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1 Introduction 

Propositional Dynamic Logic (PDL, [12, 3]) is a widely studied modal program 
logic set up by simultaneously defining programs and propositions. A program 
is viewed as a relation between input states and output states, a purely ex­
tensional view on programs. PDL imposes a regular structure on the space of 
programs, allowing sum, composition and iteration of programs. Propositions 
are statements about states: a proposition either holds at a state or it does not. 
Accordingly, propositions are equipped with a boolean structure. Furthermore, 
PDL is equipped with operators that turn programs into propositions and vice 
versa. For instance the program 7r can be transformed into the proposition that 
from the current state it is possible to successfully execute ?r. Similarly a propo­
sition can be turned into a program that returns the input state but succeeds at 
this only if the proposition is true at this input state: such a program is called 
a test. 

Test algebra ([14, 11, 17]) is an attempt to approach PDL algebraically and al­
low application of common algebraic tools, such as homomorphisms, the Birkhoff 
theorem, etc. Not only that, common algebraic questions also become available. 
This paper concerns itself with the question of axiomatizing the valid test algebra 
equalities. 

Like PDL, a test algebra is two-sorted: it contains a sort for propositions, 
with a boolean structure, and one for programs, with a regular algebra, or 
Kleene algebra ([5, 2]), structure. So the valid equalities also come in two sorts: 
we have equations linking programs and ones linking propositions. The valid 
proposition-equations are given by algebraic translations of the Segerberg ax­
ioms for PDL ([16, 17]). The valid program-equations may also be axiomatized, 
but alas the only axiomatization known so far uses not only equations, but also 
a IIg-statement, known as separability ([17]). Such an axiomatization is hardly 
satisfactory from an algebraic point of view. 

In this paper we investigate the possibility of an equational axiomatization 
for the program equations of test algebra. A finite equational axiomatization is 
out of the question: the non-finite axiomatizability of Kleene algebra ([15, 2]) 
carries over to test algebra. However, relative to Kleene algebra, test algebra is 
finitely axiomatizable. That is, adding a finite number of equations to those of 
Kleene algebra yields a complete axiomatization for test algebra. 

As the equations of Kleene algebra are axiomatizable by means of a finite 
number of equations and quasi-equations (Horn-clauses of equations, see [7]), our 
result has as an immediate consequence that test algebra is also axiomatizable 
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by such means. Thus: the results of this paper allows one to reason about PDL­
programs in an almost purely equational manner. 

The paper is layed out as follows. In the next section we introduce relational 
test algebras and our proposed axiom system TC (Test Calculus). Our proof 
of completeness (section 4) consists of a reduction to Kleene algebras with tests 
([9]), which we introduce in section 3. In section 5 we prove that our completeness 
result is in a sense the best possible: a finite equational axiomatization of test 
algebras is out of the question. The section also contains a nonfinite axiomatiz­
ability result for Kleene algebras with tests, which [9] lacks. Finally, in section 6 
we discuss a finite axiomatization for test algebra, involving quasi-equations, 
using Kozen's axiomatization for Kleene algebra ([7]). 

2 Test Algebras 

Just as classical propositional logic has an algebraic counterpart in boolean al­
gebras, PDL has a counterpart in test algebras. An algebraist, when first en­
countering PDL, would recognize a two-sorted algebra, with one sort in which 
PDL-propositions may be interpreted and another in which PDL-programs are 
interpreted. The sort for propositions we will refer to as the boolean sort, while 
the other will be called the program sort. 

The boolean sort has a boolean structure, that is: the structure of a boolean 
algebra. Boolean algebras are defined as algebras of signature { ..L, .....,, v} satisfying 
certain equations. Particular algebras that satisfy these equations are the set 
boolean algebras, algebras of the form: 

SBA(S) := (P(S), 0, - , u) 

where S is any set and for any X ~ S: X = S \ X. Let SBA denote the class 
of all set boolean algebras. It is well known that the valid equations of SBA are 
axiomatizable by means of a finite number of equations. Let BA be this set of 
equations. 

The program sort of PDL is equipped with a regular, or Kleene algebra 
structure ([5, 2]). A relational Kleene algebra is determined completely by a set 
S as follows: 

RKA(S) := (P(S x S), 0, 1, +,;, *) 
where: 

- 0 is the empty relation 0. In terms of programs, 0 is the program that always 
fails to execute. 
1 is ids:= {(s,s) Is ES}, the identity on S. Thus 1, as a program, imme­
diately terminates succesfully, without changing the input state. 
; is relational composition: 

R1;R2 := {(s,u) I 3u.(s,u) E R1 & (u,t) E R2 }. 

A term ti; t2 will often be denoted simply as ti t2 . 

Composition of programs means executing one after the other succesfully 
terminates. 
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- + denotes union of relations. In terms of programs, it is nondeterministic 
choice. 

- Kleene star * denotes reflexive transitive closure: R* = Un>o Rn, where 

R0 = ids and Rn+l = R; Rn. Thus • is iteration: performing-a program a 
finite number of times. 

