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A (morphological) filter is an increasing operator 1/f on a complete lattice£ which 
is idempotent: 

For some basic literature on morphological filters the reader may refer to the second 
book edited by Serra [23] (in particular Chap. 6 by Matheron and Chap. 8 by Serra), 
the tutorial paper by Serra and Vincent [24], to our book [5, Chaps. 12-13], and to 
[2, 7, 17]. 

This paper discusses various classes of morphological filters such as openings and 
closings, annular filters, alternating sequential filters (or AS-filters), and self-dual 
filters. A large part of the mathematical theory for morphological filters holds on 
arbitrary complete lattices. However, when we give concrete examples, we often 
restrict ourselves to the case of subsets of a Euclidean or discrete space. 

This paper aims to be mathematically rigorous in the sense that it gives precise def­
initions and propositions. As a general rule, proofs will be included when they pro­
vide additional insight. However, if a proof is rather technical, or when it requires 
substantial preparations, it will be omitted; in such cases appropriate references 
will be given. 

In the remainder of this section we summarize the contents of this paper. Sec­
tion 5 .2 contains a brief discussion of the complete lattice framework for morphol­
ogy. In Section 5.3 we discuss two elementary classes of filters, namely, openings 
and closings. A simple and general (but not the only) way to get openings and clos­
ings is by composing dilations and erosions that form ad junctions; a generalization 

1 This paper is a revised and extended version of our lecture "Morphological Filters," which was pre­
sented at the summer school, Morphological Image and Signal Processing, September 27-30, 1995, 
Zakopane, Poland. 

163 



164 CHAPTER 5 

of this idea leads to a class of filters which is relatively unknown, the adjunctional 
filters. In Section 5.4, annular filters will be treated. Such filters are given by very 
simple mathematical expressions. By composing openings and closings, one ob­
tains a class of filters which has proved its importance in practice: the alternating 
sequential filters. These filters are discussed in Section 5.5. In Section 5.6, we 
introduce operators which are closely related to filters, namely overfilters, under­
.filters, inf-overfilters, and sup-underfilters, and describe several methods for their 
construction. In this section we also treat the rank-max opening and the rank-min 
closing, and introduce a new AS-filter obtained by composition of such openings 
and closings. The class of AS-filters introduced in Section 5.5 can be generalized 
by composing overfilters and underfilters instead of openings and closings. This 
generalization is the topic of Section 5.7; we also present some interesting ex­
amples there. A general way to construct idempotent operators is by iteration of 
operators which are not idempotent. In Section 5.8 it is explained that pointwise 
convergence of the iterates ,_yn of an operator 1/f to a limit operator 1/f00 (along 
with the continuity of 1/f) guarantees that lfr00 is idempotent. An important class 
of operators which satisfy this pointwise convergence criterion are the operators 
which are activity-extensive. These operators are introduced in Section 5.9. There 
we also discuss the center operator. Section 5 .10 deals with self-dual filters. Such 
filters treat foreground and background identically (unlike openings, closings, and 
AS-filters), and as such they are of great importance. The simplest self-dual filter 
is a special case of the annular filter treated in Section 5.4. For this filter we can 
give an explicit expression. All other (nontrivial) self-dual filters we know of can­
not be expressed by an explicit formula, but their action is described in terms of an 
iteration procedure. Such a procedure uses a self-dual operator which is activity­
extensive. We give detailed results (using the center operator) on the construction 
of such operators, and some explicit examples. 

The filters discussed in this paper are all applied to the same binary input image, 
the right image in Fig. 5-1. It is obtained from the left image by "adding" salt-and 

Figure 5-1. The undistorted image (left) and our test image (right). The size of these 
images is l 28 x 128 pixels. The black pixels represent the foreground, the white pixels the 

background. 
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pepper noise; approximately 15% of the pixels have been affected by this noise. In 
all images shown in this paper, the black pixels represent the foreground and the 
white pixels the background. 

Although many of our examples concern binary images (our test image is also 
binary), we can apply them to gray-scale images, too. For that goal we have to 
consider the usual flat operator extension discussed in [5, 22]. 

We conclude with some remarks about notation. If E is a set, then we denote by 
P(E) the power set of E comprising all subsets of E. When we write JEd, we mean 
the d-dimensional product of lE, where lE is a group; in practical cases lE = Z or 
JR. with the additive group structure. Using the notation JEd enables us to treat the 
discrete case zd and the continuous case JR.d simultaneously. 

5.2 MORPHOLOGY ON COMPLETE LATTICES 

By its very nature, mathematical morphology is set-oriented, and as such directed 
toward binary images. However, from the early days of morphology onward, there 
has been a need for a more general theory covering different object spaces, in par­
ticular gray-scale images. Matheron and Serra [23] were the first to observe that a 
general framework for morphology can be achieved if one starts from the assump­
tion that the object space is a complete lattice. This idea has been carried further 
by various people, in particular Heijmans and Ronse [9, 19] and Roerdink [13, 14]. 
A comprehensive account of the complete lattice framework can be found in [5]. 

5.2.1 BASIC THEORY 

In this subsection we give some basic results. In the next section some of them will 
be applied to gray-scale images. 

DEFINITION 5-1. A complete lattice is a set l with a partial ordering'~' such 
that every subset H of£ has an infimum (greatest lower bound) and a supremum 
(least upper bound). The least element of£ is denoted by 0, the greatest element 

by/. 

See [1] or [5] for further details. Throughout this section we assume that £ is a 

complete lattice. A simple example is the family P(E) ordered by inclusion. 

A well-known principle in the theory of partially ordered sets is the duality princi­
ple. This principle originates from the (trivial) fact that if£ is a partial ordered set, 
then£ with the dual partial ordering ~ 1 defined by "X ~1 Y if and only if Y ~ X" 
is a partial ordered set, too. As a result, to every definition or statement referring to 

~ there corresponds a dual one referring to ~1 • 
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Let £, M be complete lattices and let l/f : L --+ M; by this notation we mean that 
l/f is an operator from L to M. We say that l/f is increasing if X ~ X' implies that 
l/f(X) ~ 1/f (X'). It is decreasing if X ~ X' implies that l/f(X) ) l/f(X'). On the 
collection of operators from L to M one can define a partial ordering as follows: 
l/f ~ l/f' if l/f (X) ~ iff' (X), for every X E £.The set of operators, as well as the set 
of increasing operators, constitutes a complete lattice under this partial ordering. 

An operator l/f : l-+ L is called an automorphism if it is increasing and bijective. 
One can easily show that every automorphism satisfies l/f(ViEI Xi) =Vi El l/f (Xi) 
and l/f(/\iEl Xi) = /\iE/ 1/f(Xi), for every family of sets Xi. An operator l/f is 
called a negation if it is decreasing, bijective, and satisfies 1/f 2 = id. Here id, or 
idc, denotes the identity operator given by id(X) = X, for every X E £.A nega­
tion satisfies 1/f cvi El xi) = /\i El l/f (X;) and l/f C/\i El xi) = v i El ijf (Xi). If l/f is a 
negation, then we call X* = 1/f (X) the negative of X. (Although our notation may 
suggest otherwise, negations are not unique in general.) On the Boolean lattice 
'P(E), the complement operator X 1-7 xc defines a negation. 

Let l/f : L ---? M and suppose that both complete lattices possess a negation, then 
the negative operator l/f * : L --+ M is defined by 

l/f*(X) = [ l/f(X*)J*. 

An operator l/f : l --+ L, where L possesses a negation, is called selj~dual if 

1/f * = 1/f. 

The key notion in mathematical morphology is that of an ad junction. 

DEFINITION 5-2. Let£, M be complete lattices, let c: L-+ Mand 8: M--+ L. 
The pair (£, 8) is called an adjunction between Land M if 

8(Y) ~ X {==:} Y:::;:; t:(X), (5-1) 

for X E Land YEM. 

PROPOSITION 5-1. If (t:, 8) is an adjunction between£ and M, then 

(a) c(/\iEl Xi) = /\iEl t:(Xi) for every collection Xi in L; in particular, £ is an 
increasing operator. 

(b) 8CViE 1 Yi) = Vi E / 8 (Yi) for every collection Yi in M; in particular, o is an 
increasing operator. 

(c) £8 ) idM and 8£ ~ idc. 

(d) £08 = c and 0£0 = 8. 



EASY RECIPES FOR MORPHOLOGICAL FILTERS 167 

PROOF. (a) Suppose that (t:, 8) is an adjunction between £ and M; we show 
that t: is an erosion. Suppose Xi E .C for i E I; given Y E M, it holds that 
o(Y) :( /\E/ xi if and only if o(Y) :( xi for every i E /.This, however, is equiv­
alent to Y :( t:(Xi) for every i E J; that is, Y :( AiE/ t:(Xi). On the other hand, by 
the adjunction relation, o(Y) :( /\E/ xi if and only if y :( s(/\iE/ xi ). But this 
implies c(/\iE/ Xi) = f\iEI r;(Xi). 

(b) Dual statement of (a). 

(c) Choosing X = o(Y) in Eq. 5-1, we get Y :( so(Y), which proves the first rela­
tion. The second follows by duality. 

