ; 

j : instance ; 
: concurrent ; 
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msc in_bef ore_out 
j 

n 
I 

J. 
Figure 2.20: Message Sequence Chart with a coregion. 

out m to j; 
inn from j; 

endconcurrent ; 
j : in m from i ; 
j : out n to i; 

: endinstance; 
j : endinstance ; 
endmsc; 

The textual description of the input of message n precedes the textual description 
of the corresponding output event. To prevent this, the description of the coregion 
and the output of message n can be switched. Since the input of message m has to 
precede the output of message n (these events are defined on the same instance), it 
is also necessary to place the input of message m before the coregion. Observe that 
after such a switch the input of message m precedes the output of message m in the 
textual description. The only way to describe the behavior of this MSC textually, 
in such a way that every output event precedes its corresponding input event, is by 
removing the coregion. 

2.4.2 Causal orderings 

With respect to the ordering of events from different instances the coregion does not 
offer more flexibility. Therefore, a mechanism is included in the language to describe 
a causal ordering between events. This mechanism can also be used for describing 
orderings between events from the same instance. 

One of the reasons to describe arbitrary orderings of events on an instance is closely 
related to the use of refinements or instance decompositions (see Section 2.8). With 
instance decomposition, one instance is replaced by or refined into an MSC such that 
the external behavior of the instance on the one hand and the MSC on the other 
hand is identical. We would also like to be able to use the reverse operation, called 
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abstraction. With the instance decomposition as described in Section 2.8 and without 
more flexible ways of ordering events on an instance this can only be accomplished 
if the external behavior of the concrete MSC can be described by means of total 
orderings and coregions only. A simple example of an MSC where this is impossible is 
given in Fi_gure 2.21. Suppose that we want to depict this MSC in a broader context 

msc example 

Figure 2.21: Example. 

or on a higher level of abstraction by a single instance, say instance ij. This instance ij 
has to contain three events: (1) a message m which is received from the environment, 
(2) a message n which is sent to the environment, and (3) a message o which is also 
sent to the environment. However, there should also be an ordering of the receipt of 
message m before the sending of message o. This cannot be described by the language 
introduced so far. 

Causal orderings are also introduced to facilitate the description of orderings between 
events when this ordering cannot be derived from the ordering of the events on an 
instance and the ordering by means of communication. For example if a local action 
a on instance i has to occur before a timeout event on instance j. Again, the features 
of the language discussed so far are not sufficient. The only way to describe this 
with the MSC-language introduced until now is by defining a communication from i 
to j where the output occurs after the local action and the input occurs before the 
timeout event. As MSCs are mostly used for high-level requirements specifications 
this is undesirable. Also, if many such orderings need to be specified, the additionally 
introduced communication overhead is disturbing. 

j k 

Figure 2.22: Example of a causal ordering. 

Graphically a causal ordering of two events is represented by a causal order symbol, 
i.e. a solid line with an arrowhead in the middle (see Figure 2.22). This distinguishes 
it from normal messages where the arrowhead is placed on one end of the line. The 
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line may have any orientation and also be bent. The ordering line should be attached 
to the events that need to be ordered. Only orderable events can be ordered by means 
of a causal order symbol. 

In case of a local action the causal order symbol can start or end at any point of the 
action symbol. In case of another orderable event the start or end of a causal order 
symbol coincides with the point of the instance where the event symbol is attached. 

msc superfluous msc inconsistent 
j 

Figure 2.23: Examples of causal orderings within an instance. 

The way to describe causal orderings as discussed above can also be used to describe 
the causal ordering of orderable events from the same instance. In cases where one of 
the events to be ordered is not inside a coregion, this either results in an inconsistent 
MSC or it results in an MSC for which the additional causal ordering is superfluous. 
Examples where two local actions on one instance are causally ordered are given in 
Figure 2.23. In the first MSC the causal ordering is superfluous as the local actions 
are already ordered by the total ordering of events on the instance. The fact that this 
causal ordering is superfluous does not mean that it is not allowed. The second MSC 
is inconsistent as the local actions are ordered in two conflicting ways. There is no 
drawing rule that prevents the user from drawing such an inconsistent MSC. 

msc causal 
ij 

m i i n 

: 
I I 

11111111111111 

Figure 2.24: Causal ordering within a coregion. 

A causal ordering between two events in the same coregion does give additional in-
formation. See Figure 2.24 for an example. The input of message m, the output 
of message n, and the output of message o are specified in a coregion and therefore 
unordered. But the causal ordering between the input of m and the output of o de-
fines that the first precedes the latter. Note that although the output of n and the 



2.4 Ordering facilities 43 

output of o are vertically arranged on the same line they are not ordered. Instance ij 
represents the external behavior of the MSC given in Figure 2.21. 

Thus by using the coregion in combination with the causal order construct, any partial 
ordering on orderable events on an instance can be described. Thereto, all events have 
to be specified in a coregion and causal orderings have to be added explicitly when two 
events have to be ordered. If such a coregion contains many events and many arrows 
the drawing easily gets confused. For an example see the coregion in Figure 2.25. 

I 
I 
I 
I -Figure 2.25: Causal ordering within an instance. 

As an alternative the language MSC offers the possibility to leave the head of the 
arrow out. Thereby the order symbol is reduced to a line. The connection lines 
define the ordering of events from top to bottom. Also crossings of these lines have 
a meaning. Event a is ordered causally before event b if and only if there is non-
increasing line going from a to b. The coregion from Figure 2.25 can then also be 
depicted as shown in Figure 2.26. 

il I ol 

:! 
I 

i2 H i o2 

I 
I I -Figure 2.26: Causal ordering within an instance (alternative representation). 

This shorthand notation is not always convenient. Especially in situations where the 
user is not prepared to shift events from the left-hand axis to the right-hand axis of 
the coregion and vice versa. See for example the coregion given in Figure 2.27. It 
cannot be represented in the arrowless way without shifting events from one axis of 
the coregion to the other axis of the coregion. 

In the textual syntax (see Table 2. 7) causal orderings are represented by using the 
keyword before followed by a list of event names. An event name refers to an event 
specified somewhere in the same MSC. Thus it can be an event from the same instance 
or an event from another instance. An event name can be associated with an event 
in the textual syntax by placing the event name just before the event. 
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il ol 

i2 o2 

i3 o3 

Figure 2.27: Causal ordering within an instance. 

(orderable event) 

( event name list) 
( order dest) 

[ (event name) ] 
{ (message event) 
I (incomplete message event) 
I (create) 
I (timer statement) 
I (action) 
} 
[ before ( event name list) ] 
( order dest) [ , ( event name list) ] 
(event name) 

Table 2. 7: The textual syntax for causal orderings. 
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The MSC given in Figure 2.24 can be described textually as follows: 

msc causal ; 
ij : instance ; 
ij : concurrent ; 

in m from env before l ; 
out n to env; 
l out o to env ; 

endconcurrent ; 
ij : endinstance ; 
endmsc; 
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The output of message o by instance ij to the environment has event name l. The 
input of message m · by instance ij from the environment has to precede the event 
with event name l, i.e. the output of message o by instance ij to the environment. 

The textual description of the causal orderings is asymmetrical in the sense that the 
causal ordering is only attached to the event that is associated with the starting point 
of the causal order arrow. Although this gives rise to short descriptions we feel that it 
should also be possible (maybe it should even be demanded) to describe the ordering 
for the other event. This can be achieved by extending the textual syntax with a 
keyword after. We will return to this subject in Section 2.9.3. 

2.5 Combining MSCs with composition constructs 

MSC based specifications often consist of many different MSCs, instead of one sin-
gle MSC. MSC offers ways to group single MSCs into MSC documents. An MSC 
document is a collection of MSCs. 

MSCs can be put in a wider context by means of composition operators. The three 
primitive operations are vertical composition, horizontal composition and alternative 
composition. In the language MSC these concepts of composing MSCs are manifest in 
different ways: in inline expressions, MSC reference expressions and High-level MSCs. 

First the intuitive semantics of the operations vertical, horizontal and alternative 
composition is given. Then MSC documents are treated, followed by inline expressions 
and MSC references. The last part of this section describes the use of the composition 
mechanisms in High-level MSC. 

2.5.1 Vertical, horizontal and alternative composition 

In this section, we will focus on vertical, horizontal and alternative composition of 
MSCs. In the sections to follow a graphical and textual syntax is provided for these 
and other composition mechanisms by means of inline expressions, MSC reference 
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expressions and High-level MS Cs. We explain the operations of horizontal and vertical 
composition and illustrate these by means of examples. The examples do not form a 
precise definition of the semantics. For a formal definition see Chapter 3. 

Vertical composition The vertical composition of two MSCs refers to the opera-
tion of placing one MSC at the bottom of another one and then linking the instances 
they have in common thus obtaining a new MSC. 

If the MSCs have no instances in common the meaning of the vertical composition is 
the same as an MSC with the instances of these MSCs placed next to each other. See 
Figure 2.28 for an example. MSC first has instances named i and j and MSC second 
has instances named k and l. The MSCs have no instances in common, so there are no 
links to be made. Thus vertical composition of MSCs does not necessarily mean that 
all events from the first MSC (in the example MSC first) have to be executed before 
any event from the second MSC (MSC second) can be executed. In the example this 
means that the sending of n might as well occur before the sending of m. 

msc first msc second 

HH 
msc together 

Figure 2.28: Vertical composition with disjoint instances. 

Another case occurs if the MSCs have all instances in common. Then all events from 
an instance of the second MSC have to occur after the events from the same instance 
of the first MSC. For an example see Figure 2.29. The MSCs first and second have the 
instances i, j, and kin common. The reception of message m by instance j necessarily 
has to precede the reception of message n by instance j in the resulting MSC together. 
In this example it is still possible that the sending of message n by instance i, which 
is an event described in MSC second, is executed before the reception of message m 
by instance j, described in MSC first. 
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msc first msc second 

msc together 

Figure 2.29: Vertical composition with the same instances. 

Also the situation in which the MSCs have instances in common and also have different 
instances is allowed. For example the MSCs first and second from Figure 2.30 have 
the instance j in common, but instance i is only described for MSC first and instance 
k is only described for MSC second. The result of the vertical composition of the 
MSCs first and second is given as MSC together in the same figure. 

Horizontal composition The horizontal composition of two MSCs refers to the 
operation of placing them next to each other. If the MS Cs have some or all instances in 
common, it is assumed that the behavior of the common instance(s) is the interleaving 
of the behaviors of these instance(s) in the separate MSCs. 

In the case that the MSCs have no instances in common, the horizontal composition 
is similar to the vertical composition (see Figure 2.28). For an example of the case 
where the MSCs have one instance in common, we refer to Figure 2.31. 

In this example the MSCs first and second have the instance j in common. As stated 
before, the behavior of the shared instance is obtained by interleaving the events of 
the separate instance descriptions. This can be expressed in a coregion with general 
orderings as shown in MSC together. 

For Interworkings, the interworking merge ( lliw) of first and second (regarding them 
as Interworkings), cannot be expressed by a single Interworking. Instead a set of six 
Interworkings is needed. In these resulting Interworkings there is no need to express 
that the input of m precedes the output of n and that the output of o precedes the 
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msc first msc second 
j j k 

HH 
msc together 

j k 

I:--H 
Figure 2.30: Vertical composition. 

msc first msc second 

msc together 

Fl~k . n u · 
I I p ---

Figure 2.31: Horizontal composition with shared instance. 
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input of p as the communications are synchronous. Due to the introduction of the 
coregion, the result of horizontally composing two MSCs can be drawn as an MSC 
again if only orderable events are defined on the instances the MSCs have in common. 

Alternative composition Usually a system is not described by means of one single 
MSC; instead a number of MSCs is used to describe several alternative scenarios. With 
the features of MSC introduced so far only alternative scenarios can be described over 
the same events. So each trace contains precisely the same events. For example, it is 
impossible to describe that either an event a or an event b is executed. A means to 
describe alternatives is by giving one MSC for each of the alternatives. Thus large piles 
of scenarios come into existence, for example when describing system requirements or 
when describing a system by giving different use cases [JCJ092]. 

In complex systems there are many points· of deviating behavior. Therefore,· it is 
important to be able to indicate at what point alternatives occur. For that reason 
the language MSC offers several possibilities to describe alternatives in an MSC. An 
important aspect of the meaning of the alternative composition mechanism in MSC 
is that the moment of choice between the different scenarios is postponed until that 
choice can no longer be avoided. 

Consider the MSCs A and B as given in Figure 2.32. Each of these MSCs has one 
initial event, the sending of m and the sending of n respectively. The alternative 
composition of these MSCs now has two initial events: the sending of message m and 
the sending of message n. If the sending of message mis executed a choice is made for 
the execution of MSC A. On the other hand, if the sending of message n is executed, 
a choice is made in favour of MSC B. Thus, with the execution of an event which 
can be executed by only one of the alternatives, all alternatives that cannot execute 
this event are discarded. 

msc A msc B msc C 
j j j 

Figure 2.32: MSCs. 

Now consider the MSCs A and C from Figure 2.32. If the local action on instance 
j of MSC C is executed necessarily a choice is made in favour of MSC C. But, if 
the sending of message m occurs, this event can originate from either MSC A or C, 
though it is not clear from which of the two MSCs it originates at the moment of 
execution of this event. Alternative composition in MSCs is defined in such a way 
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that no choice is made until this cannot be avoided. One could say that after the 
execution of the sending of message m there still are two alternativPs: the parts of 
the MSCs A and C that remain to be executed. In this specific example now a choice 
has to be made as the MSCs have no initial events in common anymore. 

2.5.2 MSC documents 

In the following sections we will focus on the means offered by MSC96 to compose 
MSCs. As a consequence we must be able to describe more than one MSC. For this 
purpose Message Sequence Chart documents are used. 

Graphically an MSC document is given as a frame symbol with a document head in 
it. 

Textually, an MSC document consists of an MSC document head and an MSC docu-
ment body. The MSC document head consists of the keyword mscdocument followed 
by an MSC document name and optionally followed by the keywords related to and 
an sdl reference. The SDL reference is, if MSC is used in combination with SDL, 
used for the identifier (pathname) of the SDL document to which the MSCs refer. In 
combinations of MSC with other languages/tools the SDL reference can be used for 
similar reference purposes. The MSC document body consists of a number of Message 
Sequence Charts. The textual grammar for MSC documents is given in Table 2.8. 
The nonterminal (text) is a sequence of letters, digits, spaces and other symbols. Its 
precise definition is not interesting here. 

(msc document) 
(msc document head) 
(document head) 

(sdl reference) 
(identifier) 
(qualifier) 
(msc document body) 

(msc document head) (msc document body) 
( document head) 
mscdocument (msc document name) 
[ related to (sdl reference) ] (end) 
(sdl document identifier) 
[ (qualifier) ] (name) 
« (text) » 
(message sequence chart)* 

Table 2.8: The textual syntax for MSC documents. 

For MSC documents the following static requirements are formulated. Within an 
MSC document there must not be two or more MSCs with the same name. Within 
the MSCs of an MSC document only references to MSCs specified within that MSC 
document may be used. An MSC may not be depending on itself, directly or through 
a number of references. 

The textual representation of MSC documents in MSC92 differs slightly from the 
textual representation used in MSC96. In MSC92 the end of the MSC document 



2.5 Combining MSCs with composition constructs 51 

was marked with the keyword endmscdocument. As a consequence of this change, 
backward compatibility is lost at a point where this can hardly be motivated. 

2. 5. 3 Inline expressions 

Inline expressions provide a means to describe the composition of MSCs inside an 
MSC. The operators that can be used are amongst others the horizontal and alter-
native composition discussed before. The reason to omit vertical composition is that 
we already have a natural means to describe vertical composition inside an MSC. 

Graphically an inline expression consists of an inline expression symbol that is at-
tached to a number of instances ( at least one). This inline expression symbol contains 
in the left-upper corner one of the keywords alt, par, opt, exc or loop. These key-
words indicate the composition operation that is described by the inline expression. 
Inside the inline expression symbol the operands are described in the form of an 
anonymous MSC, i.e. an MSC without MSC name and without instance head and 
end symbols. 

msc A mscB 
j j 

alt 
m 

par m 

n 

n 0 

Figure 2.33: Examples of inline expressions. 

Some examples of inline expressions are given in Figure 2.33. In MSC A an inline 
expression is attached to the instances i and j. This inline expression has the keyword 
alt in its upper left corner in order to indicate that the parts of the MSCs that are 
separated by means of the separator symbol are considered alternatives. In this_ par-
ticular example there are two operands. Different operands are separated by means of 
a horizontal dashed line, the separator symbol. The operands of the inline expression 
are described by associating events to the instance axes that are displayed inside the 
inline expression symbol. At this point it is not allowed to draw messages or causal 
orderings that cross the inline expression symbol or the separator symbols that occur 
therein. The first operand describes the sending of a message m by instance i and 
its subsequent reception by instance j. The second operand describes the sending of 
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a message n by instance i and its subsequent reception by instance j. The meaning 
of this MSC in terms of sequences of events that can be performed is that either the 
sending and reception of m or the sending and reception of n takes place but not 
both. As soon as the sending of one of the messages takes place it is known which 
operand is executed. 

In MSC B the horizontal composition of two "MSCs" is indicated by means of the 
keyword par. In this case all events are executed in such a way that the orderings 
described by the first operand are respected and at the same time the orderings 
described by the second operand are respected. This mode of operation is often 
called interleaving. MSC B' from Figure 2.34 has the same behavior as MSC B from 
Figure 2.33. 

msc B' 
j 

r===l 
I m I 

n ·n 
I 
I 
I 

I I 
I 0 I 

LJ p ·n -I 
I - -

Figure 2.34: MSC equivalent to MSC B. 

Both alternative and horizontal composition can have any finite, positive number 
of operands. These operands are all drawn inside the inline expression symbol and 
they are separated by a dashed horizontal line, the separator symbol. As in the 
recommendation no scheme for placing parentheses is indicated it is assumed that 
these operators are commutative and associative. 

For optional composition and for repetition there is exactly one operand. This operand 
is described by means of the part of the MSC that is drawn inside the inline expression 
symbol. Examples of both are given in Figure 2.35. 

MSC A describes an MSC where the sending and receiving of message m can occur, 
but does not have to occur, it is optional. In both cases message n is sent and received. 
MSC C from Figure 2.36 has the same behavior: the first alternative corresponds to 
the case that the optional part is executed, and the second alternative corresponds to 
the case that the optional part is neglected. In general every optional inline expression 
can be replaced by an alternative inline expression with two operands: one without 
events and one with the contents of the optional inline expression. 

The inline loop expression in MSC B of Figure 2.35 describes that the sending and 
receiving of message m occurs zero, one or two times, followed by the sending and 
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mscA mscB 
j j 

opt loop<0,2> 
m m 

n 

Figure 2.35: Examples of inline expressions. 

receiving of message p. Intuitively the behavior of MSC B is the same as the behavior 
of MSC D from Figure 2.36. 

msc C msc D 
j j 

alt 
m 

m 

m 
n 

m 

p 

Figure 2.36: Examples of inline expressions. 

The keyword loop is followed by a loop boundary. This loop boundary refers to the 
number of repeated vertical compositions of the operand of the inline expression. The 
loop boundary, if present, indicates the minimal and/or maximal number of vertical 
compositions of the operand. In the recommendation such a number can either be 
the keyword inf, representing infinity, or a sequence of natural names. A natural 
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name can be any label. For the semantics it is important to be able to interpret the 
sequences of natural names as natural numbers. In this thesis, we will only use decimal 
digits as natural names. The loop boundary can be of the form <n> or <n,m> where 
n and m are sequences of natural names or inf. The combination loop <n,m> means 
that the operand of the operator is executed at least n and at most m times. If the 
interpretation of the sequence of natural names n is greater than the interpretation of 
the sequence of natural names m then this means that the operand is executed zero 
times. The combination loop <n> can be viewed as a shorthand for the combination 
loop <n,n>, i.e. the operand is executed exactly n times. If the loop boundary is 
omitted this is interpreted as the combination loop <l,inf>. 

Inline expressions for exceptions are indicated by the keyword exc. For this kind of 
inline expressions not the inline expression symbol is used but the exception inline 
expression symbol (see Figure 2.37). The exception inline expression symbol differs 
from the inline expression symbol in that its lower horizontal line is dashed instead 
of solid. The reason is that the exception operator is a binary operator. Its first 
operand, the normal mode of operation, is indicated by the part of the MSC following 
the inline expression, and the second operand, the exceptional case is depicted in the 
inline expression. 

mscA 
j 

exc 
m 

n 

Figure 2.37: Example of an inline expression. 

The intuition of an exception inline expression is that either the normal case is exe-
cuted or the exceptional case is executed. Thus, an exception inline expression can 
be seen as the alternative composition of the two operands. 

An exception inline expression must be associated with all instances in the MSC. 
In case of an exception inline expression which does not overlap all instances there 
might be difficulties in determining the part of the MSC following the inline expres-
sion. An example thereof is given in Figure 2.38. The local action a is drawn above 
the inline expression. The local action is not ordered relatively to any event of the 
inline expression and therefore it can be executed both before and after the events 
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of the inline expression. To circumvent situations where the second operand of the 
exception inline expression cannot be determined, the recommendation requires that 
if an exception inline expression is used it must be attached to all instances of the 
MSC. 

msc example 
j k 

Figure 2.38: Illegal inline expression. 

If an instance is not involved in the operands of an inline expression, then it is possible 
to hide the part of the instance axis of such an instance behind the inline expression. 
See Figure 2.39 for an example of an inline expression in which instance j does not 
participate. 

mscA 
j k 

n 

m 

Figure 2.39: Example of an inline expression. 

Inline expressions can be nested as long as the inner inline expression is contained 
completely in one operand of the outer inline expression. 

The textual syntax of inline expressions is given in Table 2.9. For example, the textual 
representation of MSC A from Figure 2.33 is given by 
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mscA; 
: instance; 

j : instance ; 
i , j: alt begin ; 

i: out m to j; 
j : in m from i ; 
alt ; 
i : out n to j ; 
j : in n from i ; 
alt end; 

: endinstance ; 
j : endinstance ; 
endmsc; 

(inline expr) 

(loop expr) 

(opt expr) 

(exc expr) 

(alt expr) 

(par expr) 

(loop boundary) 
(inf natural) 

(multi instance event) 

Introduction to the language MSC 

.. - (loop expr) I (opt expr) I (alt expr) 
I (par expr) I (exc expr) 
.. - loop [ (loop boundary) ] begin (end) 

(msc body) 
loop end 

.. - opt begin ( end) 
(msc body) 
opt end 

.. - exc begin (end) 
(msc body) 
exc end 

.. - alt begin ( end) 
(msc body) { alt (end) (msc body) }* 
alt end 

.. - par begin (end) 
(msc body) { par (end) (msc body) }* 
par end 

.. - <(inf natural) [ , (inf natural) ] > 

.. - inf I (natural name)+ 

.. - (inline expr) 

Table 2.9: The textual syntax for inline expressions. 

2.5.4 MSC reference expressions 

An MSC reference expression can be used to refer to other MSCs in an MSC document 
by means of their unique MSC name. Graphically an MSC reference expression is 
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represented by a textual formula in a rounded frame, the msc reference symbol, which 
is placed on top of a number of instances. 

Such a textual formula is an expression containing references to other MSCs in the 
MSC document via their MSC name, operators for composing MSCs: alt, seq, par, 
opt, exc, empty, and loop and parentheses for grouping subexpressions. MSC A in 
Figure 2.40 contains an MSC reference expression that is attached to the instances i 
and j and that contains the textual formula B alt C which refers to the alternative 
composition of the MSCs B and C (which are not displayed). 

msc example 

j k 

B alt C 

m 

Figure 2.40: An example of an MSC reference expression. 

The textual representation of formulas, which is also used in the graphical syntax of 
MSC reference expressions, is given in Table 2.10. 

( msc ref expr) 
(msc ref par expr) 
( msc ref seq expr) 
( msc ref exc expr) 
(msc ref opt expr) 
( msc ref loop expr) 

(msc ref par expr) { alt (msc ref par expr) }* 
(msc ref seq expr) { par (msc ref seq expr) }* 
(msc ref exc expr) { seq (msc ref exc expr) }* 
[ exc] (msc ref opt expr) 
[ opt ] (msc ref loop expr) 
[ loop [ (loop boundary) ] ] { empty 

I (msc name) 
I ( (msc ref expr)) 
} 

Table 2.10: The textual syntax for textual formula. 

The binding power of the operators is in descending order as follows: loop, opt, exc, 
seq, par, alt. The binding power can be superseded by using parentheses. Examples 
of MSC reference expressions are: 

• A; 

• (A alt B) seq C; 
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• loop <5,16> (A par B); 

• A seq loop <3,inf> B. 

There are two requirements that must be satisfied with respect to the instances that 
are overlapped: 

1. If an instance that is present in the enclosing MSC diagram is also present in the 
MSC reference expression, then the MSC reference symbol must be attached to 
this instance. An instance is present in an MSC reference expression if at least 
one of the MSCs that are referenced in the expression has an instance with that 
name. 

2. If two MSC reference expressions in the same enclosing MSC diagram share an 
instance then this instance must be drawn in the enclosing MSC diagram. 

Note that these requirements do not say that every instance that is present in the 
MSC reference expression must be visible in the enclosing MSC. The requirements 
also do not say that an MSC reference expression may not overlap an instance that 
is not present in the MSC reference expression. 

msc A msc B 

Figure 2.41: An example of an illegal MSC reference expression. 

The first requirement is included to prevent the user from· drawing an MSC where 
it is not clear how the events on an instance are ordered. An example is given in 
Figure 2.41. Suppose that an MSC A with instances i and j is given, and that a 
message m is transmitted from instance i to instance j. Then, in MSC B, it is not 
clear in what order the input of message m by j and the output of n by j are to be 
executed. This might be exactly what the user wants to indicate, but since it cannot 
be easily seen from MSC B that there exists another event on instance j, this is not 
allowed. 

The second requirement is motivated similarly. As two MSC reference expressions 
share an instance it should be visible on the level of the enclosing MSC diagram how 
the events specified on these occurrences of the instance are ordered. Consider for 
example the MSCs shown in Figure 2.42. MSC C refers to the MSCs A and B. In 
MSC C only the instances i and k are drawn. Note that MSC C satisfies the first 
requirement. Both MSC A and MSC B have an instance j. In order to know how 
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the events from the two occurrences of instance j are ordered with respect to each 
other it is mandatory to display instance j in MSC C. Then the first requirement 
is no longer satisfied. In order to satisfy the first requirement the user must make 
sure that both references overlap this instance j in MSC C. The only two ways to do 
this are given as MSCs D and E in Figure 2.42. Diagrams where the MSC reference 
symbols overlap or cross are disallowed by the drawing rules. 

msc A mscB msc C 
j j k k 

m n 

msc D mscE 
j k j k 

A B 

B A 

Figure 2.42: Example of MSCs: MSC C is illegal. 

Next, we explain the meaning of the operators. For a precise description of their 
meaning we refer to Chapter 3 where for each of the operators a semantical equivalent 
is defined. The operators seq, par and alt refer to the notions of vertical composition, 
horizontal composition and alternative composition respectively. These have already 
been explained in Section 2.5.1. The meaning of the operators exc, opt and loop has 
already been explained in Section 2.5.3. The operator empty is a nullary operator, 
i.e. a constant, that refers to an MSC without events. Recommendation Z.120 does 
not specify which instances are contained in an empty MSC. There seem to be three 
choices: An empty MSC contains all instances, no instances, or the instances that 
are overlapped by the MSC reference expression the empty MSC appears in. The 
first choice is not acceptable as this could violate the static requirements mentioned 
above. The third choice is also not acceptable as the empty MSC can also be used in 
an HMSC and HMSCs do not specify instances. Thus, in this thesis, it is assumed 
that an empty MSC has no instances. 
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Textually an MSC reference expression is indicated by the keyword reference fol-
lowed by the textual formula. See Table 2.11 for the textual syntax. The event-
oriented description of MSC D of Figure 2.42 is given by 

mscD; 
: instance ; 

j : instance ; 
k : instance ; 
i , j: reference A ; 
j , k reference B ; 

: endinstance ; 
j : endinstance ; 
k : endinstance ; 
endmsc; 

(msc reference) reference ( msc ref expr) 

(multi instance event) ( msc reference) 

Table 2.11: The textual syntax for MSC reference expressions. 

In recommendation Z.120 a notion of parameter substitution is defined on MSC refer-
ence expressions. Parameter substitution can be useful as it increases the possibilities 
of reuse of MSCs. The extension of the grammar defining the textual formula that 
can be used in an MSC reference symbol is given in Table 2.12. There are parameter 

(msc ref loop expr) 

(parameter substitution) 
(substitution list) 
(substitution) 
(replace message) 
(replace instance) 
(replace msc) 

[ loop [ (loop boundary) ]] 
(msc name) (parameter substitution) 
subst (substitution list) 
(substitution) [ , (substitution list) ] 
(replace message) I (replace instance) I (replace msc) 
[ msg] (message name) by (message name) 
[ inst ] (instance name) by (instance name) 
[ msc ] { empty I (msc name) } 
by { empty I (msc name) } 

Table 2.12: The textual syntax for parameter substitution. 

substitution mechanisms for message names, instance names and MSC names. No 
parameter substitution mechanism is provided for other names such as timer names 
and condition names. Parameter substitution is not allowed on arbitrary MSC refer-
ence expressions, but only on MSC references. At the same time the recommendation 
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states that if a parameter substitution is applied on an MSC reference it should also 
be applied on all MSCs referenced in the corresponding MSC. This corresponds to 
defining parameter substitution for arbitrary MSC reference expressions. 

A parameter substitution consists of the keyword subst followed by a list of substi-
tutions. A substitution can be the replacement of a message, an instance or an MSC 
(reference). 

The meaning of MSC name substitution is a replacement of references to MSCs by 
references to MSCs. The meaning of instance and message name substitution is a 
replacement of these names by other names. The meaning of multiple parameter sub-
stitutions is the parallel application of parameter substitution. Thus the substitution 
"subst A by B, B by A" implements a simultaneous replacement of references to 
MSC A by references to MSC Band vice versa. 

The recommendation does not state what it means if a substitution list contains more 
than one substitution for a name. An example is the expression "A subst A by B, 
A by C". This should be disallowed explicitly. 

2.5.5 High-level Message Sequence Charts 

A High-level Message Sequence Chart (HMSC) is a graphical overview of the relation 
between the MSCs contained. It helps in keeping track of the control-flow. In an 
HMSC vertical, horizontal and alternative composition as well as repetitive behavior 
are captured in an attractive graphical layout: references to MSCs are related by 
means of arrows connecting them. One can look at HMSC as the synthesis of the 
roadmap approach [Rud95, RGG96] and the operator approach [Hau94]. 

Graphically an HMSC is a graph with several types of nodes connected by arrows. 
The types of nodes that can be included in an HMSC are the following: 

• start node: V 
• end node: 6 
• MSC reference node: D 
• condition node: C=> 
• connection node: 0 
• parallel frame: D 

A first example of an HMSC is given in Figure 2.43. 

Recommendation Z.120 states only one static requirement restricting the allowed 
diagrams: Every node in the HMSC must be reachable from the start node, i.e. the 
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graph must be connected. From the textual representation of HMSC, however, we 
additionally obtain the following requirements. Every HMSC has exactly one start 
node. The start node has no incoming arrows. An end node has no outgoing arrows. 
Every node that is not an end node has at least one outgoing arrow. 

msc example 

y 
Initialization 

Communicate 

Figure 2.43: An example of an High-level Message Sequence Chart. 

An MSC reference node contains any textual formula that can be used in an MSC 
reference expression (see Section 2.5.4). A condition node contains a non-empty list 
of condition names. A parallel frame contains at least one anonymous HMSC, i.e. an 
HMSC without name and without frame. The recommendation does not specify if 
different anonymous HMSCs can share nodes. In our opinion it is better not to share 
nodes between different anonymous HMSCs as this confuses the diagram. 

Recommendation Z.120 requires that an arrow that connects two nodes always goes 
from the lower segment of a node to the upper segment of a node. In this thesis we 
also attach the arrows at other points to the nodes (as for example in Figure 2.43). 
Lines can be used instead of arrows for connecting nodes. A line connecting two nodes 
is always interpreted as an arrow from the upper node to the lower node. To avoid 
confusion, in this thesis, only arrows are used to connect nodes. 
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An HMSC describes relations between the contained MSCs in a graphically attrac-
tive way. Diagrams with many nodes and arrows can easily become unreadable for 
the human eye. By using connection nodes we can improve a lot on this problem. 
Connection nodes together with their incoming and outgoing arrows are a convenient 
shorthand. Every combination of an incoming and an outgoing edge of a connection 
node represents an arrow between the source of the incoming arrow and the destina-
tion of the outgoing arrow. A transformation of HMSCs with connection nodes to 
HMSCs without connection nodes can easily be given. An example of an HMSC with 
connection nodes is given in Figure 2.43. 

An arrow between two nodes means that they are composed vertically. For the HMSC 
given in Figure 2.44 this means that the MSCs A and B are composed vertically. 

msc example 

Figure 2.44: Vertical composition in an HMSC. 

If a node has more than one outgoing arrow this indicates a number of alternatives 
with which this node can be composed vertically. The HMSC given in Figure 2.45 
describes that MSC A is composed vertically with either MSC B or MSC C. 

msc example 

Figure 2.45: Alternatives in an HMSC. 
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Horizontal composition is denoted by the parallel frame. The parallel frame contains 
at least one anonymous HMSC. Each anonymous HMSC contained in the parallel 
frame denotes an operand for the horizontal composition. The anonymous HMSCs 
contained in such a frame are composed horizontally. The HMSC in Figure 2.46 
describes that the MSCs A and B are composed horizontally. 

mscymple 

Figure 2.46: Horizontal composition in an HMSC. 

With start nodes, end nodes and connection nodes no dynamic semantics is associated. 
The semantics of an MSC reference node is the semantics of the textual formula it 
contains. The semantics of these textual formula has already been explained in Section 
2.5.4. The semantics of a parallel node has been explained above. Also with condition 
nodes no dynamic semantics is associated. Conditions however can be used in an 
HMSC to restrict the possible continuations. Thereto the following four requirements 
are formulated [IT96b): 

• If an MSC reference node in an HMSC is immediately preceded by ·a condition 
node then the condition names indicated inside the condition node must be a 
subset of the initial conditions of the MSC reference expression indicated inside 
the MSC reference node. 