Let RKA denote the class of relational Kleene algebras. In contrast to boolean 

algebra, the valid relational Kleene algebra equations are not axiomatizable by 

means of a finite number of equations ([15, 2]). Nevertheless, we are interested 
in the equational theory of RKA which we denote by KA. 

Test algebras, the algebraic variants of PDL, combine these two kinds of 

algebras into two-sorted algebras with two operators that interact between these 

sorts. Given an arbitrary (possibly empty) set S, RTA(S), the relational test 

algebra over S, is defined as a two-sorted algebra (K, B, <>, ?) where: 

l. K = RKA(S) is the relational Kleene algebra over S. 
2. B = SBA(S) is the set boolean algebra over S. 

3. <> : (K x B) --7 B (what Pratt ([14]) calls the enables operator) is an operator 

that takes an element of the program sort (a binary relation on S) and an 

element of the boolean sort (a subset of S) and produces another boolean 

element. We will write (R)X instead of O(R, X). It is defined as: 

(R)X := {s ES I :It E X.sRt} 

If the states is in (R)X, we say that R enables X (in that state). Another 

way of stating this is that there is at least one execution of R that gives rise 
to the truth of the proposition X. 

4. ? : B --7 K (the test operator) is a function from the boolean sort to the 

program sort. It is defined as: 

X? := {(s,s) Is EX} 

where ? is written in postfix notation. 
If X is viewed as a proposition, X? is a program that fails if X is not true 

but succesfully terminates if it is. 

The class of all algebras of the form RTA(S) will be denoted by RTA. Such 

algebras will be referred to as relational test algebras. Subalgebras of relational 

test algebras are referred to as K ripke test structures in [17] and as dynamic test 

set algebras in [11]. 
The terms of test algebra coincide precisely with the propositions and pro­

grams of PDL. Accordingly, we will sometimes refer to test algebra terms of 

the boolean sort as PDL-propositions. We use Greek letters if;, 'lj;, ... and sub­

scripted variants thereof for such terms. Likewise, terms of the program sort 

will be referred to as PDL-programs. We use -;r,-;ro,7r1, •.. to denote such terms. 

Accordingly, the set of program sort variables A = {a, b, ... } is referred to as the 

set of atomic actions and the set of boolean sort variables P = {p, q, .. . } as the 

set of atomic propositions. 
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Models for PDL are labeled transition systems (LTSs): models equipped with 

a binary relation ~ for every a E A and unary predicates p E P. Any PDL­

program is interpreted as a binary relation on the domain of the LTS. We write 

s ..;. t iff (s, t) is in the interpretation of 1r. For PDL-propositions </> we write 

s 11- <P if s is in the interpretation of </J. 

If a program term 7r is satisfiable (that is, not interpreted by the empty set) 

in some relational test algebra RTA(S), under an assignment c;, then from this 

we can construct an LTS with a 'ff-transition between two states s and t. To be 

precise, the required LTS has S as its domain, interprets binary relation symbols 

~ by a(a) and unary predicates p by c;(p). As a(7r) "/:- 0, two states between 

which there is a 'ff-transition exists in the LTS. 
By unraveling this LTS, we can even make sure that the term is satisfied in 

a rooted intransitive tree with all transitions disjoint. Such LTSs will be called 

unraveled. Unraveling works as follows: If M is an LTS with domain S, then the 

unraveling of M, Munr has as its domain all strings s0a1s1 ... ansn such that 

si a~t s;+l for all O ~ i < n. The only transitions of Munr are those of the 
form: 

Finally: 

soa1s1 ... anSn II- p iff Sn II- p. 

Relational test algebras may be axiomatized by means of the equations of 

BA, in addition to the following (see [17]). Here a and b are Kleenean variables 
and p and q are boolean variables. 

Tl (a) l.. = l.. (normality) 
T2 (a)(p V q) = (a)p V (a)q (additivity) 
T3 (O)p = l.. (zero) 
T4 (l)p = p (identity) 
T5 (a+ b)p = (a)p V (b)p (plus) 
T6 (ab)p = (a) (b)p (composition) 
T7 (a*)p = p V (a)(a*)p (iteration) 
T8 (a*)p = p V (a*)(•p /\ (a)p) (induction) 
T9 (p?)q = p /\ q (test diamond) 
Sep Va, b(a-:/:- b-+ 3p.(a)p-:/:- (b)p) (separability) 

Thus, for all test algebra terms (of either sort) t 1 and t2 : 

RTA f= t1 = t2 iff BAU {Tl, ... , T9, Sep} I- t 1 = t 2 

T~e equations Tl to T9 are just the algebraic translations of the Segerberg 

ax10ms ([16]) for PDL, which together with the classical propositional laws are 

known to be complete. These equations impose no structure whatsoever on the 
program_ sort. This problem is addressed by the separability-formula. 

In this paper we concern ourselves with an equational axiomatization of test 
algebra. The above does not suffice, solely due to Sep, a .rrg-formula. 
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Sadly, no finite set of equations is complete (see section 5). However, the 
problem can be shown to lie purely in the Kleene algebra component of test 
algebra: if we add a certain finite number of equations to those of Kleene algebra, 
we obtain a complete axiomatization of test algebra. We say that test algebra is 
finitely axiomatizable relative to Kleene algebra. 