(d) From (c) and the increasingness oft: and o we get that r;[Jr; ? t: and r;or; :( r;; 

therefore, equality holds. Similarly, it follows that or;8 = o. • 

An operator r; which satisfies the relation given under (a) is called erosion. An 
operator satisfying relation (b) is called dilation. Thus an adjunction is formed by 
a dilation and an erosion satisfying the adjunction relation 5-1. 

PROPOSITION 5-2. With every erosion t:: £-+ M there corresponds a unique 
dilation 8: M -+ .C such that (s, o) is an adjunction. This dilation is given by 

o(Y) = (\{X E £I Y :( r;(X)}. 

Dually, with every dilation 8 : M ---+ £ there corresponds a unique erosion t: : .C-+ 
M such that (c, 8) is an adjunction. This erosion is given by 

r;(X) = V{Y EM J 8(Y) :( X}. 

PROOF. Suppose that r; is an erosion, and let o be given by the expression above. 
We show that Eq. 5-1 holds. First, if 8(Y) :( X, then by applying s to both sides 
and using the fact that it distributes over infima, we get 

so(Y) = (\ {s(X') I Y :( s(X')} :( s(X), 

and therefore Y :( s(X). On the other hand, if Y :( s(X), then by definition o(Y) :( 

X. This proves Eq. 5-1. 

It remains to us to prove uniqueness of 8. Suppose o' is another operator such that 

s, 8' satisfy Eq. 5-1. Then 

8' (Y) :( x {=} Y :( s(X) ~ o(Y) :::;; x. 
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But this yields immediately that o (Y) = 81 (Y). The second part of the statement 
follows by the duality principle. • 

The ad junction relation, though mathematically very simple, provides pairs of op­
erators s, o with special properties as illustrated by Propositions 5-1 and 5-2. Also, 
the proof of our next result can be easily established by using this ad junction rela­
tion. 

PROPOSITION 5-3. 

(a) Let (s, 8) and (e', 81) be adjunctions between £ and M. Then e' ~ e if and 
only if o' ~ 8. 

(b) Let (Si, Oi) be an adjunction between L and M for every i E J. Then 
(/\iE/ Si, viE/ ad is an adjunction between[, and Mas well. 

(c) Let (e, o) be an adjunction between£ and M, and let (e', 8') be an adjunction 
between M and N. Then (e' e, 88') is an adjunction between£ and N. 

If both£ and M possess a negation and (e, o) is an adjunction between£ and M, 
then (o*, e*) is an adjunction between M and £. 

The operators SA, oA on P(JEd) given by 

a EA 

oA (X) = X 6' A= U Xa 
a EA 

define an adjunction. Here Xh denotes the translate of X over a vector h, i.e., 
Xh = {x + h Ix EX}. Furthermore, A is a given subset of JEd, called a structuring 
element. 

5.2.2 APPLICATION TO GRAY-SCALE FUNCTIONS 

We start with some notation and terminology. We represent gray-scale images 
mathematically as functions F: JEd ~ T, where T is the gray-value set. Depend­
ing on the application at hand we may choose for T the set JR. = JR. U { -oo, +oo}, 
lR.+ = lR.+ U {+oo}, Z = Z U {-oo, +oo}, Z+ = Z+ U {+oo}, the bounded inter­
val [O, 1], or the finite set {O, 1, ... , N}. All these examples have in common a 
complete lattice structure. 

By Fun(JEd, T) we represent the set of all functions F: ]Ed ~ T. If T = JR., we 
shall simply write Fun(JEd); in all other cases we will include the gray-value set in 
our notation. 
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We assume throughout this subsection that T = l.R. Most of its content, however, 

carries over to the case T = Z. 

For h E JEd and F E Fun(JEd), the horizontal translate Fh is defined by 

The vertical translate F + v, where v E l.R, is defined by 

(F+v)(x)=F(x)+v, xElEd. 

Given a function G E Fun(JEd), we define the operators 

6.c(F) =FEB G, Ec(F) = F 8 G, 

respectively given by 

(F E9 G)(x) = V [F(x -h) + G(h)], (5-2) 

hEEd 

(Fe G)(x) = f\ [F(x + h)- G(h)]. (5-3) 

hEEcl 

We call G an additive structuring function. In the case of ambiguous expressions 

we use the convention that s + t = -oo ifs= -oo or t = -oo, and s - t = +oo 

ifs = +oo or t = -oo. The following result is easily proved. 

PROPOSITION 5-4. The pair (Ee, 6.c) defines an adjunction on Fun(JEd)_ 

Both 6.c and Ee are translation invariant with respect to horizontal as well as 

vertical translations, i.e., both operators have the following property: 

for h E JE11 and v E !ft An operator with this prope11y is called a T -operator. If '-It 

is only invariant under horizontal translations, i.e., 

then it is called an H -operator. 

The mapping F -+ - F, where ( - F) (x) = - F (x) defines a negation on Fun (lE"). 

Writing F* = - F, we have the following duality relations: 

(FE9G)*=F*eG, (FeG)*=F*E9G, 

where G is the reflection of G with respect to the origin, that is, G (x) = G ( - x). 
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A general way to constmct T-operators is by using (extensions ot) Boolean func­

tions. If h is an increasing Boolean function of n variables, then we extend b to a 

function mapping i 11 into i as follows: products are replaced by infima, sums by 

suprema, 0 by -oo and I by +oo. For example, if b(u J, u2, u3) = u 1 + u2u3, then 

b(ti. t2. t3) = t1 v (t2 (\ t3). 

Let A= {a 1, •.•• a11 ) be a finite structuring element and ban increasing Boolean 

function of n variables, define the increasing T-operator \Ilh on Fun(JEd) by 

1.J.11,(F)(x) = b(F(x + ai), ... , F(x +an)). 

In fact, gray-scale operators obtained using Boolean functions all belong to the 

class of so-called fiat operators. 

Evidently, if T is a complete lattice, then Fun(E, T) is also a complete lattice with 

partial ordering 

F ~ F' iff F(x) ~ F'(x), for x EE. 

Heijmans and Ronse [9] (see also [5, Sect. 5.1]) have given a complete description 

of adjunctions on Fun(E, T), where E is an arbitrary set and Ta complete lattice. 

PROPOSITION 5-5. The pair(£ . .6.) is an adjunction on Fun(E, T) if and only if 
for evel)' x. y E E there exists an adjunction (ey,x• dx,y) on T such that 

.6.(F)(y) = V dx,y(F(x)) 
XEE 

£(F)(x) = /\ ey,x(F(y)). 
yEE 

We take E = JEd and focus on adjunctions in which both the dilation and the ero­

sion are H-operators; such adjunctions are called H-adjunctions. The next propo­

sition follows easily from the previous one. 

PROPOSITION 5-6. The pair([, .6.) isanH-adjunctiononFun(IEd, T) ifandonly 

iffor every h E JEd there exists an adjunction (e1z, d1i) on T such that 

.6.(F)(y) = V d1i(F(y - h)) 
hEJEd 

[(F)(x) = /\ e1i(F(x +h)). 
hEJEd 
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If T = lR, we can obtain the ad junction (Ee, b.c;) using the additive structuring 
function G if we take dh(t) = t + G(h) and e1i(t) = t - G(h). In [5, Sect. 11-51 
we discuss some other H-adjunctions. Below we apply Proposition 5-6 to the case 
where the gray-value set T is finite. 

If T = {O, I, ... , N}, the adjunction given by Eqs. 5-2 and 5-3 becomes meaning­
less, since T is not closed under addition and subtraction. If one tries to overcome 

this problem by truncating values below 0 and above N, one does not get ad junc­
tions: see [4] or [5, Sect. 11-9]. It turns out that we can use the characterization of 
H-adjunctions given in Proposition 5-6. This characterization utilizes adjunctions 
on T, in the present case {O, l, ... , N}. 

Define, for v E Z, the operation t r-+ t + v on (0. l, ... , N} given by 

{
o+v=O. 
t + v = 0, 
t ~ v = t + v, 
t + v = N, 

and the operation t r+ t ...:... v by 

{ 
t..:... v = 0, 
t-: V = t - V, 

t -v = N, 
N..:...v=N. 

if t > 0 and t + v :( 0, 
if t > 0 and 0 :(; t + v :( N, 
if t > 0 and t + v > N, 

if t < N and t - v :( 0, 
if t < N and 0 :(; t - v :(; N, 
if t < N and t - v > N, 

Let, for example, N = 10. Then (6+ 5) ..:...4 = 10 and 6+ (5 ..:...4) = 7. The operation 
+ is neither commutative (0 + 1 =f. 1 + 0) nor associative ( (3 + 0) + 5 = 3 + 5 = 

8 =j:. 3 = 3 + 0 = 3 + (0 + 5)). 

A simple computation shows that the pair e(t) = t ..:... v, d(t) = t + v defines an 
ad junction on {O, 1, ... , N} for every v E Z. For an illustration, see Fig. 5-2. 