• If an MSC reference node in an HMSC is immediately followed by a condition 
node then the condition names indicated inside the condition node must be a 
subset of the final conditions of the MSC reference expression indicated inside 
the MSC reference node. 

• If a parallel frame is immediately preceded by a condition node, then the con-
dition names indicated inside the condition node must be a subset of the set of 
initial conditions of the parallel frame. 



2.5 Combining MSCs with composition constructs 65 

• If a parallel frame is immediately followed by a condition node, then the con-
dition names indicated inside the condition node must be a subset of the set of 
final conditions of the parallel frame. 

The set of initial (final) conditions of an MSC reference expressions is defined as 
follows: 

• The set of initial (final) conditions of a reference to an MSC A is the set of 
initial (final) conditions of MSC A. 

• The set of initial conditions of an expression X seq Y is the set of initial 
conditions of the expression X. The set of final conditions of an expression X 
seq Y is the set of final conditions of the expression Y. 

• The set of initial (final) conditions of an expression X alt Y or X par· Y is 
the intersection of the sets of initial (final) conditions of the MSC reference 
expressions X and Y. 

• The set of initial (final) conditions of an expression opt X, exc X or loop X 
is the set of initial (final) conditions of the expression X. 

The set of initial conditions of an HMSC is defined as follows. If the HMSC start 
node is followed immediately by one or more condition nodes, then the set of initial 
conditions is defined as the intersection of the sets of condition names indicated in-
side the condition nodes. If the HMSC start node is not immediately followed by a 
condition node then the set of initial conditions is defined to be the complete set of 
conditions. The set of initial conditions of a parallel frame is the intersection of the 
sets of conditions of the anonymous HMSCs in the parallel frame. 

The set of final conditions of an HMSC is defined as follows. If the HMSC contains 
one or more condition nodes immediately preceding an end node, then the set of final 
conditions of the HMSC is defined to be the intersection of the sets of conditions indi-
cated in these condition nodes. If there is no end node that is immediately preceded 
by a condition node the set of final conditions is defined to be the complete set of 
conditions. The set of final conditions of a parallel frame is the intersection of the 
sets of final conditions of the anonymous HMSCs inside the parallel frame. 

The set of initial (final) conditions of an inline expression is defined as follows: 

• The set of initial (final) conditions of an alternative or parallel inline expression 
is the intersection of the sets of initial (final) conditions of the operands. 

• The set of initial (final) conditions of an optional, exception or loop inline ex-
pression is the set of initial (final) conditions of the operand. 

If an MSC contains a global condition that precedes everything except the instance 
head symbols then the set of initial conditions is given by the condition names indi-
cated in this condition. Otherwise, the set of initial conditions is defined to be the 
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complete set of conditions. If an MSC contains a global condition that follows every-
thing except the instance end symbols then the set of final conditions is given by the 
condition names indicated in this condition. Otherwise, the set of final conditions is 
defined to be the complete set of conditions. 

An example of a diagram that respects the requirements is given in Figure 2.47. The 
set of final conditions of MSC A is given by { C, F}, the set of initial conditions of 
MSC B by { C,I} and the set of conditions in the condition node is given by { C}. 
Clearly, { C} { C, F} and { C} { C, J}. 

msc example 

msc A mscB 

Figure 2.47: An HMSC that respects the requirements. 

The arrows in an HMSC can form cycles. This indicates repetitive behavior. Fig-
ure 2.48 shows an HMSC that contains a cycle. This HMSC is equivalent to MSC 
infinite shown in the same figure. 

msc cycle msc infinite 

y 

fil 
Figure 2.48: A cycle in an HMSC. 

An HMSC is described textually by associating a label name with every node of the 
HMSC except the start symbol. The start symbol is implicitly named since there is 
only one start symbol for every HMSC. The connections between the start symbol 
and the other nodes are described first. For example if the start symbol has successor 
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nodes labeled with li, ... , l4, this is described by "expr li alt 12 alt l3 alt 14 ;". 
It indicates that there is an arrow from the start symbol to the nodes labeled with 
li, ... , Zn. Then for every node of the HMSC in isolation its type/ contents is described 
possibly followed by a list of its successor nodes in a "node expression". For example 
if the HMSC contains a node labeled l with successor nodes labeled l' and l" and this 
node labeled l is a reference to an MSC named A, then this is described as follows: 
"l : A seq ( l' alt l" ) ;". The textual syntax of HMSCs is give·n in Figure 2.13. 

(message sequence chart) 

(msc expression) 
(start) 
(node expression) 

(node) 

(par expression) 

msc (msc head) 
expr (msc expression) 
endmsc (end) 

(start) (node expression)* 
(label name) { alt (label name) }* (end) 
(label name) : 
{ (node) seq ( (label name) { alt (label name) }* ) 
I end} (end) 
empty 
(msc name) 
(par expression) 
condition (condition name list) 
connect 
( (msc ref expr) ) 
expr (msc expression) endexpr 
{ par expr (msc expression) endexpr } * 

Table 2.13: The textual syntax for High-level Message Sequence Charts. 

The MSC from Figure 2.43 is represented textually by 

msc example ; 
expr lO; 
lO : Initialization seq ( ll) ; 
ll : connect seq (l2) ; 
l2 : Communicate seq (l3) ; 
l3 : connect seq ( l4 alt l7) ; 
l4 : connect seq (l5) ; 
l5 : Fail seq (l6) ; 
l6 : connect seq ( ll) ; 
l7 : connect seq (18) ; 
l8 : end; 
endmsc; 

A requirement on the textual representation of HMSC is that for every label name 
used to describe the successors of a node there should be a node labeled by that name. 
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2.6 Gates 

2.6.1 Formal gate definitions 

When describing industrial systems by means of Message Sequence Charts as pre-
sented so far one of the biggest problems is the number of instances and the number 
of events on these instances. The diagrams easily get too big to be handled, printed, 
read, etc. In order to solve this problem complex MSCs must be decomposed into 
smaller MS Cs. In general, it is impossible to do this by means of horizontal or vertical 
composition without ever having to cut a message or causal ordering in two parts, 
where one part is located in the one component and another part is located in another 
component. An example of such an MSC is given in Figure 2.49. To facilitate this, 
gates are introduced. 

msc nondecomposable 
il i2 i3 i4 

m3 
m4 

ml 

Figure 2.49: An MSC that cannot be decomposed. 

Gates are implicitly or explicitly named parts of the environment. As such they can 
be used to describe the interface between an MSC and its environment. Any message 
arrow or causal order arrow attached to the frame of an MSC defines a gate. In the 
recommendation there are two types of gates: message gates and order gates. Message 
gates are used for message events and order gates are used for causal orderings. 

Graphically an explicitly named gate is indicated by associating a gate name with the 
place where a message arrow or causal order arrow is attached to the frame of the 
MSC, i.e. the environment. A message gate always has a name, either explicitly given 
or implicitly defined. By associating a name with the gate on the frame of the MSC 
the gate name is explicitly defined. Otherwise the name is given implicitly by the 
direction of the message through the gate and the message identifier1 . For example 
if we have a message m from instance i to the frame of the MSC without explicitly 

1 In the recommendation the implicit gate name is given by the direction of the message through 
the gate and the message name. The message name is not discriminating enough. 



2.6 Gates 69 

associating a gate name with the gate, implicitly the name is defined to be ouLm. 
Notice that the direction of the message through the gate is chosen from the point 
of view of the environment; although we see a message m going into the gate, it's 
direction is out. Examples of explicitly named message gates are the message gates gl 
and g2 in Figure 2.50. Examples of explicitly named order gates are the order gates 
gl and g2 in Figure 2.51. Graphically it is only possible to distinguish the two types 
of gates, message gates and order gates, by means of the type of arrow associated to 
it. If this is a message arrow the gate is a message gate; if it is a causal order arrow, 
the gate is an order gate. 

msc example 
j 

]=:~ 
Figure 2.50: MSC to illustrate message gates. 

Consider MSC example from Figure 2.50. For this MSC there are four message 
gates, two implicitly named on the left and two explicitly named on the right. The 
gates associated with the messages ml and m2 that are sent to or received from 
the environment are implicitly named in_ml and ouLm2 respectively. The gates 
associated with the messages nl and n2 are explicitly named by associating a gate 
name with the place where the messages are attached to the MSC frame. 

msc example 
j 

gl 
g2 

Figure 2.51: MSC to illustrate order gates. 

In general, order gates are treated similarly as message gates, though there is an 
important difference. Order gates always have to be named explicitly. The reason 
for this is that it is impossible to determine whether two causally ordered events 
are corresponding, based on the events alone. With an order gate also a direction is 
associated from the event to be executed first to the event to be executed thereafter. It 
is required that gates that are connected when composing MSCs should be consistent 
in the sense that an order gate with direction out may only be connected to an order 
gate with direction in and vice versa. See Figure 2.51 for an example of an MSC with 



70 Introduction to the language MSC 

two order gates gl and g2. The gate indicated by the name gl is called an order in 
gate and the gate with gate name g2 is an order out gate. Also in the case of order 
gates the direction is motivated from the perspective of the environment. 

Besides message arrows from an instance to the environment and message arrows from 
the environment to an instance, it is also allowed to draw a message arrow from the 
environment to the environment. In this case no event is associated with the arrow. 

So far we have only considered gates as the input address of message output events 
and as the output address of message input events. The recommendation also allows 
a gate to be used ·as the input address of a lost message output event or as the 
output address of a found message input event. An example of these is given in 
Figure 2.52. Recommendation Z.120 is not so clear in the representation of lost and 

msc example 
i 

g 

~m h 

Figure 2.52: Lost and found messages and gates. 

found messages with a gate as an output or input address. We assume that it is the 
intention to represent those graphically in this way since otherwise they cannot be 
distinguished from lost and found message events that are sent to an instance. 

It is even possible to draw an MSC where a lost message output event or a found 
message input event is attached to the frame of the MSC. Examples of these are given 
in Figure 2.53. Also in this case no events are associated with the arrows. 

msc example 

m 
0---

Figure 2.53: Lost and found messages on the MSC frame. 

As already explained in the motivation, the intended use of gates is to compose and 
decompose large specifications and descriptions into more tractable pieces. This will 
become more apparent in Section 2.6.2 and Section 2.6.3 on the combination of gates 
with MSC reference expressions and inline expressions respectively. For now we will 
only discuss the aspects related to gates on the MSC-level without these composition 
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mechanisms. For the semantics of gates we refer to the upcoming two sections where 
gates are attached to MSC reference expressions and inline expressions. 

Textually, the name of a message gate can be used as an output or input destination 
for message output and message input events. An implicitly named gate is textually 
indicated by the keyword env. An explicitly named gate is textually represented by 
the keywords env and via followed by a gate name. For example, the sending of 
message ml from instance i to the environment in MSC example in Figure 2.50 is 
denoted by "i : in ml from env" and the sending of message n2 from instance j to 
the gate g2 by "j : out n2 to env via g2". Textually the MSC from Figure 2.50 can 
be represented by 

msc example ; 
instance ; 

j : instance ; 
: in ml from env ; 
: out m2 to env ; 
: in nl from env via gl ; 
: out n2 to env via g2 ; 
: endinstance ; 

j : endinstance ; 
endmsc; 

The MSC interface which consists of an optional MSC instance interface is extended 
with an optional MSC gate interface. The MSC gate interface contains a list of MSC 
gate definitions. A MSC gate definition is composed of the keyword gate followed 
by a message or order gate. Such a message gate consists of an optional gate name 
followed by a message output or input event. This message output or input event 
is described from the perspective of the gate. Thus a message m from a gate g to 
an instance i is in the MSC gate interface described as "gate g out m to i". An 
implicitly named gate can be described similarly by leaving the gate name out. An 
order gate consists of a gate name and, in the case of an order in gate, the keyword 
before followed by an order destination. 

The recommendation states that the MSC gate interface provides a definition of mes-
sage gates contained in the MSC. However, most of the examples in the recommen-
dation do not live up to the expectations obtained from this statement: mostly there 
simply is no MSC gate interface although there are messages to the environment. The 
MSC gate interface for the MSC of Figure 2.50 can be described as follows: 

gate out ml to i ; 
gate in m2 from i ; 
gate gl out nl to j ; 
gate g2 in n2 from j ; 

Within an MSC it is also allowed to draw a message from the environment to the envi-
ronment. In the textual representation such "messages" clearly represent exceptional 
cases. As there is no instance which sends or receives the message it is impossible to 
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describe the defining occurrences of the implicitly or explicitly defined gates in the 
MSC body. For this purpose the MSC gate interface is used. A message 1n from a 
gate g to a gate his described by "gate gout m to env via h" and/or "gate h in m 
from env via g". Similarly a message from an implicitly defined gate to an implicitly 
defined gate is described by "gate out m to env" and/or "gate in m from env". 

Textually, a causal order arrow from an event on an instance i to a gate g is described 
by "i : e before env via g". Thus, the keywords env and via followed by a gate 
name can be used to describe the destination of the causal order arrow. However, a 
causal order arrow from a gate g on the frame of an MSC to an event e on an instance 
i cannot be described in a similar way. The reason is that the textual syntax lacks a 
keyword after. At the moment, such a causal order arrow can only be described in 
the MSC gate interface: "gate g before l" where l is an event name that is associated 
with the event e. The MSC from Figure 2.51 can be described by 

msc example ; 
gate g 1 before l ; 

: instance; 
j : instance ; 

: l in m from j ; 
j : out m to i before env via g2 ; 

: endinstance ; 
j : endinstance ; 
endmsc; 

Thereby, the MSC gate interface necessarily contains a defining occurrence of a gate 
and a causal ordering. There is a simple, elegant solution however. If the textual 
syntax of MSC is extended with a keyword after which can be used on all places 
where before is allowed, then the gate gl can be described in the MSC body by "i 
: in m from j after env via gl". In Section 2.9.3 we illucidate on the extension of 
the textual syntax with a keyword after. 

A causal order arrow can be drawn from a gate to another gate. Textually such a 
causal order can only be described in the MSC gate interface. For example a causal 
arrow from a gate g to a gate h is described by 

msc example ; 
gate g before env via h ; 
gate h; 
endmsc; 

For lost message output events and found message input events the input address 
and output address respectively can also be an implicitly or explicitly named gate. 
The textual syntax for these output and input addresses is identical to the syntax 
for message output and input events. The lost and found messages that are attached 
to the MSC frame symbol must be represented textually in the MSC gate interface. 
Also these are described from the point of view of the environment. The MSC from 
Figure 2.53 is represented textually by 
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msc example ; 
gate out m to lost ; 
gate in m from found ; 

: instance ; 
i : endinstance ; 
endmsc; 

The textual syntax for gates is given in Table 2.14. 

(msc interface) .. [ (msc inst interface)] (msc gate interface) 
(msc gate interface) .. (msc gate def)* 
(msc gate def) .. gate { (msg gate) I (order gate) } (end) 
(msg gate) .. - (def in gate) I (def out gate) 
(order gate) .. - (def order in gate) I (def order out gate) 
(def in gate) .. [ (gate name) ] out (msg identification) to (input <lest) 
(def out gate) .. [ (gate name) ] in (msg identification) from (output <lest) 
(def order out gate) .. (gate name) 
(def order in gate) .. (gate name) before (order <lest) 
(output <lest) .. found [ (output address) ] I (output address) 
(output address) .. env via (gate name) 
(input <lest) .. lost [ (input address) ] I (input address) 
(input address) .. env via (gate name) 
( order <lest) ··- env via (gate name) .. 

Table 2.14: The textual syntax for formal gate definitions. 

2.6.2 MSC reference expressions and gates 

73 

In the previous section we have seen how gate definitions can be described both 
graphically and textually. In this section, we will extend the syntax for MSC reference 
expressions with gates. An MSC reference expression is indicated graphically by a 
textual formula in an MSC reference symbol. As the MSCs referenced in the textual 
formula can have gates, it should be possible to connect gates from referenced MSCs. 
For this purpose actual gates are used. An actual gate is defined by connecting a 
message arrow with the MSC reference expression symbol. By placing a gate name 
close to the point of connection an explicitly named actual gate is defined. If the 
gate name is omitted an implicitly named actual gate is defined. In Figure 2.54 the 
different occurrences of gates are named. 

The actual gates of an MSC reference expression may connect to corresponding con-
structs in the enclosing MSC. An actual message gate ( on an MSC reference symbol) 
may connect to another actual message gate, an instance, or a message gate definition 
(implicitly or explicitly named) of the enclosing MSC by means of a message arrow. 
Similarly, an actual order gate may connect to another actual order gate, an orderable 
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msc example msc A 

m 

h 

\ 
actual input gate actual output gate input gate definition output gate definition 

Figure 2.54: Terminology on gates. 

event, or an order gate definition of the enclosing MSC by means of a causal order 
arrow. 

A message arrow can only be connected to an MSC reference symbol if at least one 
of the MSCs that are referenced has a corresponding gate. If a message m is sent 
to an actual input gate g of an MSC reference expression, then the MSC reference 
expression must contain a reference to an MSC with an input gate definition of gate g 
for a message m. If a message n is received from an actual output gate h of an MSC 
reference expression, then the MSC reference expression must contain a reference to an 
MSC with an output gate definition of gate h for a message n. For implicitly named 
message gates similar requirements hold. In that case there must be an implicitly 
named gate with the same message identifier. Examples of the graphical appearance 
of such connections are given in Figure 2.55. 

If a message arrow is connected to an MSC reference symbol and more than one of 
the MSCs referenced in this MSC reference symbol have a corresponding gate, then 
it is required that the instances to which these gates are connected internally (in the 
referenced MS Cs) are identical. The reason for this additional requirement is that 
we are not capable of distinguishing between the two occurrences of the same gate, 
neither in the graphical syntax nor in the textual syntax. 

msc example 
j k 

~f 
Figure 2.55: Gates on MSC reference expressions. 
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It is important to define the gates of an MSC reference expression as the above 
explanation refers to this notion. The set of gates of an MSC reference expression is 
the union of the sets of gates of the MSCs referenced by that expression. 

It is allowed to connect two message gates from the same MSC reference expression in 
an enclosing MSC. An example of this situation is the MSC given in Figure 2.56. It 
is also possible to connect gates from different MSCs that are referenced in the same 
MSC reference expression. 

msc A mscB 

m g 

m 
m h 

Figure 2.56: Connecting gates from the same MSC reference expression. 

MSC reference expressions with gates that are connected on the outside of the MSC 
reference symbol describe how a message or causal order arrow is continued outside 
the MSC reference symbol. For the MSC in Figure 2.57 a message arrow is drawn 
from instance i to the MSC reference expression. This means that a message m is 
sent by instance i to the receiver of the corresponding message input event in MSC 
A. In this case this is instance j. 

msc example msc A 
j k j k 

g 
m 

Figure 2.57: Connecting a gate. 

It is also possible to connect the gates of two MSC reference expressions by means of 
a message arrow (see Figure 2.55). If a gate of an MSC reference A is connected to 
a gate of an MSC reference expression B by means of a message arrow with message 
identifier n this means that the output of message n inside MSC A is connected to 
the input of message n inside MSC B. Note that according to the requirements these 
have to exist. 
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A last possibility is to connect a gate from an MSC reference expression with a 
gate of the MSC. This means that the message output or input event is sent to 
or received from the environment of the enclosing MSC. Also, if a gate of an MSC 
reference expression is not connected this implicitly means that it is connected to 
the environment of the enclosing MSC. Examples of both situations are given in 
Figure 2.58. From a semantics point of view the two MSCs A are equivalent. 

msc A msc A msc B 

m 

Figure 2.58: Propagation of a gate to the environment. 

So far we have only indicated the meaning of connecting gates in the case that the 
MSC reference expression is only a reference to an MSC by means of its name. How-
ever, MSC reference expressions can easily become more complex. For example the 
MSC reference expression can be the alternative composition of two MSC reference 
expressions by means of the keyword alt. It can be the case that one MSC reference 
expression has a gate g and the other has no such gate. An example of this situation 
is given in Figure 2.59. 

msc example msc A mscB 
j j j 

g 
m 

Figure 2.59: Connecting a gate. 

In case that the MSC A is selected for execution, the MSC can only perform the 
sending of message m and its subsequent reception. On the other hand, if MSC B is 
selected, we expect the execution of local action a and the output of message min an 
arbitrary order. Note that in this case, the input of message m does not take place. 
This gives rise to message output events without corresponding message input event. 

Thus it is possible that a message is sent by an instance to an instance while the 
receiver instance never receives the message. Conversely, the situation where a mes-
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sage is received from an instance while it has never been sent cannot occur. If such a 
situation arises a deadlock results. 

msc example mscA 

g 
m 

Figure 2.60: Gates and loops. 

In Figure 2.60 an MSC example is given that refers to an MSC A by means of the 
MSC reference expression loop A. Instance j receives a message from the gate g. 
In MSC A a message is sent to a gate g. As a consequence MSC example expresses 
that message m is sent an arbitrary number of times, but at least once, to instance 
j and that instance j receives message m exactly once. The MSC does not specify 
which occurrence of the sending of message m is received. The other occurrences of 
the sending of message m are never received. 

( msc reference) .. - reference [ (msc reference identification) : ] 
(msc ref expr) [ (reference gate interface) ] 

(msc reference identification) .. - (msc reference name) 
(reference gate interface) .. { (end) gate (ref gate) }* 
(ref gate) .. (actual out gate) I (actual in gate) 

(actual order out gate) I (actual order in gate) 
(actual out gate) .. - [ (gate name)] out (msg identification) 

to (input <lest) 
(actual in gate) .. - [ (gate name)] in (msg identification) 

from (output <lest) 
(actual order out gate) .. - (gate name) before (order <lest) 
(actual order in gate) .. (gate name) 
(output address) .. - (reference identification) ( via (gate name) ] 
(input address) .. (reference identification) ( via (gate name) ] 
( order <lest) .. (reference identification) via (gate name) 
(reference identification) .. reference (msc reference identification) 

Table 2.15: The textual syntax for actual gates on MSC reference expressions. 

The textual syntax of MSC reference expressions with gates is given in Table 2.15. It 
extends the description of MSC reference expressions without gates (Table 2.11) with 
an optional MSC reference identification and with an optional reference gate interface. 
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The MSC reference identification is used to unambiguously identify an MSC reference 
expression. If a gate on an MSC reference symbol acts as output or input address 
of a message arrow or as the destination of a causal order arrow, this is described 
textually by the keyword reference followed by an MSC reference identification and 1 

in case the gate is explicitly named, by the keyword via and the gate name. The 
defining occurrence of the MSC reference identification therefore has to be unique. 

msc example 
il i2 j k 

m 
A par B 

m 
A par B 

Figure 2.61: MSC where MSC reference identifications are needed. 

Consider for example the MSC from Figure 2.61. Graphically it is immediately clear 
that the output of m by instance il refers to the first occurrence of the expression 
A par B and the output of m by instance i2 is to the second occurrence of the 
expression A par B. Textually we need a means to distinguish these two references 
which have the same appearance. Thereto the MSC reference identification is used. 
In this example we use parallel! and parallel2 as MSC reference identifications for 
the first and second occurrence of the expression A par B respectively. Textually this 
MSC is described as follows: 

msc example ; 
il : instance ; 
i2 : instance ; 
j : instance ; 
k : instance ; 
il : out m to reference parallell 
i2 : out m to reference parallel2 ; 
j , k reference parallell : A par B ; 
j , k reference parallel2 : A par B ; 
il : endinstance ; 
i2 : endinstance ; 
j : endinstance ; 
k : endinstance ; 
endmsc; 

With every MSC reference expression a reference gate interface can be associated. 
This interface describes how the gates of the MSCs that are referenced in the MSC 
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reference expression are connected externally. If a gate of the MSC reference expres-
sion is not connected externally, no entry in the reference gate interface is required. 
Syntactically the entries in this interface are described similar to the descriptions of 
the gates in the MSC gate interface. 

2.6.3 Inline expressions and gates 

Graphically an inline expression is indicated by an inline expression symbol or an 
exception inline expression symbol. A message arrow or causal order arrow that is 
attached to the inline expression symbol constitutes a gate definition. At the same 
time a continuation of this arrow in the enclosing MSC describes a connection of this 
gate. Thus, for inline expressions the definition of a gate ( of the anonymous MSC) 
coincides with the use of the gate ( the actual gate). As was the case for gates on 
MSC reference symbols the actual gates can be named explicitly or implicitly. In 
Figure 2.62 the gate definitions and actual gates are indicated. 

actual 

input gate 

msc example 

m 
alt 

m 

input gate definition 

j k 

output gate definition 

Figure 2.62: Terminology of gates on inline expressions. 

actual 

output gate 

The inline expression in Figure 2.63 has two implicitly named gates. These are both 
connected outside the inline expression symbol by means of message arrows. 

If a message arrow or causal order arrow is connected to the inline expression symbol 
internally, but not externally this indicates that the gate propagates to the frame of 
the enclosing MSC. The gate name remains the same. 

If an inline expression has multiple occurrences of the same gate in different operands, 
then either there is an external connection for exactly one occurrence of the gate 
which is supposed to apply to all occurrences, or none of the occurrences of the gate 
is connected externally in which case it is assumed that the occurrences of the gate 
propagate to the enclosing frame. 
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msc example 
j k 

par m 

n n 

Figure 2.63: Example of an inline expression with gates. 

For all occurrences of a gate on an inline expression the internal address of the different 
occurrences of this gate must be identical. The reason for this requirement is that in 
the textual syntax there is no means to distinguish the different occurrences of the 
gate. 

The textual syntax of inline expressions with gates is given in Table 2.16. The intro-
duction of an inline expression identification in the textual representation of inline 
expressions with gates is motivated similarly as the introduction of the MSC reference 
identification in the previous section. If a gate of an inline expression is the output 
or input address of a message arrow this is described by means of the keyword inline 
followed by the inline expression identifier and, in case the gate is explicitly named, 
by the keyword via and the gate name. 

For each operand of the inline expression an inline gate interface can be described. 
Such an inline gate interface describes both the internal and external connections of 
the gates on the inline expression symbol. 

The MSC from Figure 2.63 is textually described by 

msc example ; 
: instance; 

j : instance ; 
k : instance ; 
i, j: par begin l ; 

gate in m from i external out m to k ; 
out m to env; 

par 
gate in n from j external out n to k ; 

j out n to env ; 
par end; 

k : in m from inline l ; 
k : in n from inline l ; 

: endinstance ; 
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j : endinstance ; 
k : endinstance ; 
endmsc; 

(loop expr) 

(opt expr) 

(exc expr) 

(alt expr) 

(par expr) 

(inline expr identification) 

(inline gate interface) 
(inline gate) 

(inline out gate) 

(inline in gate) 

(inline order out gate) 
(inline order in gate) 
(reference identification) 

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

loop [ (loop boundary) ] 
begin [ (inline expr identification) ] ( end) 
[ (inline gate interface) ] (msc body) 
loop end 
opt begin [ (inline expr identification) ] (end) 
[ (inline gate interface) ] (msc body) 
opt end 
exc begin [ (inline expr identification) ] (end) 
[ (inline gate interface) ] (msc body) 
exc end 
alt begin [ (inline expr identification) ] ( end) 
[ (inline gate interface) ] (msc body) 
{ alt (end) [ (inline gate interface) ] (msc body) }* 
alt end 
par begin [ (inline expr identification) ] (end) 
[ (inline gate interface) ] (msc body) 
{ par (end) [ (inline gate interface) ] (msc body) }* 
par end 

(inline expr name) 

{ gate (inline gate) (end) } + 
(inline out gate) I (inline in gate) 
I (inline order out gate) I (inline order in gate) 
(def out gate) [ external out (msg identification) 
to (input <lest) ] 
(def in gate) [ external in (msg identification) 
from (output <lest) ] 
(gate name) [ external before (order <lest) ] 
(gate name) before (order <lest) [external] 
inline (inline expr identification) 

Table 2.16: The textual syntax for actual gates on inline expressions. 
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2.7 Comments 

The MSC language offers several features for presenting informal comments. These 
are 

• the ('comment" which can be used in both graphical and textual descriptions, 

• the "text" which can also be used in both graphical and textual representation, 
and 

• the "note" which occurs only in the textual descriptions. 

In Figure 2.64 we give the symbols for informally describing comments which can be 
used in the graphical syntax. The comment symbol can be attached to an enormous 
amount of symbols. The text symbol is placed somewhere in the MSC stand-alone, 
but usually in the right-upper corner. Both can contain an arbitrary text (generated 
by the nonterminal (text)). 

comment symbol text symbol 

Figure 2.64: Symbols for representing comments. 

The textual syntax for comments, text and notes is given in Table 2.17. The comment 
is in the textual syntax allowed on all places where the nonterminal (end) is used. 
The note can be inserted before or after any lexical unit. It is an arbitrary text in 
between / * and * /. 

(comment) 
(text definition) 
(end) 
(msc statement) 
(msc statement) 

comment ( character string) 
text (character string) (end) 
[ (comment) ] ; 
(text definition) 
(text definition) 

Table 2.17: The textual syntax for comments. 

In the recommendation the use of comment symbols in the graphical syntax and the 
occurrences of the nonterminal (end) is not consistent. For example the recommen-
dation does not allow the comment symbol to be attached to the MSC frame symbol, 
although the textual description allows a comment to be associated with the MSC. 
Probably there are more such situations. 
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2.8 Instance decomposition 

An instance in an MSC can refer to entities at different levels of abstraction. To enable 
the description of the relation between different levels of abstraction, a mechanism for 
decomposing an instance into a collection of instances is included in recommendation 
Z.120. 

An instance at a high level of abstraction can represent a number of instances at a 
lower level of abstraction and vice versa. In the language MSC such an instance is 
called a decomposed instance. Graphically, this is indicated by putting a reference 
to an MSC in the instance head symbol by means of the keywords decomposed as 
followed by the name of an MSC. This name refers to an MSC which describes the 
decomposed instance at a lower level of abstraction. This MSC is called the refining 
MSC. The keyword as and the MSC name can be omitted. In that case, it is assumed 
that the decomposed instance is described in an MSC with the same name as the 
decomposed instance. An example of a decomposed instance and a refining MSC is 
given in Figure 2.65. 

sender 

msc example 

medium 
decomposed 

d 

e 

msc medium 

receiver s m 

Figure 2.65: A decomposed instance and its refining MSC. 

r 

For every decomposed instance in an MSC document there must be a refining MSC 
in the same MSC document. For every message output of the decomposed instance 
there has to be a corresponding message output to the environment in the refining 
MSC. Similarly, for every message input of the decomposed instance there has to be 
a corresponding message input from the environment in the refining MSC. 

The ordering described between message output and message input events on the de-
composed instance has to correspond to the ordering described for their corresponding 
events in the refining MSC. For the example in Figure 2.65 this clearly is the case. 

In the textual representation, an instance that is decomposed is labelled with the 
keywords decomposed as followed by the name of an MSC2 . Again, the keyword as 
and the MSC name can be omitted indicating that the refining MSC has the same 

2 Recommendation Z.120 uses the nonterminal (message sequence chart name) instead of 
(msc name). This mistake is corrected in Table 2.18. 
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name as the decomposed instance. In Table 2.18 the rules for the extension with 
instance decomposition are given. 

(instance head statement) 
( decomposition) 
(substructure reference) 

instance [ (instance kind) ] (decomposition) 
decomposed ( (substructure reference) ] 
as (msc name) 

Table 2.18: The textual syntax for instance decomposition. 

MSC example from Figure 2.65 is textually represented by 

msc example ; 
sender : instance ; 
medium : instance decomposed ; 
receiver : instance ; 
sender : out d to medium ; 
medium : in d from sender ; 
medium : 
receiver : 
sender : 
medium : 
receiver : 
endmsc; 

out e to receiver ; 
in e from medium ; 
endinstance ; 
endinstance ; 
endinstance ; 

The following static requirements are formulated. With every decomposed instance 
a refining MSC name has to be defined in the MSC document. On a decomposed 
instance no create events may be specified. A decomposed instance may not be 
created. After replacing all decomposed instances of an MSC by their corresponding 
MSCs the resulting MSC has to respect all previously mentioned requirements. A 
decomposed instance may not be refined by the MSC it is defined in, directly or via 
a number of refinements. 

2.9 Remarks on recommendation Z.120 

2.9.1 Informal parts of the recommendation 

Several parts of the language definition of MSC96 are defined informally in the rec-
ommendation [Mau96]. These are the definition of the graphical syntax (including 
the drawing rules), the static semantics, the relation between graphical and textual 
syntax, and the dynamic semantics. The fact that the textual syntax is the only part 
of the language definition of MSC96 that is defined formally is the reason to base the 
definition of the dynamic semantics on it. 
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There are some serious drawbacks related to the informal definition of the language. 
First, the user is mainly interested in the graphical representation of MSC and there-
fore it would be an advantage to base the definition of the dynamic semantics on the 
graphical syntax. This however is not possible as the graphical syntax is defined infor-
mally. Secondly, as there is no formal definition of the relation between the graphical 
and textual syntax and the textual syntax is mainly used for exchanging MSCs be-
tween tools, it is possible that the user is confronted with "different" MSC diagrams 
in different tools which however are based on the same textual representation. Due 
to the lack of a formally defined relation between the graphical and textual syntax 
each tool builder has to make this relation explicit himself. As a consequence different 
interpretations come into existence. Third, the lack of a formal definition of the static 
semantics has a similar disadvantage. One tool may consider a given MSC in textual 
representation well-formed while another tool may reject it. Last, but certainly not 
least important, and related to the second disadvantage, is the fact that it is hard to 
establish if the two syntaxes (graphical and textual) have equal expressive power, i.e. 
there is a diagram for each MSC in textual representation and vice versa. 

With the graphical syntax of MSC as it is presented in the recommendation it is 
possible to draw ambiguous MS Cs [LRH97]. This is another reason to base the 
definition of the dynamic semantics on the textual syntax. 

2.9.2 Process creation and termination with composition 

In [LRH97] the authors describe an interesting inconsistency between the graphical 
syntax and the textual syntax. It is not possible to describe a created or terminated 
instance inside an inline expression following the graphical syntax. In the textual 
syntax, however, this is not explicitly disallowed. 

In MSC reference expressions it is allowed to describe created and terminated in-
stances for both the graphical and textual syntax. MSC reference expressions and 
inline expressions are different ways of describing composed MSCs. As the composi-
tion mechanisms in both are the same except for the vertical composition, which is 
not available for inline expressions, the two mechanisms should also have the same 
requirements. 