The equational calculus we consider consists of the following axioms1 

1. The valid Kleene algebra equations KA. 
2. The valid Boolean algebra equations BA. 
3. The equations TI, ... , T9. 
4. Additional program sort equations: 

Kl J.? = 0 (bottom test) 
K2 (p V q)? = p? + q? (test sum) 
K3 (p /\ q)? = p?q? (test composition) 
K4 ((a)T)?a =a (domain test) 

Let TC (Test Calculus) denote this set of equations. By the results in [17] it is 
immediately clear that TC is complete as far as boolean sort equations go. What 
remains to be proved is that this is also the case for program sort equations. 

3 Kleene Algebra with Tests 

What sets PDL-programs apart from pure Kleene algebra terms is the presence 
of tests of PDL-propositions. In [9), the equational theory of Kleene algebra 
extended with tests of purely boolean statements is investigated. These algebras 
are dubbed Kleene algebras with tests (KAT, see also [1, 8]). Although the tests 
of KAT-algebras are less powerful than those of test algebra, they will be very 
useful for our purposes: our completeness theorem consists of a reduction of 
valid TA-equations to valid KAT-equations, for which a completeness theorem 
is available. 

KAT-algebras are two-sorted algebras of the form: (K,B,O,l,+,;,*,-), 
where: 

- B c;_ K; 
- (K, 0, 1, +,;, *) is a Kleene algebra satisfying KA; 
- (13, 0, 1, - , +,;) is a boolean algebra with 0 as bottom, 1 as top, + as join, ; 

as meet and - as complement. 

Thus, like test algebra, KAT-algebras are two-sorted, but in contrast to test alge­
bras, the boolean sort is a subsort of the program sort. The Kleenean operations 
0, 1, +,; are overloaded in the sense that they serve both as boolean operations 
and as regular operations. * is only defined on the Kleenean sort, while - is only 
defined on the boolean sort. 

1 We use some common abbreviations here: <P /\ t/J := -i( -ief> V -it/;), T := -i.l. and one 
we will use in what follows: [11"]</> := (n)ef>. 
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So KAT-algebras are given equationally, by the infinite set KA of Kleene 

algebra equations and a finite set BA of boolean algebra equations, presented in 
the language {O, 1,;, +, -}. Call the union of these two theories KAT. 

Relational KAT-algebras are defined as follows. Given any set S, the rela­

tional KAT-algebra over Sis: 

RKAT(S) := (P(S x S), P(ids), 0, ids, U,;, *, -) 

where R yields the complement of R relative to ids for every R ~ ids. Let RKAT 
denote the class of all relational KAT-algebras. 

Kozen and Smith ([9]) also provide a language theoretic model for Kleene 
algebra with tests, in the spirit of the regular language model for Kleene algebras. 

We repeat the definition here. 
Fix a finite set A of basic Kleenean terms (atomic actions) and a finite set P 

of basic boolean terms (atomic propositions). Enumerate Pas P1, ... ,Pn in some 
fixed, yet arbitrary, order. A guard is a term -y1 ... 'Yn, where for each i E [1, n], 
'Yi E {p;, p;}. Let G denote the finite set of all guards. 

Guards correspond in an obvious manner to ?-valuations of propositional 
logic, because guards give a complete specification of which atomic propositions 
among Pare taken to hold. So if o: is a guard and t is any boolean sort KAT-term 
(in other words, t corresponds to a formula of propositonal logic), all of whose 
variables are among P, we can decide if t 'holds' under the valuation a. If this 
is the case, we write o: ::::; t. 

A guarded string is a term of the form: 

where each o:; is a guard and each a; E A. Let G§ be the set of all guarded 
strings. Note that G ~ G§: guards are also guarded strings, of zero length. 
Sometimes we will use axf3 to denote a guarded string, where a and f3 are its 
outer guards. This does not mean that o:x{3 cannot be a guard: a and j3 may 
collapse. Similarly, we will use xa and o:x to denote guards, emphasizing the 
right and left guard respectively. 

On sets of guarded strings we may define the operation of coalesced product, 
whereby we concatenate only those guarded strings whose outer guards match. 
Thus, if X and Y are sets of guarded strings, then: 

X <> Y := {xay I xo: E X,ay E Y}. 

Using this product, we can define the Kleene star of a set of guarded strings. 
First define xn for any n E N: 

Then x· := UnENxn. 

X 0 :=G 
xn+l := x <> xn 

Thus the guarded string algebra relative to the sets A and p may be defined 
as: 

(P('G§), P(G),0,G,U,<>, *, -) 
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where - is interpreted as complement relative to <G. 
The standard interpretation G assigns a set of guarded strings to any KAT­

term all of whose variables occur among AU P. It is defined as follows: 

G(a) 
G(p) 
C(O) 
G(l) 

:= {aa,B I a.,,8 E G} 
:={a:: I a S: p} 
:= 0 
:=G 

G(t1t2) := C(ti) <> G(t2) 
G(t1 + t2) := G(t1) u C(t2) 
G(t*) := G(t)* 
C(t) := <G \ C(t) 

Note that if t is a boolean term, then G(t) is a set of guards. Thus G is a sort­
preserving homomorphism from the term-algebra (restricted to terms built from 
variables out of AU P) to the guarded string algebra relative to A and P. 