In combination with Proposition 5-6, this yields an interesting class of H-adjunct­

ions with dilation and erosion, respectively, given by 

(F ffi G)(x) = V (F(x - h) + G(h)), 
hEdomG 

(Fe G)(x) = f\ (F(x + h)...:... G(h)). 
hEdomG 

Here G is a function with domain dom( G) and values in Z. In fact, one takes 

d1i(t) = t + G(h), e1i(t) = t..:... G(h), for h E dom(G) and dh = 0, eh= N for 

h <f-dom(G). 
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CHAPTER 5 

Figure 5-2. The pair e(t) = t.:... 3, d(t) = t + 3 forms an adjunction on T = {O, 1, ... , 10}. 

It is easy to verify that 

(F + v) EB G = (FEB G) + v, 
(F :.._ v) 8 G = (F 8 G) :.._ v, 

if v ~ 0. More results can be found in [5, Sect. 11-9]. 

5.3 OPENINGS AND CLOSINGS 

This section contains a brief description of some basic properties of openings and 
closings, and introduces adjunctional filters. 

5.3.1 BASIC FACTS 

DEFINITION 5-3. An opening a is an operator on a complete lattice [, which is 
increasing, idempotent, and anti-extensive (a(X) ~ X for every X E £).Dually, a 
closing f3 is an operator which is increasing, idempotent and extensive ({3 (X) ;;:=: X 
for every X). 

The results presented in this section are mostly concerned with openings; analo­
gous statements for closings follow from the duality principle [5]. 

If if; is an operator on the complete lattice£, then the invariance domain of if; is 

Inv(ifr) = {X E [,I ifr(X) = X}. 

Elements oflnv(ifr) are sometimes calledfixpoints or roots. From (c)-(d) in Propo­
sition 5-1 the following result is clear: 
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PROPOSITION 5-7. If (s, 8) is an ad.junction between£ and M, then 8s is an 

opening on £ and 88 is a closing on M. 

The opening resulting from Minkowski subtraction followed by Minkowski addi­

tion, i.e., 

is called a structural opening. The invariance domain of the opening 8 8 is Ran ( 8). 

The previous result can be extended as follows. 

PROPOSITION 5-8. Let a be an opening on the complete lattice Mand let (8, 8) 

be an adjunction betvveen £ and M, then oas is an opening on £ with invariance 

domain {8(Y) I YE Inv(a) }. 

PROOF. It is evident that a'= 8a8 is increasing. Furthermore, 8a8 ::::;; 8id8 = 88 ::::;; 

id, hence a' is anti-extensive. It remains to prove that a'2 ?;:: a' (note that the reverse 

inequality is trivial by the anti-extensivity of a'). Now 

12 ~ ~ ~ 2 ~ I 
a = u0'8ua8?;:: ua 8 = uas =a, 

where we have used that 80 ?;:: id. 

Every fixpoint of a' is of the form o(Y), where YE Inv(a). To prove the converse, 

take Y E Inv(a) and consider a' o(Y). Since a' is anti-extensive, we have a' 8 (Y) ::::;; 

8 (Y). On the other hand, since &8 ?;:: id, 

a 18(Y) = 8a8o(Y) ~ 8a(Y) = 8(Y), 

where we used that a(Y) = Y. This concludes the proof. 1111 

PROPOS !TION 5-9. Let ai, a2 be openings on the complete lattice £. The follow­

ing assertions are equivalent: 

(i) ct1 ::::;a2; 

(ii) a1a2 = a2a1 = a1; 

(iii) Inv(a1) s; Inv(a2). 

In particular, ai = a2 if and only if Inv(a1) = lnv(a2). 

PROOF. Let a1, a2 be openings. 

(i) =}- (ii): If a1 ::::;; a2, then a1a2 ~ a1a1 = a1. Since the reverse inequality is 

trivially satisfied, one gets a 1 a2 = a 1 • The identity a2a 1 = a 1 is proved in a 
similar way. 
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(ii) ==} (iii): Let X E Inv(cq), that is, a1(X) = X. Then a2(X) = a2a1(X) = 
a1 (X) = X, and therefore X E Inv(a2). 

(iii) ==} (i): As a1 (X) E Inv(a1) ~ Inv(a2), one gets a1 (X) = ot.2a1 (X) ~ a2(X). 
Ill 

If a 1 (X) = X o A and a2 (X) = X o B, then these equivalent conditions hold if A 
is B-open, i.e., Ao B =A. We recall the following result. 

PROPOSITION 5-10. !f ot.f, i E J, are openings, then ViE/ <Xi is an opening, too. 

PROOF. Let O/.i. i E /,be openings, and put a= Vi El O/.i. It is evident that a is in­
creasing and anti-extensive. We show that it is idempotent. By the anti-extensivity, 
it follows immediately that a 2 ~a. The converse inequality also holds, since 

ot.2 = V <Xfot. ~ V a1ot.1 = V ai =a. 

iE! iEl iEl 

This proves the result. 

However, it is easy to construct examples which show that neither the infimum nor 
the composition of two openings is an opening in general. 

5.3.2 ANNULAR OPENING 

An opening on P(!Ed) which is given by a simple expression, but which is not of 
structural type, is the annular opening given by X 1-+ X n X $A, where A ~ JEd is 
a structuring element which is symmetric, i.e., A = A. Here A is the reflected struc­
turing element: A = {-a I a E A}. The proof that this operator defines an opening 
indeed, is not very difficult; see e.g., [23] or [5, Prop. 4-27]. An illustration of the 
effect of the annular opening can be found in Fig. 5-3. 

In [5] we discuss various manifestations of the annular opening; see also [ 19]. In 
the next section we discuss a generalization of the annular opening, called an an­
nular filter. 

5.3.3 ADJUNCTIONAL FILTERS 

If (£, 8) is an ad junction on the complete lattice L, then £0 is a closing and oc 
an opening; see Proposition 5-7. More generally, if k ~ 1 then ck8k is a closing 
and <i ck is an opening. This follows easily from the observation that (ck, 8k) is an 
adjunction, too. The composition £0 2& is a filter, for 

ccPcco 2£ = c(o 2i:; 2o2)s = i:;o 2s, 

where we have used that 82£ 202 = o2 since (.o 2 . o2) is an adjunction [5]. 
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In [3] we have established the following general result: 

PROPOSITION 5-11. Let (E:, 8) be an adjunction on£ and let 1/r be of the form 

For example, s 3 82 s82 is a filter. The filters given by Proposition 5-11 are called 

adjunctional filters; refer to [3] for additional results. 

5.4 ANNULAR FILTERS 

In what follows, 8 A and s A denote dilation and erosion on P(JEd) by the structuring 

element A, respectively; that is 

SA (X) = X EB A and fA (X) = X 8 A. 

In Section 5.3.2 we introduced annular openings. Such openings have the form a = 
id/\ 8 A. Dually, annular closings are given by f3 = id v s 8 .. Here A, B are symmetric 

structuring elements which do not contain the origin. Annular filters, which were 

introduced by the author in [8] and investigated in great detail in [10, 20], are a 

combination of both operators. 

5.4.1 ANNULAR FILTERS FOR BINARY IMAGES 

Let A, B be structuring elements in JEd which are symmetric and which do not 

contain the origin. Consider the operator 

(5-4) 

Throughout this subsection we assume that 

An B :f 0. (5-5) 

As a result we have 

and thus we find that w can alternatively be written as w = (id v s B) /\ 8 A. In the 

sequel we write 

showing that the expression is independent of the order in which the infimum and 

supremum are computed. In [10) the following result has been established: 
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PROPOSITION 5-12. let A. B be as before; the operator w = OA /\id v E:s is a 
.filter if and only if 

An B n (A EB B) f. 0. (5-6) 

It is self-dual if and only if A= B. 

We mention four examples for Z2 where Eqs. 5-5 and 5-6 hold. Observe that in 
all examples one may interchange A and B. 

A=B=D 
D and B=D A= 

• 

A+ • .1 B=D • 0 and 

• 

D and B=D A= 

• • • • 
Considering A and B as sets which determine foreground and background ad­
jacency, respectively, one obtains an interesting geometric interpretation of the 
annular filter. Thus, saying that two points x, y E Z2 are foreground adjacent if 
x - y EA and background adjacent if x - y E B, the operator w given by Eq. 5-4 
removes points in X which have no foreground neighbors in X, and it adds points 
from xc which have no background neighbors in xc. 

The first example, with A = B, yields a self-dual annular filter. For this structuring 
element we apply the annular opening and the annular filter to our test image; see 

Figure 5-3. Annular opening (left) and annular filter (right). 
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Fig. 5-3. Observe that the annular opening removes only isolated noise pixels from 
the foreground (black pixels), whereas the annular filter removes all isolated noise 
pixels, that is, from the foreground as well as from the background. 

5.4.2 ANNULAR FILTERS FOR GRAY-SCALE IMAGES 

Consider the complete lattice of gray-scale images modeled by Fun(JEd). For a 
structuring function A with domain dom(A) s; JEd and range in ~. the gray-scale 
dilation .6.A and gray-scale erosion EA are given by (see Eqs. 5-2, 5-3): 

.6.A(F)(x) = v (F(x-h)+A(h)) 
hedom(A) 

£A (F)(x) = j\ (F(x + h) - A(h)). 

hedom(A) 

In [19] it was shown that the operator id/\ .6.A is an opening, the annular opening 
for gray-scale images, if 

(i) dom(A) is symmetric 

(ii) A(x) + A(-x) ~ 0 for x E dom(A). 