There is a good reason to disallow the description of created instances and terminated 
instances. Suppose that two MSCs are composed vertically and that they contain the 
same instances. If in the second MSC an instance is created then it is not clear what 
this means in the context of the vertical composition as the instance already exists in 
the first MSC. Similarly, if the first MSC contains a terminated instance it is not clear 
what this means for the instance with the same name in the second MSC. Also in the 
case of the other composition mechanisms situations arise in which the semantics is 
not clear. 

We propose to disallow the use of process creation and stop events inside inline ex-
pressions and inside any MSC that is referenced by an MSC reference expression. 
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Furthermore, as also HMSCs describe the composition of MSCs by means of vertical, 
horizontal and alternative composition, also the MSCs referenced in an HMSC should 
respect this requirement. 

This requirement is formulated in a very strict way and there are many situations that 
are disallowed by it which are not harmfull at all. For example, if in the second MSC 
in a vertical composition an instance is created which does not exist in the first MSC 
then this is acceptable as this situation can easily be interpreted. It is conceivable that 
less strict requirements can be formulated that only exclude the harmfull situations. 
A drawback of a le~s strict requirement is that it is harder for the user to determine 
if the use of a process creation or termination is allowed at a certain point. 

2.9.3 The keyword after 

As mentioned in Section 2.4.2 the textual syntax of causal orderings is asymmetrical. 
A causal ordering is described only for the event that is associated with the starting 
point of the causal order arrow. This asymmetry also forces the user to describe a 
causal order arrow from a gate in the environment in the MSC gate interface ( see 
Section 2.6.1). 

We propose to extend the textual syntax with a keyword after and we propose to 
change the textual syntax in such a way that a causal ordering can be described for 
each event that is associated with the causal order arrow. 

As an example of the changes, the MSC of Figure 2.24 can be represented textually 
by 

msc causal ; 
ij : instance ; 
ij : concurrent ; 

k in m from env before l ; 
out n to env; 
lout .a to env after k.; 

endconcurrent ; 
ZJ : endinstance ; 
endmsc; 

As a consequence it is no longer necessary to describe a causal order arrow from a gate 
in the environment in the MSC gate interface. The concrete changes to the textual 
syntax are listed in Appendix A. 

The MSC of Figure 2.51 can be represented textually by: 

msc example ; 
: instance; 

j : instance ; 
: l in m from j after env via gl ; 
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j : out m to i before env via g2 ; 
: endinstance ; 

j : endinstance ; 
endmsc; 

87 
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3 

Process theory for Message 
Sequence Charts 

3.1 Introduction 

In this chapter, we present the process theory which is used in Chapter 4 as the 
semantical framework. A number of operators is defined operationally in the style 
of Plotkin [Plo81]. These operators are based on the means of composing Message 
Sequence Charts as explained informally in the previous chapter. For example, we 
introduce a delayed choice operator which plays the role of alternative composition 
in MSCs. All of these operators are based on operators that can be found in the 
literature. 

There are several reasons for defining these operators by means of an operational 
semantics. First of all, an operational model of Message Sequence Charts will make it 
easier to link Message Sequence Charts to other formalisms since almost every formal-
ism makes use of a structured operational semantics or a structured operational se-
mantics can easily be provided. Examples are process algebras [Hoa85, Mil89, BW90], 
Petri nets [Rei85, Jen92, Hee94], automata, etc. 

A second important reason is that the use of a process algebra is more difficult in this 
case. This is due to the combination of several features of the language MSC. We can 
still give some axioms for reasoning with the semantics of Message Sequence Charts 
which are sound, but a complete set of axioms for deciding equivalence of the process 
terms is probably impossible. 

The operators introduced in this chapter are based on the basic features present in 
MSC96 for composing small MSCs into more complex MSCs. These basic features are 
alternative, horizontal and vertical composition. Their semantical equivalents are de-

89 
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layed choice, generalized delayed parallel composition and generalized weak sequential 
composition. Based on these, also operators are introduced for providing semantics 
to the means offered by MSC96 to describe infinite behavior. These operators are 
iteration and unbounded repetition. 

This chapter is structured as follows. In Section 3.2 we introduce some terminology on 
operational semantics as it is used in this thesis. Then, in the following sections, we 
introduce a number of operators and give some properties of those. These operators 
are delayed choice, delayed parallel composition, weak sequential composition, gener-
alizations of the last two operators, renaming, iteration and unbounded repetition. In 
Section 3.10, we prove some properties of the operational semantics, especially that 
every process term is deterministic. 

3.2 Operational semantics 

In this section, some terminology is introduced with respect to the mathematical 
framework used to define an operational semantics. Both terminology and notation 
have been taken from [BV95]. The goal of an operational semantics is, given an 
expression denoting a process in a certain state, to describe all possible activities that 
can be performed by the process in that state and to describe the state of the process 
after such an activity. 

3.2.1 Process expressions 

The process terms that are used to represent the states are given by a signature and a 
way of constructing terms from the constant and function symbols in this signature. 

Definition 3.2.1.1 The signature co_nsists of 

• constants: 

- empty process c; 
deadlock 8; 

- atomic actions from a set A; 

• unary operators: 

- renaming Pi for every injective function f : A A; 
- iteration ®; 
- unbounded repetition 00

; 

• binary operators: 

- delayed choice =f; 
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- delayed parallel composition 11 ; 

- weak sequential composition o; 
- generalized parallel composition lls for every S A x IN x A; 
- generalized weak sequential composition os for every S A x IN x A. 

The set of constants A is considered a parameter of the theory. From a signature, 
terms can be constructed according to some construction rules. 

Definition 3.2.1.2 Let be a signature and let V be a set of variables. A ~-term 
is defined inductively as follows: For every variable x E V, x is a ~-term, for every 
constant c E ~, c is a ~-term, and for every n-ary function symbol f E and 
t1 , · · · , tn ~-terms, J(t1 , · · · , tn) is a ~-term. A closed ~-term is a ~-term in which 
no variables occur. The set of all ~-terms is denoted by O(~) and the set of·all closed 
~-terms is denoted by C(~). If it is clear from the context which signature is intended 
we also use term and closed term instead of ~-term and closed ~-term. 

For the binary operators we use infix notation, e.g. we write x =f y instead of =f(x, y). 
The operators have the following relative binding power ordered from top to bottom 
by decreasing binding power: 

unary operators 

0 

II 

Thus the process expression aob II c=fd should be read as ((aob) II c)=fd. Operators that 
are indicated at the same line have an equal binding power. For operators with equal 
binding power brackets are associated from the right. Thus the process expression 
a obos cod should be read as a o (b os (cod)). 

3.2.2 State transformations 

The activities that are considered for the operational semantics of MSC96 are the 
execution of an event and the termination of the MSC. Also the states resulting after 
such activities are described by expressions. If from a state s an event a can be 
performed and the resulting state is represented by the expression s', then this is 
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usually denoted by s s'. If in a given state s the process is capable of terminating 
immediately and successfully, this is indicated by means of s-.l,.. 

The predicate - +~ C (~) is called the termination predicate as it indicates that a 
process has the possibility to terminate immediately and successfully. If we assume 
that ·all events are represented by atomic actions from the set A, the ternary relation 
-,- - C(~) x A x C(I:) is called the transition relation. 

The predicate and the relations are defined by means of deduction rules ( operational 
rules). A deduction rule is of the form where H is a set of premises and C is the 
conclusion. Each individual premise and the conclusion are of the form s s' or s+ 
for arbitrary s, s' E O(~) and a E A. Such a deduction rule should be interpreted as 
follows: If all premises are true, the conclusion holds by definition. A special kind of 
deduction rule appears if the set of premises is empty (H = 0). Such a deduction 
rule is also called a deduction axiom and usually simply denoted by the conclusion 
C. An example of a deduction axiom is deduction axiom (At 1) given in Table 3.1: 

a a-+ s. 

This deduction axiom expresses that a process that is in a state represented by the 
atomic action a can perform event a and thereby evolves into a state represented 
by the expression s. This expression s indicates a state in which no events can be 
performed but in which it is possible to terminate successfully and immediately. This 
is expressed by the deduction axiom (E 1) also from Table 3.1: 

These are the only rules for expressions a E A and c. The expression c is used to 
denote an MSC without events. 

Clearly the process a cannot yet terminate and the process c cannot perform events. 
Note that these negative results are not explicitly defined. The following convention 
applies: If it is impossible to derive s+, then by definition not s+, which is denoted 
by s .Y, Similarly, if it is impossible to derive s s', then by definition not s s'. 
This is usually denoted as s s'. Such negative results can also be used in the set 
of premises, and then these are called negative premises. If we want to express that 
a process represented by the expression s can perform a transition labelled with a 
and we are not interested in the resulting state, this is denoted by s Formally, it 
means that there exists a state s' such that s s'. Then s should be read as there 
does not exists a state s' such that s s', or for all states s' we have s s'. · These 
abbreviations extend to the relation - ... - C(I:) x A x C(~) to be introduced 
in Section 3.6. 

For term deduction systems without negative premises, the notion of a deduction is 
quite straightforward [GV92]. In the case of term deduction systems with negative 
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premises, this is not so easy. It is no longer obvious which set of positive formulas can 
be deduced using the deduction rules. Groote [Gro90] showed that if for each rule 
the conclusion is in some sense more difficult than each of the premises, there always 
is a well-defined set of formulas that is deducible. This notion of being less difficult 
is called a stratification. 

In this chapter the term deduction system under consideration has the signature 
(see Definition 3.2.1.1) and the deduction rules as defined in the various tables 

throughout the chapter. The term deduction system is stratifiable (see the proof of 
Theorem 3.10.1). On top of this term deduction system a notion of equivalence is de-
fined. This notion of equivalence is called bisimilarity. It originates from Park [Par81], 
but we use the formulation of [BV95]. 

Definition 3.2.2.1 (Bisimulation relation) A binary relation B C(~) x C(~) 
is called a bisimulation relation if for all a E A ands, t EC(~) with sBt the following 
conditions hold 

and 

s.j,.. 

Two closed terms p, q E C(~) are bisimilar, notation p B. q, if there exists a bisimu-
lation relation B such that pB q. 

Theorem 3.2.2.2 (Equivalence) Bisimilarity is an equivalence relation. 

Proof Let s, t, u E C(~)- Using the identity on closed terms it is easily es-
tablished that t B. t and hence bisimilarity is reflexive. Suppose that s B. t. This 
means that there exists a bisimulation relation B such that sBt. Then clearly also the 
relation B-1 is a bisimulation relation and tB-1 s. Thus, bisimilarity is symmetrical. 
Suppose that s B. t and t B. u. Then there exist bisimulation relations B1 and B 2 

such that sB1 t and tB2 u. Clearly, also the relation B1 o B 2 is a bisimulation relation 
and s(B1 o B 2 )u. Thus, bisimilarity is transitive. IZl 
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3.3 Deadlock, empty process and atomic actions 

In this section we introduce the smallest building blocks of the term algebra. These 
are divided into the special constants and the atomic actions. There are two special 
constants: J and E. The deadlock constant J represents a process that cannot execute 
an event and cannot terminate. The empty process E represents a process that cannot 
execute an event, but contrary to deadlock it terminates successfully. 

The set of atomic actions is a parameter of the term algebra. In the context of 
Message Sequence Charts it is chosen to represent the events of the MSC language 
such as output and input of a message, timer statements and local actions. As is the 
case with MSC, each smallest event is defined on an instance. To mimic this in the 
term algebra the existence of a total mapping f : A Id is assumed which associates 
to an atomic action an identifier representing an instance name. 

-(El) 
d 

-a-(At 1) 
a-+E 

Table 3.1: Deduction rules for constants: a E A. 

The deduction rules for the constants are given in Table 3.1. As indicated before, 
the empty process E is capable of terminating immediately and successfully. This is 
expressed by deduction axiom (E 1). An atomic action a can execute event a and 
thereby it evolves into the empty process: a~ E ((At 1)). As the deadlock constant 
is not capable of executing an event nor capable of terminating, there are no rules for 
J in the table. In fact, since there are no deduction rules for J, we obtain J ~, for 
a EA, and J y. 

3.4 Delayed choice 

The structured operational semantics associated with delayed choice by means of 
the deduction rules presented in Table 3.2 illustrate the purposes of this operator 
eminently. The deduction rules for clearly express that x =i= y can perform an a-
transition, thereby resolving the choice, if exactly one of its operands can, and in the 
case that both operands can perform an a-transition, the choice is not yet resolved. 

The deduction rules for the termination predicate and the transition relation from 
Table 3.2 have been taken from [BM95] where the delayed choice operator was intro-
duced in the setting of bisimulation semantics as a means of composing MSCs. The 
deduction rules (DC 1) and (DC 2) express that the alternative composition of two 
processes has the option to terminate if and only if at least one of the alternatives 
has this option. 
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X 4 x',y-.;4 
X =f y 4 X

1 
(DC 3) 

x+ (DC 1) 
X =f Y+ 

X -.;4,y y' 
X =f y y' 

Y+ (DC 2) 
X =f Y+ 

(DC 4) 
X 4 X 1 ,y y' 

-----(DC5) 
X =f y X 1 =f y' 

Table 3.2: Deduction rules for delayed choice. 
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Example 3.4.1 The process a=r=c has an option to terminate as the second alternative 
has this option. On the contrary the process a=r=b does not have an option to terminate 
as none of its alternatives can terminate. 

The deduction rules (DC 3) and (DC 4) express that, in the situation that exactly one 
of the alternatives can execute an action a, the alternative composition can execute 
this event as well and that the execution of this event resolves the choice. 

Example 3.4.2 Let a and b be two different atomic actions. The process a =f b can 
execute the action a and the action b. In both cases the action ·can be executed by only 
one of the alternatives. Thus in both cases making a choice between the alternatives 
cannot be avoided. Operationally this is seen as follows: 

and b a=r=b--+c. 

Deduction rule (DC 5) deals with the situation that both alternatives can execute an 
action a. It states that, in that case, the alternative composition can execute a and, 
moreover, that there remain two alternatives. 

Example 3.4.3 The process a =fa has two alternatives both of which can execute 
action a. The choice between the alternatives is not resolved. Operationally this can 
be seen as follows: 

a a=r=a--+c=fc. 

Theorem 3.4.4 (Properties of =r=) For all closed terms s, t, u E C(I:) we have the 
following properties: 

• deadlock is a unit element for delayed choice: t =f 8 ti t and 8 =f t ti t; 

• delayed choice is commutative: s =ft ti t =f s; 

• delayed choice is associative: (s =ft) =f u ti s =f (t =f u); 

• delayed choice is idempotent: t =f t ti t. 
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Proof These properties are proved in Appendix B. 2. 

In (BM95], Baeten and Mauw introduce the delayed choice operator in the framework 
of BPAos in branching time semantics. The deduction rules are the same as given in 
Table 3.2. 

Baeten and Mauw provide axioms for bisimilarity in which they use auxiliary opera-
tors t><I and <J. These auxiliary operators are useful in eliminating delayed choice in 
favour of nondeterministic choice. This elimination character of the axioms renders 
them absolutely useless in a setting in which nondeterministic choice is not a basic 
operator. That is why we have chosen to express the properties of delayed choice 
directly. 

So far, we have seen that some nice properties hold for delayed choice. Also for 
nondeterministic choice we would have obtained that deadlock is a unit element and 
that nondeterministic choice is idempotent, commutative and associative. However, 
as was already demonstrated by Baeten and Mauw, the delayed choice is not idem-
potent. The counterexample they give is the process x = (a· b) + (a· c). Observe 
that ((a· b) +(a· c)) =i= ((a· b) +(a· c)) ili (a· b) + (a· c). Nevertheless, for the 
process theory defined in this chapter, idempotency of delayed choice holds (Theo-
rem 3.4.4). This is due to the fact that all closed process terms are deterministic (See 
Theorem 3.10.3). The fact that idempotency of delayed choice holds for determin-
istic processes (see Definition 3.10.2) was already claimed by Baeten and Mauw in 
their conclusions. Furthermore, for deterministic processes, bisimulation equivalence 
and trace equivalence coincide [Eng85]. Also, when considering trace equivalence, the 
operators delayed choice and nondeterministic choice coincide. 

3.5 Delayed parallel composition 

The delayed parallel composition of two processes is the interleaved execution of the 
events of the processes while maintaining the ordering of events as specified by the 
processes in isolation. This operator is a delayed version of the interleaving operators 
normally used. If both processes that are composed by means of delayed parallel 
composition can perform the same event, it is not visible which of the two is actually 
executed. In other words, a delayed choice is made between the two occurrences. In 
this aspect the delayed parallel composition operator used for the semantics of MSC 
differs from the interleaving operators of ACP-style process algebras [BW90]. The 
deduction rules for the delayed parallel composition operator are given in Table 3.3. 

Deduction rule (DP 1) expresses that the delayed parallel composition of two processes 
has an option to terminate if and only if both processes have this option. 

Example 3.5.1 The process (a=i=c) II (b=i=c) has an option to terminate as both a=i=c 
and b =i= c have this option. Operationally this is seen as follows: a =i= c:-J,. and b =i= c-J,. and 
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x-!,, y-!, (DP 1) 
X IIY-!-

a I a 
x --+ x 'y -1-t (DP 2) 
xJIY x' IIY 

a t a t 
x--+x,y--+y ( ) 

a DP 3 
x II Y --+ x' II Y + x II y' 

Table 3.3: Deduction rules for delayed parallel composition. 
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therefore by deduction rule (DP 1) also (a+ c) JI (b + c)-!-. The process a II c does not 
have an option to terminate as the left-hand side a of the delayed parallel composition 
does not have this option (a.¥) and therefore deduction rule (DP 1) is not applicable. 

The deduction rules (DP 2) and (DP 4) express that if exactly one of the operands 
of a delayed parallel composition can execute an action a, then the delayed parallel 
composition can execute this a as well and it is known which operand has actually 
executed a. 

Example 3.5.2 The process a JI b is capable of performing action a and thereby it 
evolves into the process c JI b. But it is also possible for this process to perform action 
band then the process a II c remains. 

The deduction rule (DP 3) expresses that, in a situation that both operands can exe-
cute an action a, the delayed parallel composition can execute an a. It also expresses 
that it is not known which operand executed a. This is seen in the deduction rule by 
the term x' II y+x II y'. The first alternative results from the execution of a by process 
x and the second from the execution of a by process y. The fact that the process x 11 y 
evolves into the process x' JI y + x II y' indicates that it is not known which a has been 
executed. 

Example 3.5.3 An example illustrating the delayed nature of the delayed parallel 
composition is the process a JI a. It can perform the following sequence of transitions: 

Theorem 3.5.4 (Properties of II) For all closed terms s, t, u E C(E) we have the 
following properties: 

• the empty process is a unit for delayed parallel composition: c II t ti t and 
tile tit; 

• delayed parallel composition is commutative: s II t ti t II s; 
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• delayed parallel composition distributes over delayed choice: 

and 

• delayed parallel composition is associative: (s II t) II u ii s II (t 11 u). 

Proof These properties are proved in Appendix B.3. 

In [BW90], an extension of the process algebra BPAoc with interleaving merge is 
defined. The resulting process algebra is called PAoc. The interleaving merge operator 
there is characterized by the following operational rules: 

x-J,.,y_J,. y 
X lly-J,. ' x 11 Y x' I I Y ' xllY xllY' 

With these operational rules it is possible that a process, due to interleaving, makes a 
nondeterministic choice between the execution of an a from x or an a from y. Consider 
for example the process (a· b) II (a· c) where· denotes strong sequential composition as 
it appears in most process theories. This process has two ways to perform an initial 
a event: (a· b) II (a· c) b II (a· c) and (a· b) 11 (a· c) b) 11 c. This is due to the 
unfolding of the merge operator into the nondeterministic choice of the processes x lL y 
and yll_x, where lL is an operator that behaves like II except that the first event must 
be executed by the left-hand side process. In the setting we discuss in this chapter 
we only have the delayed choice at our disposal. If the situation arises where both 
operands can execute an event a initially, we want the choice between these to be 
delayed. Thus we had to propose the following deduction rule 

X X 1,y y' 
x II Y x' II Y =f x II y' 

Then the original deduction rules have to be adapted to exclude the possibility that 
the "other" process also is able to execute event a. For example, the second deduction 
rule from above became 

xllY x' IIY 
This rule expresses that an a event from process xis executed by itself, only if process 
y is not capable of performing an a event at this moment. A similar adjustment has 
to be made for the third, symmetric, rule for parallel composition. 

With respect to the process a· b II a· c where II is intended to be the delayed parallel 
composition we only have 

a· b II a· c b II a· c =fa· b II c. 
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Although these processes do have the same set of traces for the different interpreta-
tions of 11 they are not bisimilar. 

3.6 Weak sequential composition 

In order to explain the weak sequential composition operator, it is necessary to con-
sider the purpose of this operator in the semantics of MSC. The weak sequential 
composition operator is introduced to represent the vertical composition of MSCs. It 
has a behavior similar to the delayed parallel composition operator, but in addition 
it maintains the ordering of events from instances that the MSCs have in common. 
Thus an event on instance i in the second MSC can only take place in situations 
where all events on instance i (if any) in the first MSC have already taken place. 

However, there is a complication with respect to alternatives. Suppose that an MSC 
A is given that describes two alternatives. The first alternative only describes a local 
action a on instance i and the second alternative only contains a local action b on 
instance j. Suppose that this MSC is composed vertically with an MSC B that only 
contains a local action con instance i. The vertical composition of the first alternative 
of MSC A with MSC B should not allow the execution of local action c as it must 
be preceded by local action a. The vertical composition of the second alternative of 
MSC A with MSC B can execute local action c as there are no events in the second 
alternative of MSC A that must precede the execution of local action c. Thus, one 
alternative of MSC A does not allow the execution of local action c and one alternative 
does allow the execution of local action c. The expected result is that the execution 
of local action c is allowed and moreover that if local action c is executed the first 
alternative disappears. 

In an MSC every event is associated with an instance on which it is defined. In the 
operational semantics this is incorporated by assuming a mapping f: A I, where I 
represents the set of all instance names, which associates with an atomic action a E A 
the name f(a) of the instance it is defined on. 

In order to deal with this aspect of the weak sequential composition operator the 
permission relation - - C(~) x A x C(~) is used. The proposition x x' 
states that an event a is allowed to precede the execution of the events of x even if 
this event is composed after x by means of weak sequential composition. The reason 
to allow such a bypass is that the process x has an alternative that does not execute 
events from the location of a, i.e. f(a). In the case that process x permits the bypass 
by event a, the actual execution of event a disables all alternatives of x that do not 
allow the bypass. The proposition x · · _a---,4 indicates that x does not allow the bypass 
of action a. The reason is that all alternatives of x execute an event from the location 
of a, i.e. f(a). 

The deduction rules for the permission relation, for all operators introduced so far, 
are given in Table 3.4 and the deduction rules for weak sequential composition are 
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given in Table 3.5. The empty process permits the execution of any event. An 
event b permits the execution of any event a if it is defined on another location, i.e. 
£ (a) f::. £ ( b). The delayed choice of two processes permits an event if at least one of the 
processes permits the event. If an alternative does not permit the event, it is disabled 
(removed). The delayed parallel and weak sequential composition of processes permit 
an event if both processes permit the event. Note that the constant o does not permit 
the execution of any event. In this sense it indicates a global deadlock. 

Example 3.6.1 The process a =f b with £(a) -1- f(b) permits the action b' with f(b) = 
f (b'). This permission results in the disabling of alternative b. This can be summarized 

b' 
as follows: a =f b .. ·--+ a. 

Example 3.6.2 The process (a =f b) o a with £(a) -1- f(b) does not permit the action 
a' with f(a) = f(a'). The reason is that both alternatives (aoa and boa) can perform 

an event from the location of a'. Hence, (a =f b) o a--~~-

--a-(E2) f(a) 7; f(b) (At 2) 
b .. ·--+b c"·--+s 

a I a 
X"·--+X,Y"'-1-+ 

a I X=fY•"--+X 
(DC 7) 

a I a ' 

a I a ' X ···--+ X ,Y ... --+ y 
a I I X=fy···--+X =fY 

a a 1 X···-A,Y·"--+Y 
a I X=fY"·--+y 

(DC 8) 

a ' a ' 

(DC 6) 

X ···--+ X ,Y ... --+ y 

XII Y ···a-+ x' II Y1 
(DP 5) 

X ···--+ X ,Y ... --+ y 
a I I 

(WS 5) 
xoy···--+x oy 

Table 3.4: Deduction rules for the permission relation. 

Deduction rule (WS 1) expresses that the weak sequential composition of two pro-
cesses has an option to terminate if and only if both processes have this option. 

Example 3.6.3 The process so (a=fs) has the option to terminate as both operands 
have this option: s.!- and a =f s-J,.. 

The deduction rules (WS 2), (WS 3) and (WS 4) deal with the transitions of the 
vertical composition of two processes. In the case that x can execute a and either y 
cannot execute a or x does not allow the execution of a by y, only the execution of a 
by x can take place. This is expressed by deduction rule (WS 2). 

Example 3.6.4 Suppose that £(a) -1- f(b). The process a ob can execute action a 
and evolves into the process sob since a~ s and b ~-
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a I a a 
X X , X .. ·-++ Vy -++ 

X o y X 1 o y 

x+,Y+ (WS 1) 
XO Y+ 

(WS 2) 
a I a a 

X X , X .. · X 11
, y y' 

x o y x' o y =f x" o y' 

a a I a I 
X -++, X ... X, y y 

(WS 4) 
X o y X 1 o y' 

(WS 3) 

Table 3.5: Deduction rules for weak sequential composition. 
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In the case that both x and y can execute action a and x allows the execution of a by 
y, there are two possibilities for executing action a. A delayed choice of the individual 
occurrences of action a results. This is expressed by deduction rule (WS 3). 

Example 3.6.5 Suppose that £(a)-# f(b). The process (a=t=b) oa can execute action 
a and thereby evolves into the process co a =f b o E. The first alternative of the resulting 
process describes the result of the execution of a by a =f band the second alternative 
describes the result of the execution of a by the process a. Note that due to the 
execution of the second a, the alternative a from a =f b is not present anymore since 
a =f b ... b. 

In the case that x cannot execute an action a, y can execute a and x permits the 
execution of a, there is one possibility of executing a. This is expressed by deduction 
rule (WS 4). 

Example 3.6.6 Suppose that £(a)-# R(b). The process a ob can execute an action b 
since the second operand of the vertical composition can (b E) and the first operand 
allows this (a ... a). The resulting process after the execution of action bis a o E. 

Theorem 3.6. 7 (Properties of o) For all closed terms s, t, u E C(~) we have the 
following properties: 

• the empty process is a unit element for weak sequential composition: cot ii t 
and to c ii t; 

• deadlock is a left-zero element for weak sequential composition: bot ii b; 

• weak sequential composition distributes over delayed choice: 

(s=t=t)ou ii sou=t=tou 
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and 

• weak sequential composition is associative: (sot) o u H so (to u). 

Proof These properties are proved in Appendix B.4. 

Then-times repeated application of weak sequential composition xn is introduced as 
a shorthand. No operational rules are given for this operator. 

Definition 3.6.8 Let n E IN. Then for x E C(~) the process xn is defined inductively 
as follows: 

if n = 0, 
if n > 0. 

The standard operator for describing sequential composition in ACP-based process 
algebras is denoted by ·. In this thesis we call it strong sequential composition. Op-
erationally this operator is described by 

x.J,.,y.J,. 
X · y.J,. a I x·y--+x ·y 

and 
x.J,.,y y' 
x·y y' 

For axioms for bisimilarity we refer to [BW90]. The strong sequential composition 
of two processes x and y behaves like process x and upon termination of x it starts 
behaving like process y. There are two important differences with weak sequential 
composition. First, the strong sequential co~position of two deterministic processes 
does not have to be deterministic. For example the process ( a =f c) · a can execute 
action a and there can be two different resulting processes, viz. c · a or c. The 
first of these two possibilities is manifest when the left-hand operand of the strong 
sequential composition executes action a and the second possibility appears if the left-
hand operand terminates and the right-hand operand executes action a. The second 
difference is that no action from process y can be executed before x has the option 
to terminate. By defining the permission relation to hold only if there is a summand 
that can terminate, this difference is overcome. In other words, if f(a) = f(b) for all 
a, b E A, then weak sequential composition and strong sequential composition behave 
similarly with respect to the execution of events by process y. They are still different 
with respect to determinism. 

To capture the notion of placing an Interworking underneath another one Mauw, 
Van Wijk and Winter defined the interworking sequencing (oiw) [MvWW93]. The 
interpretation of x oiw y is that actions of y which are independent of x do not have 
to wait for another to proceed, even if they are composed sequentially. The most 
interesting operational rule for interworking sequencing is the following 

I(a) (/. E(x), y y' 
a I 

X Oiw Y --+ X Oiw Y 
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where E(x) denotes the set of instances (entities in the terminology of Interworkings, 
locations in our terminology) occurring in process x. In our terminology the predicate 
I (a) (j_ E ( x) can be paraphrased as: £ (a) f:- £ ( b) for every action b that can be exe-
cuted (after an arbitrary number of steps) by process x. This way the permission to 
overtake the execution of xis formulated with respect to all branches in the execution 
of x, and not as we have for the weak sequential composition, with respect to the 
existence of a branch which allows overtaking. We could express this by saying that 
interworking sequencing is based on a static permission relation whereas weak sequen-
tial composition as we see it, is based on a dynamical notion of permission. However, 
as all traces of an Interworking consist of the same atomic actions [MvWW93], the 
notions of dynamic and static permission are equivalent for Interworkings. Another 
difference is in the permission of 8. With interworking sequencing 8 permits the exe-
cution of any atomic action whereas with weak sequential composition 8 permits no 
atomic actions. For interworking sequencing the law 8 oiw x = x oiw 8 holds. For weak 
sequential composition we have the law 8 ox= 8. 

A third difference is that the interworking sequencing is not determinism preserving. 
An important consequence of these differences is that the right-distribution of inter-
working sequencing over delayed choice does not hold, whereas it does hold for weak 
sequential composition. 

Rensink and Wehrheim [RW94] define a special operator for sequential composition 
which is defined relative to a dependency relation over the atomic actions. This 
operator is called weak sequential composition, and in their paper denoted by ·. In 
this thesis we will denote this operator by ® to prevent confusion and we will call it 
weak sequencing. The interpretation is, as is the case for weak sequential composition, 
that actions which are independent do not have to wait for another to proceed, even 
if they are composed sequentially. The permission relation is dynamic and in fact 
both the idea and the notation for using it for weak sequential composition stem from 
the paper by Rensink and Wehrheim. However there are two important differences 
with weak sequential composition. First, choices introduced by weak sequencing are 
not delayed as is the case for weak sequential composition. Secondly, Rensink and 
Wehrheim have a family of deadlock constants Os. Each deadlock constant is labeled 
with a set S of actions that are permitted. Thus the deadlock constant 8 is in their 
algebra given by 00 . The constant Eis present in their algebra as OA. Also for weak 
sequencing the right-distributivity of weak sequencing over delayed choice does not 
hold. 

In the discussion of related work we have considered three other operators for sequen-
tial composition. We have seen that these differ from weak sequential composition in 
three ways: 

• choices that are introduced by the composition are delayed or not; 

• permission is static or dynamic; 

• the permissions of deadlock constants. 
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The choice for a delayed choice operator instead of a nondeterministic choice oper-
ator and the choice for a dynamic permission relation instead of a static permission 
relation are both motivated from the intuitive meaning of MSC. The use of delayed 
choice is mainly motivated from the use of MSC for the description of system require-
ments, scenarios and test cases [BM95). In these situations the user of the language 
probably has a perception of alternatives that corresponds to delayed choice instead 
of nondeterministic choice. 

The choice for a dynamic permission relation is mainly motivated by the desire to 
have the distributivity of weak sequential composition and delayed parallel composi-
tion over delayed choice. The user interprets an MSC with alternatives in it as a set 
of MSCs where each MSC describes exactly one scenario without alternatives. This 
motivates the choice for a dynamic permission relation as this enables the distribu-
tivity of weak sequential composition and delayed parallel composition over delayed 
choice. 

The deadlock constant is introduced for the purpose of disabling alternatives due to 
the resolving of choices by the execution of a permitted event, as explained before. As 
a consequence it must be the case that <5 itself does not permit any event. We expect 
that the constants Os of Rensink and Wehrheim are necessary when we aim for a 
complete axiomatization of bisimulation equivalence. Otherwise it might be difficult 
to establish that the processes a obf-ta c and a' ocf-ta' c are bisimilar for any different 
a, a', b, c EA such that £(a)= f(a'). 

3. 7 Generalization of the composition operators 

In this section generalized versions of the delayed parallel composition operator and 
the weak sequential composition operator are defined. These operators must be gen-
eralized in order to describe the ordering of events based on other grounds than the 
fact that they are from the same location. In MSC this situation applies to messages 
and causal orderings. 

The operators for delayed parallel and weak sequential composition are generalized 
by labeling them with a set of ordering requirements. An ordering requirement is a 
triple of the form a b where a and b are different atomic actions and n is a natural 
number. As a notational shorthand a b is written as a f---t b. Often the curly 
brackets of the set of ordering requirements are simply omitted. 

The reason to include this "counter" n in the ordering requirements is that in MSC 
the two events to be ordered, say a and b, can (in certain situations) be executed 
a different number of times. In such a case we need to ensure that the number of 
executions of event b is not greater than the number of executions of event a. The 
counter indicates the difference between the number of executions of a and b. 
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x x', y ~, enabled(a, S) 
X IISY x' llupd(a,S)Y (HC 2) 

x x', y y', enabled(a, S) 
X IISY x' llupd(a,S)Y =F X llupd(a,S)y' (HC 3) 

x ~, y y', enabled(a, S) 
X IISY X llupd(a,S)Yt (HC 4) 

Table 3.6: Deduction rules for generalized parallel composition. 

One difference between the deduction rules for f and 0
8 and the deduction rules 

for II and o is that the execution of an event c is restricted to the situations where 
enabled( c, S) holds. The predicate enabled( c, S) holds if and only if there is no ordering 
requirement in the set S that does not allow the execution of event a. An ordering 
requirement a b does not allow the execution of an event c if and only if c = b and 
n = 0. Because the counter is zero event c ( or b) can only be executed after event a 
has been executed ( at least once). 

As the counter n of an ordering requirement a b denotes the difference in the 
number of times that a and b have been executed already, it is influenced by the 
execution of a and b. Execution of a means that the counter must be increased by 
one and execution of b means that the counter must be decreased by one. The effect 
of the execution of an event a on the counters in the set of ordering requirements S 
is denoted by upd( a, S). 