Kozen and Smith ([9]) prove the following: 

Theorem 1. For KAT-terms t 1 and t2 whose variables occur among A UP: 

This is not exactly what [9] prove, as they use a different definition of Kleene 
algebra, involving a finite number of equations and two quasi-equations. Never­
theless, inspection of their completeness-proof yields the above statement. 

4 Completeness 

In this section we prove completeness of TC, with respect to equations of the 
program sort. The proof works via a language theoretic model C of test algebra, 
which is built up of guarded strings, just like the guarded string algebra of the 
previous section. In addition, a standard interpretation C is given on C. Thus, 
if a test algebra equation 7r1 = 7r2 is valid, C will assign the same set of guarded 
strings to these terms. If we use TC-equations to put the terms in the equation 
in the right form, we can even ensure that the interpretation agrees with the 
standard interpretation G on these terms, modulo an obvious translation, where 
tests are interpreted as boolean terms by G. By the completeness theorem of [9] 
this entails that the equation is KAT-derivable, from which we can deduce TC­
derivability. 

4.1 A Translation from KAT into TA 

Let I' be any finite set of PDL-propositions that is Fischer-Ladner closed ([3], 
see also [4]). That is: I' is closed under subpropositions and the following rules: 

(7r17r2)c/J EI' implies (7r1)(7r2)</> EI' 
(7r1+7r2)</> EI' implies (7r1)c/J, (7r2)</> EI' 
(7r*)</> EI' implies (7r)(7r*)<P EI' 
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Any finite set of PDL-propositions is contained in another one, its Fischer­
Ladner closure, that is also finite and furthermore Fischer-Ladner closed. Let 
I'? be{</>? I</> EI'}. 

Let P be the set of atomic propositions in I'. Choose an arbitrary finite set 
A of atomic actions. Set E :=AU I'?. 

From these ingredients we can build a variety of terms. A E-term is any term 
built from elements of E and the Kleene algebra operators 0, 1, +,;, *. In other 
words, a E-term is a PDL-program whose only atomic actions occur in A and 
whose only tests are of the form </;? with </> EI'. 

A E-KAT term is any term built up from E and the KAT-operators 0, 1, +, ;, 
*, - , where the elements of I'? are treated as undivisibles of the boolean sort. 
Thus if</>? and 'ljJ? are elements of I'?, then </>? and </>?7/J? are L'-KAT terms, but 
so is </;?'lj;?. 

To any E-KAT term we can associate a TA-term ta(t). The function ta is 
defined by induction on terms and distributes over all variables and all Kleene 
algebra operators and on complemented terms it is defined as: 

ta(t) := ([ta(t)]..L)?. 

Lemma2. Let ti = t2 be an equation between two E-KAT terms. If KAT f- ti = 
t2 then TC f- ta(ti) = ta(t2). 

Proof. It suffices to show that TC f- ta(t1) = ta(t2 ) if t 1 = t 2 is an instantiation 
of a KAT-axiom. For the axioms in KA this is obvious, as KA C TC and ta 
distributes over the Kleene algebra operators. 

There are only seven boolean axioms to examine: 

p+q=pq 
pq =p+q 
p =p 
p+p=l 
pp = 0 
pp =p 
pq =qp 

where p and q are boolean variables. 
Note that for any boolean sort E-KAT term t, ta(t) is a combination of tests 

and the operators 0, 1, +,;.Any such term is TC-equivalent to a test. For by Kl, 
0 is equivalent to ..L?, by K2 and K3 the class of tests is closed, modulo TC­
equivalence, under+ and; and 1 is equivalent to T?, by the following reasoning: 

T? = T?l (KA) 
= T?((l)T)?l (K4) 
= (T /\ (1) T)?l (K3) 
= ((l)T)?l (BA) 
= 1 (K4) 

Furthermore, as ...,</> = [</>?]..L_ is valid, TC f- (-.</>)? = ([</>?)..L)?, so if ta(t) is 
provably equivalent to</>?, ta(t) is provably equivalent to (-.ef>)?. 
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So, to prove that for all instances t1 = t 2 (where t1 , h are E-KAT terms) 
of the boolean equations above, TC f- ta(t1) = ta(t2 ), it suffices to prove the 
following in TC: 

([cp? + 'lj;?]_l_)? = (--.cp)?(--.'lj;)? 
([cp?'lf;?]_l_)? = (--ief;)? + (--i'I/;)? 
([(--.cp)?]_l_)? =if;? 
cp? + (•<P)? = 1 
cp?(--.cp)? = 0 
cp?cp? =if;? 
cp?'ljJ? = 'lj;?cp? 

This is left to the reader as an easy exercise. 

4.2 Consistent Guarded Strings 

Let Q be the guarded string algebra with respect to A and I'?, where I'? is 
enumerated in some fixed, yet arbitrary, way as ef>1?, ... , <Pn?. The standard in­
terpretation G assigns a set of guarded strings in Q to any E-KAT term. 