In order that id/\ .6.A is not the identity mapping, one has to assume that 

0 fj. dom(A). 

Given two symmetric structuring functions A and B, we define the structuring 
function An B as follows: 

dom(A n B) = {x E dom(A) n dom(B) I min(A(x), B(x)) 

+ min(A(-x), B(-x)) ~ O}, 

and 

(An B)(x) = min(A(x), B(x)) if x E dom(A n B). 

The next result can be found in [20]. 

PROPOSITION 5-13. Let A, B be two structuring functions which satisfy (i)-(ii) 
above, as well as 

[A E9 B E9 (An B) ](0) ~ 0; 

then Q = .6.A /\id v Es is a morphological.filter. 

In [20] some examples are given. 
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5.5 AS-FILTERS 

Perhaps the most interesting class of morphological filters is obtained by compos­
ing openings and closings. 

PROPOSITION 5-14. Let aq ? et2 ? · · · ? aN be openings and let {Ji ~ fh ~ 
· · · ~ f3N be closings. Every composition of operators of these two sequences is 
a filter. 

The result in this form was first stated by Schonfeld and Goutsias (21]. We intro­
duce the following notation: if o/1, 1fr2, ... are operators, then 

More generally, if r/>1, r/>2, ... is another sequence of operators, then 

(1/J</>)n = 1/Jnif>nVrn-lif>n-1 '· ·1/11</>1, 
(1fr</>1fr)n = 1/!nc/>n1frn1/!n-lif>n-l Vrn-1 · .. 1fr1</>11/r1 · 

In what follows we fix a sequence of openings 

and a sequence of closings 

From Proposition 5-14 we get that the compos1t10ns (a/3) 11 , ({3a)n, (a(3a)n, 
({3af:J) 11 are filters. These filters are called alternating sequential.filters or AS-filters 
(5, 23, 24]. Furthermore, the sequences (oJ3)n, ({3a)n, (ot{3ot)n, (f3af3)n are absorb­
ing in the following sense: a sequence of operators 1/11, 1fr2, ... is said to be absorb­
ing if 

In fact, one can easily show that for any family of increasing operators 1/1 n for 
which ( 1/1 )n is a filter, one automatically gets that the sequence ( 1/1 )n is absorbing. 

The following inequalities are easily established: 

{ (af3)n } 
(ot{3et)n ~ ({3ot)n ~ ((3af3)n. 
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Figure 5-4. (f3cx)n(X) (left) and (cxf3)n (X) (right). n = 1, 2, 3 in the first, second, and third 
row, respectively. 

In practice (discrete case) one usually constructs AS-filters starting from a struc­

turing element A, and defining an(X) = X o nA and {J11 (X) = X • nA, where 

nA = A EB · · · E9 A (n terms). In Fig. 5-4 we apply (afJ)n and (fJa)n to our test 
image of Fig. 5-1; we choose for A the 3 x 3 square. 

5.6 0VERFILTERS AND INF·OVERFILTERS 

This section discusses overfilters and inf-overfilters. From the duality principle [5] 

we know that analogous results hold for the dual concepts, underfilters and sup­

underfilters. 
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5.6.1 DEFINITIONS AND BASIC PROPERTIES 

DEFINITION 5-4. An increasing operator 1fr is called 

(a) an overfilter if 1fr 2 ~ 1fr; 

(b) an inf-overfilter if 1/r(id /\ 1/r) = 'ljr; 

( c) an unde rfilter if 1fr2 ~ 1fr; 

( d) a sup-underfilter if 1fr (id v 1fr) = 1fr. 

We make some simple observations. It is clear that overfilters and underfilters are 
dual in the sense of the duality principle. The same is true for inf-overfilters and 
sup-underfilters. In this section we mostly restrict ourselves to (inf-) overfilters. 
Since 1fr (id /\ 1fr) ~ 1fr2 , every inf-overfilter is also an overfilter. To prove that an 
operator 1fr is an inf-overfilter, we only have to show that 'ljr(id /\ 1/r) ~ 'ljr, as the 
reverse inequality is trivial for increasing operators. 

PROPOSITION 5-15. The family of(inf) over.filters is closed under suprema. 

PROOF. Assume that 1/Ji, i E /,are inf-overfilters, and put 1fr = ViE/ 'ifri· Thus 
1fr (id /\ 1/f) ~ 1/ri (id /\ 1/ri) = 1/ri, which yields immediately that 1fr (id /\ 1fr) ~ 
V; E / 1/r; = 1fr. Therefore, 1fr is an inf-overfilter. • 

In [5] one can find detailed results concerning the lattice structure of the class of 
filters and (inf-) overfilters; see also [17, 18, 23]. 

PROPOSITION 5-16. lf 1/r is an overfilter (inf-overfilter, underfilter, sup-underfil­
ter), then 1/1 11 is such as well.for every n ~ 1. 

PROOF. For overfilters, the result is obvious. Now assume that 1fr is an inf­
overfilter. Then 

1/rn (id /\ 1/rn) ~ 1/rn (id /\ 1/r) = 1/rn-11/r (id /\ 1/r) ~ 1/rn -11/r = 1/rn. 

Here we have used that 1/rn ~ 1fr, if 1fr is an (inf-) overfilter. • 
The next result shows that inf-overfilters provide a useful tool for the construction 
of openings. 

PROPOSITION 5-17. lf 1/f is an inf-overfilter, then id/\ 1fr is an opening. 

PROOF. Let 1fr be an inf-overfilter and a= id/\ 1fr. It is evident that a is increasing 
and anti-extensive. It is also idempotent, for 

a 2 =(id/\1/r)(id /\ 1/r) =id/\ 1fr /\ 1/f(id /\ 1/f) =id/\ 1fr =a. 

This proves the result. • 
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The dual statement says that id v 1fr is a closing when ijJ is a sup-underfilter. Com­
bining the latter two propositions gives that id /\ 1/Jn is an opening for every n ;?: 1 
if i/I is an inf-overfilter. Since t ~ ijr 2 ( ijr 3 ( · · ., we find that 

"d ,/, "d 2 "d 3 I /\'1'(1 /\lfr (I Al/J ~···. 

The next result is obvious. 

PROPOSITION 5-18. Suppose that L possesses a negation. If if; is an (inf-) over­
filter, then 1/J* is a (sup-) underfilter. 

In the following proposition we sum up various ways to construct overfilters and 
inf-overfilters. 

PROPOSITION 5-19. 

(a) Let (.<:, 8) he an adjunction between L and M and let lfr: M --+ L be an in­
creasing operator such that i(! ? 8, then ijJ .<: is an infoverfilter. 

(b) Let(.<:, 8) and (c', 8') be adjunctions between Land M such that £ 1 ~ E' and 
8' ? 8. If t is an (inj-) overfilter on M, then 81 if; E: is an (inf-) overfilter on L. 

(c) Let a be an opening and a ~if;, then otl/J and lfraif; are overfilters, whereas 
1/Ja and aij;a are inf-overfilters. 

( d) Let if; be an (inj-) overfilter and 1> ? id then 1>1/J is an (inj-) overfilter. 

(e) lfl/J is an overfilter and 1>? ijf, then 1>1/! and 1/rc/> are overfilters. 

(f) If i./! is an inf-overfilter and 1> ? id /\ 1f;, then </>1/! is an inf-overfilter. 

(g) lflfr is an overfilterand f3 a closing, then f31fr, 1/rf31fr, 1/Jf3, f31f;f3 are overfilters. 

(h) (fl/I is an inf-overfilterand f3 a closing, then f31f1, if;f31/r are inf:overfilters. 

PROOF. For a full proof we refer to [3]. Here we only prove (a) and (f). 

(a) Lets, 6, if; be as stated. Then 

1/J&(id /\ 1/J&)? ijr&(id /\ o&) = 1f;s8& = ijr&, 

where we have used that ot: ( id and that £8& = E'. 

(f) In this case, 

1>1fr(id /\ 1>ifr) ? 1>1/l(id /\(id/\ 1/r)o/) 
= 1> 1/r (id /\ 1/1 /\ 1f; 2) 

= cpijr(id /\ 1/J) = qnp, 

where we have used that ij; 2 ? t, since ijf is an overfilter. From (a) [and also from 
(b)] we get that 81 e is an inf-overfilter, if 8'? 8. • 
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5.6.2 RANK-MAX OPENINGS 

Ronse and Heijmans [19] (see also [5, Sect. 6-6]) have shown that every 
translation-invariant inf-overfilter on P(IEd) is of the form 

Y,(X) = n LJ<X 8 Bj) EB Akj· (5-7) 
kEK jEl 

where Ak.i, B.i are structuring elements such that B .i s; Ak.i for k E K and j E J. 
As an illustration of this result we discuss the rank-max opening, first discussed by 
Ronse [15]; see also [5, 19]. 