The deduction rules for the generalized parallel composition operator are given in 
Table 3.6 and the deduction rules for the generalized weak sequential composition 
operator are given in Table 3.7. The auxiliary predicate enabled and the auxiliary 
mapping upd are defined below. 

Definition 3. 7.1 For a E A and S A x IN x A a set of ordering requirements 
the mappings enabled: A x IP(A x IN x A) IE and upd: A x IP(A x IN x A) 
IP(A x IN x A) are defined as follows: 

enabled(a, S) {==;> vb,cEA,nEIN b c E S ===} (c "t- a V n > 0), 
upd( a, S) { b c I b c E S I\ b "t- a I\ c "t- a} 

U {b ni-=+l c I b c E SI\ c = a I\ n > O} 
U {b n~l c I b c ES I\ b =a}. 

Note that for both operators the deduction rules are similar to the deduction rules 
for their non-generalized counterparts. In fact, f = II and o0 = o. This can be seen 
by realizing that enabled(a, 0) and upd(a, 0) = 0. 
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x-i, Y-i (VC 1) 
x os Y+ 
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a I a , .. ,----;y 
-----,,----(VC 5) 

X OS y ···a-+ X 1 OS y1 

x x', x ··_a-+ x", y y', enabled( a, S) 
-------,--------(VC 3) 

X 0 S y x' 0 upd(a,S) y =f x" 0 upd(a,S) y' 

x ~, x •••a-+ x', y y', enabled( a, S) 
----------(VC 4) 

X 0 S y x' 0 upd(a,S) y' 

x x', x ···a-A Vy~, enabled(a, S) 
----------(VC 2) 

X 0 S y x' 0 upd(a,S) y 

Table 3. 7: Deduction rules for generalized weak sequential composition. 

Example 3. 7.2 Consider the process ?m ll!mH?m!m. If the ordering requirement is 
not considered, i.e., the process ?m II !m is considered, the actions !m and ?m would 
be executed in any order. However, the presence of the requirement !m f----+ ?m blocks 
the execution of ?m as long as !m has not been executed. Thus the only possible 
execution for this process is 

1 ? ll!mH?ml -+!m? ll!mH?rn ll!mH?rn 1 . m . m . m s ---, s c+ . 

Example 3.7.3 Consider the process aoaHb (bob) with £(a) -j:. f(b). For this process 
the only possible execution is 

a oaHb c oa~b (bob)-!+ c oa>-+b (cob). 

Because of the ordering requirement a f----+ b event a must be executed before event b 
can be executed. Because event a can be executed only once event b can be executed 
at most once. 

Theorem 3.7.4 (Properties of lls and o5 ) For all closed terms s,t,u EC(~) and 
S A x IN x A we have the following properties: 

• generalized delayed parallel composition is commutative: x llsY H y llsx; 

• generalized delayed parallel composition distributes over delayed choice: 

( s =f t) 118 u H s I Is u =F t 118 u 

and 
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• deadlock is a left-zero element for generalized weak sequential composition: 8 os 
t H 8; 

• generalized weak sequential composition distributes over delayed choice: 

(s =Ft) os u H sos u =Ft os u 

and 

s Os ( t =F u) H s Os t =F s Os u. 

Proof These properties are proved in Appendix B.5. 

3.8 Renaming operator 

In this section we define the renaming operator PJ, for f : A A a given total 
injective mapping on atomic actions. A mapping f : A A is called injective if for 
all a, b E A, if f (a) = f (b) then a = b. In the case that a E rng(f) we denote the 
unique b EA with J(b) = a by 1-1 (a). 

If the process x can execute an atomic action a, then the process P1(x) can execute the 
atomic action f (a). Similarly, if the process x permits the execution of an event a, then 
the process P1(x) permits the execution of event f (a). The process P1(x) terminates if 
and only if the process x terminates. The deduction rules for the renaming operator 
are given in Table 3.8. 

x.j,. X 

P1(x).j,. 

Table 3.8: Deduction rules for renaming. 

The reason for requiring that the mapping f is injective is that otherwise the result of 
renaming a deterministic process is not necessarily deterministic. This is illustrated 
by the following example. 

Example 3.8.1 Consider the process x = a =F b o c. Consider the mapping f with 
f (a) = d, f (b) = d and which is the identity otherwise. Then, by the above deduction 
rules P1(x) !+ PJ(c) since x E and f (a) = d and P1(x) !+ PJ(E o c) since x E o c 
and J(b) = d. The process P1(x) is not deterministic since the processes PJ(c) and 
PJ ( c o c) are not equivalent. 
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The example indicates that, if two initial actions a and b, that are different for process 
x, can be renamed into the same action d, then the renamed process PJ ( x) is not 
deterministic anymore. The injectivity criterion ensures that it is not possible that 
two actions are identical after a renaming if they are not identical before the renaming. 

3.9 Repetitive behavior 

3.9.1 Iteration 

The process x® represents the process that consists of any number of vertical com-
positions of process x. This includes the possibility of executing x zero times and 
also the possibility of executing x infinitely often. The choice of how many times 
the process x is executed, however, is delayed. The deduction rules for iteration are 
presented in Table 3.9. The operation of the iteration operator is closely related to 
the operation of the weak sequential composition and the delayed choice as will be 
clear from the explanation of the deduction rules. 

a I a 

x® x' ox® 

a 

-,.,,-(IT 1) 
x~-J, 

(IT 2) 
x x' x .. x" 

' (IT 3) 
x® x"® o (x' ox®) 

X .. ,----1-t 

-x-®-.. 4) 

Table 3.9: Deduction rules for iteration. 

The process x® has the option to execute x zero times and thus, it has the option to 
terminate successfully and immediately. This is what is expressed by deduction rule 
(IT 1). 

The process x® can perform an event a if the process x can do so. To determine what 
the resulting process will be, it is of importance whether x also permits the event a. 
Suppose that x x'. In the case that x does not permit event a, i.e. x ... a"-A, the 
only possibility for executing a is the a from the first x. The resulting process then 
clearly is x' ox® (see deduction rule (IT 2)). 

In the case that x does permit a and thereby evolves into x", i.e. x x", there are 
many possibilities for executing a. The choice between all these possible executions of 
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a is delayed. The resulting process is given by x"® ox' ox® (see deduction rule (IT 3)). 
The resulting process x"® o (x' ox®) describes that first any number of occurrences 
of x permit the execution of a (resulting in x"®) and then a is finally executed by 
some occurrence of x ( resulting in x'). 

If process x does not permit the execution of action a, then x® permits the execution 
of action a (IT 4). The reason for this is that x® has the empty process c as one of 
its alternatives. If, on the other hand, the process x does permit the execution of a 
and thereby evolves into x', then x® also permits the execution of a and it evolves 
into x'® (IT 5). 

Example 3.9.1.1 Consider the process a®. This process describes an arbitrary num-
ber of executions of action a. Only the first occurrence of a can be executed as a ... a---1-+. 

Thus E o a®. 

Example 3.9.1.2 Consider the process (a ob)® where £(a) -I £(b). The first occur-
rence of b can be executed as a allows this (a ... a). The other occurrences of b 
cannot be executed as the previous occurrences of b prohibit this (a ob ... b---1-+ ). Thus, 
(aob)®-!+ (aos)o(aob)®. 

Example 3.9.1.3 Consider the process (a =i= b)® where £(a) -=p £(b). Then a=i=b b 
and a =i= b E. Deduction rule (IT 3) then gives (a =i= b)® b® o (co (a =i= b)®). This 
result can be explained as follows. First, an arbitrary number of copies of a =i= b 
allow the execution of event a. Each of the copies of a =i= b evolves into the process b 
((a =i= b)® b®). Then, event a is actually executed by a copy of a =i= b. This copy 
of a =i= b evolves into the process c ( a =i= b E). The deduction rule expresses that 
an arbitrary occurrence of a can be executed and that as a consequence all previous 
occurrences of a are removed. 

3.9.2 Unbounded repetition 

The unbounded repetition of the process x, i.e., x00
, corresponds to the notion where 

fresh copies of x are composed by means of weak sequential composition ad infinitum. 
The fact that the operation of unbounded repetition is so closely linked with the 
operation of weak sequential composition is visible in the deduction rules presented 
in Table 3.10. 

First, we consider the transition relation. There are only two relevant (disjoint) cases. 
The first is where x can execute an a event and x does not permit an a event, and 
the second is where x can execute an a event and also permits an a event. The other 
case, i.e., where x cannot execute an a event, does not give rise to a transition of x 00 

as none of the copies of x can execute the a event. 

Suppose that x can perform an a event and thereby evolves into x' and suppose that 
x does not permit an a event. Then, following the deduction rules for weak sequential 
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x x' x ···a---H 
-x-oo-~-~-, -o-x-oo-(UR 1) 

X ···a-+ X 1 

-
00
-------,,-a--,-=-(UR 3) 

X ···-+ X 

Table 3.10: Deduction rules for unbounded repetition. 

composition, the process x 00 can only execute the a event from the first copy of x. 
Thus x= performs the a event as well and thereby evolves into the process x' o x=. 
This is expressed by deduction rule (UR 1). 

Alternatively, if x permits an event a and thereby evolves into x", there are in principle 
infinitely many possibilities for the execution of the a event, due to the permission for 
a, each of the copies can perform the a event. Thus, the deduction rule expresses that 
one of the copies of x will perform the a event. All preceding copies thus evolve into 
x". Thus the process x= evolves into the process x 11 ® o (x' ox=) after the execution 
of action a. This is expressed by deduction rule (UR 2). 

The deduction rule for the permission relation (UR 3) is based directly on the deduc-
tion rule for weak sequential composition. Note that the process x= cannot terminate, 
not even if x can terminate. 

Example 3.9.2.1 An example of the situation where an event can be executed even 
if it is composed vertically with an unbounded repetition is the process a= ob with 
R(a) -=j:. R(b). Clearly, a= a00

• Therefore, we obtain a= ob~ a= o E. 

Example 3.9.2.2 The process (a =i= b) 00 ob with R(a) -=/:- R(b) can execute band thereby 
evolves into the process (a® o (co (a =i= b)=)) ob =i= a= o E. The first summand of the 
resulting process describes that one of the occurrences of b from the process ( a =i= b) = 
can be executed and the second summand describes the situation that the b following 
the unbounded repetition is executed. 

A convenient shorthand is the expression x[m,n] where x EC(~) and m, n E .lNU { oo }. 
This expression indicates that at least m and at most n copies of x are composed by 
means of weak sequential composition. For example, the expression x[2 ,4l represents 
the expression x ox =i= x o ( x ox) =i= x o ( x o ( x ox)). If the minimal number of repetitions 
exceeds the maximal number of repetitions it is assumed that xis executed zero times. 
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Definition 3.9.2.3 Let m, n E IN. Then, for x E C(I:) , the process x[m,n] is defined 
inductively as follows: · 

if m > n, 
if m = n, 
if m < n. 

Additionally, we define the following shorthands for m E IN and x E C (I:) 

x[m,oo] 
x[oo,n] 
x[oo,oo] 

Theorem 3.9.2.4 (Properties of ® and 00
) For closed terms t E C(I:) we have 

the following properties 

1. t® B c =ft o t®; 

2. too H to t 00
; 

3. t® =f t 00 B t®; 

4. t® 0 t® B t®; 

5. t® o t 00 B t 00
• 

Proof These properties are proved in Appendix B.6. 

3.10 Congruence and determinism 

In this section we present two important properties of our process theory. These are 
congruence and determinism. Congruence refers to the fact that we can use already 
established equalities also in a broader context. For example, as x o c B x, we can 
also obtain (x o c) o y H x o y. 

Definition 3.10.0.5 (Congruence) Let I: be a signature. An equivalence relation 
R on the set of closed ~-terms is called a congruence if for all n-ary function symbols 
f EI: and closed I:-terms x1, · · · ,xn,YI, · · · ,Yn we have 

Theorem 3.10.1 (Congruence) Bisimulation is a congruence with respect to the 
function symbols from the signature I:. 
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Proof For the proof of this theorem, we use Verhoef's congruence theorem for 
structured operational semantics [Ver95]. If a term deduction system is in panth 
format and stratifiable, then bisimilarity is a congruence with respect to all function 
symbols occurring in the signature. Strictly speaking the term deduction system is 
not in panth format. The reason for this is that we use the logical connective Vin the 
set of hypotheses of the deduction rules (WS 2) and (VC 2). This Vin the hypotheses 
can be seen as a shorthand notation for two deduction rules. So the deduction rule 
of the form 

is a shorthand notation for the deduction rules 

Hu {hi} 
C 

and 

It remains to provide a stratification for the term deduction system. We define the 
mapping S: C(~) IN fort, t' EC(~) and a EA as follows: 

S(t-!,) = 1, 
S(t t') = 1 + n(t), 
S(t ... t') = 1 + n(t). 

The mapping n : C(~) IN is fort, t' E C(~), a E A, f an injective mapping and 
S A x IN x A defined as follows: 

n(c) = n(8) = n(a) = 1, 
n(p1(t)) = n(t®) = n(t=) = n(t) + 1, 
n(t t') = n(t II t') = n(t o t') = n(t 115 t') = n(t o5 t') = n(t) + n(t') + l. 

It can easily be checked that this mapping S is a stratification for the transformed 
term deduction system. i:8J 

Definition 3.10.2 (Determinism) A process t EC(~) is called deterministic if and 
only if for all a EA and ti, t2 EC(~) 

• if t t1 and t t2, then t1 = t2, and 

• if t t1 and t ... t2, then t1 = t2. 

Theorem 3.10.3 (Determinism) Every process t EC(~) is deterministic. 

Proof This theorem can be proved by induction on the structure of closed term 
t. Inspection of the deduction rules indicates that every operator from the signature~ 
is determinism preserving, that is, if s1, · · · , Sn are deterministic processes and f is an 
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n-ary operator, then f ( s1 , · · · , sn) is also deterministic. This can be seen as follows. 
Suppose that f(s 1, · · · , sn) is not deterministic. Then, by definition, it must be the 
case that f(s1, · · · , sn) p and f(s1, · · · , sn) p' for some a EA and p,p' EC(~) 
such that p "t- p'. This can only be the case if two different deduction rules can be 
applied to the term f ( s1 , · · · , sn) at the same time. The only deduction rules that can 
be applied to the term f(s 1, · · · , sn) are the deduction rules for which the left-hand 
side of the conclusion is of the form f (x1 , · · · , xn) and for which the sets of hypotheses 
are satisfied. From the deduction rules we can immediately see that it cannot be the 
case that two deduction rules are applicable since the sets of hypotheses cannot be 
satisfied at the same time. Hence, the process f ( s1 , · · · , sn) is deterministic. With 
respect to the permission relation a similar reasoning can be applied. IZI 
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4 

Semantics of Message 
Sequence Charts 

4.1 Introduction 

In this chapter, a denotational semantics of the language MSC is defined. It consists of 
a family of mappings [] which transform (part of) an MSC in textual representation 
into a process expression over the signature introduced in Chapter 3. The semantics 
is defined compositionally. This means that the semantics of a piece of textual syntax 
is only defined in terms of the information available in this piece of syntax. 

Before we start with the formal definition of the semantics in Section 4.3 and further, 
we first explain our approach to the semantics in the following section. 

4.2 The approach 

For the purpose of defining the formal semantics we use the textual syntax as presented 
in Appendix A.2. This syntax is different from the textual syntax as presented in 
recommendation Z.120. The changes can be subdivided into several categories: 

• Not treated. Not treated in this chapter are the instance-oriented textual syn-
tax, instance decomposition, substitution, and the combination of incomplete 
message events with gates. 

• Removing irrelevant information. For a complete list of the parts of the textual 
syntax of Z.120 that are considered irrelevant see Appendix A.1.2. An example 
of irrelevant information are the instance head and instance end statements. 

115 
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• Shorthands. Several parts of the textual syntax of MSC can be seen as a short-
hand for another (larger) piece of textual syntax. For the formal semantics 
definition it is convenient to assume that these are replaced by their unabbre-
viated versions. An example is the ommission of a loop boundary in an inline 
expression with the keyword loop. This is an abbreviation of a similar construc-
tion with a loop boundary <1,inf>. A list of such shorthands that are removed 
from the textual syntax is given in Appendix A.1.3. 

• Extensions. Introduction of the keyword after for the description of causal 
orderings. For the consequences of this extension see Appendix A.1.4. 

Furthermore, some assumptions that are imposed on the textual syntax are listed in 
Appendix A.1.5. 

4.2.1 MSC documents 

An MSC document contains a finite number of MSCs. In an MSC, references to other 
Msc·s can be used by means of the unique MSC names. A reference to an MSC with 
name A can be dealt with semantically by substituting the MSC name with the body 
of the MSC with that name. However, the approach that is followed in this chapter is 
such that for every MSC in the MSC document an equation is given that associates 
with an MSC with name A the equation A = S where A is a variable associated 
with the MSC with name A and S is the semantics of the body of this MSC. As a 
consequence the semantics of an MSC document thus consists of a set of equations. 

It is not allowed that an MSC refers to itself, directly or via a number of other 
references. Therefore, the equations are not recursion equations; they only define a 
complex process expression as a constant. 

4.2.2 Message Sequence Charts 

Both the semantics of an MSC with name A in the context of such an MSC document 
and the semantics of a reference to such an MSC are given by the constant A. This 
approach allows to consider the semantics of an MSC document by considering the 
semantics of every MSC in isolation. 

4.2.3 Message Sequence Chart bodies 

The body of an MSC in event-oriented textual representation basically consists of 
a list of event definitions. The intuition behind such a list of event definitions is 
that these can be thought of as being composed vertically in the same order as the 
event definitions appear in the event-oriented representation. The approach that is 
followed to obtain the semantics of an MSC body can then be paraphrased in the 
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following way: an MSC body is the vertical composition of the event definitions that 
are contained. 

msc example 

Figure 4.1: Decomposition of an instance. 

Example 4.2.3.1 Consider the MSC given in Figure 4.1. It contains one instance 
with two local actions. Textually, this MSC is represented by 

msc example ; 
: action 'a' ; 

i : action 'b' ; 
endmsc; 

It contains the two event definitions "i : action 'a'" and "i : action 'b'". Each of 
these can be viewed as a nameless MSC as depicted in Figure 4.1 as well. The original 
MSC can be obtained from the MSC fragments by means of vertical composition. The 
semantics of the MSC is obtained by composing the semantics of the MSC fragments 
by means of weak sequential composition. Due to the fact that both local actions are 
defined on the same instance, the weak sequential composition operator maintains 
the ordering that local action a is executed before local action b. 

Example 4.2.3.2 Consider the MSC given in Figure 4.2. It contains two instances, 
each of which has a local action. Textually, this MSC is represented by 

msc example ; 
: action 'a' ; 

j : action 'b' ; 
endmsc; 

or by 

msc example ; 
j : action 'b' ; 
i : action 'a' ; 
endmsc; 

In both cases, the textual representation contains the event definitions "i : action' a'" 
and "j : action' b'". A graphical representation of those is also given in Figure 4.2. As 
these events are defined on different instances their vertical composition has the same 
result as their horizontal composition. The semantics of the MSC is again obtained 
by composing the semantics of the MSC fragments by means of weak sequential 
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msc example 

Figure 4.2: Decomposition of two unrelated events. 

composition. As the local actions are defined on different instances and this is reflected 
in the atomic actions representing them, the weak sequential composition of these 
atomic actions results in their interleaved execution. 

In the first example the MSC fragments from which the MSC is composed are related 
through the fact that they have an instance in common. In the second example 
the two MSC fragments are not related at all. The vertical composition of two MSC 
fragments results in the linking of instances with the same name. For the first example 
this means that the order between the local actions a and b is maintained. However, 
there are also situations in which there are more relations between the MSC fragments. 
Examples of these are messages and causal orderings where the two events that are 
involved reside in different MSC fragments. 

msc example 

m m (i, _,j, m) 

(i, -, j, m) 

Figure 4.3: Decomposition of a message. 

m 

Example 4.2.3.3 Consider the MSC given in Figure 4.3. It contains two instances 
and one message. The message consists of two event definitions in the textual rep-
resentation. These are "i : out m to j" and "j : in m from i". In the textual 
representation of the MSC these can occur in any order in the MSC body. Seman-
tically however, it is expected that the output of m takes place before the input of 
m. This is achieved semantically by computing an ordering requirement and labeling 
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the generalized weak sequential composition operator by the computed requirement. 
The requirement is computed from the semantics of the MSC fragments in isolation. 
In Figure 4.3 the connections of the dangling message events with the frame of the 
MSC fragments are labeled with the information that is used to find that these events 
together constitute a message. In Section 4.6 it is explained in more detail how the 
ordering requirement is computed from the semantics of the MSC fragments. 

msc example 

j 

( ll , l 2) ,________... 
(ll, l2) 

Figure 4.4: Decomposition of a causal ordering. 

Example 4.2.3.4 Consider the MSC given in Figure 4.4. It contains two instances. 
Each instance contains a local action. The local actions are ordered causally. The 
event definitions that occur in the textual representation are "i : l 1 action 'a' before 
l2" and "j : l2 action 'b' after ll". The MSC fragments are represented graphically 
in Figure 4.4. The connections of the causal order arrows with the frames of the 
MSC fragments are labeled by the information that is used to find that these two 
events are ordered causally. Semantically, this information is attached to the atomic 
actions representing the local actions (see Section 4.5). The vertical composition 
of the MSC fragments that correspond to these event definitions should incorporate 
the requirement that local action a must precede local action b. Also this type of 
requirements is computed from the semantics of the MSC fragments. 

In the previous examples the MSC body only contains two event definitions. In 
general, however, an MSC body contains an arbitrary (but finite) number of event 
definitions. The approach followed for arbitrary MSC bodies is basically the same 
as the approach sketched in the previous examples. Semantics is provided for an 
MSC body by vertically composing the semantics of the first event definition with 
the semantics of the remaining part of the MSC body. The linking of instances 
with the same name is taken care of by the generalized weak sequential composition 
operator. The ordering requirements that are due to corresponding message events 
and corresponding causally ordered events in different MSC fragments are explicitly 
added as a label to the generalized weak sequential composition operator. 
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msc example 

Figure 4.5: An example MSC. 

Example 4.2.3.5 In Figure 4.5 an MSC is given and in Figure 4.6 its decomposition 
into three fragments is given by means of horizontal dashed lines. The textual syntax 
of each of the MSC fragments is given in the same figure. The MSC is decomposed 

msc example 

i : l action 'a' before l' 

_ j : l' out m to k after l 
k: in m from j 

Figure 4.6: Attributed example MSC. 

into three fragments. Each fragment describes one event. The textual representations 
of the fragments contain enough information to establish how the dangling message 
arrows and causal order arrows are to be connected. For example the fact that local 
action a precedes the output of message m is available in the event names l and l' 
and the parts of the textual syntax that describe "l . . . before l'" and "l' . . . after 
l". In isolation the three fragments could be represented as given in Figure 4.7. In 
this figure, dangling arrows are connected with the frame around the MSC fragment 
and the information that is necessary for determining whether the dangling arrows 
should be connected is described close to the connection with the frame. 

In the approach towards the definition of the formal semantics one event definition is 
almost an MSC on its own. It differs from an MSC in the following aspects: 

1. It does not have a name. 

2. It can have dangling message arrows and dangling causal order arrows. 
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j k 

(l, l') 
( l, l') 

m ( i, -, j, rn) 
(i, _,j, m) 

m 

Figure 4.7: Decomposition of the example MSC. 

In the presented examples only very simple MSC fragments appeared. In principle, 
also more complex MSC fragments are used in the semantics definition. The following 
MSC fragments are distinguished: 

1. Single instance events: An event attached to an instance with some dangling 
causal arrows. 

2. Vertical composition: The vertical composition of two MSC fragments is again 
considered an MSC fragment. In such a vertical composition corresponding 
dangling arrows are connected and the required orderings are maintained. 

3. Coregions. 

4. Multi instance events: A multi instance event is attached to a number of in-
stances (at least one). There are three different multi instance events: 

(a) conditions; 

(b) MSC reference expressions; 

( c) inline expressions. 

4.2.4 Events 

The single instance events are in the semantics denoted by atomic actions. The 
semantics of single instance events is considered in Section 4.4. These atomic actions 
can be labeled by an event name and a set denoting the dangling causal ordering 
arrows (see Section 4.5). This is necessary as this information is needed when single 
instance events are composed vertically or horizontally. 

4.2.5 Coregions 

A coregion contains a number of single instance events. These events are all defined 
on the same instance and they are supposed to be executed in parallel. Nevertheless, 
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it can be the case that the events in a coregion are ordered. Reasons for such an 
ordering between events can be that they are corresponding message events or that 
they are causally ordered. 

The semantics of a coregion is obtained by considering the events in the coregion 
as MSC fragments that are composed horizontally. The ordering requirements are 
obtained in the same way as they are obtained for vertically composed MSC fragments. 

msc example 

J 

I 

I 

m 
(i, -, i, m) 

n 
( i, -, j, n) 

m 
(i, -, i, m) 

Figure 4.8: Decomposition of a coregion. 

Example 4.2.5.1 Consider the MSC given in Figure 4.8. The coregion contains three 
events. To obtain the semantics of the coregion we decompose it into MSC fragments. 
These are given in Figure 4.8 as well. The semantics of the coregion is obtained from 
the semantics of the MSC fragments by means of horizontal composition. From the 
semantics of the MSC fragments the necessary ordering requirements are computed 
in a similar way as for the MSC bodies before. 

The horizontal composition mechanism used for obtaining a coregion from its events is 
defined in Section 4.6. The semantics of a coregion is formally described in Section 4.7. 

4.2.6 MSC reference expressions 

An MSC reference expression is a textual formula which describes a composition of 
MSCs by means of a number of operators. The smallest building blocks of MSC 
reference expressions are references to other MSCs by means of their MSC name. 
Semantically, these are dealt with by means of variables. This also means that an 
equation must be given for such a variable. This is the reason for associating a 
specification with an MSC document. The operators alt, seq, par and loop <m,n> 
are treated semantically by replacing them by constructs from the process theory 
developed in the previous chapter. This way a process expression is obtained for the 
textual formula described in the MSC reference symbol. 
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However, it is possible that messages and causal order arrows are connected to the 
MSC reference expression symbol by means of a gate. In such cases at least one of 
the referenced MSCs must contain a corresponding event. It is necessary to take the 
ordering requirement due to this connection via the gate into account. This is achieved 
by replacing the message gate and order gate definitions by actual message and order 
gates as described textually in the MSC reference gate interface. The approach is 
illustrated by the following example. 

Example 4.2.6.1 Consider the MSCs given in Figure 4.9. MSC B has an MSC 
reference expression which refers to MSC A. Instance i in MSC A sends a message 
m to a gate g. In MSC B instance j receives a message m from a gate g on the 
MSC reference symbol. This gives rise to an ordering requirement. MSC B can 

msc A msc B 

m 
g 

Figure 4.9: MSC with an MSC reference expression with a gate. 

be thought of as being composed of two MSC fragments. These are depicted in 
Figure 4.10. The semantics of the MSC fragment containing the MSC reference 

j 

(-, (l, g),j, m) ,____m ___ , 
( i, ( l, g), -, m) 

Figure 4.10: MSC fragments for MSC B. 

expression is obtained by replacing the destination of the message m, that is gate g 
on the environment, in MSC A by an actual gate. This actual gate is a combination of 
the MSC reference identification and the name of the gate in MSC A. The reason for 
using the MSC reference identification is that there can be many references to MSC 
A. For each of these the gates can be connected in a different way. This implies that 
different instantiations of the same gate definition have to be distinguished. After this 
instantiation of the gate definitions by actual gates, the recipe described for obtaining 
the semantics of an MSC body can be followed. 
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In the previous example and also in the discussion on the semantics of MSC bodies we 
are looking for corresponding events that are located in the different MSC fragments. 
Now, with MSC reference expressions, the situation arises that two events from the 
same MSC fragment are corresponding since two gates of the MSC reference expres-
sion are connected by means of a message arrow or causal order arrow. An example 
is given in MSC B in Figure 4.11. Of course we can adapt the computation of the 
ordering requirements such that also corresponding events in the same MSC fragment 
give rise to an ordering requirement, but we rather determine those separately. The 
reason not to proceed in this direction is that we have no criterion to distinguish be-
tween already enforced ordering requirements and new ordering requirements. Thus, 
all ordering requirements that are already enforced would be taken into account again. 
Technical details can be found in Section 4.9. 

mscA msc B 

m 
g2 

n 
gl m 

m 
g3 

Figure 4.11: An MSC reference expression with self-connected gates. 

Example 4.2.6.2 Consider the MSCs given in Figure 4.11. In this example the gates 
g2 and g3, which are both on the MSC reference symbol, are connected. Textually, this 
connection is described in the MSC reference gate interface. MSC B is decomposed 
into two MSC fragments, which are given in Figure 4.12. The semantics of the first 

l m 

(-, ((l, g2), (l, g3)),j, m) 

n (-, (l, gl), j, m) 
(i, (l, gl), -, m) 

Figure 4.12: MSC fragments for MSC B. 

j 

MSC fragment is obtained as follows. First the semantics of the textual formula in the 
MSC reference symbol is computed. Then, based on the MSC reference gate interface, 
gate definitions are replaced by actual gates. Finally, the ordering requirements that 
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are due to the connection of two gates on the MSC reference symbol have been taken 
into account. In Figure 4.12 this is indicated by means of the dashed arrow connecting 
the message arrows from the gates g2 and g3. 

The approach for the semantics of MSC reference expressions can be summarized as 
follows. First, the semantics of the textual formula in the MSC reference symbol 
is computed. Then, based on the MSC reference gate interface, gate definitions are 
replaced by actual gates. Finally, orderings of events from the MSC reference expres-
sion due to the connection of gates on the MSC reference symbol are computed and 
integrated. 

4.2. 7 Inline expressions 

Inline expressions are a different graphical representation for MSC reference expres-
sions. There are only two interesting differences. First, the operands of the operators 
that are used in inline expressions are not references to MSCs but MSC bodies. Sec-
ondly, the inline expression gate interface is not described textually on one place. Its 
description is distributed over the operands. The first difference is overcome easily. 
Instead of considering the semantics of a textual formula we compute the semantics of 
the MSC bodies, as described before. The second difference is only an artificial one. 
We explained before that we give semantics to gates under several restrictions. These 
restrictions guarantee that we in fact can combine the distributed inline expression 
gate interfaces into one overall inline gate interface. With those remarks it can be 
understood that the approach towards the semantics of inline expressions is similar 
to the approach for MSC reference expressions. 

4.2.8 High-level Message Sequence Charts 

On an abstract level an HMSC consists of a number of nodes and arrows between 
those. There are different types of nodes. Each type of node is treated differently in 
the semantics. The arrows between the nodes are used to describe vertical composition 
and alternative composition. If a node has only one outgoing arrow, then this indicates 
vertical composition. If a node has multiple outgoing arrows, this indicates alternative 
vertical compositions. 

For an HMSC the semantics is obtained by transforming it into an HMSC with a 
very specific structure. This transformation is not defined directly on HMSCs but on 
edge-labelled graphs. For the "HMSC" that results after the transformation a process 
expression can be given easily. We will illustrate this by an example. For more details 
on the transformation itself we refer to Section 4.11. 

Example 4.2.8.1 Consider the HMSC given in Figure 4.13. The textual represen-
tation of this MSC is also given in this figure. The label names used in the textual 
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representation for describing the nodes are indicated in the HMSC as well. With this 
HMSC eventually the following process expression is associated: 

12 

- -® - -( A o C) o ( A o B). 

msc example 

T 
cl r-

ll A 

~c2 O~____________,__ 

13 C 

e 

msc example ; 
expr cl ; 
cl : connect seq ( ll) ; 
ll : A seq ( c2) ; 
c2 : connect seq (12 alt 13) ; 
12 : B seq (e) ; 
l3 : C seq (cl) ; 
e : end; 
endmsc; 

Figure 4.13: An annotated HMSC. 

4.3 Semantics of an MSC document 

The semantics associated with an MSC document is a set of equations defining con-
stants. For every MSC in the MSC document a constant is introduced. For an MSC 
with name id, this constant is denoted as id. 

The mapping MSC associates with an MSC document a set of pairs of MSC names 
with their textual representation. as they appear in that MSC document. Note that 
for each MSC name there can be at most one pair in which that MSC name occurs. 
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Definition 4.3.1 The mapping MSC : £( (msc document)) JP(£( (msc name)) x 
£( (message sequence chart))) is for docid E £( (msc document name)) and doc body E 
£( (msc document body)) defined as follows: 

MSC(mscdocument docid ; docbody) = MSC(docbody). 

The mapping MSC : £( (msc document body)) JP(£( (msc name)) x £( (message 
sequence chart))) is for msc E £( (message sequence chart)) and docbody E £( (msc 
document body)) defined inductively as follows: 

MSC() = 0, 
MSC(msc docbody) = {(Name(msc), msc)} U MSC(docbody), 

where the mapping Name : £( (message sequence chart)) £( (msc name)) is for 
id E £( (msc name)), mscbody E £( (msc body)) and mscexpr E £( (msc expression)) 
defined as follows: 

Name(msc id ; mscbody endmsc ;) id, 
Name(msc id ; expr mscexpr endmsc ;) id. 

As an MSC document cannot contain two or more MSCs with the same MSC name 
this set of pairs can be considered a mapping. In the sequel we will write MSC ( id) 
if we mean msc such that (id, msc) E MSC(doc). Note that we must be certain that 
we only do this for id such that there actually is an MSC with that name in the MSC 
document. 

The mapping Eqs associates to an MSC document the set of recursive equations that 
describe the semantics of the MSCs in the MSC document. For an MSC (not an 
HMSC) this equation is of the form id = S where id is the name of the MSC and S is 
the semantics of the body of the MSC. The definition of the mapping Eqs for HMSCs 
is given in Definition 4.11.9. 

Definition 4.3.2 For all docid E £( (msc document name)) and docbody E £( (msc 
document body)) 

Eqs(mscdocument docid ; docbody) = Eqs(docbody). 

For msc E £( (message sequence chart)) and docbody E £( (msc document body)) 

Eqs() = 0, 
Eqs ( msc doc body) = Eqs ( msc) U Eqs ( docbody). 

For id E £( (msc name)) and mscbody E £( (msc body)) 

Eqs(msc id; mscbody endmsc ;) ={id= [mscbody]}. 