A guarded string x is called consistent if the TA-term ta(x) associated with 
it is satisfiable, that is: if RTA ~ ta(x) = 0. 

Let C denote the set of consistent guards, and C§ the set of consistent 
guarded strings. We build a test algebra C out of these ingredients: 

- Its program domain is P ( C§). The Kleene algebra operations are defined as 

in the guarded string algebra, except that 1 is not interpreted by G, which 
may contain inconsistent guards, but by <C. 

- Its boolean domain is P(C). The operations .l.,-, and V are interpreted as 
0, complement relative to <C, and union respectively. 
The enables operator is defined as: 

(R)X := {a E C I "3ax(3 E R.(3 E X} 

- The test operator is defined as: X? := X. This is possible precisely because 
<C ~CS. 

To show that C is really an algebra, we have to prove that its domains are closed 
under the operations. This is trivial for all but coalesced product. So we need 
to prove that if xo: and ay are two consistent guarded strings, then xo:y is also 
a consistent guarded string. In matters of consistency it is easier to work with 
LTSs instead of with relational test algebras with assignments, even though these 
are equivalent. To show closure under coalesced product, we need the notion of 
r -bisimulation. 

Definition 3. Two points s and t in a labeled transition system (LTS) are I'­
equivalent iff they agree on all formulas in I'. Two points s and t are I'-bisimilar 

if: 

Invariance: They agree on all atomic propositions (by assumption these occur 
in I'). 
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Zig: If s ~ s' for some atomic action a then there is some a-successor t' of t 
that is I'-equivalent to s'. 

Zag: Vice versa: if t ~ t' for some I'-variable a then there is an s' that is 
I'-equivalent to t' such that s 4 s'. 

Calling this notion bisimulation may be misleading, as the zig- and zag-clauses 
do not require I'-bisimilarity between the successors, but only I'-equivalence. A 
better name would have been one-step I'-bisimilarity, but for the sake of brevity 
we stick to 'I' -bisimilarity'. 

Lemma4. Let M and N be two unraveled LTSs and lets E M, t EN. Ifs 
and t are I' -bisimilar then they are I' -equivalent. 

Proof. We proceed by induction on the complexity of formulas in I'. The base 
cases for J_ and the atomic propositions p are trivial. Likewise for the booleans. 

Let 7r be a program such that for all tests 'lj;? in 7r, we have already proved 
that s If- 'ljJ iff t If- 'lj;. 

Claim 1: Suppose s 4 s. Then t 4 t also holds. This may be proved by 
induction on the size of 7r, using the fact that M and N are unraveled. 

Claim 2: For any <P such that (7r)c/; E I', ifs 4 s' If- <P with s -:/= s' then t If- (7r)ep. 
The proof again proceeds by induction on 7r, using I'-bisimilarity of s and t far 

the base case where 7r is an atomic action, and Claim 1 for the ;-case. 

We continue with the proof of the lemma. Supposes If- (7r)</> for some (7r)cp E I'. 
As induction hypothesis assume that s and t agree on all proper subpropositions 
of (7r)cp. In particular they agree on all tests that occur in 7r and on cp. Ifs 4 s If- rp 
we conclude that t 4 t (Claim 1) and that t If- cp (induction hypothesis on cp). If 
s 4 s' If- <P with s -:/= s' we can use Claim 2: t If- (7r)cp. 

Lemma 5. If a.a(3 and (3x are two consistent guarded strings then aa(3x is also 
a consistent guarded string. 

Proof. We need to prove that a.a(3x is consistent. By assumption a.af3 and f3x are 
consistent. Let M be an unraveled LTS rooted ins such that ta(a.) succeeds ons 
and there is an a-step from s to s' where ta(f3) succeeds. Let N be an unraveled 
LTS such that there is a ta(f3x)-transition emanating from the root of N. Now 
replace the submodel generated bys' in M by N. The resulting model M' has 
a root that is I'-bisimilar to that of M. By lemma 4 this implies I'-equivalence, 
hence ta(a.) succeeds at the root of M'. Thus there is an ta(o:)ata(f3)-step from 
the root of M' to the root of N, from which we may continue with an ta(x)­
transition. So ta( a.a(3x) is satisfiable in M'. 

Corollary 6. Consistent guarded strings are closed under coalesced product: 
if xa and ay are two consistent guarded strings then xay is also a consistent 
guarded string. 
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Theorem 7. C is a subalgebra of some relational test algebra A. Hence C f= TC. 

Proof. Let A be the relational test algebra over <C§, considered as a set. That is: 
A= RTA(<C§). We will provide an embedding of C into .A.. Because test algebras 
are two-sorted, this embedding is given by a function k from P(<C§) to binary 
relations over <C§: 

k(R) := {(xa, xay) E <C§ 2 I a EC, ay ER} 

and a function b from P(<C) to P(<C§): 

b(X) := {xa EC§ I a EX}. 

The proof that this is really an embedding is left to the reader. 

We provide C with a standard interpretation C. On the variables C is defined 
as follows: 

C(a) := {aa,B EC§ I a,{3 E <C} 
C(p) :={a E <C I a :::;p?} 

This interpretation can be homomorphically extended to all TA-terms. 