Let A be a finite structuring element containing n points, and let Bk contain all 
subsets of A which contain k points (where k ~ n). It is evident that 

U X 8 B = PA,k(X), 

BEBk 

where PA,k is the kth rank operator which is defined by: h E PA,k(X) if and only 
if X n Ah contains at least k points [5]. The composition 8AtB is an inf-overfilter, 
for B E Bk, hence 

is an inf-overfilter, too; here we have used Proposition 5-15. Note that the previous 
expression is a special case of Eq. 5-7. 

The opening aA,k =id/\ 8APA,k is called a rank-max opening. Fork= n it co­
incides with the structural opening X 1-+ X o A, whereas for k = l it yields the 
identity operator. 

The rank-max openings are "more flexible" than the structural opening: the latter 
one preserves translates of A which fit entirely inside X. The rank-max opening 
PA,k preserves those portions X n Ah which contain at least k points. It is evident 
that 

ClA,n ~ ClA,n-1 ~ • · · ~ ClA,I =id. 

Let us denote the dual closing, the rank-min closing by f3A.k: 

f3A,k =id V c ,4PA,n+l-k· 
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It follows easily that (aA.k)* = fJA.k· We have 

f3A,n? f3A.n-l? · · ·? f3A,I =id. 

We can use the rank-max openings and rank-min closings to construct AS-filters. 

Define e.g., 

where m ~ n. The AS-filter (ctAf3A)m is defined analogously. 

In Fig. 5-5 we give an illustration of these two filters for the case that A is the 3 x 3 

square (hence n = 9). 

Figure 5-5. (J'lAaA)n(X) (left) and (aA/3A)"(X) (right); n = 5 in the first row, n = 7 in 

the second row, and n = 9 in the third row. 
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5.7 GENERALIZED AS-FILTERS 

In this section we extend the class of AS-filters obtained by composing openings 
and closings, as discussed in Section 5.5. The basic idea is to use overfilters instead 
of openings and underfilters instead of closings. The exposition in this section is 
extracted from [3]; see also [6, 7]. 

PROPOSITION 5-20. Assume that</> is an over.filter, that 1/r is an under.filter, and 
that</> ~ i./r. The compositions </>1/r, 1/r</J, </J'!fr<P, i./r<P'!fr are filters, and 

PROOF. That, e.g., i./r<P is a filter follows from i./r<P'!fr<P ::;; i./r3<P::;; 1/rc/J and i./r<P'l/r<P;;::: 
i./r</>3 ;;::: 1/r</J. In the same fashion, one shows that the other compositions are filters, 
too. Furthermore, 

The inequalities with 1/r<P instead of <Pt follow analogously. • 
We consider translation-invariant operators on P(!Ed). Let A~ A'; then </J(X) = 
(X e A) EB A' defines an inf-overfilter. Dually, if B ~ B', then i./r(X) = (X EBB) 8 
B' defines a sup-underfilter. Now <P ~ 1fr iff 

(X e A) EB A'~ (X tf) B) e B', 

for every X ~ JEd. It is easy to see that this condition holds iff A' EB B' ~ A EB B. 
Since the reverse inclusion is trivially satisfied, we arrive at the following set of 
conditions: 

A ~ A', B ~ B', A EB B = A' tB B'. (5-8) 

PROPOSITION 5-21. Supposethat(Ai,A~), i El,and(Bj,Bj), jEJ,arepairs 
of structuring elements such that · 

for every i EI and j E J. Then 

</J(X) = LJ<x e Ai) tf) A; 
iE/ 
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is an inf-overfilter, 

i/l(X) = ncx E9 B_;) e Bj 
jel 

is a sup-under.filter; and <P ~ i/J. 

We present two examples. 

EXAMPLE 5-1. Let A' = B' be the 3 x 3 square and 

D A=B= 

• 
Let </J(X) = (X e A) E9 A' and i/J(X) = (X E9 B) e B'. 

In the first row of Fig. 5-6 we depict (1/1</J)(X) and (</Jl/f)(X). Compare these im­
ages with ({3ot.) 1 (X) and (af3) 1 (X), respectively, in the first row of Fig. 5-4. 

EXAMPLE 5-2. Let 

D A1= ' 

• 

D B1 = ' 

• 
and let A'= B' be the 3 x 3 square. Define </J(X) = ((X e A1) U (X e A2)) E9 A' 
and i/l(X) = ((X EB B1) n (X EB B2)) e B'. The images (1/f</J)(X) and (</Ji/J)(X) are 
depicted in the second row of Fig. 5-6. In [7] we present a variant of this latter 
example where we have rotation invariance. 

Now we consider generalized AS-filters that use more than one overfilter and one 
underfilter. 

PROPOSITION 5-22. Assume that <P1. </J2, ... are overfilters and that 1/11, 1/12, ... 

are underfilters and that the following conditions are satisfied: 

</Jn ~ i/Jn, 
</Jn<Pn-1 ?: </Jn, 
1/lni/ln-1 ~ i/Jn. 

(5-9) 
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Figure 5-6. (1//(/>)(X) and (t/>1/J)(X) of Example 5-1 (top row) and Example 5-2 (bottom 

row). 

Then (</Y-t/!)n, (i/r</>)n, (<Pi/r<P)n, (i/r</>i/r)n are absorbing sequences of filters and 

(5-10) 

PROOF. To show that (</Ji/r)n is a filter, we must show that it is an underfilter and 

an overfilter at the same time. Note first that 

We find that 

(</Ji/r)n(</Ji/r)n = </Jn(i/rn(</Ji/r)n</>ni/rn)(</Ji/r)n-1 

:::::; </Jn ( Vrn ( i/ri/r )n i/r~) (</Ji/r )n-1 

:::::; </Jn ( Vrn ( i/r )n Vrn) (</Jl/r )n-1 

:::::; </Jn (ijr~)(</Jifr)n-1 
:::::; </Jn i/r n ( </J i/r) n- 1 

= (</J1/J)n. 
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This proves that the composition(<jl'tjr)11 is an underfilter. To show that it is an over­
filter, we use that 

Therefore, 

Thus ( </> 1fr) 11 is a filter. 

(<p)n = </>nef>n-1 · · · c/J1 ? </Jn· 

(</>i.fr)n (</J'tfr)n ? (</></> )n(ef>i.fr)n 

? (</>)n(</>i.fr)n 

? </Jn (c/>i.fr)n 

= </>:itJrn (</Ji.fr)n-I 

? c/JntJrn(</Ji.fr)n-I 

= (c/>tJr)n. 

To show that the other three compositions define filters, one can use similar argu­

ments. Furthermore, e.g., 

since every i.jr11 is an underfilter. II 

The conditions in Eq. 5-9 hold if we make the (stronger) assumption that 

· · · ~ </J3 ~ c/J2 ~ <Pr ~ i.frr ~ i.fr2 ~ i.fr3 :S; · • · . (5-11) 

We present some examples. 

EXAMPLE 5-3. Let </> be an overfilter and tJr an underfilter such that if> ~ 1f;. Fix 

N ? I and define, for n = l, 2, ... , N: 

A. _ A.N+I-11 ,/, _ , 1,N+l-n 
\f/n - ¥" , ¥-' n - 'f · 

Then Eq. 5-11 holds. 

For the next example we need some preparation. Let 1f; be an increasing translation­

invariant operator on P(JEd), and let (.s, 8) be a translation-invariant adjunction on 

P(JEd). Thus o is of the form o(X) = X ffi A, for some structuring element A~ JEd. 

It follows that 

i.fro(X) = 1fr ( LJ Xa) 2 LJ i.fr(Xa) 
a EA a EA 

= LJ[1/J(X)]a = i.jr(X) ffi A= (81/J)(X). 

a EA 
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Figure 5-7. The images ( 1/J</> )n (X) and (1/l<f; ),, (X) of Example 5-5: n = 1, 2, 3 in the first, 
second, and third row, respectively. 

Thus we find that 1/r8 ? 81/r. Similarly, it follows that 1/r E: ::;:;; ci/r. These relations 
yield that 

(5-12) 

EXAMPLE 5-4. Consider the following translation-invariant operators on P(!Ed): 

an adjunction (c, 8), an overfilter rp, and an underfilter 1/r. Assume, moreover, that 
4> ::;:;; t. By Proposition 5-l 9(b) we know that </Jn = 8n </Jen are overfilters, and that 
1/r'n = E:n1/r'8" are underfilters. Furthermore, by Eq. 5-12, </Jn= 8</>n-1 c ::;:;; ef>n-J, and 
dually, 1/rn ? 1/rn-1 ·Therefore, the conditions in Eq. 5-11 hold. 

EXAMPLE 5-5. Let <Xn, f3n be openings and closings, respectively, and let~ be an 
increasing operator such that 

(5-13) 
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Define <Pn =an~ and ifrn = f3n~· From Proposition 5-19(c) we derive that </Jn are 
overfilters; dually, ifrn are underfilters. It is obvious that Eq. 5-11 holds. 

Suppose, for example, that~ is the median operator on P('l2) using the rhombus as 
structuring element (origin and four horizontal and vertical neighbors). Let an, {311 

be the opening and closing, respectively, with the (2n + 1) x (2n + 1) square, and 
define <Pn = <Yn~ and ifrn = f3n~. It is easy to see that the conditions in Eq. 5-13 
are satisfied. In Fig. 5-7 we depict the corresponding AS-filters (1/f</>)11 and (</Jl/r)n 
for n = I, 2, 3. Comparing these images with those in Fig. 5-4, we see that the 
new AS-filters introduced here perform substantially better than the classical ones 
described in Section 5.5; see [6]. 