The semantics of an MSC msc with MSC name id from a given MSC document doc 
is then given by the constant id in the set of equations Eqs(doc). We will denote such 
a constant id with respect to a set of equations E by ( id I E). 
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Definition 4.3.3 Let doc E £( (msc document)). For msc E £( (message sequence 
chart)) such that (Name(msc), msc) E MSC(doc) 

[msc]doc = (Name(msc) I Eqs(doc)). 

The way in which the semantics of MSC documents and MSCs is treated in this 
section makes it possible to deal with references to an MSC by using the appropriate 
constant for the semantics. For example an MSC reference expression to an MSC 
with name A is semantically represented by A. 

4.4 Semantics of events 

In this section the semantics of events is defined. In the recommendation several types 
of events are distinguished. The first distinction is between single instance events and 
multi instance events. A single instance event is an event that is defined on exactly 
one instance. A multi instance event is an event that can be defined on one or more 
instances. Besides this distinction there is also a distinction between orderable and 
non-orderable events. An orderable event is an event that can be used in a causal 
ordering and a non-orderable event is an event that may not be used in a causal 
ordering. In Table 4.1 the events that are present in the language MSC are classified 
with respect to orderability and the number of instances they can be defined on. 

event single instance multi instance 
non-order able instance stop condition 
orderable local action 

(incomplete) message event 
instance create 
timer events 

Table 4.1: Classes of events. 

4.4.1 Local actions 

Local actions are represented in the semantics by atomic actions from the set Aact 
defined below. A local action that is defined on an instance i with action name a is 
denoted by action(i, a). 

Definition 4.4.1.1 The set Aact is defined as follows: 

Aact { action(i, a) 
I i E £( (instance name))/\ a E £( (action character string))}. 
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Definition 4.4.1.2 Let i E £( (instance name)). Then, for all a E £( (action character 
string)) 

[ action 'a'] i = action( i, a). 

4.4.2 Message events 

The atomic actions that represent message output and message input events have four 
parameters. For a message output event the following information is maintained: 

1. the name of the instance on which the event is executed; 

2. an abstract representation of the gate via which the message is sent (if available); 

3. the name of the instance that should receive the message (if available); 

4. the name of the message. 

Similarly, for a message input the following information is maintained: 

1. the name of the instance on which the event is executed; 

2. an abstract representation of the gate via which the message is received (if 
available); 

3. the name of the instance that should send the message (if available); 

4. the name of the message. 

Message output and input events, as they occur in the textual syntax, have either a 
gate part or a sender or receiver instance name, but not both. However, in connecting 
gates on MSC reference expressions and inline expressions an instance name becomes 
available as the sender or receiver of a message. In such cases the gate part is still 
relevant for distinguishing multiple occurrences of such a message. An example of 
this is given in Figure 4.14. If the gate part is not maintained in the atomic actions 
representing the message output events then these cannot be distinguished anymore. 
As a consequence it is impossible to distinguish MSC B from MSC C. As this example 
indicates, it is not sufficient to maintain the name of the gate via which the message 
is sent. For this purpose the reference identification is added to the gate name. The 
reference identification must therefore be unique within the MSC document. 

Textually, for the input address of a message output event there are three possibilities. 
If it is an instance name then the message is not sent via a gate and the receiver 
instance name is known. This is indicated in the gate part by -· If the input address 
of a message output event is a gate g in the environment this is indicated by means 
of env (g). If the input address of a message output event is an actual gate g of an 
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msc B msc C 
j j 

Figure 4.14: Necessity of gate names. 

MSC reference expression or inline expression with reference identification l, then this 
is indicated by (l, g). Actual gates are represented by elements of the set AQ which 
is defined below. This set also contains elements of the form ((l,g), (l',g')) where l 
and l' are reference identifications and g and g' are gate names. These are added 
explicitly for the purpose of finding corresponding message output and message input 
events (see Section 4.6). 

Clearly, for the output address of message input events similar possibilities exist. The 
different notations for the representation of the gate parameter of the message output 
and input events are combined in the set AMQ which is also defined below. 

Definition 4.4.2.1 The set AQ is defined as follows: 

AQ £( (reference identification)) x £( (gate name)) 
U (£( (reference identification)) x £( (gate name)) )2. 

The set AMQ is defined as follows: 

AMQ = {-, env(g) I g E £((gate name))} U AQ. 

Definition 4.4.2.2 The sets Aaut and Ain are defined as follows: 

Aaut {out(i,-,j,m), out(i, env(g),-,m), out(i,G,-,m), out(i,G,j,m) 
I i, j E £( (instance name))/\ g E £( (gate name))/\ GE AQ 
/\ m E £((message name))}, 

Ain { in(i, -, j, m), in(_, env(g), j, m), in(_, G, j, m), in(i, G, j, m) 
I i, j E £( (instance name))/\ g E £( (gate name))/\ G E AQ 
/\ m E £( (message name))}. 

The atomic actions out(i, -, j, m) and in(i, -, j, m) represent a message output and 
message input event respectively for a message m that is sent directly from instance i 
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to instance j. The atomic actions out( i, env (g), -, m) and in(_, env (g), i, m) represent 
a message m that is sent to or received from the environment via a gate with name g. 
The atomic actions out( i, ( l, g), -, m) and in(_, ( l, g), i, m) represent the sending and 
receiving of a message m to an unknown instance via an actual gate with name g on 
an MSC reference expression or inline expression with reference identification l. The 
reasons for including the other atomic actions will become clear in Section 4.9. 

Definition 4.4.2.3 Let i E £( (instance name)). Then, form E £( (message name)), 
j E £( (instance name)), g E £( (gate name)) and l E £( (reference identification)) 

[out m to j]i 
[out m to env via g]i 
[out m to reference l via g]i 
[out m to inline l via g]i 
[in m from j] i 
[in m from env via g] i 
[in m from reference l via g] i 
[in m from inline l via g] i 

out(i, -, j, m), 
out(i, env(g), -, m), 
out( i, ( l, g), -, m), 
out( i, ( l, g), -, m), 
in(j, -, i, m), 
in(_, env(g), i, m), 
in(_, (l,g),i,m), 
in(_, (l, g), i, m). 

Please note that there is no difference in notation in the semantics of a gate g on an 
MSC reference expression or on an inline expression. Throughout the semantics the 
role of MSC reference expressions and inline expressions will be similar. 

4.4.3 Incomplete message events 

Lost message output events and found message input events are represented by atomic 
actions from the sets Alast and Atound respectively. 

Definition 4.4.3.1 The sets Alost and Ataund are defined as follows: 

Alost 

Afound 

{ lost(i, j, m), lost(i, -, m), lost(i, env, m) 
I i,j E £((instance name))/\ m E £((message name))}, 
{found(i, j, m),found(_, j, m), found( env, j, m) 
I i,j E £((instance name))/\ m E £((message name))}. 

The first parameter of these atomic actions refers to the sender of the message, the 
second parameter refers to the receiver of the message and the third parameter rep-
resents the message name. For a lost message output event it is possible that the 
receiver is an instance, the environment or unknown. If the receiver is unknown this 
is indicated by -· Similarly, for a found message input the sender can be an instance, 
the environment or unknown. 
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Definition 4.4.3.2 Let i E £((instance name)). Then, form E £((message name)) 
and j E £( (instance name)) 

[out m to lost]i 
[out m to lost j]i 
[out m to lost env]i 
[in m from found]i 
[in m from found j]i 
[in m from found env] i 

lost(i,-,m), 
lost(i, j, m), 
lost(i, env,m), 
found(_, i, m), 
found(j, i, m), 
found( env, i, m). 

Recommendation Z.120 allows gates as the input address of lost messages and as the 
output address of found messages. Also, lost and found messages can be attached to 
the frame of an MSC reference expression or an inline expression. In this thesis such 
lost and found messages are not treated. 

4.4.4 Instance create and instance stop events 

Instance create events are represented by atomic actions from the set Acr and instance 
stop events are represented by atomic actions from the set A stop. 

Definition 4.4.4.1 The sets Acr and Astop are defined as follows: 

Acr { create( i, j, p), create( i, j, _) 
I i, j E ,C( (instance name))/\ p E £( (parameter list))}, 

Astop { stop(i) I i E £( (instance name))}. 

The first parameter of these atomic actions represents the instance on which the event 
is defined. In case of a create event the second parameter of the atomic action is the 
name of the created instance and the third parameter represents the parameter list. 
If the parameter list is not specified for a create event, this is indicated in the atomic 
action by denoting the third parameter by -· 

Definition 4.4.4.2 Let i E £( (instance name)). Then, for j E £( (instance name)) 
and p E £( (parameter list)), 

[create j]i 
[ create j (p)] i 
[stop]i 

create( i, j, _), 
create( i, j, p), 
stop(i). 

Recommendation Z.120 states that for a created instance none of its events can be 
executed before the corresponding create event on the creating instance has been 
executed. This ordering requirement is not formalized in this thesis. There are several 
possibilities to extend the approach in such a way that this requirement is also taken 
care of. 
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4.4.5 Timer events 

Timer events are represented by atomic actions from the set Atimer· 

Definition 4.4.5.1 The set Atimer is defined as follows: 

Atimer { set(i, t, d), set(i, t, -), reset(i, t), timeout(i, t) 
I i E £( (instance name)) /\ t E £( (timer name)) 
I\ d E £( (duration name))}. 
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The first parameter of these atomic actions represents the name of the instance on 
which the timer event is defined, the second parameter represents the name of the 
timer and, in case of a timer set event, the third parameter represents the duration 
name associated with the timer set event. If no duration name is associated with the 
timer set event this is denoted by -· If in a timer event no duration name occurs this 
is represented in the atomic action by denoting its last parameter by -· 

Definition 4.4.5.2 Let i E £( (instance name)). Then, for t E £( (timer name)) and 
d E £( (duration name)), 

4.4.6 Conditions 

[set t]i 
[set t(d)]i 
[reset t]i 
[timeout t]i 

set(i, t, _), 
set(i, t, d), 
reset(i, t), 
timeout( i, t). 

Although conditions are not really events, they are only used as a means to restrict 
vertical composition in HMSCs, they are best treated in this section. With a condition 
no atomic action is associated. As a condition does not disallow any further events it 
is represented by the empty process E. 

Definition 4.4.6.1 Then, for cl E £( (condition name list)) 

[condition cl] = E. 

4.5 Semantics of causally ordered events 

Semantically, events are represented by atomic actions. These atomic actions can 
have parameters which play a symbolic role. For example the output of a message 
with name m by instance i with receiver instance j is represented by out(i,-,j,m). 
The corresponding message input event is represented by in(i, -, j, m). With these 
parameters enough information is available to decide whether a message output and 



134 Semantics of Message Sequence Charts 

a message input are corresponding. For the correspondence of events that are involved 
in a causal ordering this is not so easy. For example if a local action with name a 
on instance i must precede a local action with name b on instance j then this cannot 
be determined from the atomic actions action( i, a) and action(j, b) representing these 
events. This implies that additional information has to be maintained. 

There are three situations that need to be considered: 

• the other end of the causal ordering is an event attached to an instance; 

• the other end of the causal ordering is a gate on the frame of the MSC; 

• the other end of the causal ordering is an actual gate on the frame of an MSC 
reference expression or an inline expression. 

For each of these situations different information is available. Therefore, three dif-
ferent representations are used. Additionally, this has the advantage that the three 
situations can be distinguished. 

In the first situation both events that are involved in the causal ordering are known 
via the event names. Therefore the causal ordering can easily be represented via the 
event names. For example, the event "i1 : Li e1 before l2 " describes that the event 
e1 with event name Li is causally ordered before an unknown event with event na~e 
l2 . This is represented by labeling the atomic action representing the event e1 with 
the pair Li f--+ l2 . The corresponding event, say "i2 : l2 e2 after li", is labeled with 
the pair Li M l2 as well. Thus it is easy to establish that these two events are ordered. 

In the second situation only one of the events is available. In a broader context, how-
ever, the gate may be connected to another gate or event and then both events will be 
available. Thus, even although there is only one event, it still is necessary to maintain 
the information. An example of this situation is the event "i1 : li e1 before env vi-
a g". The available information in this case is that the event with event name li is 
ordered before an event that might be connected to gate g. This is represented by 
Li f--+ env(g). In Section 4.9 and in Section 4.10, where MSC reference expressions 
and inline expressions are treated respectively, we will see that if an MSC is placed 
in a context in which the gate g is connected the information by which the atomic 
actions are labeled, will be changed accordingly. 

The third situation is comparable to the second situation. In this case however, it is 
known that the order arrow connects to an actual gate. Textually this is indicated 
by a reference to an MSC reference expression or an inline expression by means of a 
reference identification. An example is the event "i1 : Li e1 before reference l2 vi-
a g". As there can be more than one occurrence of gate g due to multiple references 
to MSCs, the reference identification is essential information. The causal ordering is 
represented by the pair li M ( l2, g). 

With an orderable event an event name can be associated. These event names are 
used to refer to an event when describing a causal ordering. The event names are also 



4.5 Semantics of causally ordered events 135 

necessary to distinguish multiple occurrences of the same causally ordered event. An 
example thereof is given in Example 4.5.1 below. 

Example 4.5.1 In order to explain the reason that the event names are necessary 
to distinguish multiple occurrences of atomic actions representing a causally ordered 
event, consider the MSCs in Figure 4.15. If the two occurrences of local action a on 

msc A msc B 

Figure 4.15: Necessity of event names. 

instance i cannot be distinguished semantically, then it is impossible to distinguish 
the MS Cs A and B. These MS Cs should be distinguished as MSC A has the trace 

action( i, a) action(j, b) action( i, a) action(j, c), 

while MSC B does not have this trace. 

Textually the event name is the only means to distinguish the two occurrences of the 
same event. Therefore, the atomic actions representing causally ordered events are 
labeled by the event name that is used in the textual syntax for describing the causal 
ordering. As one event can be involved in many causal orderings the atomic action 
is labeled with a set of ordering requirements. Also this set of ordering requirements 
is relevant for distinguishing multiple occurrences of the same atomic action. An 
example to indicate this necessity is given in Example 4.5.2. 

Example 4.5.2 Suppose that MSC C only contains a local action a on instance i 
which is connected by a causal order arrow with a gate g on the environment. Then, 
the two occurrences of local action a in MSC A in Figure 4.16 cannot be distinguished 
based on the event name alone. Without taking the reference identification of the M-
SC reference identifications into account the MSCs A and B cannot be distinguished 
textually. MSC A has a trace action(i, a), action(j, b), action(i, a), action(j, c), where-
as MSC B does not have this trace. 

The set of ordering requirements for the atomic actions representing the local action 
a contain this reference identification. Thus, the two occurrences of local action a can 
be distinguished by looking at the set of ordering requirements. 
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msc A msc B 

Figure 4.16: Necessity of set of ordering requirements. 

The sets AOA and AOR represent the information that is provided textually when 
an event is causally ordered. An abstract order address, that is an element of the 
set AOA, describes one half of a causal ordering. An abstract ordering requirement, 
that is an element of the set AOR, describes both halves of a causal ordering. The 
abstract ordering requirement d f--t d' should be interpreted as follows: the address 
represented by the abstract order address d is causally ordered before the address 
represented by the abstract order address d'. 

Definition 4.5.3 The set AOA is defined as follows: 

AOA .C( (event name)) 
U { env (g) I g E .C( (gate name))} 
u A9. 

The set AOR is defined as follows: 

AOR = AOA x AOA. 

Not all elements of AOR will appear in the semantics. Usually we omit the curly 
brackets from a set O AOR and write d f--t d' for an element (d, d') E AOR. Thus, 
the set of abstract ordering requirements {(ll,l2), (ll, env(g)), ((l3,g),ll)} is written 
as ll f--t l2, ll f--t env(g), (l3,g) f--t ll. 

The mapping S associates with an order destination, as it is represented in the textual 
syntax, an element of the set AOA, that is, an abstract order address, as explained 
informally before. 

Definition 4.5.4 The mapping S : .C( (order <lest)) --+ AOA is for all e E .C( (event 
name)), l E £((reference identification)) and g E £((gate name)), defined as follows: 

S(e) 
S(env via g) 
S (reference l via g) 
S(inline l via g) 

e, 
env(g), 
(l, g ), 
(l, g). 
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Then, some notation is introduced for the set of all atomic actions and for labelled 
atomic actions. 

Definition 4.5.5 (Labelled atomic actions) The set A is defined as follows: 

A = Aact U Aaut U Ain U Atost U Ajound U Acr U Astop U Atimer· 

The sets LA, LA out, LA in and LAmsg are defined as follows: 

LA 
LAaut 
LAin 
LArnsg 

{a,ae,a? I a EA I\ e E £((event name))/\ 0 AOR}, 
{ a, ae, a? I a E Aaut I\ e E .C( (event name))/\ 0 AOR }, 
{a,ae,a? I a E Ain/\e E £((event name)) /\0 AOR}, 
LA out u LAin. 

The above definition allows the atomic actions representing instance stop events to 
be labeled. However, as instance stop events can not be used in a causal ordering, no 
such labeled atomic actions will be used in the semantics of MSC. 

The set of labelled atomic actions LA is the instantiation of the set of atomic actions 
A for the process theory. Next we define how the mapping £, which associates with 
an atomic action the instance it is defined on, is instantiated. 

Definition 4.5.6 The mapping £ : A .C( (instance name)) is for i, j E .C( (instance 
name)), a E .C ( ( action character string)), G E AQ, m E .C ( ( message name)), p E 
£((parameter list)), t E £((timer name)) and d E £((duration name)) defined as 
follows: 

f ( action( i, a)) i, £(found(_, j, m)) J, 
£( out(i, G, j, m)) i, £(found( env, j, m)) j, 
£( out(i, G, -, m)) i, f ( create( i, j, p)) i, 

f(in(i,G,j,m)) J, f(create(i,j, _)) i, 

£( in(_, G, j, m)) J, f ( stop( i)) i, 
f ( lost( i, j, m)) i, f(set(i, t, d)) i, 
f(lost(i, -, m)) i, f(set(i, t, _)) i, 
f(lost(i, env, m)) i, f (reset( i, t)) i, 

£(found( i, j, m)) J, £( timeout( i, t)) 1,. 

The mapping£: LA £((instance name)) is for a E A, e E £((event name)) and 
0 AOR defined as follows: 

£(a) f(a), 
f(ae) f(a), 
f(a?) f(a). 

The semantics of an ordered event is obtained as follows. The event that is ordered 
is translated into an atomic action as defined in Section 4.4. This atomic action is 
labelled with the event name and a set of abstract ordering requirements. 
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Definition 4.5.7 (Ordered events) Let i E .C((instance name}). Then, for all l E 
.C((event name)), enl, enl' E £((event name list)) and e E .C((orderable event)), 

[l e before enl]i 
[l e after enl]i 
[l e before enl after enl']i 

([e]i)tfore1(enl), 
([e]i)tfter1(enl), 
([e ]i) ;efore1 ( enl)uafter1 ( enl'). 

where the mappings beforez, afterz : £((event name list)) IP(AOR) are, for d E 
,C ( ( order dest)) and enl E £ ( ( event name list)), defined inductively as follows: 

beforez(d) 
bef orez ( d , enl) 
afterz (d) 
afterz ( d , enl) 

{(l, S(d))}, 
{(l, S(d))} U beforez(enl), 
{(S(d), l)}, 
{ (S(d), l)} U afterz ( enl). 

Example 4.5.8 Consider the MSC given in Figure 4.17. In the MSC also the event 
names and reference identification as they are used in the textual syntax are indicated. 
Local action a on instance j is represented in the semantics by the atomic action 

msc example 

g 

Figure 4.17: Annotated example MSC. 

action(j, a)g1H(l 3 ,h),lh--+l2}. Local action b on instance k is represented by the atomic 
t . t· (k b){l1Hl2,l2Henv(g)} ac 10n ac wn , z2 . 

The atomic actions representing the ordered events are labeled by the event name and 
the set of ordering requirements. We have indicated by means of the examples 4.5.1 
and 4.5.2 that this is necessary. There are alternatives however. The set of ordering 
requirements is only relevant for distinguishing atomic actions in so far that the 
reference identification occurs in it. If we label the atomic action with this reference 
identification directly, it is possible to get rid of the set of ordering requirements as 
soon as all its orderings have been taken into account. 
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4.6 Vertical and horizontal composition 

If two MSC fragments are composed vertically or horizontally, it is possible that the 
MSC fragments contain corresponding message events or corresponding causally or-
dered events. A message output event and a message input event are considered to 
be corresponding if they have the same message name and either the same sender 
instance and receiver instance, or the message output is sent to a gate which is con-
nected to the gate from which the message input is received. In a similar way it can 
be established that two causally ordered events are corresponding. In Definition 4.6.1 
these notions are formalized. 

Definition 4.6.1 The relation LA x LA is the smallest relation that satisfies: 
for all i,j E £((instance name)), m E £((message name)), GE AQ, 0,0' AOR 
and e, e' E £( (event name)) 

t( . · )0 · (" · )O' ou i, -, J, m e o-+ozn i, -, J, m e' , 

out(i, G, -, m)f o-+oin(_, G,j, m)~'. 

The relation o--+-o LA x LA is for all a, b E A, 0, 0' AOR and e, e' E £( (event 
name)) defined by 

a~ o--+-ob~
1 

{=} ( e, e') E 0 n 0' V ( e, e') E 0 o 0', 

where relation composition o : IP(AOR) JP(AOR) is for 0, 0' AOR defined by 

0 o 0' = {(s, u) I :3tEAg(s, t) E 0 /\ (t, u) E 0'}. 

It would have been plausible to define out(i, G, j, m)o-+oin(i, G, j, m) as well because 
the events that are represented by these atomic actions together form a message m 
that is sent from instance i to instance j via an actual gate G. The reason not 
to do so is that the relation o-+o is used to determine if two atomic actions from 
different MSC fragments are connected. If this is the case, this gives rise to an 
ordering requirement and, for the second clause, a renaming of these atomic actions. 
The atomic actions out(i, G,j, m) and in(i, G,j, m) cannot occur in the semantics of 
different MSC fragments. As a matter of fact, they are the result of applying the just 
mentioned renaming to the atomic actions out( i, G, -, m) and in(_, G, j, m). 

Two events with event names l and l' are causally ordered if the atomic actions 
representing them both have the abstract ordering requirement l 1-t l' (see the first 
clause) or there exists an actual gate G such that the first has an abstract ordering 
requirement l 1-t G and the second has an abstract ordering requirement G 1-t l' (see 
the second clause). 

The mapping M associates with a process the set of atomic actions that refer to the 
message output and message input events that occur in the process. The mapping 0 
associates with a process the set of all atomic actions that refer to an ordered event. 
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Definition 4.6.2 The mapping M : C(~) IP(LAmsg) is for® E {+, o5 , II 5 I S 
LA x JNx LA}, 0 E {®, 00

, [m,n] Im, n E !NU { oo} }, a ELA and x, y EC(~) defined 
as follows: 

M(s) 
M(8) 

M(a) 

M(x ® y) 
M(x8 ) 

0, 
0, 

{ 
{a} if a E LAmsg, 
0 otherwise, 

M(x) u M(y), 
M(x). 

The mapping O : C(~) IP(LA) is for ® E {+, o5 , 11
5 I S LA x IN x LA}, 

0 E {®, 00
, [m,n] I m,n E !NU {oo}}, a EA, e E £((event name)), 0 AOR and 

x, y EC(~) defined as follows: 

O(s) 0, 
0(8) 0, 

O(a~) { iaf} if Of:. 0, 
otherwise, 

O(ae) 0, 
O(a) 0, 
O(x ® y) O(x) u O(y), 
O(x8 ) O(x). 

If two MSC fragments are composed vertically or horizontally it can be the case that 
one of them contains a message output event and the other a corresponding message 
input event. In that case the ordering requirement that the message output event 
precedes the message input event must be taken into account. This is achieved by 
finding the pairs of atomic actions that refer to a message output or input event (using 
the mapping M and the relation Such a pair then gives rise to an ordering 
requirement. Similarly if the MSC fragments contain corresponding ordered events 
this also gives rise to an ordering requirement. The mappings MsgReq and OrdReq 
are used to obtain the ordering requirements that must be taken into account when 
two MSC fragments are composed due to the requirement that an output precedes 
the corresponding input and due to causal order relations between orderable events. 

Definition 4.6.3 The mapping MsgReq : C(~) x C(~) IP(LAaut x LAin) is for 
x, y EC(~) defined as follows: 

MsgReq(x, y) = { o Ni I /\ o E M(x) /\ i E M(y)} 
U {o Ni I /\ o E M(y) /\ i E M(x)}. 

The mapping OrdReq : C(~) x C(~) IP(LA x LA) is for x, y E C(~) defined as 
follows: 

OrdReq(x, y) { s Nd I so-+-od /\ s E O(x) /\ d E O(y)} 
U {s Nd I so-+-od /\ s E O(y) /\ d E O(x)}. 

Recall that o N i and s N d are shorthands for o i and s d. 
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If the connection of a message output event and a message input event is established 
via a gate it is necessary to change the atomic actions in such a way that the atomic 
action for the message output event is updated with the receiver instance name and the 
atomic action for the message input event is updated with the sender instance name. 
Before the connection was established these names were not known and therefore 
indicated by -· Given two processes x and y the mapping J(x, y) associates with 
every atomic action a possibly renamed atomic action. Note that for output events 
this renaming only applies to the receiver instance part and for input events only to 
the sender instance part. 

Definition 4.6.4 Let x, y E C(~). Then, the mapping f (x, y) : LA LA is for 
i,j E £((instance name)), m E £((message name)), GE A9, S, S' AOR, a ELA 
and e, e' E .C( (event ?ame)) defined as follows 

• if out(i, G, -, m)~ E M(x) I\ in(_, G,j, m)t E M(y) or out(i, G, -, m)~ E M(y) I\ 
in(_, G,j, m)t E M(x), for some j, S', e', then 

f (x, y)( out(i, G, -, m):) = out(i, G, j, m):; 

• if out( i, G, -, m) t E M ( x) /\ in(_, G, j, m) E M (y) or out( i, G, -, m) t E M (y) /\ 
in(-,G,j,m)~ E M(x), for some i, S', e', then 

• and in all other cases 

f (x, y)(a) = a. 

The mapping f is well-defined due to the requirements that, in an MSC document, 
there are no two gate definitions with the same name and there are no two MSC 
reference expressions or inline expressions with the same reference identification. A 
formal proof of this statement will be tedious and will be hardly more convincing. 

The vertical and horizontal composition of MSC fragments is described by means 
of the operators • and 0- As can be seen in Definition 4.6.5 below, the ordering 
requirements and the necessary renaming are computed from the arguments of the 
operator. 

Definition 4.6.5 For x, y E C(~) 

x • y PJ(x,y)(x 0 MsgReq(x,y)u0rdReq(x,y) y), 

X ny ( II MsgReq(x,y)uOrdReq(x,y) ) 
U PJ(x,y) X y . 

The mappings M and O are used to obtain from a process expression the atomic 
actions representing message events and causally ordered events respectively. These 
are used to obtain information about the connections between two MSC fragments. 
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Instead of obtaining this information from the atomic actions that occur in the process 
expressions it would also have been possible to maintain a set of atomic actions, 
which are not yet connected, for each MSC fragment. An advantage of this approach 
would be that also the description of message and causal arrows for which no event 
is available could be achieved. A disadvantage of this approach is that every MSC 
fragments has to be represented by a pair, i.e. a process expression and an interface 
description. 

In [RGG95], the authors present three ways of composing MS Cs horizontally. These 
are the environmental merge ( llenv), the synchronization merge ( llsyn) and the syn-
chronization condition merge ( llsync)- The environmental merge is close to the hor-
izontal composition of MSCs as used in recommendation Z.120 and therefore corre-
sponds to the operator O. Output and input events sent to and received from the 
environment are connected based on gate name identification. The synchronization 
merge is similar to the interworking merge. The events of the MSCs are interleaved 
but for messages between instances that occur in both MSCs a synchronization takes 
place. The synchronization condition merge is similar to the synchronization merge 
with the difference that synchronization does not take place on messages but on explic-
itly added synchronization points on the instances. The three operators are presented 
on the level of MSC by means of some examples only. 

4. 7 Semantics of coregions 

A coregion contains a number (possibly zero) of orderable events. These events are 
defined on the same instance, but are nevertheless not ordered for that reason. It is 
however possible that a coregion contains both the output and the input of a message 
or both events involved in a causal ordering. The semantics of a coregion is thus the 
horizontal composition of the semantics of its events. 

Definition 4.7.1 Let i E £((instance name)). Then, fore E £((orderable event)) 
and coevents E £( (coevent list)) 

[concurrent; endconcurrent] i 
[concurrent; e ; coevents endconcurrent]i 

c, 
[e]i O [ concurrent; coevents 

endconcurrent 
]. 

Example 4. 7.2 Consider a coregion on instance i which contains the input of mes-
sage m, a local action a and the output of message m. Then, the semantics of this 
coregion is given by 

out(i, -, i, m) II R 2 
( action(i, a) II Ri out(i, -, i, m)) , 

where R 1 = 0 since O(action(i,a)) = 0 and R 2 = {out(i,-,i,m) N in(i,-,i,m)}. 
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4.8 Semantics of MSC bodies 

An MSC body is a possibly empty list of event definitions. As explained before such 
a list of event definitions is interpreted as a list of MSC fragments that are composed 
vertically. 

Definition 4.8.1 For eventdef E £( (event definition)) and mscbody E £( (msc body)) 

[ ] c, 
[eventdef mscbody] [ eventdef] • [ mscbody]. 

In composing an event definition with an MSC body it can be the case that gates are 
connected. 

There are two types of event definitions that are considered in this section: single 
instance events and multi instance events. Single instance events are instance events 
that are defined on one instance. In order to associate an atomic action with the 
defining instance as a parameter to these single instance events the defining instance 
is determined and the semantic mapping is labeled with it. Multi instance events are 
events that are defined on a non-empty set of instances. There is no use for labeling 
the semantic mapping with these instances as in any relevant case the instances appear 
again in the textual description of the multi instance event itself. 

Definition 4.8.2 For i E £( (instance name)), ilist E £( (instance name list)), ievent 
E £( (instance event)) and multiinstanceevent E £( (multi instance event)) 

[i : ievent;] [ ievent]i, 
[ ilist : multiinstanceevent;] [ multiinstanceevent]. 

Example 4.8.3 (Simple communication) Consider an MSC A with two instances 
i and j and one message m from instance i to instance j. There are two event-oriented 
textual representations for this MSC: 

msc A; mscA; 
: out m to j; 

j : in m from i ; and j : in m from i ; 
z : out m to j; 

endmsc; endmsc; 

Using the first textual representation the recursive equation 

A= out(i, -, j, m) oout(i,-,j,m)t---tin(i,_,j,m) in(i, -, j, m) 

is obtained and using the second textual representation the recursive equation 

A= in(i,-,j,m) oout(i,-,j,m)Hin(i,-,j,m) out(i,-,j,m) 
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is obtained. The semantics of the MSC is in both cases given by A. Operationally 
the first can be depicted as 

A E: 00ut(i,-,j,m)..¼in(i,_,j,m) in( i, -, j, m) 
in(i~,m) E: 0 out(i,-,j,m)Hin(i,_,j,m) c.j.. 

and the second as 

A out(i,-,j,m) 
-+ in(i, -, j, m) 0 out(i,-,j,m)..¼in(i,_,j,m) E: 

in(i,-,j,m) t(· · )H. (' · ) I -+ E: 0 ou i,-,J,m, in i,-,J,ni E+ . 

Observe that in both cases the same traces can be performed. 

Example 4.8.4 (Causal ordering) Consider the MSC from Figure 4.4. Suppose 
that this MSC is textually represented by 

msc example ; 
: ll action 'a' before l2; 

j : l2 action 'b' after ll; 
endmsc; 

This MSC consists of two MSC fragments. These fragments are semantically repre-
sented by 

and 

Observe that 

and 

t . (. ){l1Hl2} ac ion i,a ll 

t . (. b){l1Hl2} ac ion J, z2 . 

0 ( action(i, a)g1Hl2}) = { action(i, a)i{1Hl2}} 

0 ( t . (. b){l1Hl2}) { t· (. b){llHl2}} ac ion J, 12 = ac ion J, 12 . 

Then, the following set of ordering requirements is obtained: 

R { . (. ){l1Hl2} . ( . b){l1Hl2}} = action i, a 11 f---t action J, 12 . 

Thus, the expression representing the semantics of the MSC, is the following: 

t . (. ){llHl2} R t· (. b){llHl2} ac ion i, a ll o ac ion J, 12 . 
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4.9 Semantics of MSC reference expressions 

Textually an MSC reference expression consists of a textual formula containing MSC 
names and operators, an MSC reference identification and a reference gate interface. 
The semantics of the textual formula itself is rather easy as a semantical equivalent 
has been defined for each of the composition operators that can occur in this formula. 

We assume the existence of an interpretation i : £( (inf natural)) /NU { oo} which 
associates with every sequence of natural names a natural number and with the key-
word inf the constant oo. Furthermore we extend the normal ordering< on IN to an 
ordering < on IN U { oo} by taking n < oo for all n E IN. 

In the examples we will only use the decimal digits as natural names. The interpre-
tation i of these is straightforward and therefore left implicit. 

Definition 4.9.1 For all m, n E £( (inf natural)), mscrefexpr E £( (msc ref expr) ), 
par E .C((msc ref par expr)), seq E .C((msc ref seq expr)), loop E .C((msc ref loop expr)), 
b E .C((expr body)) and mscname E .C((msc name)), 

[par alt mscrefexpr] 
[ seq par par] 
[loop seq seq] 
[loop (m,n) b] 

[empty] 
[mscname] 
[ ( mscrefexpr)] 

[par] =i= [ mscrefexpr], 
[seq] II [par], 
[loop] o [seq], 
[b][L(m),L(n)], 

mscname, 
[ mscrefexpr]. 

Example 4.9.2 The semantics of the textual formula 

reference (A alt empty) par B seq C 

is given by the process (A =i= E) II Bo C. 

Example 4.9.3 The semantics of the textual formula 

reference loop <5,3> A seq B 

is given by the process A[5
'
31 o B which cannot perform any events from MSC A. 

If gates of an MSC reference expression are connected on the outside, the gate def-
initions in the MSCs referenced by the textual formula become actual gates. The 
semantics of the textual formula contains these gate definitions as the via part of 
message output events and message input events and as labels of the orderings with 
which atomic actions can be labelled. For such message gates three different types of 
connection can exist. 
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1. A gate can be connected to the environment of the enclosing MSC fragment. 