Lemma8. For <PE I': C(</>) ={a E <C I a :S </>?}. 

Proof. By induction on</>. The modal case (n)</> is of course where the difficulties 
are to be found. Here a lemma is useful, stating that E ta[C(n)] = 1r is valid in 
all test algebras assuming the lemma has been proved for all tests 'ljJ? inn. Here 
the sum may be infinite. It finds a natural interpretation in infinite union. 

Corollary 9. If a is a consistent guard then C (ta (a)) = {a}. 

4.3 A Translation from TA into KAT 

Now we have two algebras. On the one hand we have the guarded string algebra 
Q relative to A and I'?. On the other we have the algebra C which is built up 
from a subset of the guarded strings that g is made out of, namely the consistent 
ones. 

Theorem 10. For any E-term n there is a E-KAT term 7? such that: 

1. TCl-n=ta(7?). 
2. C(n) = G(7i'). 

Proof. We define t by induction on t. 
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-1 :=:EC. 
First we prove that for any guard a: E C: TC I- ta( a) = ((ta( a)) T)?. ta (a:) is 
of the form '1/;1? .. . 7./Jn?. We reason as follows in TC: 

'!/J1? ... 'lj;n?=('lf;1/\ ... /\'l/;n)? (K3) 
= ('l/11 /\ ... /\ 'l/ln /\ T)? BA 
= ((('lf;1/\ ... /\1/Jn)?)T)? (T9) 
= ((1/J1? /\ ... /\ 1/Jn?)T)? (K3) 

Next we note that RTA I= T = Vaedta(a:))T, as C contains all consistent 
guards. By completeness of TC for test algebra equations of the boolean sort, 
this equation is derivable. Thus we can reason as follows: 

ta(EC) = L:ta[C] 
= Laed(ta(a))T)? 
= (V oedta(a)) T)? (K2) 
== T? 
=1 

The second condition of the theorem is satisfied because for any guard a:: 
G(a:) = {a:}. So C(l) = C = U°'ec G(a) = G(L: C). 

- a= L:C(a). 
Using that TC I- 1 = L:ta[<C]: 

a= lal (KA) 
= (1: ta[CJ)a(L: ta[CJ) 
= La,/3EC ta(a)ata(,8) (KA) 

This sum may contain unsatisfiable programs 1r. But if RTA I= 7r = 0, 
then RTA I= (7r}T = 1-, so by completeness for boolean sort equations: 
TC I- (7r)T = L 7r may thus be proved equal to 0 as follows: 

7r = (7r) T? 7r (K4) 
=1-?7r 
= 071' 
=0 

(Kl) 
(KA) 

Thus the unsatisfiable terms in the above sum may be proved equal to 0 and 
so removed from this sum by Kleene algebra reasoning. 
The second condition is also satisfied, as G(a:a{3) = {a:a,B}. 

- "4J? = E C(efJ). 
Clearly RTA I= r/J = V aEC(tf>)(ta(a))T , so this equation must be derivable, 
by completeness of TC for boolean sort equations. Thus: 

</J? = (V aeC(tf>)(ta(a))T)? 
= L°'ec(.p)((ta(a:))T)? (K2) 
= LaeC(ct>) ta(rjJ) 

The second condition is satisfied, by lemma 8 
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- W distributes over the operators 0, +,;, *. 

Theorem 11 Completeness of TC. If 11"1 and 7r2 are two PDL-programs such 
that RTA I= 11"1 = 11"2 then TC f- 11"1 = 11"2. 

Proof. Define A to contain all atomic actions occurring in either rr1 or 11"2 and 
let I' be the Fisher-Ladner closure of all PDL-propositions occurring in these 
same programs. From A and I'? we can build the guarded string model g and 
the consistent guarded string model C, as defined above, together with their 
standard interpretations. 

By theorem 7, C is a subalgebra of some relational test algebra. As equations 
are preserved under subalgebras, C I= 71"1 = 11"2. In particular, C(7r1) = C(11"2). 

By theorem 10, TC f- 11"i = ta('lfi) for i E {1, 2}. Also G(7i)) = C(7r1) = 
C(11"2) = G(?i;), which implies, by theorem 1, that 7i) = ?f2 is derivable using 
the KAT-equations, hence ta(7i)) = ta(?i;) is derivable in TC by lemma 2. We 
conclude TC f- 7r1 = 7r2. 

5 N onfinite Axiomatizability 

We have proved that test calculus is complete for relational test algebra. Test 
calculus contains an infinite component, namely the set of valid Kleene algebra 
equations. In this section we show that we cannot do any better if we stick to 
equations in our axiomatization. 

Our problem would be solved immediately if the valid Kleene algebra equa­
tions were themselves axiomatizable by means of a finite number of equations. 
That this is not the case was shown in [15) (for a proof in English, see [2]). 
There it is shown that for any finite set T of valid Kleene algebra equations 
there is another valid Kleene algebra equation 7r1 = 7r2 and an algebra JC such 
that JC I= T, yet JC ~ rr1 = 11"2 . There is no need to go into the details of 
the construction of this algebra JC, but for one: in [2] the algebra JC satisfies 
Vxy(xy = 0-+ (x = 0 Vy= 0)). This will be useful in our proof. 