5.8 ITERATION 

In this section we explain how to construct morphological filters by iteration of 
increasing operators which are not idempotent. Though we restrict attention to 
operators on P(E), most of the results can be extended to complete lattices; refer 
to [11] and [5, Chap. 13]. 

5.8.1 CONVERGENCE 

Let X 11 s; E, n ~ 1, and X ~ E: we say that X11 ~ X (X11 converges to X) if 
X 11 (h) --+ X (h) as n ~ oo, for every h E E. Here X (-) is the characteristic func­
tion associated with the set X. It is easy to see that the following assertions are 
equivalent: 

(i) X 11 --+ X, 

(ii) h E X iff h E X11 for n large enough. 

DEFINITION 5-5. An operator ifr on P(E) is said to be continuous if Xn ~ X 
implies that 1/f (X11 ) ~ 1/f(X). 

Let 1/f, 'ljf 11 be operators on P ( E), n ~ 1 : we say that 1/f 11 ~ ifr ( ifr 11 converges to ifr) 
if lffn (X) ~ 1/f (X) for every X E P(E). In this section we are concerned mostly 
with sequences 1/f 11 consisting of iterates of a given operator ifr. 

5.8.2 FINITE WINDOW OPERATORS 

DEFINITION 5-6. Let 1ff be an increasing operator on P(E), and assume that 
W (h) s; E is a finite set for every h E E. We say that 1/f is a finite window op­
erator with window W if 
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for h E E and X s; E. 

Note that if E = JEd and 1/r is translation invariant, we can take W (h) = Wh, where 
W ::;: JEd is a finite set. If i/J is a finite window operator, then its dual i/J* is such as 
well. Furthermore, compositions, finite suprema, and finite infima of finite window 
operators are finite window operators. 

For our purposes, the main property of a finite window operator is given by the 
following result; a proof can be found in [11). 

PROPOSITION 5-23. Every finite window operator is continuous. 

5.8.3 ITERATION AND IOEMPOTENCE 

Assume that i/J is a continuous operator on P(E) and that i/Jn -+ ij; 00 , where 1jf00 

is another operator on P(E). Note that we do not assume that i/J or ij; 00 are in­
creasing, nor that 1/f00 is continuous. Then i/Jn = i/Ji/Jn-I -+ 1/f1/f00 , as if; is contin­
uous. This yields that 1/f 1/f00 = 1/f00 ; hence ij;n ij; 00 = ij; 00 for every n ) 1. Letting 
n -+ oo, we get 1/f00 ij; 00 = 1/f00 . Thus we arrive at the following result: 

PROPOSITION 5-24. If i/J is a continuous operator on P(E) and ij;n -+ 1/f00 , then 
1/f00 is idempotent. In particular, if 1/r is also increasing, then 1/f 00 is a filter. 

PROOF. On the one hand i/Jn+l -+ 1/f00 as n-+ oo, but on the other hand 

1/rn+l = 1/ri/Jn -+ i/Jij;oo as n -+ oo, 

by the continuity of if;. This yields that i/Ji/J00 = 1/f00 , and more generally, 
ij;n ijf 00 = ijf 00, for every n ) 1. Letting n -+ oo, this yields 

meaning that 1/f 00 is idempotent. It is obvious that 1/f 00 is increasing, and we con-
clude that 1/f 00 is a filter. Ill 

For example, if i/J ) id (i.e., i/J is extensive), then 1/f2 ) i/J, hence 1jf3 ) ij; 2 , 

etc. This yields immediately that ij;n -+ ij;00 , where ij; 00 is given by ij; 00 (X) = 

Un;;,! ij;n(X). If 1/f is also increasing, then 1f;00 is a closing. 

We present a simple example of an increasing, extensive operator 1jf for which ij; 00 

is not idempotent; it is easy to see that this operator is not continuous. Let N = 
{O, 1, 2, ... } and N =NU {+oo}. For X s; N, we define X + 1={x+1 \ x EX}, 
where +oo + 1 = +oo. Let the operator 1f; on P(N) be given by 

i/J(X) = {XU (X + 1), 
N, 

if X#N 
if x = N. 
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Obviously, 1/1 is increasing and extensive. Fork= 1, 2, ... we have 1/Jk({O}) = 
{O, l, ... , k}, hence 1/100 ({0}) = N. However, 1/fl/1 00 ({0}) = 1jr(N) = N. This im­
plies that (1jr 00 ) 2({0}) = N :j= 1/f 00 ({0}). 

Most of the previous results can be extended to gray-scale functions. We recall the 
following definition. 

DEFINITION 5-7. A partially ordered set T is called a chain if for every two el­
ements s, t E T we have s ~ t or t ~ s. It is called a complete chain if it is both a 
chain and a complete lattice. 

For example, ::.Zand lR with the natural ordering are complete chains. 

Consider the space Fun ( E, T), where T is a subset of lR which is a complete 

chain. (In [5, Chap. 13] we consider also the case where T is an arbitrary complete 
lattice.) We say that the sequence of functions Fn converges to F, Fn -+ F, if 
Fn(x)-+ F(x) as n-+ oo, for every x EE. 

Definition 5-5 generalizes easily to function operators: an operator 1/1 on 
Fun(E, T) is continuous if Fn -+ F implies that 1/l(Fn) -+ 1jr(F). Proposi­
tion 5-24 remains valid in this case. 

PROPOSITION 5-25. If'ljr is a continuous operator on Fun(E, T) and 1/fn-+ 1/f00 , 

then 1/f 00 is idempotent. If, furthermore, 1/1 is increasing, then 1/f 00 is a filter. 

In Section 5.9.3 we present a class of operators, the so-called activity-extensive 

operators, for which the sequence 1frn converges. 

5.9 ACTIVITY ORDERING AND CENTER OPERATOR 

5.9.1 ACTIVITY ORDERING 

Activity ordering is a partial ordering on 0(£), the complete lattice of operators 

on £(where£ is a complete lattice), which provides a tool to compare the effect 
of two different operators. The notion of "activity ordering" is due to Serra [23]; 
see also [ 12]. A comprehensive discussion can also be found in [ 5]. 

DEFINITION 5-8. Given two operators <P. 1/1 on the complete lattice £, we say 

that 1/1 is more active than <P, denoted by <P ~ 1fr, if 

id/\ 1fr ~ id/\ <P and id v 1fr > id v </J. 
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For example, if <f> and ijr are both extensive, then </> =::$ 1/; if and only if </> ~ 1fr. 
However, if both operators are anti-extensive, then </> =::$ 1/; iff <P ;? 1/r. It is evident 
that every operator is more active than id, the identity operator. On the other hand, 
if L = P(E), then the complement operator X ~ xc is more active than any other 
operator. However, this last observation cannot be generalized to arbitrary nega­
tions. 

PROPOSITION 5-26. If[,= P(E) or Fun(E, T), where Tisa complete chain, 
then '=::$' defines a partial ordering on O(l). 

PROOF. We consider the case l = P(E). The proof for£= Fun(E, T) is quite 
similar. It is obvious that =::$ is reflexive and transitive. We show that it is anti­
symmetric. Let if;, <P be two operators such that <P =::$ if; and 1/; =::$ <P, and take X s; E. 
Then X n </J(X) = X n ij;(X) and XU </J(X) =XU ij;(X), hence </J(X) = ij1(X). 

Ill 

Suppose that £ possesses a negation v. If <P =::$ 1fr then id /\ 1/; ( id /\ rp, hence 
(id/\ ijr)v ((id/\ </J)v. This gives us v A ij;v ( v /\ rpv. Applying vat both sides 
yields v2 v vi/;v;? v2 v v<f>v. Using that v2 =id and vijrv = 1/f*, we get that id v 
1/r* ~ id v </J*. Similarly, we find that id v 1jr ~ id v rp implies that id/\ 1/r* ( id/\ <P*. 
Thus we arrive at the following result. 

PROPOSITION 5-27. Let [, be a complete lattice which possesses a negation. 
Then</> =::$ 1/r if and only if <P* =::$ 1/f*. 

5.9.2 CENTER OPERATOR 

In Proposition 5-26 we have seen that the relation '::( defines a partial ordering 
if L = P(E) or Fun(E, T), with Ta complete chain. In the first case, a much 
stronger result holds. 

PROPOSITION 5-28. The family of operators on P(E) endowed with the activity 
ordering '=::$' is a complete lattice. Given a collection of operators 1/ri, i E I, on 
P(E), the activity infimum and supremum are given, respectively, by 

(5-14) 

(5-15) 

The operator J..i EI 1/li is called the cent er of the operators if.ri; the operator Yi E / 1/Ji 

is called the anti-center [5, 12, 23]. It is obvious that the center is an increasing 
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operator, given that every Vri is increasing. For the anti-center this is not true in 
general. In this paper, our interest only concerns the center. Observe that the annu­
lar filter w discussed in Section 5 .4 is the center operator of s 8 and o A. 