2. A gate can be connected to an instance in the enclosing MSC fragment. 

3. A gate can be connected to an actual gate of an MSC reference expression or 
inline expression in the enclosing MSC fragment. 

These three situations are depicted in Figure 4.18 for the MSC reference expression 
with textual formula A. 

j 

hl A 
0 

Figure 4.18: Three types of connecting gates. 

In the semantics of the textual formula A the gates g 1, g2 and g3 appear as env (g 1), 
env(g2) and env(g3) respectively. In the context of the MSC which contains this MSC 
reference expression these gates are not necessarily connections to the environment 
anymore. Only gate gl is connected to the environment (again). In order to indicate 
this situation we replace all occurrences of env(gl), env(g2) and env(g3) by more 
appropriate and convenient gate names. This renaming is based on the information 
that is available in the reference gate interface. 

1. The gate with name gl is connected externally to the environment via a gate 
with name hl. Therefore, all occurrences of env(gl) in the semantics of A are 
replaced by env(hl). 

2. The gate with name g2 is connected externally to instance j by means of a 
message arrow. The intuition is that the output of message m in A is received 
by instance j. Thus, this communication will become internal. This is part 
of the reason why env(g2) is replaced by (l, g2). Another reason is that we 
must be able to distinguish the actual gates of references to an MSC in different 
MSC reference expressions. As the MSC reference identification is unique, the 
combination of the MSC reference identification and the gate name is a nice 
name for the actual gate. Looking at the semantics of the message input event 
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on instance j we find that it also has a via part (l, g2). So additionally, but on 
purpose, we have created the situation in which we can establish which output 
and input event together make one communication. Looking back this (partly) 
motivates the definition of o-+o (Definition 4.6.1). 

3. For similar reasons the occurrences of env(g3) are replaced by ((l,g3), (l', h3)) 
where l' is the MSC reference identification of the MSC reference expression on 
instance j. Also the occurrences of env ( h3) in the semantics of this second MSC 
reference expression are replaced by ((l,g3), (l', h3)). This again, gives us a nice 
way to establish correspondence of the message output event and the message 
input event. 

The information needed for the renamings discussed above is available in the reference 
gate_ interface. For the example MSC it contains the entries: "gate gl out o to env 
via hl", "gate g2 out m to j" and "gate g3 out n to reference l' via h3". 

The mapping G that is given in Definition 4.9.6 abstracts from the textual represen-
tation of the reference gate interface and turns it into a set of connections, that is an 
abstract gate interface (AQI, see Definition 4.9.4). In case of a message gate such a 
connection consists of two abstract message addresses (AMA, see Definition 4.9.4). 
An abstract message address represents a starting or ending point of a message arrow. 
A connection with a gate h in the environment is indicated by env(h), a connection 
with an instance j by j and a connection with an MSC reference expression or an 
inline expression by its identification and the gate used on it. The pairs are ordered 
such that an arrow is drawn from the first address to the second address. 

In case of a causal order gate a connection consists of two abstract order addresses 
(AOA, see Definition 4.5.3). Also for causal order gates three different connections 
exist. These are the connection to the environment of the enclosing MSC fragment, the 
connection to an orderable event in the enclosing MSC fragment and the connection 
to an actual gate of an MSC reference expression or inline expression. The first and 
the third case are treated in the same way as message gates are treated. In the second 
case, the gate definition is replaced by the event name of the orderable event to which 
the causal order gate is connected in the enclosing MSC fragment. 

Definition 4.9.4 The set AMA is defined as follows: 

AMA £((instance name)) 
U { env(g) I g E £( (gate name))} 
u AQ. 

The set AQI is defined as follows: 

AQI = JP((AMA x AMA) u (AOA x AOA)). 

The mapping S associates with an output or input address, as it occurs in the textual 
representation, an abstract message address. 
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Definition 4.9.5 The mapping S : ..C( (output address)) U £( (input address)) 
AMA is for all i E £((instance name)), g E £((gate name)) and l E ..C((reference 
identification)) defined by 

S(i) 
S(env via g) 
S ( reference l via g) 
S(inline l via g) 

i, 

env(g), 
(l, g ), 
(l, g). 

The mapping G associates with a reference gate interface an abstract gate interface. 

Definition 4.9.6 Let l E ..C((reference identification)). The mapping Gt: ..C((reference 
gate interface)) AQI is for re/gate E £( (ref gate)) and gates E £( (reference gate 
interface)) defined inductively by 

Gt() = 0, 
Gt (; gate ref gate gates) = { Gt ( ref gate)} U Gt (gates). 

Let l E ..C( (reference identification)). The mapping Gt : £( (ref gate)) AQI is for 
all g E £( (gate name)), m E ..C( (message name)), a E £( (output address)) U ..C( (input 
address)) and d E ..C ( ( order <lest)) defined by 

Gt(g out m to a) 
Gt(g in m from a) 
Gt (g before d) 
Gt (g after d) 

{((l,g),S(a))}, 
{(S(a), (l,g))}, 
{ ( ( l , g) , S ( d) ) } , 
{ ( S ( d) , ( l , g) ) } . 

In the following definition a mapping via is defined. This mapping implements the 
renaming of the gate definitions of the referenced MSCs into actual gates or other 
gate definitions following the lines explained before. For via to be well-defined it is 
necessary that there are no two gate definitions with the same gate name, not even if 
they have another direction. It is also necessary that there are no two different external 
connections for a given gate g on the MSC reference expression. The mapping via is 
extended to the sets of ordering requirements by which the atomic actions are labelled 
and to the atomic actions in the obvious way. 

Definition 4.9. 7 Let l E ..C( (reference identification) and let gates AQI. The 
mapping via(l, gates): (AMQUAOA) (AMQUAOA) is for g, h E £((gate name)), 
i,j E £((instance name)), l' E £((reference identification)) and G E AMQ U AOA 
defined as follows: 

via ( l, gates) ( en v (g)) = 

via(l, gates) ( G) G 

env(h) 

(l, g) 

((l, g), (l', h)) 
((l', h), (l,g)) 
env(g) 

otherwise. 

if ((l, g), env(h)) E gates 
or (env(h), (l,g)) E gates for some h, 
if ( ( l, g), j) E gates 
or ( i, ( l, g)) E gates for some i, j, 
if ((l,g),(l',h))Egates for some l', h, 
if ((l',h), (l,g))Egates for some l', h, 
otherwise, 
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Let l E £ ( (reference identification) and let gates AQI. The mapping via ( l, gates) : 
LA LA is for i,j E £((instance name)), g E £((gate name)), m E £((message 
name)), 0 AOR, e E £A((event name)) and a EA defined as follows: 

via(l, gates) ( out( i, env (g), j, m )?) =out( i, via(l, gates) ( env(g)), j, m )~ia(l,gates)(O), 
via (l, gates) ( in( i, env(g), j, m )?) =in( i, via (l, gates) ( env (g)), j, m )~ia(z,gates)(O), 
via(l, gates) (a?) =a~ia(z,gates)(O) otherwise. 

Let l E £( (reference identification) and let gates AQI. The mapping via(l, gates) : 
IP((AMQUAOA) x (AMQUAOA)) JP((AMQUAOA) x (AMQUAOA)) is for 
0 AOR defined as follows: 

via ( l, gates) ( 0) { ( via(l, gates) (91), via(l, gates) (92)) I (91, 92) E O}. 

Using the above definitions the semantics of the MSC reference expression where the 
gate definitions are replaced by actual gates as indicated by the MSC reference gate 
interface can then be described by Pvia(l,Gi(gates)/[mscrefexpr]) where l is the MSC 
reference identification, gates is the reference gate interface and mscrefexpr is the 
textual formula. 

However, it is possible that two gates of the MSC reference expression are connected. 
Therefore, an ordering requirement must be added to the semantics and, if this is a 
connection between message gates, atomic actions have to be renamed. The mapping 
g(x) defined below gives the necessary renaming and the mapping R(x) defines the 
(not yet renamed) ordering requirements. 

Definition 4.9.8 The mapping R: C(:E)--+ JP(LA x LA) is for x E C(:E) defined as 
follows: 

R(x) { out(i, ( (l, g ), (l, g')), -, m)? N in(_, ( (l, g), (l, g')), j, m)~' 
I out(i, ((l, g), (l, g')), -, m)? E M(x) 
I\ in(_, ((l,g), (l,g')),j,m)~' E M(x)} 

U { a?u{(e,((l,g),(l,g')))} N b~'u{(((l,g),(l,g')),e')} 
I a?u{(e,((l,g),(l,g')))} E O(x) I\ b~'u{(((l,g),(l,g')),e')} E O(x)}. 

The definition of the mapping R is similar to the definition of the mappings MsgReq 
and OrdReq used for the definition of the vertical composition of MSC fragments (see 
Definition 4.6.5). The difference is that this time we are only interested in ordering 
requirements due to the connection of gates which are both from the MSC reference 
expression. This is manifest in the definition of R by only considering actual gates of 
the form ((l, g), (l, g')). Similarly, in the definition below, the renaming of the atomic 
actions only applies to message events with a gate part of this form. 

In order to simplify the following definition we define £A ( (X)) = £( (X)) U { A} where 
A £( (X)). We use the following notations: ae can be written as a~ and a can be 
written as af. 
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Definition 4.9.9 Let x EC(~). The mapping g(x): LA LA is for i, j E ,C( (instance 
name)), m E £((message name)), l E £((reference identification)), g, h E £((gate 
name)), 0,0' AOR, e,e' E £>.((event name)) and a ELA defined as follows 

• if out(i,((l,g),(l,h)),-,m)?,in(_,((l,g),(l,h)),j,m)?,
1 

E M(x) for some j, 0', 
e', then 

g(x) ( out(i, ((l, g), (l, h)), -, m)?) = out(i, ((l, g), (l, h)), j, m)?; 

• if out(i,((l,g),(l,h)),-,m)?,
1

,in(_,((l,g),(l,h)),j,m)? E M(x) for some i, 0', 
e', then 

g(x) (in(-,((l,g),(l,h)),j,m)~) = in(i,((l,g),(l,h)),j,m)~; 

• and in all other cases 

g(x)(a) = a. 

Due to the strict requirements on the use of gates in MSC this mapping g(x) is 
well-defined. 

The semantics of an MSC reference expression is obtained by taking into account the 
ordering requirements due to the connection of gates of the MSC reference expression 
and the required renaming as expressed in the following definition. 

Definition 4.9.10 For all l E £( (reference identification)), mscrefexpr E .C( (msc ref 
expr)) and gates E £( (reference gate interface)) 

[reference l : mscrefexpr gates] = p9 (pv([mscrefexpr]) oR c:), 

where v via(l,Gz(gates)), 
g g (Pv ( [ mscrefexpr])), 
R R(pv ( [ mscrefexpr])). 

4.10 Semantics of inline expressions 

The semantics of inline expressions is easily obtained from the semantics of the ar-
guments of an inline expression by combining them by means of the semantical e-
quivalent of the operation indicated in the inline expression. The operation indicated 
with the keyword alt is interpreted by the operator delayed choice-+, the operation 
indicated by par is interpreted as delayed parallel composition II and the operation 
loop <m,n> by the operator [m,n]. 

The approach for the semantics of inline expressions is similar to the way MSC ref-
erence expressions are treated. The main difference is in the computation of the 
abstract gate interface. The description of the external connections of the gates of 
the inline expression is distributed over the arguments. 
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Definition 4.10.1 Let l E £( (reference identification)). The mapping Gt: £((alt list)) 
AQI is for gates E £( (inline gate interface)), b E £( (msc body)) and altlist E 

£( (alt list)) defined inductively by: 

Gt (gates b) = Gt (gates), 
Gt (gates b alt ; altlist) = Gt (gates) U Gt ( altlist). 

Let l E £( (reference identification)). The mapping Gz : £( (par list)) AQI is 
for gates E £( (inline gate interface)), b E £( (msc body)) and parlist E £( (par list)) 
defined inductively by: 

Gt (gates b) = Gt (gates), 
Gz (gates b par ; parlist) = Gz (gates) U Gz (parlist). 

Let l E £( (reference identification)). The mapping Gz : £( (inline gate interface)) 
AQI is for inlinegate E £( (inline gate)) and gates E £( (inline gate interface)) defined 
as follows: 

Gt() = 0, 
Gt (gate inlinegate ; gates) = Gt ( inlinegate) U Gt (gates). 

Let l E £( (reference identification)). The mapping Gz : £( (inline gate)) AQI 
is for g E £( (gate name)), m, m' E £( (message name)), s E £( (output address)), 
d E £( (input address)) and o, o' E £( (order <lest)) defined as follows: 

Gt(g in m from s external out m' to d) 
G1(g out m to d external in m' from s) 
Gz (g after o external before o') 
Gt (g before o external after o') 

{ ( ( l , g) , S ( d) ) } , 
{(S(s), (l,g))}, 
{ ( ( l, g), S ( o'))}, 
{ ( S ( o') , ( l, g)) } . 

Please note that the recommendation allows the use of different message names in 
the internal and external connection of a gate. A static requirement that forbids this 
should be defined. 

Definition 4.10.2 (Inline loop expr.) Form, n E £( (inf natural)), l E £( (reference 
identification)), gates E £( (inline gate interface)) and b E £( (msc body)) 

[loop (m,n) begin l ; gates bloop end] = p9 (pv([b][L(m),,,(n)l) oR s), 

where v = via(l, Gz(gates)), g = g(pv([b][L(m),L(n)l)) and R = R(pv([b][L(ni),L(n)l)). 

Definition 4.10.3 (Inline alternative expr.) For l E £((reference identification)), 
altlist E £( (alt list)), gates E £( (inline gate interface)) and b E £( (msc body)) 

[ alt begin l ; altlist alt end] p9 (Pv ( [ altlist]) oR f), 

[gates b] [b]' 
[gates b alt ; altlist] [b] =i= [ altlist], 

where v = via(l, Gz(altlist)), g = g(pv([altlist])) and R = R(pv([altlist])). 
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Definition 4.10.4 (Inline parallel expr.) For all l E £( (reference identification)), 
parlist E £( (par list)), gates E £( (inline gate interface)) and b E £( (msc body)) 

[par begin l ; parlist par end] 

[gates b] [b], 
[gates b par ; parlist] [b] II [parlist], 

where v = via(l, Gz (parlist) ), g = g(pv ([parlist])) and R = R(pv ([parlist]) ). 

4.11 Semantics of High-level MSCs 

Textually an HMSC is described by associating a label with every node except the 
start node. The start node is described first in the textual syntax by simply listing 
its successor nodes in a label name list. Then all other nodes are described. Such a 
description consists of the label name associated with the node followed by a descrip-
tion of the type of the node and a label name list representing the label names of the 
successor nodes. 

If a node has successor nodes then these are interpreted as alternative vertical com-
positions. For example if a node labeled l has two successor nodes labeled li and l2 

this means that the node l is vertically composed with either node li or l2 . 

Every HMSC is represented by a graph. The nodes of the graph represent the nodes 
of the HMSC. The edges represent the edges of the HMSC. The type of the node 
is taken into account as a label on the edges between two nodes. In the textual 
representation a unique label name is associated with every node, except the start 
nodes, in the HMSC. This label name is also used to identify the nodes of the graph 
that corresponds to the HMSC. The start node is not represented in the set of nodes of 
the graph. Instead the successor nodes of the start node in the HMSC are identified as 
initial nodes in the corresponding graph. The end nodes of the HMSC are represented 
in the corresponding graph by final nodes. The label of an edge in the graph of an 
HMSC between the nodes with label names li and l2 is based on the type of node 
that is associated with label name li. If this node is an MSC reference node, the label 
of the node in the graph is simply the semantics of the textual formula that is written 
in the node. In all other cases the label is denoted as f. 

Definition 4.11.1 An edge-labeled graph is a quadruple (V, E,I, F) where 

• V is a finite set of nodes; 

• E V x C(~) x V is a finite set of labeled edges; 

• I V is a set of initial nodes; 

• F V is a set of final nodes. 
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A pair (v, t, w) E E is often written as v !:.+ w. In this thesis we assume that for 
any graph (V, E, I, F) we encounter, the set of nodes can only contain label names. 
Hence, we define V = .C( (label name)) and assume V V. 

Let G = (V, E,I, F). We define succc(v) = { w E V I ::leEC(E) v 4 w }, and we usually 
omit the subscript G if it is clear from the context. 

A graph is called connected if every node of the graph is reachable from an initial 
node. A final node has no outgoing edges. 

In the following definitions we define mappings Nodes, Edges, Initial and Final which 
associate to an MSC expression the sets of nodes, edges, initial nodes and final nodes 
respectively. 

Definition 4.11.2 (Nodes of the graph) The mapping Nodes:.C((mscexpression)) 
IP(V) is, for labels E .C( (label name list)) and nodedefs E .C( (node expression list)), 

defined by 

Nodes (labels; nodedefs) = Nodes ( nodedefs). 

The mapping Nodes: .C( (node expression list)) JP(V) is, for all nodedef E .C( (node 
expression)) and nodedefs E .C( (node expression list)), defined inductively by 

Nodes() = 0, 
Nodes ( nodedef nodedefs) = Nodes ( nodedef) U Nodes ( nodedefs). 

The mapping Nodes : .C((node expression)) JP(V) is, for l E .C((label name)), 
node E .C( (node)) and labels E .C( (label name list)), defined by 

Nodes ( l: node seq (labels) ; ) 
Nodes(l: node end;) 

{l}, 
= {l}. 

Definition 4.11.3 (Edges of the graph) The mapping Edges:.C((msc expression)) 
JP(V x C (~) x V) is, for labels E .C( (label name list)) and nodedefs E .C( (node 

expression list)), defined by 

Edges (labels; nodedefs) = Edges ( nodedefs). 

The mapping Edges : .C( (node expression list)) JP(V x C(~) x V) is, for nodedef E 
.C( (node expression)) and nodedefs E .C( (node expression list)), defined inductively 
by 

Edges() = 0, 
Edges ( nodedef nodedefs) = Edges ( nodedej) U Edges ( nodedefs). 

The mapping Edges: .C( (node expression)) IP(V x C (~) x V) is, for all l E .C( (label 
name)), node E .C((node)) and labels E .C((label name list)), defined by 

Edges ( l: node seq (labels);) 
Edges(l: node end;) 

{(l, [node],l') I l' E Succ(labels)}, 
= 0. 
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where the mapping Succ : £( (label name list)) JP(V) is, for l E ,C( (label name)) 
and list E ,C( (label name list)), defined inductively by 

Succ(l) = {l}, 
Succ(l alt list) = {l} U Succ(list). 

For a definition of the mapping [] we refer to Definition 4.11.7. 

The auxiliary mapping Succ defined in the previous definition is also used in the 
definition of the mapping Initial which associates with an HMSC the set of nodes 
which are immediate successor nodes of the start node. In the graph representing the 
HMSC these are considered initial nodes. 

Definition 4.11.4 (Initial nodes) The mapping Initial : £( (msc expression)) 
JP(V) is, for labels E £( (label name list)) and nodedefs E £( (node expression list)), 
defined by 

Initial (labels; nodedefs) = Succ(labels). 

Definition 4.11.5 (Final nodes) The mapping Final:..C((msc 
is, for labels E £( (label name list)) and nodedefs E £( (node expression list)), defined 
by 

Final (labels; nodedefs) = Final ( nodedef s). 

The mapping Final : £( (node expression list)) JP(V) is, for all nodedef E £( (node 
expression)) and nodedefs E £( (node expression list)), defined inductively by 

Final() = 0, 
Final ( nodedef nodedefs) = Final ( nodedef) U Final ( nodedefs). 

The mapping Final : £( (node expression)) IP(V) is, for l E £( (label name)), 
node· E £((node)) and labels E £( (label name list)), defined by 

Final ( l: node seq (labels) ; ) 0, 
Final(l: node end;) {l}. 

Using the above definitions we can formally define the transformation of an HMSC 
into a graph. 

Definition 4.11.6 The mapping Graph is, for all mscname E £( (msc name)) and 
mscexpr E £( (msc expression)), defined by 

Graph ( mscexpr) = ( Nodes ( mscexpr) 
, Edges ( mscexpr) 
, Initial ( mscexpr) 
, Final(mscexpr) 
) . 
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The semantics of a node in an HMSC depends on the type of node. Start nodes, 
condition nodes, connector nodes and end nodes do not describe the execution of 
events. Therefore their semantics is given by the empty process E. An MSC reference 
node describes the composition of a number of MSCs by means of a textual formula. 
The semantics of these textual formula has been given in Section 4.9. A parallel frame 
node describes the horizontal composition of a number of sub-HMSCs. The semantics 
of one such sub-HMSC is given by considering it as an HMSC by itself. 

Definition 4.11.7 (Semantics of a node) The mapping []:£((node))--+ C(~) is, 
for mscname E £( (msc name)), parexpr E £( (par expression)), cond E £((condition)) 
and mscrefexpr E £( (msc ref expr) ), defined by 

[empty] 
[mscname] 
[parexpr] 
[cond] 
[connect] 
[ ( mscref expr)] 

mscname, 
[parexpr], 
E, 
E, 
[ mscref expr]. 

The mapping [] : £( (par expression)) --+ C(~) is, for mscexpr E £( (msc expression)) 
and parexpr E £( (par expression)), defined inductively by 

[expr mscexpr endmscexpr] [ Graph ( mscexpr)], 
[expr mscexpr endmscexpr par parexpr] [ Graph ( mscexpr)] 11 [parexpr]. 

The graph that results from applying the mapping Graph to an HMSC, is connected 
by definition, and final nodes of such a graph have no outgoing edges. 

The transformation of an HMSC into a graph described formally above is now illus-
trated by means of the following example. 

Example 4.11.8 Consider the HMSC in Figure 4.19. Besides the HMSC also the 
labels associated with each node and the textual syntax of the HMSC are presented 
in the figure. With this HMSC the graph (V, E,I, F) is associated, where 

V {LI, L2, L3, L4}, 
E = { (Ll, disconnected, L2), 

(Ll, disconnected, L3), 
(L2, message_lost, L4), 
(L3, time_out, L4), 
(L4, disconnection, Ll)}, 

I {Ll}, 
F 0. 

The semantics of an HMSC is then expressed in terms of the semantics of the graph 
corresponding to the HMSC. A transformation of such a graph into a term is presented 
shortly. 
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msc alternative 

Ll 

L3 

L4 disconnection 

Semantics of Message Sequence Charts 

msc alternative ; 
expr Ll ; 
Ll : disconnected seq (L2 alt L3) ; 
L2 : messagdost seq (L4) ; 
L3 : time_out seq (L4) ; 
L4 : disconnection seq (Ll) ; 
endmsc; 

Figure 4.19: HMSC with a loop. 

Definition 4.11.9 (Semantics of an HMSC) For mscname E £( (msc name)) and 
mscexpr E £( (msc expression)) 

Eqs(msc mscname; expr mscexpr endmsc;) = {mscname = [Graph(mscexpr)]}. 

The semantics of the graph corresponding to an HMSC is obtained by associating 
an expression with the graph in a way very similar to the way a regular expression 
is obtained from an automaton. A simple recursive definition of the semantics of a 
graph is difficult because of the cycles that can be in the graph. 

First the graph is transformed into a certain normal form for which the definition of 
the semantics is easy. This transformation is based on eliminating nodes from the 
graph. 

We present this transformation in the form of a rewrite rule. 

Definition 4.11.10 (Elimination of node) Let G = (V, E, I, F) be a graph. Let 
v E V \ I such that succ(v) { v }. Then (V, E,I, F) -v (V', E' ,I', F') where 



4.11 Semantics of HMSCs 157 

V' = V \ {v}; 

E' = { n1 4 n2 E EI n1 -f- v I\ n2 -f- v} 
U { n1 e~

2 n2 I n1 v EE I\ v n2 EE I\ v (j_ succ(v)} 

U {n1 4 n2 n1 v, v n2 EE I\ v E succ(v) I\ t = e1 o ( e=f e) ® o e2}; 
v-+vEE 

I'= I; 

F' = F. 

Repeated application of this rewriting rule to a graph will result in a normal form 
as the number of nodes of the graph decreases with one for every application of the 
rewrite rule. For such a graph in normal form it must be the case that there is no 
node v left such that the rewrite rule is applicable. Hence, every node of the graph is 
an· initial node or a node with no successor nodes other than itself or with no successor 
nodes at all. 

Theorem 4.11.11 If G = (V, E, I, F) is a connected graph and G >---+v G' for some 
v E V and graph G', then G' is also connected. 

Proof The node v that is eliminated is not initial. As G is connected the node v 
and all its immediate predecessors are reachable from an initial node. By eliminating 
v the successor nodes of v can become unconnected. By construction every successor 
of v has an incoming edge from a predecessor of v and is thus reachable from an initial 
node. 

In the following definition with a graph in normal form a process expression is asso-
ciated. The semantics of such a graph in normal form is the delayed choice of the 
semantics of the initial nodes. The semantics that is associated with a node of the 
graph depends on the loops of the node and the successor(s) of the node. 

Definition 4.11.12 Let G = (V, E, I, F) be graph in normal form. Then the follow-
ing expression is associated with the graph: 

[G] =f [i]c, 
iEJ 
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where 

[i]c = 

if succ(i) = 0 /\ i {/_ F, 
if succ(i) = 0 /\ i E F, 

if succ(i) = {i} /\ i {/_ F, 

if succ(i) = {i} /\ i E F, 

ifi {/_ succ(i) I\ succ(i) {i}, 

if i E succ(i) I\ succ(i) { i}. 

4.12 Related work on the semantics of MSC 

4.12.1 Petri-net semantics 

In [GRG93] a translation of MSC92 into labelled occurrence nets is provided. Ba-
sically, for each event occurring in the MSC a transition is included in the labelled 
occurrence net. Two subsequent events on an instance are connected by means of a 
place. These places are labelled with the name of the instance of the two events they 
connect. 

Two corresponding message events are also connected by means of a place. These 
places are labelled by the message name, the sender instance name and the receiver 
instance name. 

The transformation of an MSC into a labelled occurrence net is straightforward for 
the language elements of MSC92. It is not so clear if an update of this semantics to 
the structural concepts of MSC96 is feasible. First, with MSC96 infinite behavior can 
be described and this is impossible with labelled occurrence nets. The definition of 
the alternative composition mechanism of MSC ( delayed choice) on the level of Petri 
nets is a complex task. Causal orderings, vertical and horizontal composition should 
not pose any problems on a Petri-net semantics. 

4.12.2 Biichi automata semantics 

1adkin and 1eue [1192b, 1192c, 1194, 1195b] present a semantics of Message Se-
quence Chart in the following way. Informally, a Message Sequence Chart is translated 
into a next-event/signal graph, i.e. a graph with different types of edges for commu-
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nication and ordering on an instance. This ne/sig graph is then translated into a 
global state transition graph. The global state transition graph acts as the transition 
graph of a Biichi automaton [Tho90]. Biichi automata can be defined with different 
acceptance criteria which are related to various reliability assumptions for communi-
cation. Ladkin and Leue state that the MSC language is underspecified in the sense 
that these reliability properties of communication are not defined explicitly. In our 
opinion this is not the case. It is not hard to find clues in the recommendation that 
point to a completely reliable communication mechanism. It is however a recognized 
problem that the reliability assumptions in MSC cannot be specified by the user. 

In [LL92a, LL95a], Ladkin and Leue describe the possibility to add temporal log-
ic formulas [MP91] to MSC specifications to express safety and liveness properties. 
They propose to replace the description of reliability assumptions with respect to 
communication by means of Biichi acceptance criteria by temporal logic formulas. 

Also in [LL95a], they present four issues concerning the semantics of Message Sequence 
Chart. In essence, these issues relate to their claim that a Message Sequence Chart 
must be finite state. The motivation of this claim however only refers to very low-
level problems that can be expected when implementing an MSC. In our opinion the 
language MSC is not suited for the description of systems at a low level of abstraction. 
The semantics of a language which is to be used at a high level of abstraction should 
not be motivated by implementation issues on a low level of abstraction. 

4.12.3 Process algebra approach 

De Man [Man93] uses a process algebra approach towards the semantics of Message 
Sequence Charts. First, a textual representation for MSC is defined to serve as the ba-
sis for the formal semantics. This textual syntax consists of events and event prefixing 
(;) and it can be considered a more abstract version of the event-oriented textual syn-
tax of MSC. Operators for alternative composition (I), sequential composition (» ), 
disruption ([> ), parallel composition (II) and repetitive behavior (loop) are defined 
for MSCs. 

The constant s which represents the empty sequence and the constants that repre-
sent the events of an MSC together with event prefixing and alternative composition 
form a kernel language. The semantics of the other operators is defined in terms of 
translations of those into the kernel language. 

The author does not provide a model for his algebra, nor does he define when two 
MSCs are equivalent. 

In [MR94a], Mauw and Reniers present a formal semantics of Basic Message Sequence 
Charts based on the process algebra A CPE [BW90]. The sequential composition 
operator • is used to describe the ordering of events on an instance. The parallel 
composition operator 11 is used to describe the horizontal composition of the instances. 
The ordering of the output of a message before its corresponding input is described 
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by using the state operator As. So, if the semantics of the instances of an MSC is 
given by the terms Ii,··· , In, then the semantics of the complete MSC is given by 

The operator As collects in S the output events it has encountered and it only allows 
the execution of an input event if the corresponding output event has been encountered 
before. In this thesis the operators ·, II and As have been combined into os and II s 
respectively. 

In [MR97b], the operational rules for generalized delayed parallel composition lls 
and generalized weak sequential composition o5 are given and the approach to the 
semantics as used in this thesis is explained. 

In [MR97a], the authors present a semantics for High-Level Message Sequence Charts 
based on recursive equations. However, it turns out that this is not the intended se-
mantics. The definition of the permission relation on recursive equations is extremely 
difficult and no solution is found there yet. Another difference with the approach in 
this thesis is that the operator used for horizontal composition there is the normal 
interleaving merge of A GP. This operator does not maintain determinism as we would 
like. 

4.12.4 Partial order semantics 

In [AHP96], the authors argue that the semantics of an MSC depends on the commu-
nication architecture of the system described. Besides the visual order ( <) specified 
by the MSC, which corresponds to the standardized interpretation, they introduce an 
enforced order ( «) and an inferred order (c). The enforced order contains all event 
pairs that are guaranteed to occur in the order specified by the communication archi-
tecture. It maintains the ordering of corresponding message output and input events. 
The inferred order contains pairs of events that are likely to be assumed by the user 
to occur in that order. Different semantic interpretations correspond to different ways 
of obtaining the enforced and inferred order from the visual order. 

Although the authors are right that MSC is used with different communication archi-
tectures in mind, we are reluctant to vary the interpretation of an MSC. The reason 
for our reluctance is that using the same diagrams with different interpretations can 
be confusing for the user. Therefore, at least, a way should be found to indicate the 
communication model inside the MSC. 

A different, but nevertheless related, approach was followed in [EMR97]. There it is 
defined if an MSC, with the visual order interpretation, can be realized with a given 
communication architecture. Also a hierarchy is presented of realizability in different 
communication models. 
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Concluding remarks 

In this thesis we have given a detailed introduction of the ITU-standardized language 
MSC. The graphical syntax as well as the event-oriented textual syntax have been 
explained in Chapter 2. This chapter also contains an informal explanation of the 
meaning of an MSC. Necessarily, the contents of this chapter are based on recommen-
dation Z.120 [IT96b), which contains the definition of the language MSC. 

In the following chapter, Chapter 3, a number of constants and operators is introduced 
by means of operational rules in the style of Plotkin. Some properties of the operators 
are given. These operators are related directly to the composition constructs used in 
the language MSC. 

In Chapter 4, a mapping of an MSC document in event-oriented textual syntax into 
a process term is defined. This chapter thus contains the formal semantics definition 
of the language MSC. The formal semantics definition covers almost completely the 
language as it is standardised by the ITU [IT96b]. We did not associate a semantics 
with the combination of timer events and we did not consider messages and orderings 
from the environment to the environment. 

It is hard to make remarks on the correctness of this formal semantics. In general, such 
a formal semantics is the basic step from an informal representation of the semantics 
to a formal description thereof. However, it is possible to increase the confidence in 
the correctness of the formal semantics. One way of doing so is relating the formal 
semantics definition to another formal semantics definition. This requires that the 
mathematical frameworks that are used for defining the formal semantics definitions 
can be compared. This in itself is already a topic worthwhile studying. Another 
way of increasing confidence is through the consensus of a group of persons that are 
considered experts on MSC. This is the kind of consensus that is obtained for the 
semantics of MSC as presented in this thesis. Although this is not a mathematically 
convincing argument for the correctness of the formal semantics, it is the second best 
option available. 
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The believe in the correctness of the formal semantics can be increased further by 
showing that some properties that were already expected by the same experts indeed 
hold. In the case of MSC this could be transformation rules for HMSCs or basic 
properties of the operators such as commutativity and associativity of delayed choice. 

The formal semantics defined in this thesis can be used for several purposes. Once a 
formal semantics has been defined and agreed upon, it can act as a reference manual 
for the meaning of MSCs. If two parties disagree on the meaning of an MSC, the 
formal semantics definition can be inspected to determine the standardised meaning 
of the MSC. 

The formal semantics definition can be used to check if the functionality offered by 
tools is consistent with the standardised semantics. For example, it can be used to 
check if the execution sequences of a simulator are also given by the formal semantics. 

The formal semantics associates a process term with an MSC in event-oriented textual 
representation. For this process term an operational semantics is defined. Implemen-
tation of the transformation of an MSC in textual representation to a process term 
and implementation of the operational semantics lead to the ingredients that are need-
ed to build a simulator. An experiment in this direction for Basic Message Sequence 
Charts has been performed using the tool ASF+SDF [MvdM95]. This experiment 
was based on the instance-oriented textual syntax of BMSC and the process algebra 
semantics of Mauw and Reniers [MR94a]. It is expected that the development of a 
similar prototype tool based on the event-oriented syntax and the formal semantics 
presented in this thesis is feasible as well. Currently, experiments in this direction 
take place at Eindhoven University of Technology. 

Via the operational semantics, a transformation of an MSC into a transition system 
is defined. Such a transition system can be considered a first step in the direction 
of applying model checking techniques on MSCs. An important aspect there is the 
development of a language for expressing properties of an MSC. A first initiative in 
this direction is [CPRO95] where the MSC language itself is used for the specification 
of properties. 

Using some theorems presented in Chapter 3, transformations can be defined on 
MSCs. In Figure 5.1 a number of such transformations is given for MSC reference 
nodes with textual formula into multiple MSC reference nodes with simpler textual 
formula. With the formal semantics definition it is possible to formally prove that 
these transformations preserve the semantics of the MSC. 