First let us prove that Kleene algebra with tests are not finitely equationally 
axiomatizable. Suppose that they are finitely axiomatizable, say by a set of 
equations T. We may assume that T contains the boolean algebra equations BA, 
because this is a finite set. As these BA-equations allow us to move complement 
inwards, we can assume that T is of the form UUBA, where U is a set of equations 
where the complement operator - is only applied to boolean variables. 

Let P be the finite set of boolean variables in U. On P we can define as­
signments O' : P -+ {O, 1}, where 0 and 1 are terms. Such assignments can be 
extended to terms occurring in U by distributing over the Kleene algebra oper­
ators and defining: 

O'(p) := { 1 ~f O'(p) = o. 
01fO'(p) = 1. 

Then for any term in U, O'(U) is a Kleene algebra term. Now let Uu := {O'(t1) = 
O'(t2 ) l t1 = t2 E U}. This set only contains valid Kleene algebra equations. The 
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same can be said for 

U' := LJ{Ucr I a-: P -7 {O, l}} U {Oa = 0, la= a}. 

This is still a finite set, so by the nonfinite axiomatizability result for Kleene 
algebra there must be an algebra JC satisfying U' and a valid Kleene algebra 
equation 11"1 = rr2 that is not satisfied by JC. This algebra can be turned into an 
algebra of the KAT-type by letting the boolean domain B be {O, l} and defining 
0 = l and I = 0, keeping everything else the same. We needed the last two 
equations of U' to make sure that Bis closed under the operations +and;. Let 
JC' be this new algebra. Clearly it satisfies BA, as the boolean component is either 
the trivial algebra (if 0 = 1, in which case JC is also trivial) or the prototypical 
two-element boolean algebra (here we again need the last two equations of U'). 
But it also satisfies U. For suppose ti = t2 E U and that r is some K-assignment. 
Let C7 be the restriction of r to the variables P. Because the boolean domain 
consists of {O, l}, C7 is a function from P to {O, l}. Thus K' I= t1 = t2[r] iff 
K' I= a(t1) = C7(t2)[r]. The latter is true by assumption. We conclude that JC' is 
an algebra satisfying T that does not satisfy the valid Kleene algebra equation 
rr1 = 7rz. 

This suffices for the proof that KAT-algebra is not finitely equationally a.x­
iomatizable. We note that the algebra JC' was such that Vxy(xy = 0 -7 (x = 
0 Vy = 0)) held and that the boolean domain consisted purely of 0 and l. 

Now to prove the same for test algebra. For this we need a refinement of 
lemma 10. In the TC-proofs of 11" = ta(i) not all of test calculus is used, but only 
a finite part, namely TC\ KA plus the idempotent semiring axioms IS: 

a(bc)=(ab)c a+(b+c)=(a+b)+c 
al = la = a a + a = a a + b = b + a 
aO = Oa = 0 a + 0 = a 
a(b + c) = (ab) + (ac) (a+ b)c = (ac) +(be) 

Define TC0 := (TC\ KA) U IS. 
Lemma 10 can thus be sharpened to: for any L'-term rr there is a L'-KAT 

term 7r such that TCo I= 7f = ta(i) and C(7r) = G(i) (where these are relative 
to some choice of A and I' of course). Thus, if RTA I= 11"1 = 11"2 , there are terms 
ifi such that: TCo I- 7ri = ta(R;) (for i = 1, 2) and KATI- ii= ?G. 

Now suppose Tisa finite set of sound test algebra equations. Let U consist 
of all program sort equations in T. We will show that there is a program sort 
equation that is not implied by T. 

For every equation 11"1 = 7r2 E U there is a KAT-derivable equation ii = 1f2" 
such that TCo I- 11"i = ta(ifi), for i = 1, 2. If we uniformly replace in this KAT­
equation all tests by boolean variables, what remains is still a KAT-derivable 
equation, that moreover implies (by substitution) the original ii = ?G. Let U' 
consist of all KAT-equations we obtain in this manner. U' is thus a finite set. 

By the nonfinite axiomatizability proof for KAT, there is an algebra K = 
(K, B, 0, 1, +,;, *, -) such that K I= U' U IS yet that does not satisfy all valid 
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Kleene algebra equations. We may assume that the boolean component B = 
{O, l}. Furthermore xy = 0 iff x = 0 or y = O. 

This algebra can be turned into a TA-type algebra: 

T:= ((K,0,1,+,;,*), (B,o,-,+), <>, ?) 

by defining x? := x and: 

(x) := { 0 if x = 0 or y = 0; 
y 1 otherwise. 

This algebra satisfies all the equations in TC0 and furthermore, for every 
7r1 = 11"2 E U: T I= ta(1fl) = ta(7i;). As an example, consider the equation 
T6: (ab)p = (a) (b)p. There are four cases to consider: 

1. a = 0. Immediately we have (a)(b)p = 0, but by IS we also have ab = 0, so 
(ab)p = 0. 