It is straightforward to show that (cf. Proposition 5-27): 

The center of the family Vri has the form 

y =(id J\ 1/r) v c/J =(id v c/J) J\ 1/r. (5-16) 

where c/J = /\iEI Vri and 1f-r = viE/ Vri· Note that </J::::; ijr. 

If L = Fun(E, T), where Tisa complete chain, then the center y given by Eq. 5-
16 also has the interpretation of the activity infimum. Because Fun(E, T) possesses 
no complement operator (though it may possess a negation), the activity supremum 
does not exist in general. 

The center operator on Fun ( E, T) has an interesting geometric interpretation that 
explains why this operator is called center. Let 1/J1, o/2 be operators on Fun(E, T); 

put c/J = 1/J1 J\ o/2 and 1fr = o/1 v 1/J2. Define y by Eq. 5-16; thus y is the center of o/1 
and 1/J2. Define the mapping m : 7 3 -+ T as follows: given t1 , t2. t3, let m U1, t2, !3) 
be the value ti which lies between the other two. In fact, m is given by the formula 

It is not difficult to show that 

y (F)(x) = m(F(x), 1/J1(F)(x),1/J2(F)(x) ); 

see [5, Sect. 3-6]. Refer to Fig. 5-8 for an illustration. 

DEFINITION 5-9. A lattice L is said to be modular if the condition 

(X v Y) J\ Y' = ( X A Y') v Y if Y (; Y' 

holds, for X. Y. Y' E L. 

It is obvious that on a modular lattice the identity (id J\ 1/r) v </> = (id v c/J) /\ 1f-r 
holds for any two operators </;, 1fr with c/J ::::; 1fr. Thus, we can extend the definition 
of the center y given in Eq. 5-16 to arbitrary modular lattices. We point out that 
distributivity of a lattice implies modularity. In particular, P(E) and Fun(E. 7), 
where T is a chain, are modular. 
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Figure 5-8. The center of the operators i/;1 and i/;2 is indicated by the black dots. 

5.9.3 ACTIVITY-EXTENSIVE OPERATORS 

We start with a definition. 

DEFINITION 5-10. An operator 1/f is called activity-extensive if o/ 11 ~ ijf11 +1, for 
every n) 1. 

It is evident that every increasing operator which is extensive or anti-extensive is 
activity-extensive, but the converse is not true. 

On Fun(E, T) there exists an interesting characterization of activity-extensive op­
erators. 

DEFINITION 5-11. Assume that T is a complete lattice. The sequence F11 , n ) 1, 
in Fun(E, T) is calledpointwise monotone if the sequence F11 (x) is either increas­
ing or decreasing for every x E E. 

If T = {O, l}, then Fun(E, T) is isomorphic to P(E). In this case, a sequence 
X11 is pointwise monotone if, for fixed h EE, the sequence X11 (h), where X11 (-) 

is the characteristic function of the set X11 , is of the form 0, 0, ... , 0, 1, 1, ... or 
1, 1, ... ' 1, 0, 0, .... 

PROPOSITION 5-29. The operator 1/r on Fun(E, T), where Tisa complete lat­
tice, is activity-extensive if and only if the sequence o/11 (F) is pointwise monotone, 
for every function F. 

PROOF. We prove only the only if-statement. Let F E Fun(E, T) and put F11 = 
1/f11 (F) for n) 0. Given x EE, assume that n) 1 is such that Fo(x) = · · · = 
Fn-1 (x) < Fn (x ). From F11 +1 (x) V F(x) ) F11 (x) V F(x) it follows that F11 +1 (x) ) 
F11 (x). Repeating this argument, we find that F11 (x) ~ F11 +1(x) ~ F11 +z(x) ~ · · ·. 
This proves the assertion. The case that F11 _1 (x) > F11 (x) is treated analogously. 

II 
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An operator o/ on P ( E) is activity-extensive if, for every X, the sequence 
X n yin (X) is decreasing, and the sequence xc n ij/ 11 (X) is increasing. It is well 

known [5, 16, 22] that an important class of operators on Fun(E) is the fiat opera­
tors, i.e., operators generated by a set operator. 

PROPOSITION 5-30. An increasing operator on P(E) is activity-extensive if and 
only if its fiat extension to Fun(E) is activity-extensive. 

The proof of this result can be found in [5, Prop. 13-44]. 

If o/ is an activity-extensive operator on Fun(E, T), where T is an arbitrary com­
plete lattice, then o/n (F) is pointwise monotone, for every function F. Fix x E E; 
define y/>O(F) to be V11 ~ 1 o/n(F)(x) if the sequence ij/11 (F)(x) is increasing, 

and /\n~ 1 o/n (F) (x) if it is decreasing. It follows immediately that o/n -+ ij/00 

as n-+ oo. 

PROPOSITION 5-31. Let T be an arbitrary complete lattice and o/ an activity­
extensive operator on Fun(E, T); then the sequence of iterates o/n converges 
(pointwise). 

We exploit this fact in Section 5 .10.2. The next result, which is the main result of 

this section, and which is due to Serra [23], shows a simple, yet general, way to 

construct nontrivial activity-extensive operators. 

PROPOSITION 5-32. Let L be a complete modular lattice, cp an overfilter and o/ 

an underfilter such that cp :%; i/f. The center operator y = (id /\ 1/f) V cp is activity­
extensive. 

PROOF. To prove that yn-l ~ yn, we show that 

for every n ~ 1. Using the modularity of£, we infer that 

id/\ y 11 =id/\ ijfyn-l, 

idvyn = idv<t>y 11 - 1. 

In particular, using that y :%; i/f and that i/f is an underfilter, we get 

id/\ Yn :%; id/\ o/2yn-2 :%; id/\ i(fyn-2 :%; id/\ Yn-1. 

Analogously, 

id V y 11 ~id V yn-I. 

Thus we have demonstrated that yn-I ~ yn. 

(5-l 7) 
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We prove Eq. 5-17 by induction. For n = 1 the result is obvious. Assume that it 
holds for n, then 

yn+t = ((idA1jr)vcp)y 11 

= (yn ;\ ljryn) V <f>yn 

= [((id V </>Yn-1) /\ ljryn-1) /\ lfryn J V q)yn. 

yn+ I = [(id V </>yn-1) /\ lfryn] V q)yn 

= (id V q)yn-1 V q)yn) /\ lfryn 

= (id V </>yn) /\ lfry 11 • 

Here we used the modularity of£ and the fact that <f>y 11 - 1 :( cp 2 y 11 - 1 :( cpy 11 • 

II 

Let 1fr be an increasing operator, a ::::; 1fr an opening and f3 ~ 1fr a closing. From 
Proposition 5-19(c) and its dual we get that alfr is an overfilter and that f31/r is an 
underfilter. It is obvious that 

Thus, Proposition 5-32 applies, and we anive at the following result [8]: 

PROPOSITION 5-33. Let L be a modular lattice, 1fr an increasing operator, a an 
opening, f3 a closing, and assume that a :( 1fr ::::; (3. Then 

TC= (id/\ {3lfr) V alfr 

is activity-extensive and rr ~ lfr. Furthermore, if o/ is an opening and {3 1 a closing 
such that a' :( a and /3' ;;::: f3, and if re' = (id /\ {3 1 ljr) Va' lfr, then re' ~ rr. 

We point out that (id/\ lfrf3) v lfra is activity-extensive as well. However, this modi­
fication of 1fr turns out to be less interesting than rr; see [8]. Proposition 5-33 forms 
the basis for the construction of self-dual filters, as discussed in the following sec­
tion. 

5.10 SELF-DUAL FILTERS 

This section discusses self-dual filters, that is, morphological filters which satisfy 
lfr* = 1fr. We have seen one instance of a self-dual filter in Section 5-4, namely, the 
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annular filter for which the structuring elements governing foreground and back­
ground adjacency coincide. This particular filter is given by a simple explicit ex­
pression. As we observed earlier, it is the center of a dilation 8A and its negative 
erosion £A = 8~, where A is a symmetric structuring element which does not con­
tain the origin. The self-dual filters considered in this section are not as simple as 
the annular filter; they are all obtained by iteration of an increasing operator which 
is self-dual. 

5.10.1 SELF-DUAL OPERATORS 

Before we discuss the construction of self-dual filters by iteration, we explain how 
to build self-dual operators, as these form the main ingredient for this iteration 
procedure. The center operator is the most important tool for the construction of 
self-dual operators. This is the content of our first proposition. 

PROPOSITION 5-34. If fi, i E /,is a family of operators on P(E) such that with 
every fi the negative operator 1/rt is also a member of the family, then the center 
y =Ai El fi is a self-dual operator. 

The proof is easy if one uses the explicit expressions in Eq. 5-14. Throughout the 
remainder of this section we restrict ourselves to translation-invariant operators on 
P(JEd). 

The median operator is the best-known example of a self-dual operator. More 
generally, if fh is the morphological operator derived from a structuring element 
A= {a1, a2, ... , an} and a Boolean function b of n variables, i.e., 

hEl/Jh(X) if b(X(a1+h), ... ,X(an+h))=l, 

then 1/Jh is self-dual if and only if b* =b. 