Other transformations that can be based on the properties of the operators are the 
following: 

• Adding and removing connection nodes (see Figure 5.2). Any arrow between 
two nodes in an HMSC can be replaced by two arrows between these nodes by 
using a fresh connection node. This transformation is based on the fact that the 
empty process is a unit for weak sequential composition (see Theorem 3.6.7). 
A consequence of this transformation is that it is possible to change an HMSC 



Concluding remarks 

-<}------!>-

----r---
(A TB) -<}------!>-

---0---

-<}------!>-

---0---

----r----

cp 
---0---

----------0----------

------0------

Figure 5.1: Transformations replacing textual formula by HMSC nodes. 
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Figure 5.2: Adding and removing connection nodes. 
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into an equivalent HMSC where every non-connection node has exactly one 
incoming arrow ( except the start node) and exactly one outgoing arrow ( except 
the end nodes). Instead of adding or removing a connection node also an MSC 
reference node with the textual formula empty can be used as the semantics of 
such a textual formula is the same as the semantics of a connection node. More 
transformation based on this law are given in Figure 5.3. 

-<1------C> -<1------C> 

- - - -0- - -

:---y---j 
,~, : empty : 
I I :cp: I A I 
I I 
I I 
I I 
I I 
l - - - -0- - - -

Figure 5.3: Transformations due to unit element. 

• · Idempotency of delayed choice (Theorem 3.4.4). The fact that delayed choice 
is idempotent leads to transformations as sketched in Figure 5.4. 

-<1------C> 

I 
I I 

'- - - -0- - -

Figure 5.4: Transformation due to idempotency of delayed choice. 

• Distributivity of delayed parallel composition over delayed choice (see Theo-
rem 3.5.4). This leads to transformations as sketched in Figure 5.5. 

• Distributivity of weak sequential composition over delayed choice (see Theo-
rem 3.6.7). This leads to transformations as sketched in Figure 5.6. 

As MSC is often used in combination with other formalisms, it is interesting to study 
the relation between formalisms. Having a formal semantics is a prerequisite for such 
a study. Also, the description of transformations between formalisms benefits from a 
formal basis. 

In the use of the graphical and textual syntax of High-level Message Sequence Charts 
implicitly a number of properties of the composition mechanisms are assumed to hold. 

A node can have any positive, finite number of outgoing arrows. These denote alterna-
tive continuations. Both graphically and textually there is no means of grouping these 
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----------------, 

I 
I 

- - - - - - - - - - -0 - - - - - - - - - - _, 

<l--t> 

Figure 5.5: Transformation due to distributivity of II over =f. 

-----------, 
I 

I 

---0--------------0---~ 

~--- ------------- ---~ 
I 

I 

I 

I 

-<J----t>-

: ---r----------- --y---
A B 

-<J----t>-

Figure 5.6: Transformations due to distributivity of o5 over =f. 
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alternatives by means of parentheses. Thus, either there must be an implicit way of 
grouping those or the grouping does not make a difference. As the recommendation 
states nothing about the first option, it is assumed that the grouping of alternatives 
does not make a difference. In order for the semantics to be well-defined it thus has 
to be the case that delayed choice (the operator used for describing alternatives) is 
associative. This is stated in Theorem 3.5.4. 

A similar situation applies to the use of the parallel frame in HMSCs. It can contain 
any positive, finite number of anonymous HMSCs and again no means of grouping 
those is provided. Thus, it is required that delayed parallel composition is associative. 
This is also stated in Theorem 3.5.4. 

An HMSC appears as a graph with several types of labelled nodes. The user expects 
that HMSCs which are isomorphic (in the sense that their underlying graphs are 
isomorphic), are considered equivalent. This is indeed the case for the semantics 
associated with HMSC in this thesis. For this it is important that we have the 
following properties for the operators used in the semantics of HMSCs. 

• Delayed choice is commutative. Without commutativity of delayed choice the 
HMSCs that are represented textually by 

msc example ; expr l1 alt l2 ; 
ll : A seq ( e) ; 
l2 : B seq ( e) ; 
e : end; 
endmsc; 

and 

msc example ; expr l2 alt l1 ; 
ll : A seq ( e) ; 
l2 : B seq ( e) ; 
e : end; 
endmsc; 

would not necessarily be equivalent although their graphical representations are 
isomorphic. 

• Delayed choice is associative. 

• Delayed parallel composition is commutative. 

• Delayed parallel composition is associative. 
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Appendix A 

Textual syntax of MSC for 
the semantics 

In this appendix we present the textual syntax that has actually been used for the 
definition of the formal semantics. In Section A.2 the textual syntax is given and in 
Section A.1 the changes that have led to this textual syntax are explained. 

A.1 Changes to the textual syntax 

The textual syntax of MSC as presented in recommendation Z.120 is changed in 
several aspects for the definition of the formal semantics. These changes can be 
subdivided into several categories. In Section A.1.1, we explain the changes to the 
textual syntax due to the fact that certain concepts are not treated in the formal 
semantics in this thesis. In Section A.1.2, we optimize the textual syntax by removing 
irrelevant information. In Section A.1.3, we explain the optimization of the textual 
syntax by considering certain constructions as abbreviations of other constructions. 
In Section A.1.4, we extend the textual syntax for the purpose of defining the formal 
semantics. In Section A.1.5, we explain the assumptions that have led to a further 
simplification of the textual syntax. 

Besides the changes presented in the following sections also reformulations of the BNF 
rules have taken place in order to facilitate the definition of the formal semantics. 
These reformulations are replacing a nonterminal in the right-hand sides of BNF 
rules by its productions, reformulating a BNF rule such that it facilitates inductive 
definitions and the introduction of new nonterminals to facilitate definitions. All 
changes explained below are given with respect to the textual syntax of MSC as 
presented in recommendation Z.120. 
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A.I.I Parts of the language that are not treated 

Instance-oriented representation 

The textual syntax of MSC offers the possibility to describe an MSC in an instance-
oriented way, in an event-oriented way and even by mixing these two description 
styles. For the definition of the semantics it is assumed that the MSC is represented 
in an event-oriented way. This restriction has big consequences for the textual syntax 
that is used for the definition of the formal semantics. These consequences are listed 
below: 

• The MSC statements that are produced by the sequence of nonterminals (old 
instance head statement) (instance event list) are used to give the user of the 
language MSC the possibility to describe an instance in isolation. This com-
bination is removed as an alternative for the productions of the nonterminal 
(msc statement). 

• The shared conditions, shared MSC reference expressions and shared inline ex-
pressions are only used for the instance-oriented textual syntax and can be 
omitted as alternative productions in the rule for (non-orderable event). 

• As a consequence of the above omissions a number of nonterminals is not nec-
essary anymore. These are removed. 

Instance decomposition 

In this thesis no semantics is provided for instance decomposition. As a consequence 
it is not necessary to indicate that an instance is decomposed by means of the pro-
ductions of the nonterminal (decomposition) in the BNF rule for the nonterminal 
(instance head statement). 

Substitution 

In this thesis no semantics is provided for the substitution mechanism in MSC ref-
erence expressions. The optional use of the nonterminal (parameter substitution) in 
the BNF rule for the nonterminal (msc ref loop expr) is therefore removed. 

Incomplete message events and gates 

In this thesis no semantics is provided for lost and found message events that are sent 
to or received from the environment. This has several consequences for the textual 
syntax. 
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• A lost message event can only be sent to an instance or the environment without 
a gate name being associated with it. Similarly, a found message event can only 
be received from an instance or the environment without a gate name being 
associated with it. Therefore the BNF rules for the nonterminals (incomplete 
message output) and (incomplete message input) is replaced by the rules 

(incomplete message output)::= out (msg identification) 
to lost [ (instance name) I env ] 

(incomplete message input) ::= in (msg identification) 
from found [ (instance name) I env ) 

• As incomplete message events cannot be sent to or received from the environ-
ment the nonterminals (output <lest) and (input <lest) can be simplified to the 
nonterminals (output address) and (input address) respectively. 

A. 1.2 Irrelevant information 

In the textual syntax of MSC at several places information is provided that is irrelevant 
for the semantics. For the purpose of defining the semantics of MSC it is assumed 
that the MSCs do not contain this type of information. 

• All parts of the textual syntax that specify comments are removed. The BNF 
rule for the nonterminal ( end) is replaced by the BNF rule 

(end)::= 

As a consequence all occurrences of the nonterminal ( end) are replaced by the 
terminal ;. Furthermore, the possibility to have a text definition as an MSC 
statement is removed. 

• Graphical parts of the concrete grammar are removed. These are the nontermi-
nals (document head area) and (msc diagram) which occur in the BNF rules for 
the nonterminals (msc document head) and (msc document body), respectively. 

• The part of the MSC document head that contains references to external sources 
is removed. The BNF rule for the nonterminal (document head) is replaced by 
the BNF rule 

(document head)::= mscdocument (msc document name) ; 

• The optional MSC interface ( (msc interface)) is removed as it contains no in-
formation that is relevant to the definition of the formal semantics. This is only 
possible due to the extension of the textual syntax with a keyword after as 
explained in Section A.1.4. 
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• The part of the syntax referring to instance head and end statements ( the non-
terminals (instance head statement) and (instance end statement)) is removed. 
The information which instances are described in the MSC is only used as ad-
ditional information that is useful when drawing an MSC starting from the 
textual representation. Also, this information is used to interpret the keyword 
all. We assume that all occurrences of the keyword all are replaced by the 
corresponding list of instance names (see Section A.1.3). 

A.1.3 Shorthands 

In the textual syntax of MSC at a number of places shorthands can be used in the 
textual syntax. For the purpose of defining semantics these can be treated as if they 
were replaced by their unabbreviated representations. 

• The textual syntax for event definitions is restricted to contain exactly one 
instance event or multi instance event. 

(event definition)::= (instance name) : (instance event) ; 
I (instance name list) : (multi instance event) ; 

The original event definitions that have more than one instance event or multi 
instance event can be replaced according to the following scheme: 

is replaced by 

A similar scheme is used for replacing the event definitions with more than one 
multi instance event. As a consequence the nonterminals (instance event list) 
and (multi instance event list) are redundant. 

• The possibility to use the keyword all as a means to refer to all instances defined 
in the MSC is removed. It is assumed that all occurrences of this keyword 
are replaced by a list of instance names. The BNF rule for the nonterminal 
(instance name list) is replaced by the rule 

(instance name list)::= (instance name) 
I (instance name) , (instance name list) 

• The possibility to use the keyword loop with only one inf-natural is removed. 

(loop boundary)::= <(inf natural) , (inf natural) > 

The loop boundaries with one inf-natural can be replaced by a loop boundary 
with two inf-naturals according to the following scheme: <k> is replaced by 
<k,k>. 
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• The possibility to use the keyword loop without specifying a loop boundary 
and the possibility to use the loop boundary without using the keyword loop 
are removed. An occurrence of the keyword loop without a loop boundary is 
considered a shorthand for the combination loop < I ,inf >. An occurrence of 
a loop boundary l without the keyword loop is considered a shorthand for the 
combination loop l. 

• The option inline expression is considered a shorthand for an alternative inline 
expression with two operands where the second operand is an empty MSC. 
The exception inline expression is considered a shorthand for an alternative 
inline expression where the second operand is the part of the MSC following the 
exception inline expression. 

• The option MSC reference expression is considered a shorthand for an alterna-
tive MSC reference expression with two operands where the second operand is 
an empty MSC. The exception MSC reference expression is considered a short-
hand for an alternative MSC reference expression where the second operand is 
the part of the MSC following the exception MSC reference expression. 

A.1.4 Extensions 

In favour of symmetry, the textual syntax is adapted in such a way that besides the 
already present before part, for orderable events, an additional after part is created 
such that both events in a causal ordering have the information that they are causally 
ordered. This change has several consequences for the textual syntax: 

• The BNF rule for the nonterminal (orderable event) is replaced by the rule 

(orderable event)::= [ (event name) ] 
{ (message event) 
I (incomplete message event) 
I (create) 
I (timer statement) 
I (action) 
} 
[ before (event name list) ] 
[ after (event name list) ] 

• The BNF rules for nonterminals (actual order in gate), (inline order out gate) 
and (inline order in gate) are replaced by the rules 

(actual order in gate) ::= 
(inline order out gate)::= 

(inline order in gate) ::= 

(gate name) after (order <lest) 
(gate name) after ( order <lest) 
[ external before (order <lest) ] 
(gate name) before (order <lest) 
[ external after (order <lest) ] 
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A.1.5 Assumptions 

• It is assumed that the message name alone is sufficient for establishing the corre-
spondence between message input and message output events. As a consequence 
the optional message instance name and parameter list are removed. 

• It is assumed that the MSC reference names and the inline expression names are 
unique with respect to the MSC document. The nonterminals (msc reference 
name) and (inline expr name) are replaced by the nonterminal (ref name). 

• It is assumed that the timer name alone is sufficient for establishing if timer 
events correspond. Thus the nonterminal (timer instance name) is removed. 

• It is assumed that every MSC reference expression or inline expression has an 
MSC reference identification or an inline expression identification respectively. 

• It is assumed that there are no implicitly defined gates. As a consequence the 
via-parts in the BNF rules for (output address) and (input address) become 
obligatory. Also, the optional gate name in the BNF rules for the nontermi-
nals (actual out gate), (actual in gate), (def out gate) and (def in gate) become 
obligatory. 

• It is assumed that all external and internal connections of gates of an inline 
expression are described in its inline gate interfaces. For MSC reference ex-
pressions it is assumed that all external connections are described in its MSC 
reference gate interface. 

A.2 Textual syntax for semantics definition 

If there are multiple rules for one nonterminal then this should be- read as an extension 
and not as a replacement. 

MSC documents 

(msc document) 

(msc document body)::= 

mscdocument (msc document name) ; 
(msc document body) 
() I (message sequence chart) (msc document body) 

Message Sequence Charts 

(message sequence chart)::= msc (msc name) ; (msc body) endmsc ; 
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Events 

(action) 
(message event) 
(message output) 
(message input) 
(incomplete message event) 

I 
(incomplete message output)::= 

action ( action character string) 
(message output) I (message input) 
out (message name) to (input address) 
in (message name) from (output address) 
(incomplete message output) 
(incomplete message input) 
out (message name) 
to lost [ (instance name) I env] 
in (message name) 
from found [ (instance name) I env] 
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(incomplete message input) 

(create) 
(stop) 

create (instance name) [ ( (parameter list) ) ] 
stop 

(timer statement) 
(set) 
(reset) 
(timeout) 
( condition) 

(output address) 

(input address) 

(set) I (reset) I (timeout) 
set (timer name) [ ( (duration name) ) ] 
reset (timer name) 
timeout (timer name) 
condition (condition name list) 

(instance name) 
env via (gate name) 
(reference identification) via (gate name) 
(instance name) 
env via (gate name) 

( reference identification) 

(parameter list) 
(condition name list) 

(reference identification) via (gate name) 
reference (ref name) 
inline (ref name) 
(parameter name) [ , (parameter list) ] 
(condition name) { , (condition name) }* 

Causally ordered events 

(orderable event)::= 
I 

( ordered event) 

(event name list)::= 
( order <lest) · · -

(message event) I (incomplete message event) I (create) 
(timer statement) I (action) 
(event name) (orderable event) before (event name list) 
(event name) (orderable event) after (event name list) 
(event name) (orderable event) before (event name list) 
after (event name list) 
( order <lest) [ , ( event name list) ] 
( event name) 
env via (gate name) 
(reference identification) via (gate name) 
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Coregions 

(coregion) .. -
(coevent list)::= 

concurrent ; (coevent list) endconcurrent 
0 I ( orderable event) ; ( coevent list) 

MSC bodies 

(msc body) 
(event definition) 

(instance event) .. -
(non-orderable event) ::= 
(multi instance event)::= 
(instance name list) .. -

0 I (event definition) (msc body) 
(instance name) : (instance event) ; 
(instance name list) : (multi instance event) ; 
(orderable event) I (non-orderable event) 
(stop) I (coregion) 
(condition) I (msc reference) I (inline expr) 
(instance name) 
(instance name) , (instance name list) 

MSC reference expressions 

(msc reference) 

(msc ref expr) 

(msc ref par expr) 

(msc ref seq expr) 

(msc ref loop expr) ··-
(expr body) ··-
(loop boundary) · · -
(inf natural) ··-
(reference gate interface)::= 
(ref gate) ··-

(actual out gate) 

(actual in gate) 

(actual order out gate) 
(actual order in gate) 

reference (ref name) : 
(msc ref expr) (reference gate interface) 
(msc ref par expr) 
(msc ref par expr) alt (msc ref expr) 
(msc ref seq expr) 
(msc ref seq expr) par (msc ref par expr) 
(msc ref loop expr) 
(msc ref loop expr) seq (msc ref seq expr) 
[ loop (loop boundary) ] (expr body) 
empty I (msc name) I ( (msc ref expr) ) 
< (inf natural) , (inf natural) > 
inf I (natural name)+ 
0 I ; gate (ref gate) (reference gate interface) 
(actual out gate) I (actual in gate) 
(actual order out gate) I (actual order in gate) 
(gate name) out (message name) 
to (input address) 
(gate name) in (message name) 
from (output address) 
(gate name) before (order <lest) 
(gate name) after (order <lest) 



A.2 Textual syntax for semantics definition 

Inline expressions 

(inline expr) 
(loop expr) 

(alt expr) 
(alt list) 

(par expr) 
(par list) 

(inline gate interface) ::= 
(inline gate) ··-

(inline out gate) 

(inline in gate) 

(inline order out gate)::= 

(inline order in gate) 

(def out gate) 

( def in gate) 

(loop expr) I (alt expr) I (par expr) 
loop (loop boundary) begin (ref name) ; 
(inline gate interface) (msc body) 
loop end 
alt begin (ref name) ; (alt list) alt end 
(inline gate interface) (msc body) 
(inline gate interface) (msc body) alt ; (alt list) 
par begin (ref name) ; (par list) par end 
(inline gate interface) (msc body) 
(inline gate interface) (msc body) par ; (par list) 

() I gate (inline gate) ; (inline gate interface) 
(inline out gate) I (inline in gate) 
I (inline order out gate) I (inline order in gate) 
(def out gate) external out (message name) 
to (input address) 
(def in gate) external in (message name) 
from (output address) 
(gate name) after (order <lest) external 
before (order dest) 
(gate name) before (order dest) external 
after (order dest) 
(gate name) in (message name) 
from (output address) 
(gate name) out (message name) 
to (input address) 

High-level Message Sequence Charts 

(message sequence chart)::= 

(msc expression) 
(start) 
(node expression list) 
(node expression) 

msc (msc name) ; 
expr (msc expression) 
endmsc; 
(start) (node expression list) 
(label name list) ; 
() I (node expression) (node expression list) 
(label name) : 
{ (node) seq ( (label name list) ) I end } ; 
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(node) 
I 
I 
I 
I 
I 

(par expression)::= 
I 

(label name list)::= 

empty 
(msc name) 
(par expression) 
condition (condition name list) 
connect 
( (msc ref expr) ) 
expr (msc expression) endexpr 
expr (msc expression) endexpr 
par (par expression) 

Textual syntax of MSC 

(label name) I (label name) alt (label name list) 



Appendix B 

Proofs 

In this appendix a number of proofs is presented that are omitted from Chapter 3. 
In order to make the proofs easier we first present the notion of bisimulation modulo 
equational reasoning. In short, this notion allows us to use already established equal-
ities between terms in the proofs of other equalities as long as no cyclic reasoning is 
performed. 

B.1 Bisimulation modulo equational reasoning 

For the terminology and notation used in this section we refer to [BV95]. 

Definition B.1.1 Let T = (~, D) be a term deduction system with stratification S 
and let D = (Tv, Tr)- Let Ebe a set of equations over~- A relation B C(~) x C(~) 
is a bisimulation relation modulo a set of equations E if for all s, t E C(~) with sBt 
the following conditions hold. For all R E Tr 

\/s'EC(E)(Ts I= sRs' 3t'EC(E)(Ts I= tRt' /\EU Eq(B) f- s' = t')), 

\/t'EC(E)(Ts I= tRt' 3s'EC(E)(Ts I= sRs' /\EU Eq(B) f- s' = t')), 
and for all P E Tp 

Ts I= P s Ts I= Pt, 

Ts I= Pt Ts I= P s. 

We have used Eq(B) to denote the set of equations that is obtained by considering 
each pair of B as an equation: Eq(B) = {p = q I pBq}. 
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Theorem B.1.2 Let be a signature. Let (~, D) be a stratifiable term deduction 
system in panth format. Let Ebe a set of equations over the signature~ that is sound 
with respect to ti . Then, for all p, q EC(~), if Ts I= p ti/Eq, then Ts I= p ti q. 

Proof Since the equations of the set E are sound we have the existence of a 
relation Be for each axiom e E E such that Be is a bisimulation relation for the 
equation e. Suppose that S is a stratification for the deduction system T. Let B be 
a bisimulation relation modulo E such that pBq. 

In order to prove that p ti q, we need to define a relation B' and prove that this 
relation relates p and q and that it is a bisimulation relation. We define the relation 
B' as follows: B' is the smallest relation that satisfies: 

• B ~B'; 

• Be B' for all e E E; 

• Id~ B'; 

• B' is symmetric; 

• B' is transitive; 

• for any n-ary function symbol f E ~, if PiB' qi for all 1 ::; i ::; n, 
then J(p1, · · · ,Pn)B' f(q1, · · · , qn)-

First we prove that such a relation B' exists. Thereto, suppose that B1 and B2 are 
relations that satisfy the above criteria. Then we must establish that also B1 n B 2 

satisfies these criteria. 

• Id~ B 1 n B 2 since Id~ B1 and Id~ B2; 

• Suppose that p(B1 n B 2)q. Then clearly pB1q and pB2q. Therefore qB1p and 
qB2p. Thus q(B1 n B2)p. 

• Suppose that p(B1 n B 2)q and q(B1 n B 2 )r. Then clearly pB1q and qB1r and 
pB2q and qB2r and therefore also pB1r and pB2r. Therefore p(B1 n B 2)r. 

• Suppose that Pi(B1 nB2)qi for 1 ::; i ::; n. Then PiB1qi and PiB2qi for 1 ::; i ::; n. 
Thus we have f(p1,··· ,Pn)Bif(q1,· .. ,qn) and f(P1,··· ,Pn)B2f(q1, ... ,qn) 
and therefore f(P1, · · · ,Pn)(B1 n B2)f(q1, · · · , qn)-

This illustrates that there is at most one smallest relation B' that satisfies the above 
_criteria. Together with the fact that C(~) x C(~) satisfies the above criteria we have 



B.1 Bisimulation modulo equational reasoning 189 

that there is exactly one smallest relation that satisfies the criteria. This enables us to 
use induction on the structure of the definition of B' to prove that B' is a bisimulation 
relation. 

Thus we have to prove: 

Vs,tEC(E) sB't =} VPESp Ts I= Ps =} Ts I= Pt A Ts I= Pt =} Ts I= Ps 
A 
VRESr Vs'EC(E) Ts I= sRs' =} =lt'EC(E) Ts I= tRt' As'B't' 

A 
Vt'EC(E) Ts I= tRt' =} =ls'EC(E) Ts I= sRs' As' B't' 

Let s, t E C(~) with ·sB't. Then we continue the proof by induction on the structure 
of B'. 

1. Suppose that sBt. Since B is a bisimulation modulo Ewe have for all RE Tr 

Vs'EC(E)(Ts I= sRs' =lt'EC(E)(Ts I= tRt' A EU Eq(B) I- s' = t')), 

Vt'EC(E)(Ts I= tRt' =ls'EC(E)(Ts I= sRs' A EU Eq(B) I- s' = t')), 
and for all P E Tp 

Ts I= P s Ts I= Pt, 

Ts I= Pt Ts I= P s. 

Thus all that has to be shown is that EU Eq(B) I- s' = t' implies that s' B't'. 
This is easy as the proof of EU Eq(B) I- s' = t' can be mimicked precisely in 
B'. 

2. Suppose that sBet for some e E E. Trivial since Be is a bisimulation relation 
and Be~ B'. 

3. Suppose that sB't due to the reflexivity of B'. Then s = t. Trivial since the 
diagonal is a bisimulation relation. 

4. Suppose that sB't due to the symmetry of B'. This case is trivial by induction. 

5. Suppose that sB't due to sB'r and rB't. By induction also trivial. 

6. Suppose that sB't due to the existence of an n-ary function symbol f E 
and si,ti ES (1 :S: i :S: n) such that siB'ti ands= f(s1, ... ,sn) and t = 
f(t1 , · · · , fn)- Then we proceed by transfinite induction on PF(T), the positive 
formulas of T. 
Let P E Sp. Suppose that Ts I= Ps. Thus there is a proof for Ts I= Ps. By 
case analysis on the last applied deduction rule or axiom. 
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(a) The deduction axiom that is applied last is 

Px 

with a substitution CI such that CI(x) = s. Define CI1 as follows: CI'(x) = t 
and CI' ( v) = CI( v) otherwise. Then clearly also Pt. 

(b) The deduction axiom that is applied last is 

with a substitution CI such that CI(xi) = Si. Define CI1 as follows: CI' (x) = t 
and CI1 

( v) = CI( v) otherwise. Then clearly also Pt. 

( c) The deduction rule that is applied last is 

Pksk, ttRtYl, ,Pm urn, Vn,Rn 
Px 

with a substitution CI such that 

CI(X) = S, 

PkCI(sk), 
CI(tt)Rw(Yt), 
,PrnCI(um), 
CI(vn)•Rn, 

Define CI1 as follows: CI1 (x) = t and CI' ( v) = CI( v). otherwise. Since 

CI(sk)B' CI 1 (sk), 
CI(tt)B'CI'(tt), 
dYt)B' CI' (Yt), 
CI( Urn )B' CI1 (Urn), 
CI( Vn)B' CI 1 

( Vn) 

and the term deduction system is stratifiable we have by induction that 
CI'(sk), CI'(tt)Rw'(yt), ,PrnCI'(urn) and CI 1(vn),R 11 • Therefore, the same 
deduction rule is applicable: so Pt. 

( d) The deduction rule that is applied last is 

Pksk, ttRtYl, ,Pm urn, Vn•Rn 
Pf(x1,··· ,xn) 

with a substitution CI such that 
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Define a' as follows: a'(x) = t and a'(v) = a(v) otherwise. Since 

a(sk)B' a' (sk), 
a(tz)B' a' (tz), 
a(yz)B' a' (yz), 
a( Um)B' a' (Um), 
a( Vn)B' a' ( Vn) 
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and the term deduction system is stratifiable we have by induction that 
a' ( s k), a' ( tz) Rza' (yz), -,pm a' (Um) and a' ( Vn) ,Rn. Therefore, the same 
deduction rule is applicable: so Pt. 

A similar proof can be given to show that Pt ===> Ps. 
Similarly we prove that sRs' ===> tRt' I\ s' B' t'. 

B.2 Properties of =f 

B.2.1 Unit element for =f 

Proof Since the proofs oft =f c5 B t and c5 =ft B t are symmetrical we only 
give the first one. Consider the relation B = { ( s =t= c5, s) I s E C (~)} U I de(~). The 
proof that this relation is a bisimulation relation is easy. Consider a pair of the for-
m ( s =f c5, s) for arbitrary s E C (~). The transfer conditions for both directions are 
treated simultaneously. First, as c5 ~, s =t= c5 p' if and only ifs p' and note that 
p' Bp'. Secondly, as c5 · · ·a---1-7, s =f c5 ···a-+ p' if and only if s ···a-+ p' and again note that 
p' Bp'. Finally, as c5 .Y, s =t= c5-!, if and only if s-!,. [8J 

B.2.2 Commutativity of =f 

Proof Let B = {(s =t= t,t =f s) I s,t E C(I:)} U Ide(~)- We will show that for 
all pairs in the relation B the transfer properties hold, i.e., that B is a bisimulation 
relation. Thus consider a pair of the form (s =ft, t =f s) for arbitrary s, t EC(~). We 
will only treat the transfer conditions from left to right. The transfer conditions in 
the other direction are treated similarly. 

• Suppose that s =f t p for some a E A and p E C (~). Inspection of the 
deduction rules gives that one of the following must be the case: 

- s s' and t t' for some s', t' E C (I:) such that p = s' =f t'. In this case 
we have t =f s t' =f s' and s' =f t' Et' =f s'. 

- s s' and t for some s' E C(I:) such that p = s'. Then, t =f s s' and 
s'Bs'. 
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- s !;.., and t t' for some t' E C (E) such that p = t'. Then 1 t =t= s t' and 
t'Bt'. 

• Suppose that s =i= t p for some a E A and p E C (E). Inspection of the 
deduction rules gives that one of the following must be the case: 

- s .. s' and t t' for some s', t' E C(E) such that p = s' =i= t'. In this 
case we have t =i= s t' =f s' and s' =i= t' Bt' =t= s'. 

- s .. s' and t ... a----1--+ for some s' E C(E) such that p = s'. Then, t=i=s s' 
and s'Bs'. 

- s ···a----1--+ and t t' for some t' E C(E) such that p = t'. Then, t=t=s t' 
and t' Bt'. 

• Suppose that s =i= t.,!.. Inspection of the deduction rules gives that s.,!. or t.,!.. In 
both cases also t =i= s.,!.. [8J 

B.2.3 Associativity of =i= 

Proof ConsidertherelationB = {((s=t=t)=i=u,s=t=(t=i=u)) I s,t,u E C(E)}Uldc(E)· 

• Suppose that (s =ft) =i= u p for some a E A and p E C(E). Inspection of the 
deduction rules gives that this must be due to one of the following: 

- s p' and u u' for some p', u' E C(E) such that p = p' =i= u'. Further 
inspection gives that s =ft p' is due to one of the following: 

* s s' and t t' for some s', t' E C (E) such that p' = s' =f t'. In this 
case we also have t =i= u t' =i= u' and hence s =i= (t =i= u) s' =i= (t' =i= u'). 
Note that p = p' =i= u' = (s' =i= t') =i= u' and (s' =ft') =f u'Bs' =t= (t' =i= u'). 

* s s' and t !;.., for some s' E C(E) such that p' = s'. Then t =f u u' 
and s =i= (t =i= u) s' =i= u'. Also p = p' =i= u' = s' =i= u'. Note that 
s' =i= u' B s' =i= u'. 

* s !;.., and t t' for some t' E C (E) such that p' = t'. This case is 
similar to the previous one. 

- s =ft p' and u !;.., for some p' E C (E) such that p = p'. Further inspection 
gives that s =i= t p' is due to one of the following: 

* s s' and t t' for some s', t' E C (E) such that p' = s' =i= t'. In this 
case we also have t =i= u t' and hence s =i= ( t =i= u) s' =f t'. Note that 
p = p' = s' =i= t' and s' =i= t' Bs' =i= t'. 

* s s' and t !;.., for some s' E C(E) such that p' = s'. Then t =i= u !;.., 
and s =i= (t =i= u) s'. Alsop= p' = s'. Note that s' Bs'. 

* s !;.., and t t' for some t' E C (E) such that p' = t'. This case is 
similar to the previous one. 
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- s + t ..:;..,, and u u' for some u' E C (:E) such that p = u'. Inspection of the 
deduction rules gives that it must be the case that s .!;..,, and t .!;..,,_ Thus, 
t + u u' ands+ (t + u) u'. Note that p = p' = u' and that u'Eu'. 

• Suppose that (s + t) + u ···a-+ p for some a E A and p E C(I;). This proof is 
treated in the same way as the first case. 

• Suppose that ( s + t) + u4-. Inspection of the deduction rules gives that it must 
be the case that s + t+ or u-i. If ut, then t + u+, and hence s + ( t + u )-i. If s + t+ 
it must be the case that s+ or t+. In both cases we easily obtain s + (t + u)+. 

The proofs for the transfer conditions in the other direction are similar and therefore 
omitted. 

B.2.4 ldempotency of =i= 

Proof We define the relation E as follows: 

E = { ( t + t, t) I t E C (I;)} u I de ( E) . 

• Suppose that t + t p' for some a E A and p' E C (I;). This must be due to 
t t' and t t" for some t', t" E C(I;) such that p' = t'+t". By Theorem 3.10.3 
we have t' = t". Nate that p = t' + t" = t' + t" and t' + t' Et'. 

• Suppose that t t' for some a EA and t' E C(I;). Then also, t + t t' + t'. 
Note that t' + t' Et'. 

The proof that the transfer property for the permission relation holds is similar. Also 
the transfer property of the termination relation is simple: t' + t' + if and only if t' + 
or t' + if and only if t' +· 

B.3 Properties of II 

B.3.1 Unit element for II 

Proof We will give the proof for c II t H t. The proof for t II c H t is similar. 
Consider the relation R = {(c II t, t) It E C(I;)}. 

• Suppose that c II t p for some a E A and p E C (I;). Since c .!;.,, this can only 
be due to t t' for some t' E C(I;) such that p = E II t'. Note that c II t' Rt'. 
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• Suppose that t q for some a E A and q E C (I;). Since c we have c !! t 
s II q. Note that s II qRq. 

• Suppose that c II t p .for some a E A and p E C(I;). This must be due to 
c p' and t .. p" for some p',p" E C(I;) such that p = p' IIP"- We have 
p' = E:. Thus t ... p" and E llp"Rp". 

• Suppose that t q for some a E A and q EC(~). Then, since c c, we 
have c 11 t · c 11 q and c II qRq. 

• Suppose that c II t.,!,. This must be due to c+ and t.,!,. 

• Suppose t.,!,. Since c.,!,, also c II t.,!,. 

B.3.2 Cornrnutativity of II 

Proof This property is an instantiation of the commutativity of generalized 
weak sequential composition (Theorem 3.5.4, proof in Appendix B.5.1) where the set 
of requirements is taken to be empty, that is, S = 0. k8l 

B.3.3 Distributivity of II over =f= 

Proof The property is an instantiation of the distributivity of generalized de-
layed parallel composition over delayed choice (see Theorem 3.5.4, proof in Ap-
pendix B.5.2) where the set of requirements is taken to be empty, that is, S = 0. 0 

B.3.4 Associativity of 11 

Proof We define the following relation. 

B = {((s II t) II u, s II (t II u)) Is, t, u EC(~)}. 