2. b = 0. Then (b)p = 0, so (a)(b)p = 0. Again, use a semiring axiom to derive 
ab = 0 and we also get (ab)p = 0. 

3. p = 0. Then (b)p = 0, so (a) (b)p = 0. But p = 0 also gives us (ab)p = 0. 
4. None of the above (in particular then: p = 1). By our assumption that xy = 0 

iff x = 0 or y = 0 we get that ab :f. 0, so (ab)p = 1. But we also have (b)p = 1, 
so (a) (b)p = 1. 

So we have an algebra T that satisfies the TC0 equations, and for every 
7r1 = 11"2 E U, T also satisfies ta(1fl) = ta(7i;). By the sharpened version of 
lemma 10, T I= U. Alas, there is a valid Kleene algebra equation that T does 
not satisfy, so T is not complete. 

6 Conclusion 

We have axiomatized test algebra equations and achieved a finite equational 
axiomatization relative to Kleene algebra. The previous section showed that the 
Kleene algebra component cannot be replaced by a finite set of test algebra 
equations. 

There is thus a tradeoff: on the one hand we have a sound and complete 
axiomatization using an infinite number of equations (this paper), on the other 
we have a finite axiomatization that uses a IIJ-axiom ([17]). However, if we 
replace the Kleene algebra component of the test calculus with any theory that 
is sound in test algebra and implies all the valid Kleene algebra equations, we 
get another sound and complete theory. One such theory is presented in [7]. This 
theory consists of a finite number of equations and two quasi-equations: 

ab :::::; b-+ a*b:::::; b ba ::::; b-+ ba* :::::; b 

where x ::::; y abbreviates x + y = y (this theory is also used in [9] to define 
Kleene algebras). Thus, a finite axiomatization is possible with a purely Jif­
theory, in fact only quasi-equations are necessary. We do not need to reprove the 
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completeness theorem: it is a simple matter of combining the theorem of this 
paper and that of [7]. 

Acknowledgements 
I would very much like to thank Wan Fokkink, Frederick Smith, Hajnal Andreka, 
Jan Bergstra, Luca Aceto and Albert Visser (in no particular order). 

References 

1. E. Cohen, D. Kozen and F. Smith. The complexity of Kleene algebra with tests. 
Technical Report 96-1598, Computer Science Department, Cornell University, July 
1996. 

2. J.H. Conway. Regular Algebra and Finite Machines. Chapman and Hall, London, 
1971. 

3. M.J. Fisher and R.E. Ladner. Propositional dynamic logic of regular programs. 
Journal of Computer and System Sciences, 18(2):194-211, 1979. 

4. R. Goldblatt. Logics of Time and Computation. 2nd edition, volume 7 of CSL! 
Lecture Notes. CSLI Publications, Stanford, 1992. 

5. S.C. Kleene. Representation of events in nerve nets and finite automata. In Shan­
non and McCarthy, editors, Automata Studies, pages 3-41. Princeton University 
Press, 1956. 

6. D. Kozen. On induction versus *-continuity. In D. Kozen, editor, Proceedings 
Workshop on Logics of Programs 1981, volume 131 of LNCS, pages 167-176, 181. 

7. D. Kozen. A completeness theorem for Kleene algebras and the algebra of regular 
events. Information and Computation, 110:2:366-390, May 1994. 

8. D. Kozen. Kleene algebra with tests. Transactions on Programming Languages 
and Systems, 427-443, May 1997. 

9. D. Kozen and F. Smith. Kleene algebra with tests: completeness and decidability. 
Proc. lOth Int. Workshop on Computer Science Logic (CSL'96), ed. D. van Dalen 
and M. Bezem, Utrecht, The Netherlands, Springer-Verlag LNCS volume 1258, 
244-259, September 1996. 

10. D. Krob. A complete system of B-rational identities. Theoretical Computer Sci­
ence, 89(2):207-343, October 1991. 

11. I. Nemeti. Dynamic algebras of programs. In Proceedings Fundamentals of Com­
putation Theory, volume 117 of LNCS, pages 281-290. Springer-Verlag, 1981. 

12. V. Pratt. Semantical considerations on Floyd-Hoare logic. In Proceedings 17th 
IEEE Symposium on Foundations of Computer Science, pages 109-121, 1976. 

13. V. Pratt. Dynamic algebras as a well-behaved fragment of relation algebras. In 
D. Pigozzi, editor, Proceedings Conference on Algebra and Computer Science, vol­
ume 425 of LNCS, pages 77-110. Springer, June 1988. 

14. V. Pratt. Dynamic algebras: examples, constructions, applications. Studia Logica, 
50:571-605, 1991. 

15. V.N. Redko. On defining relations for the algebra of regular events. Ukrainskii 
Matematicheskii Zhurnal, 16:120-126, 1964. In Russian. 

16. K. Segerberg. A completeness theorem in the modal logic of programs. In 
T. Traczyk, editor, Universal algebra and applications, volume 9 of Banach Centre 
Publications, pages 31-46. PWN - Polish Scientific Publishers, Warsaw, 1982. 

17. V. Trnkova and J. Reiterman. Dynamic algebra with test. Journal of Computer 
and System Sciences, 35:229-242, 1987. 