EXAMPLE 5-6. Let A be the 3 x 3 square, and let PA.s be the corresponding rank 
operators (see Sect. 5.6.2). It is easy to see that 

P~.s=PA,10-s' s=l,2, ... ,9. 

Furthermore, PA.IO-s ~ PA,s ifs~ 5. The center of PA,s and PA.IO-s, written as 
IJ.1·, is given by 

IJs =(id/\ PA,s) V PA,I0-.1·, s = 1, 2, 3, 4, 5. 

Evidently, rJs is a self-dual operator. Furthermore, one can easily show that 
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Figure 5-9. From left to right and top to bottom: T/2 (X), 173(X), T/4 (X), T/5 (X). This figure 
shows clearly that T/s+ 1 is more active than T/s. 

The operator ris is the median operator. In Fig. 5-9 we apply 172, 'f/3, ry4, r/5 to our 
test image. 

In [5, Chap. 13] and [8] we have presented a comprehensive treatment of the con­
struction of self-dual operators based on the concept of switch operator. Here we 
only summarize some of the main results. 

PROPOSITION 5-35. An increasing, translation-invariant operator on P(JEd) is 
self-dual if and only if it is of the form 1/1=1/!A, where 

ifrA(X) = ( x n n x EB A) u u x e A, 
AEA AEA 

(5-18) 

where A~ P(JEd) is a collection of structuring elements which satisfy 

0 if. A and An B #- 0, 

for A, BEA. 

If A n B I= 0, then X e B ~ X EB A. This yields that the operator given by 
Eq. (5-18) is the centerof x I-+ UAEA x e A and its negative x I-+ nAE-4 x EB A. 
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Do .. o·· o· · o· · o· · o· · •.:• . .:• •.:• •.:• ·.:• . .:• 
• • Ill • . • • . • • . • • . • • . • 

Figure 5-10. Collection A of structuring elements associated with the median operator. 

There exists the following interpretation of Eq. 5-18. If a point h lies not in X, 

then h lies in the transformed image 1/f A (X) if and only if Ah ~ X for some A E A. 
Dually, if h E X then h €/.if; .A (X) if Ah ~ xc for some A EA. 

For the median operator associated with the 3 x 3 square, the collection A contains 

the stmcturing elements depicted in Fig. 5-10. 

The collection A in Eq. 5-18 is not uniquely determined by 1/f. For example, if 

c • Ill 

is added to the collection in Fig. 5-10, one still obtains the median operator. But 

we have the following result: 

PROPOSITION 5-36. Let A, B be two collections of structuring elernents in 

POE"). The following two assertions are equivalent: 

(i) for every A EA there exists a B E B such that B ~A; 

(ii) 1/f A ~ if;5. 

In particular, this result implies that with any subcollection B of the stmcturing 

elements depicted in Fig. 5-10, there corresponds a self-dual operator 1/.rs which is 

less active than the median operator. In the next subsection we discuss an alterna­

tive way to diminish the activity of a self-dual operator. 

EXAMPLE 5-7. The self-dual operators T/k can be represented as in Eq. 5-18 us­

ing a collection of structuring elements Ak consisting of all subsets A of the 3 x 3 

square with 0 €f. A and containing 10 - k points. For example, A4 consists of 28 

stmcturing elements, namely: 

DD.:~o.:~o.:~ • • • • • • • • • 

and rotations. 
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5.10.2 CONSTRUCTION OF SELF-DUAL FILTERS 

Suppose we have an increasing, translation-invariant operator 1/1 which is self-dual. 
The next result gives an easy criterion for the activity-extensivity of i/f; see [8, 
Prop. 6-3]. 

PROPOSITION 5-37. The operator i/JA given by Eq. 5-18 is activity-extensive if 

and only if OE 1/fn (A), for every A E A and n ;?:: 1. 

PROOF. "only if": if A EA, then 0 rf. A and 0 E i/f (A). If there exists an integer 
n > 1 such that 0 ¥ i/fn (A), then the sequence 1/Jk (A) is not pointwise monotone, 
hence 1/f is not activity-extensive. 

"if": suppose that 0 E 1/Jn(A) for A EA and n;?:: 1, and that 1/f is not activity­
extensive. Then there is a set X such that 1/Jn (X) is not pointwise monotone. With­
out loss of generality, we can assume that 0 ~ X, 0 E 1/J(X) and 0 ~ 1/Jm(X), for 
some m > l. Using Eq. 5-18, we derive that 0 E LJAEA X e A, which means that 
A s; X for some A EA. By assumption, 0 E if.rn (A) s; lf;n (X) for n ;?:: 1, a contra-
diction. This yields the result. Ill 

To obtain self-dual operators which are activity-extensive, we combine Proposition 
5-33 and Proposition 5-34. (The continuity of these operators will be guaranteed 
by the fact that we restrict ourselves to finite window operators.) 

Let 1/f be a self-dual operator and let a be an opening with a :::;; if.r. The negative 
closing f3 =a* satisfies f3;;::: 1/f. Now Proposition 5-33 gives us that the center 

(5-19) 

is activity-extensive, whereas Proposition 5-34 guarantees that rr is self-dual (for 
(/31/f )* = a'ljf ). 

REMARK 5-1. Alternatively, one can start with an increasing operator 1jf such that 
1/f :::;; o/* and an opening a :::;; 1/f. The negative closing f3 =a* satisfies f3 ;?:: 1/f*, and 
the center of al)r and /31/1* is self-dual and activity-extensive. 

Before we present some examples on PC!!}), we give a criterion which guarantees 
that a:::;; 1/1. The structural opening as(X) = X o B satisfies as :::;; i/f if B s;: i/J(B). 
We say that B is persistent with respect to 1f; if B s;: ijr(B). The following result is 
obvious. 

PROPOSITION 5-38. Let 1f; be an increasing, translation-invariant operator on 

P(JEd), and let Bi, i EI, be persistent with respect to 1{!. Then the opening a(X) = 
uiE/ x 0 Bi satisfies a:::;; lf;. 
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EXAMPLE 5-8. Letµ be the median operator with the 3 x 3 square as structuring 
element. The effect of µ on our test image can be seen in Fig. 5-9; recall that 
µ = 175. The set B given by 

• • 
• • • • 

B = • • • • 
• • • • 

• • 

is persistent with respect to µ. Let a(X) = X o B and (3(X) = X • B. The modi­
fication rr given by Eq. 5-19 is self-dual and activity-extensive. In the first row of 
Fig. 5-11 we depict n(X) and .rr00 (X). 

EXAMPLE 5-9. The median operator discussed in the previous example is of the 
formµ= i.f!A, where A are the structuring elements depicted in Fig. 5-10. Con­
sider the subcollection B of A which lacks the first structuring element and its three 
90°-rotations. Now Proposition 5-36 yields that l/JB ~ l/JA· The operator l/JB is not 
activity-extensive; for example, the following pattern oscillates with period 2. 

• • 0 0 • • 0 0 

0 0 • • 0 0 • • 

• • 0 0 • • 0 0 

0 0 • • 0 0 • • 

It is evident that the structuring element B is persistent with respect to i.f!a, but we 
can find a smaller structuring element with this property, namely 

B' = • 
• 

• 
• 

Let a be the structural opening a(X) = X o B' and let (3 be the negative clos­
ing. Again, the modification .rr of l/f13 given by Eq. 5-19 is self-dual and activity­
extensive. The images rr(X) and rr 00 (X) are depicted in the second row of 
Fig. 5-11. 

EXAMPLE 5-10. Consider the operator 174 introduced in Example 5-6. This op­
erator can be represented in the form Eq. 5-18 where A is given by 

DD.:~o.:~o-:~ • • • • • • • • • 



202 CHAPTER 5 

Figure 5-11. First three rows: ir(X) and ir 00 (X) of Examples 5-8, 5-9, and 5-10. Bottom 

row: 1/113 (X) and ifr'jf (X) of Example 5-11. 
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and their 45°-rotations. The operator T/4 is not activity-extensive since the pattern 

. . ., . . . 
0 0 0 0 0 0 

etc. 
• • • • • • 
0 0 0 0 0 0 

is 2-periodic. The structuring elements 

are persistent. Let a be the union of the structural openings associated with these 

two structuring elements; let f3 =a* and let JT be the modification of T/4 obtained 

from Eq. 5-19. The action of JT and rr00 can be seen from the third row in Fig. 5-11. 

EXAMPLE 5-11. Consider the subcollection l3 of of the collection A of the pre­

vious example which is obtained by deleting the elements 

D + 45° -rotations, 

D and C .. .:.·. + 90°-rotations. 

• • • 
We use Proposition 5-37 to show that i/ls is activity-extensive. Therefore we must 

consider the sequences i/;"'J(B) for BE !3. First we note that the triangles 

D D 191 1-91 
• • ~ L--.!J 

are invariant under i/IB. Now 

D 
D 
D 

idem 

idem 

idem 
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This implies that ijf8 is activity-extensive. The bottom row in Fig. 5-11 depicts the 
transformed sets ifrB(X) and ifrr;f (X). These figures clearly show the invariance of 
the triangles depicted above. 
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