This relation is a bisimulation relation modulo the equations ( x =i= y) 11 z = x 11 z =i= y 11 z 
and x 11 (y =i= z) = x 11 y =i= x 11 z. The proof thereof is similar, though easier, than the 
proof given for the associativity of weak sequential composition in Appendix B.4.4. 
This is due to the more restricted role of the permission relation, giving less case 
distinctions. k8l 
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B.4 Properties of o 

B.4.1 Unit element for o 

Proof We define the relation B as follows: 

B={(cot,t) itEC(I;)}. 

The proof that this relation is indeed a bisimulation is rather trivial. 

Consider a pair (cot, t) for arbitrary t E C(I;). 
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• Suppose that cot 4 p for some a E A and p E C(I;). Inspection of the deduction 
rules gives that either one of the following should be the case: 

- E 4 p' and c Vt for some p' E C(I;) such that p = p' o t. This case 
cannot occur since E ~. 

a a I a - E p', E · · · p' and t t' for some p', p", t' E C (:E) such that p = 
p' o t =F p" o t'. This case cannot occur since E ~. 

a a I a 1 - E -,,..,, E ··· p and t t' for some p, t E C(I;) such that p = p' o t'. From 
E p' we obtain p' = E. We have t 4 t'. Note that p = p' o t' = E o t'. 
Note that E o t' Bt'. 

• Suppose that t 4 t' for some a E A and t' E C (:E). Then, since E and 
a a E E, we have E o t E o t'. Note that E o t'Bt'. 

• Suppose that c o t p for some a E A and p E C (:E). This must be due 
to E p' and t p" for some p',p" E C(I;) such that p = p' op". Note 
that necessarily p' = E, and hence p = E op". We have t p". Note that 
c Op" Bp". 

• Suppose that t q for some a E A and q E C (I;). Since E E, we have 
E o t E o q. Note that E o qBq. 

• Suppose that E o t-J,. This must be due to c-J, and t-J,. Hence t-J,. 

• Suppose that t-J,. From the deduction rules we also have d, and hence E o t-J,. 

We define the relation B as follows: 

B = {(toE,t) It E C(I;)}. 

Consider a pair (to E, t) for arbitrary t E C(I;). 
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• Suppose that to c p for some a E A and p EC(~)- Since c ~, this must be 
due t' for some t' EC(~) such that p = t' o c. We have t t. Note that 
t' o c:Bt'. 

• Suppose that t q for some a E A and q E C(~)- Then, since c ~, also 
to c: q o c:. Note that q o c:Bq. 

• Suppose that t o c: ···a-+ p for some a E A and p E C (~). This must be due to 
t •••a-+ t' and c •••a-+ p' for some t', p' E C (~) such that p = t' o p'. Note that 
p' = E. Thus p = t' o E. We have t ···a-+ t'. Note that t' o c:Bt'. 

• Suppose that t ···a-+ q for some a EA and q EC(~)- Then, since c ···a-+ c:, also 
to E •··a-+ q o E. Note that q o EBq. 

• Suppose that t o E+. This must be due to t.J, and c.J,. Thus t.J,. 

• Suppose that t.J,. Since c+ we also have t o c:.J,. 

B.4.2 Left-zero element for o 

Proof This property is an instantiation of the property that deadlock is a left-
zero for generalized weak sequential composition where the set of requirements is 
taken to be empty, that is S = 0. IZI 

B.4.3 Distributivity of o over =f 

Proof This property is an instantiation of the distributivity of generalized weak 
sequential composition over delayed choice where the set of requirements is taken to 
be empty, that is S = 0. The proof of the distributivity of delayed choice over gen-
eralized weak sequential composition is given in Appendix B.5.4. IZI 

B.4.4 Associativity of o 

Proof 

We define the relation Bas follows: B ={((sot) o u, so (to u)) Is, t, u EC(~)}. We 
prove that B is a bisimulation relation modulo the equations: ( x =f y) oz = x oz =f yo z 
and x o (y =f z) = x o y =f x o z. 

Thereto, suppose that pRq. Then p = (sot)ou and q = so(tou) for some s, t, u EC(~)-
Suppose that p p' for some a EA and p' EC(~), i.e., (sot) o u p'. This must 
be due to one of the following: 
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• sot p" and sot ···a-A Vu for some p" E C(I:) such that p1 = p" o u. In 
turn s o t p" is due to one of the following: 

- s s1 and s ···a-A Vt for some s1 E C (I:) such that p" = s1 o t. If 
s s" for some s" E C(I:), then t ···a-A Vu and t and therefore 
s o ( t o u) s1 o ( t o u). If s ··_a-A then also s o ( t o u) s1 o ( t o u). Note 
that f- p1 = ( s1 o t) o u = s1 o ( t o u). 

- s s1
, s s" and t t 1 for some s1

, s", t 1 E C(I:) such that p" = s1 ot=t= 
s" ot1

• Then t •··a-A Vu~ and therefore so (tou) s1 o (tou) =f S 11 o (t 1 ou). 
Note that f- ( s1 o t =f s" o t 1

) o u = s1 o ( t o u) =f s" o ( t 1 o u). 

a a 11 a - s -A, s •··-+ s and t-+ t 1 for some s",t1 E C(I:) such that p" = s" o t 1
• 

Then t •··a-A Vu and therefore so (to u) s" o (t 1 o u). Note that 
f- ( s" o t1

) o u = s" o ( t1 o u). 

p", sot p111 and u u 1 for some p11 ,p111 ,u1 E C(I:) such that 
p1 = p" o u =f p111 o u1

• Since s o t p"1 we have that s · · ·a---t s" and t t" 
for some s", t" E C (1:) such that p"1 = s" o t". In turn s o t p" is due to one 
of the following: 

- s s1 and s ···a-A Vt for some s1 E C(I:) such that p" = s1 o t. Then 
so(tou) s1 o(tou)=t=s"o(t"ou1

). Note that f- (s 1 ot)ou=t=(s"ot")ou1 = 
s1 o (to u) =f s" o (t" o u1

). 

- s s1
, s s* and t t 1 for some s1,s*,t1 E C(I:) such that p" = 

s1 o t =f s* o t1
• Due to permission determinism we have s* = s". Then 

so (to u) s1 o (to u) =f s" o (t1 o u =ft" o u 1
). Note that f- p1 = (s 1 o t =f 

s" o t 1
) o u =f ( s" o t") o u 1 = s1 o ( t o u) =f s" o ( t 1 o u =f t" o u'). 

- s ~, s s* and t t 1 for some s*, t 1 E C(I:) such that p" = s* ot1
• Due 

to permission determinism we have s* = s". Then so (to u) s" o ( t 1 o u =f 
t" o u 1

). Note that f- p1 = (s" o t 1
) o u =f (s" o t") o u 1 = s" o (t 1 o u =ft" o u 1

). 

a a a • s o t -A, s o t • • • -+ p" and u -+ u1 for some p", u1 E C (I:) such that p1 = p" o u 1
• 

First of all we obtain s s" and t t" for some s", t" E C (1:) such that 
p" = s" o t". Thens and, since s also t ~- Therefore so (to u) 
s" o (t" o u 1

). Note that f- p1 = (s" o t") o u 1 = s" o (t" o u 1
). 

The other five statements are proved similarly. 
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B.5 Properties of II s and o5 

B.5.1 Commutativity of II 5 

s s Proof Let B = {(s II t, t II s) Is, t EC(~)/\ S ~Ax INx A}. We prove that 
B is a bisimulation relation modulo the equation x =i= y = y =i= x. 

Consider a pair of the form (s II st, t II s s) for arbitrary s, t E C(~) and arbitrary 
S A x IN x A. Let S' = upd( a, S). 

• Suppose that s II st 4 p' for some a E A and p' E C (E). Inspection of the 
deduction rules gives that this must be due to one of the following: 

- s 4 s', t 4 t' and enabled( a, S) for some s', t' E C (~) such that p' = 
S' S' S a S' · S' S' s' II t =i= s II t'. Clearly then also t II s --+ t' II s =i= t II s' and f- s' II t =i= 

s 11 S' t' = t 11 s's' =i= t' 11 s's = t' 11 s's =i= t 11 s's'. 
a a S' - s --+ s', t -1-+ and enabled(a, S) for some s' E C(~) such that p' = s' II t. 

S a S' S' S' Then, we also have t II s --+ t II s' and f- s' II t = t II s'. 
a a S' - s -1-+, t --+ t' and enabled(a, S) for some t' E C(~) such that p' = s II t'. 

S a S' S' S' Then, we also have t II s --+ t' 11 s and f- s 11 t' = t' 11 s. 

• Suppose that s II st p' for some a E A and p' E C(E). Inspection of the 
deduction rules gives that this must be due to s s' and t t' for 
some s', t' E C(~) such that p' = s' II st'. Then also t II s s t' II s s' and 
f- s' II st' = t' II s s'. 

• Suppose that s II s t_j,.. This must be due to s-J,. and t-J,.. Then also t II s s-J,.. 

The proofs that the transfer conditions also hold in the other direction are similar 
and therefore omitted. rgJ 

B.5.2 Distributivity of II 5 over =f 

Proof We define the following relations. 

B1 {((s=i=t)llsu,sllsu=i=tllsu)ls,t,uEC(~)/\S~AxINxA}, 
B2 {(slls(t=i=u),sllst=i=sllsu) I s,t,u EC(~) /\S ~Ax INx A}. 

These relations are bisimulations modulo the equations x=i=y = y=i=x and (x=i=y)=i=z = 
x =i= (y =i= z). The proofs thereof are similar, though easier, than the proof given for 



B.5 Properties of generalized operators 199 

the distributivity of delayed choice over the generalized weak sequential composition 
operator in Appendix B.5.4. This is due to the more restricted role of the permission 
relation, giving less case distinctions. IZI 

B.5.3 Left-zero element for os 

Proof Consider the relation B = { ( 8 os t, 8) I t E C (I;) /\ S A x IN x A}. We 
will prove that the conditions for B to be a bisimulation hold. For arbitrary a E A 
and terms of the form 8 os t we easily obtain 8 os t ~, 8 os t ···a---r-+ and 8 os t .J(. We 
also obtain 8 ~, 8 ···a---r-+ and 8 y. IZ) 

B.5.4 Distributivity of os over =f 

Proof First we prove the right-distributivity of delayed choice over generalized 
weak sequential composition, as this is the most difficult proof of the two. For the 
left-distributivity we only give the definition of the relation to be a bisimulation. 

We define the relation B as follows: 

B = { (s =i= t) os u, sos u =i= t os u) I s, t, u E C(~) /\ S A x IN x A}. 

Then we show that B is a bisimulation modulo the equations x =i= y = y =i= x and 
(x =i= y) =i= z = x =i= (y =i= z). Thereto, let p, q EC(~) such that pBq and p = (s =i= t) os u 
and q = sosu=i=tosu for some s,t,u EC(~) and S ~Ax INx A. Let S' = upd(a,S). 
Then ( s =i= t) os u p' is due to one of the following: 

• s =i= t p~, s =i= t · · ·a---r-+ Vu and enabled( a, S) for some p~ E C (~) such that 
p' = p~ os' u. In turn s =i= t p~ is due to one of the following: 

- s s' and t t' for some s', t' E C(~) such that p~ = s' =i= t'. Then 
sosu s'os' u and tosu t'os' u and hence sosu=i=tosu s'os' u=i=t'os' u. 
Note that I- p' = p~ os' u = (s' =i= t') os' u = s' os' u =i= t os' u. 

a a s a s' - s s' and t ---r-+ for some s' EC(~) such that p~ = s'. Then so u s' o u 
and t os u ~- Note that I- p' = p~ os' u = s' os' u. 

- s and t t' for some t' E C (~) such· that p~ = t'. Similar to the 
previous case. 

• s =i= t p~, s =i= t p~, u u' and enabled(a,S) for some p~,P~,u' EC(~) 
such that p' = p~ os' u =i= p~ os u'. In turn s =i= t p~ is due to one of the 
following: 
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- s s1 and t t1 for some s1
, t1 E C (:E) such that p~ = s1 =i= t'. Also, 

s =i= t p~ is due to one of the following: 
* s s" and t t" for some s", t" E C(:E) such that p~ = s" =i= t". 

Since s s1
, s s" and u u' we have sos u s' as' u =i= 

s11 os' u1
• Similarly we have t os u t1 as' u =i= t" os' u'. Thus we have 

sos u =i= t os u (s' as' u =i= s" os' u1
) =i= (t' as' u =i= t" as' u'). Note 

that p1 = p~ as' u =i= p~ as' u1 = ( s1 =i= t1
) as' u =i= ( s" =i= t") as' u' = 

(s 1 as' u =i= s11 as' u') =i= (t' as' u =i= t" as' u1
). 

* s s" and t • • •a---f-'t for some s" E C (:E) such that p~ = s". Since 
a a a S a S' 1 S' s s1

, s · · · s" and u u1 we have s o u s1 o u =i= s' o u'. 
Since t t', t ··•a---f-'t and u u' we have t os u t1 as' u. Thus we 
haves os u =i= t as u (s 1 as' u =i= s" as' u') =i= t1 as' u. Note that p1 = 
p~ as' u=i=p7os' u1 = (s 1 =i=t1)os' u=i=s"os' u1 = (s 1os' u=i=s"os' u1)=i=t1os' u. 

* s • • •a---f-'t and t t" for some t" E C (:E) such that p~ = t". Similar to 
the previous case. 

- s s' and t for some s1 E C(:E) such that p~ = s1
• Also, s =i= t p~ 

is due to one of the following: 
a a * s · · · s" and t · · · t" for some s", t" E C (:E) such that p~ = s" =i= t". 

a I a 11 a I S a I S' fl S' I Since s s , s · · · s and u u we have so u s o u =i= s o u . 
Since t ~, t t" and u u1 we have t os u t" as' u'. Thus 
s os u =i= t as u ( s1 as' u =i= s" as' u') =i= t" as' u1

• Note that p' = 
p~ as' u=i=p~ as' u' = s1 as' u=i= ( s" =i=t") as' u' = ( s' as' u=i=s" as' u') =i=t" as' u'. 

* s s" and t · · ·a---f-'t for some s" E C (:E) such that p~ = s". Since 
a I a II d a I h s a I S' II S' I s· s s , s · · · s an u u we ave so u s o u =i= s o u . mce 

t and t ···a---f-'t we have tosu ~- Thus sosu=i=tosu s' as' u=i=s" as' u'. 
Note that p' = p~ as' u =i= p~ as' u' = s' as' u =i= s" as' u'. 

* s •··a---f-'t and t t" for some t" E C(:E) such that p~ = t". Since 
s s', s •··a---f-'t and u u' we haves os u s' as' u. Since t ~, 
t t" and u u' we have t os u t" as' u'. Thus s os u =i= t os u 
s' as' u=i=t" as' u'. Note that~ p' = p~ as' u=i=p7 as' u" = s' as' u=i=t" as' u'. 

- s and t t' for some t' E C (:E) such that p1 = t'. Similar to the previous 
case. 

• s =i= t ~, s =i= t p", u u' and enabled( a, S) for some p", u' E C (:E) such 
that p1 = p" as' u'. Since s =i= t we have s and t ~. Also s =i= t p" 
must be due to one of the following: 

- s s' and t t' for some s', t' E C(:E) such that p" = s' =i= t'. Then 
sos u s' as' u' and t os u t' as' u' and hence sos u =i= t os u s' as' u' =i= 
t' as' u'. Note that p' = p" as' u' = (s' =i= t') as' u' = s' as' u' =i= t1 as' u'. 

- s s' and t ··_a---f-'t for some s1 E C(:E) such that p" = s1
• Then s as 

u s' as' u' and t os u ~, thus sos u =i= t os u s' as' u1
• Note that 

p' = p" as' u 1 = s' as' u'. 
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- s ···a-A and t t' for some t' E C (~) such that p" = t'. Similar to the 
previous case. 

The vice versa part of the first statement can be proved similarly. The proof is 
omitted. 

The approach for the proof of the second statement is similar. Suppose that ( s =ft) os 
a S a . a u •·· p' for some p' E C(~)- Then (s =ft) o u ··· p' 1s due to s =ft ··· p" and 
a S a . u u' for some p",u' EC(~) such that p' = p" o u'. In turns p" 1s due 

to one of the following: 

• s s' and t t' for some s', t' E C (~) such that p" = s' =f t'. Then 
sos u =ft os u s' os u' =ft' os u'. Note that I- p' = p" os u' = (s' =ft') os u' = 
s' os u' =f t' os u'. 

a a S S a • s · · · s' and t ···-A for some s' E C (~) such that p" = s'. Then so u=t=to u • · · 
s' os u'. Note that I- p' = p" os u' = s' os u'. 

a a S S a • s ··· -A and t ··· t' for some t' EC(~) such that p" = t'. Then so u=t=to u •·· 
t' os u'. Note that I- p' = p" os u' = t' os u'. 

Again, the proof for the vice versa part of the second statement is similar and therefore 
omitted. 

The proof for the third statement is even simpler. Suppose that (s =ft) os u.!,. This 
must be due to s =f t.!, and u.!,. In turn s =f t.!, must be due to s+ or t.!,. Thus we have 
s os u.!, or t os u-J,, and therefore s os u =f t os u-J,. The proof of the vice versa part is 
again similar. 

For left-distributivity we define the relation B as follows: B = { ( s os ( t =f u), s os t =f 
sos u) I s, t, u EC(~) AS~ A x IN x A}. 

B.6 Properties of the repetition operators 

B.6.1 Unfolding of iteration 

Proof We define the relation B as follows: 

B = {(t®,s =ft o t®) It EC(~)}. 

Then we prove that B is a bisimulation relation modulo the equations (x =f y) oz= 
x o z =f y o z, ( x o y) o z = x o (y o z), and c o x = x. 

Thereto consider the pair (t®,s =ft o t®) for an arbitrary t EC(~)-
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• Suppose that t® p' for some a E A and p' E C (~). Inspection of the deduction 
rules gives that this must be due to one of the following: 

- t t' and t ···a---1-t for some t' E C(~) such that p' = t' o t®. Then 
t o t® t' o t® and thus c =f t o t® t' o t®. Note that f--- t' o t® = t' o t®. 

- t t' and t ···a-+ t" for some t', t" EC(~) such that p' = t"® o (t' o t®). 
Then c =ft o t® t' o t® =ft" o (t"® o (t' o t®)). Note that f--- t"® o (t' o t®) = 
(c=Ft"ot"®)o(t'ot®) = t'ot®=F(t"ot"®)o(t'ot®) = t'ot®=Ft"o(t"®o(t'ot®)). 

• Suppose that t® __ _a-+ p' for some a E A and p' E C(~)- This must be due to 
one of the following: 

- t ··•a-+ t' for some t' E C (~J such that p' = t' ®. Then also c =f t o t® ···a-+ 
c =ft' o t'®. Note that f--- t'* = c =ft' o t'®. 

- t · · •a---1-t. In that case necessarily p' = c. Then also c =f t o t® ···a-+ c. Note 
that f--- c = c. 

• Suppose that t® +· Also c =f t o t® + since c-!,.. 

• Suppose that c =ft o t® q' for some a E A and q' E C(~)- Inspection of the 
deduction rules gives that this is due to one of the following: 

- t t' and t ··•a---1-t Vt® for some t' E C(~) such that q' = t' o t®. 
Then, t ···a---1-t, since t implies t® Then also t® t' o t®. Note that 
f--- t' 0 t® = t' 0 t®. 

- t t', t ···a-+ t" and t® q" for some t',t",q" EC(~) such that q' = 
t' o t® =ft" o q". Since t t' and t ···a-+ t" we have q" = t"® o ( t' o t®) and 
t® t"® o (t' o t®). Thus q' = t' o t® =ft" o (t"® o (t' o t®)). Note that 
f--- t"® 0 (t' 0 t®) = t' 0 t® =ft" 0 (t"® 0 (t' 0 t®)). 

- t ~, t ···a-+ t' and t® q" for some t', q" E C(~) such that q' = t' o q". 
This case cannot occur since if t then t® ~. 

• Suppose that c =ft o t® ···a-+ q' for some a E A and q' E C (~). This must be due 
to one of the following: 

- t •··a---1-t_ Then q' = E. Then also t® ···a-+ E. Note that f--- c = c. 

- t ···a-+ t' for some t' E C (~) such that q' = c=ft' ot'®. Then also t® ···a-+ t'®. 
Note that f--- t'® = c =ft' o t'®. 

• Suppose that c =f t o t® -!,.. Also t® +· L8J 

B.6.2 Unfolding of unbounded repetition 

Proof We define the relation B as follows: 
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Then we prove that B is a bisimulation relation modulo the equations (x =i= y) o 
z = xoz=i=yoz, cox= x, (xoy) oz= xo (yoz) and x® = c=i=xox®. Let 
R = {(t 00

, t O t00
) It E C(b)}. 

Thereto consider a pair of the form (t00
, to t00

) for arbitrary t E C(b). 

• Suppose that t00 p' for some a EA and p' E C(b). This is due to one of the 
following: 

- t t' and t ···a-A for some t' E C (b) such that p' = t' o t00
• Then also 

t o t00 t' o t00
• Note that I- t' o t00 = t' o t00

• 

- t t' and t t" for some t', t" E C(b) such that p' = t"® o (t' o t00
). 

Then to t00 t' o t00 =i= t" o (t"® o (t' o t00
)). Note that I- t"® o (t' o t00

) = 
t' 0 t00 =F t" 0 ( t"@ 0 ( t' 0 t00

)) • . 

• Suppose that t00 p'. This must be due to t t" for some t" E C (b) 
such that p' = t" 00

• Then also to t00 t" o t" 00
• Note that I- t" 00 = t" o t" 00

• 

• Suppose that t00 ..!-- This case cannot occur. 

The proof that the transfer conditions hold in the other direction are similar and 
therefore omitted. IZI 

B.6.3 Inclusion 

Proof We define the relation B as follows: 

Then we prove that B is a bisimulation relation modulo the equation x o (y =i= z) = 
xoy=i=xoz. 

Consider a pair of the form (t® =i= t00
, t®) for an arbitrary t E C(b). 

With respect to the transfer conditions for the transition relation two cases can be 
distinguished. First, if t t' and t t", then t® =i= t00 t" ® o ( t' o t®) =i= t" ® o ( t' o t00

) 

and t® t"® o (t' o t®). Note that I- t"® o (t' o t®) =i= t"® o (t' o t00
) = t"® o (t' o 

t® =i= ot' o t00 ) = t"® o (t' o (t® =i= t00 )) = t"® o (t' o t®). Secondly, if t t' and t ···a-A, 

then t® =i= t00 t' o t® =i= t' o t00 and t® t' o t®. Note that I- t' o t® =i= t' o t00 = 
t' 0 ( t® =i= t00

) = t' 0 t®. 

With respect to the transfer conditions for the permission relation two cases can be 
distinguished. First, if t t", then t® =i= t00 t" ® =i= t" 00 and t® t" ®. Note 
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that L t"® =r: t" 00 
-_ t11 ®. S dl "ft a th t® t00 a d t® a N t , , econ y, 1 .. · -A, en + · · · £ an .. · £. o e 

that~ E = E. 

The transfer conditions for the termination predicate are satisfied trivially as t® + t00 + 
if and only if t®--!- Vt00 + if and only if t®-!,. IZI 

B.6.4 Other properties 

Proof We define the relation B as follows: 

B = {(t® 0 t®, t®) It EC(~)}. 

Then we prove that B is a bisimulation relation modulo the equations x + x = x, 
E o x = x and ( x o y) o z = x o (y o z). 

Thereto consider the pair (t® o t®, t®) for arbitrary t E C(~)-

For the transfer conditions for the transition relation two cases can be distinguished. 
First, suppose that t t' and t ... a-A. Then, t® o t® (t' o t®) o t® and t® t' o t®. 
Note that (t' o t®) o t® = t' o (t® o t®) = t' o t®. Secondly, suppose that t t' and 
t .. t11 • Then t®ot® (t 11 ®o(t'ot®))ot®+t11 ®o(t11 ®o(t'ot®)) and t® t 11 ®o(t'ot®). 
Note that (t 11 ® o (t' o t®)) o t® + t 11 ® o (t 11 ® o (t' o t®)) = t11 ® o (t' o t®). 

For the transfer conditions for the permission relation two cases can be distinguished. 
First, suppose that t ... a-A. Then, t®ot® ... EOE and t® ... E. Note that~ EOE= E. 
Secondly, suppose that t t". Then, t® o t® t11 ® o t11 ® and t® t"®. Note 
that t"® o t"® = t"®. IZI 

B.6.5 Other properties (II) 

Proof We define the relation B as follows: 

Then, we prove that B is a bisimulation relation modulo the equations (x o y) oz= 
x o (yo z), E ox= x, x + x = x and x® ox®= x®. 

Thereto, consider a pair of the form (t® o t 00
, t 00

) for an arbitrary t E C(~)-

With respect to the transfer conditions for the transition relation we distinguish two 
cases. First, suppose that t t' and t •··a-A. Then t® o t00 (t' o t®) o t00 and 
t 00 t' o t 00

• Note that (t' o t®) o t 00 = t' o (t® o t00
) = t' o t 00

• Secondly, suppose 
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that t t' and t ··_a_-+ t". Then, t®ot00 (t"®o(t'ot®))ot00 +t"®o(t"®o(t'ot00
)) and 

t00 t"®o(t'ot00 ). Note that I- (t"®o(t'ot®))ot00 +t"®o(t"®o(t'ot00
)) = t"®o(t'ot00 ). 

The transfer conditions for the permission relation and the termination predicate are 
trivial. r8J 
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Sarnenvatting 

Het onderwerp van dit proefschrift is de taal Message Sequence Chart (MSC) en de 
definitie van haar formele semantiek. Message Sequence Chart is een grafische taal 
voor de beschrijving van de interactie van systeemcomponenten. Elke systeemcompo-
nent wordt gerepresenteerd door een verticale lijn, de proceslijn. Langs een proceslijn 
loopt de tijd van boven naar beneden. Communicatie wordt verondersteld asynchroon 
te verlopen. Er worden geen aannames gemaakt met betrekking tot de wijze waarop 
communicatie wordt bewerkstelligd. De uitwisseling van boodschappen tussen sys-
teemcomponenten wordt weergegeven door pijlen tussen de betrokken proceslijnen. 
De pijl is gericht van de proceslijn van de zendende systeemcomponent naar de pro-
ceslijn van de ontvangende systeemcomponent. Impliciet wordt er verondersteld dat 
het verzenden van een boodschap plaatsvindt voor de ontvangst van de boodschap. 

De taal MSC wordt gestandaardiseerd door de ITU, de International Telecommuni-
cation Union. In maart 1993 verscheen de eerste standaard met betrekking tot de 
taal MSC [IT93]. Deze standaard bevat een informele definitie van de grafische syn-
tax en formele abstracte syntax en concrete syntax definities. Daarnaast bevat deze 
standaard een informele uitleg van de betekenis van een MSC en enkele voorbeelden 
van de grafische en tekstuele syntax. Een belangrijke tekortkoming van deze eerste 
standaard is een formele definitie van de betekenis van een MSC. In oktober 1994 
wordt hier iets aan gedaan middels de acceptatie van een formele semantiek van MSC 
gebaseerd op procesalgebra [IT95] als standaard Z.120 Annex B. 

In april 1996 wordt de taal MSC uitgebreid met een groot aantal compositiemecha-
nismen [IT96b]. Als gevolg daarvan is de formele definitie van de betekenis van een 
MSC zoals beschreven in Z.120 Annex B [IT95] niet langer toereikend. 

In dit proefschrift wordt in Hoofdstuk 1 ingegaan op de ontwikkelingen welke geleid 
hebben tot de definitie van de taal MSC en haar formele semantiek. Ook wordt 
kort ingegaan op het gebruik van de taal MSC en op enkele aan MSC gerelateerde 
formalism en. 

In Hoofdstuk 2 wordt een uitvoerige informele uitleg van de taal MSC gegeven. Deze 
uitleg heeft betrekking op de grafische syntax, de informele betekenis van de taalcon-
structies en de tekstuele syntax. Naast de elementen van de taal MSC welke al in de 
eerste standaard aanwezig waren, is ook een uitleg gegeven van de constructies welke 
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voor het eerst m de tweede standaard (1996) verschenen. Daartoe behoren onder 
andere 

• uitgebreidere faciliteiten voor het ordenen van activiteiten, 

• faciliteiten voor het (de)componeren van MSCs, 

• een mechanisme om de uitwisseling van boodschappen tussen systeemcompo-
nenten welke in verschillende MSCs beschreven zijn weer te geven, en 

• een mechanisme om activiteiten welke in verschillende MSCs beschreven zijn te 
ordenen. 

In Hoofdstuk 3 wordt een procestheorie gedefinieerd welke in Hoofdstuk 4 gebruikt zal 
warden voor de definitie van de betekenis van MSCs. Deze procestheorie bestaat uit 
termen opgebouwd uit constanten en operaties. De constanten die gebruikt warden 
zijn: 

• c voor het proces dat niets doet behalve termineren, 

• 8 voor het proces dat niets doet en zelfs niet kan termineren, en 

• a E A atomaire acties welke de activiteiten die in de MSCs beschreven zijn 
representeren. 

De operaties die gebruikt warden zijn sterk gebaseerd op de compositiemechanismen 
uit de taal MSC: 

• =f ( delayed choice) voor de modelering van alternatieven, 

• o en o5 voor de beschrijving van verticale compositie van MSCs 

• II and II s voor de beschrijving van horizontale compositie van MSCs 

• ® en = voor de beschrijving van de repetitie van een MSC 

De constanten en operatoren worden voorzien van een operationele semantiek die 
beschrijft welke activiteiten een proces kan uitvoeren. Voor de operationele semantiek 
van de procestheorie in dit hoofdstuk zijn de volgende activiteiten van belang: het 
uitvoeren van een atomaire actie, het kunnen termineren en het toestaan dat een 
ander proces bepaalde acties uitvoert. Deze activiteiten warden formeel gedefinieerd 
door middel van een deductiesysteem. 

Gebaseerd op de activiteiten beschreven door middel van de operationele semantiek 
wordt een notie van gelijkheid gedefinieerd op processen welke sterke gelijkenis ver-
toond met bisimulatie. 
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In Hoofdstuk 4 wordt de semantiek van de taal MSC gedefinieerd door een afbeelding 
te geven van syntactische objecten uit de taal MSC naar het domein van de proce-
sexpressies die in Hoofdstuk 3 gedefinieerd is. Voor deze afbeelding worden niet de 
grafische objecten gebruikt maar de tekstuele representaties van deze objecten. De 
reden hiervoor is dat de grafische syntax informeel is. Het basisidee volgens welke deze 
afbeelding werkt is dat elk object uit de taal MSC opgedeeld kan worden in een aantal 
activiteiten en dat de relatie tussen deze activiteiten nauwkeurig geadministreerd kan 
worden. Voor elk van deze activiteiten wordt een atomaire actie in de procestheorie 
gedefinieerd. Door middel van de operaties uit de procestheorie kunnen de atomiare 
acties weer samengevoegd worden tot een procesexpressie die de betekenis van het 
MSC object weergeeft. 

Het proefschrift besluit met enkele afsluitende opmerkingen, een uitgebreide lijst met 
referenties en enkele bijlagen. 
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1 
De taal Message Sequence Chart dankt zijn populariteit niet aan het bestaan van 
een standaard. 

2 
Een voorstel tot uitbreiding van een formele taal zoals i\ISC met een taalcon-
structie dient ten minste de volgende zaken te omvatten: 

• een motivatie voor de toevoeging van de taalconstructie; 

• een voorstel voor de syntax van de taalconstructie; 

• een informele omschrijving van de betekenis van de taalconstructie; 

• een uitgebreid overzicht van de interactie van de taalconstructie met alle 
taalconstructies die al in de taal aanwezig zijn; 

• een duidelijke omschrijving van de restricties waaraan het gebruik van de 
taalconstructie onderhevig is; 

• voorbeelden welke de vorige punten illustreren. 

Pas als een dergelijke gedetailleerde bestudering plaats heeft gevonden dient over-
wogen te worden daadwerkelijk tot toevoeging over te gaan. In de praktijk van 
standaardisatie van de taal MSC blijkt al besloten te worden tot toevoeging op 
grond van slechts de eerste twee van de bovengenoemde punten. 

3 
Alur, Holzmann en Peled geven, gebaseerd op verschillende aannamen over de 
manier waarop communicatie tot stand komt, drie verschillende semantieken voor 
Message Sequence Charts met alleen communicatie [AHP96]. Het is beter om de 
uitgangspunten die de drie semantieken voortbrengen expliciet in de syntax van 
de taal op te nemen zodat de gebruiker zelf de mogelijkheid heeft het gewenste 
communicatiemodel te specificeren. 

4 
Het is mogelijk om gegeven een MSC vast te stellen in welke communicatiemo-
dellen het gedrag dat <lit MSC beschrijft, gerealiseerd kan worden [EMR97]. 

5 
Het is niet waarschijnlijk <lat de procesalgebra EPA& [BW90] op een conservatieve 
wijze uitgebreid kan worden met tijd onder de aanname <lat de constanten uit 
BPA00 in de theorie met tijd willekeurige hoeveelheden tijd kunnen laten passeren 
voordat de actie daadwerkelijk uitgevoerd wordt. 



6 
De axiomas voor de interne stap in discrete tijd, relatieve tijd procesalgebra 
zoals gepresenteerd in [BBR] vormen een volledige axiomatisering van 'rooted 
branching tail bisimulation' op gesloten procestermen. 

7 
Er dient meer aandacht te zijn voor de correctheidsbewijzen van axiomatiseringen 
in de procesalgebra [BV95, R1N94, Gro97, Ver97]. 

8 
De invoering van notebooks aan de Technische Universiteit Eindhoven is een 
slechte zaak voor zowel de fysieke als geestelijke gesteldheid van de student.en. 
Bovendien is de kantine in het hoofdgebouw er minder gezellig van geworden. 

9 
De diverse herzieningen van het curriculum van de opleiding technische informa-
tica aan de Technische Universiteit Eindhoven waarin de wiskundige component 
steeds verder teruggebracht wordt, leidt tot afgestudeerden welke niet over het 
vereiste abstractieniveau en het logisch deductievermogen beschikken om op een 
gestructureerde wijze met software- en systeemontwikkeling om te gaan. 

10 
De tendens om een deel van de artikelen die verschenen zijn in de proceedings van 
een conferentie ook als special issue in een tijdschrift te publiceren, doet afbreuk 
aan de kwaliteit van publicaties in tijdschriften. 

11 
Het zou promovendi toegestaan moeten zijn te promoveren aan de Technische 
Universiteit Eindhoven op een proefschrift zonder stellingen. 
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