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Abstract

Quantum computing combines the framework of quantum mechanics with that of computer science.
In this paper we give a short introduction to quantum computing and survey the results in the area of
quantum icati plezity.

1 Introduction

One of the main areas of research in theoretical computer science is complexity theory. Complexity theory
deals with questions like how much time or other resources are needed to perform a certain computational
task. The P versus NP problem is probably the best known incarnation of this type of question. [ts current
research however ranges from lower bounds for circuits and related computational objects to for example
investigations of logical proof systems and bounded arithmetic.

An important tool for attacking these questions is the concept of C. ication Complezity, introduced
by Abelson and Yao [Abe80, Yao79]. Communication complexity deals with the following scenario. There
are two parties usually called Alice and Bob. Alice has as input an n bit string z and Bob an n bit string
y. They can only see their own input but are allowed to send messages back and forth. Their goal is to
compute some function f(z,y) ~ {0, 1} minimizing the amount of bits communicated. For example they
have to figure out whether they both have the same input strings, i.e. whether z =y.

Quantum mechanics is currently the most accurate theory of nature. Although it sometimes is very
counter intuitive there have been no violations of this theory and experiment has been in agreement with its
predictions.

Quantum computing combines quantum mechanics and computation into one theory of computation. The
field gained momentum when Peter Shor [Sho94, Sho97| discovered a polynomial time quantum algorithm
for the factorization problem. In this paper we review part of this theory and survey some of the results
that deal with Quantum Communication Complexity.

We will now first describe in a nutshell quantum mechanics and its relevance for computation.

2 Quantum Mechanics and Computing

Ome of the main, and very counterintuitive, features of quantum mechanics is the superposition principle.
A physical system may be in a superposition of two or more different states at the same time. Quantum
mechanics prescribes that when we observe such a system we will see one of these states with a certain
probability resulting in a collapse of the system into the state that we observed.
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2.1 Qubits, Superposition, and Measurement

Let us concentrate now to computation. Classically a bit can be in any of two states: 0 or I. Quantum
mechanically a quantum bit or qubit may be in a superposition of both 0 and 1. It is useful to describe
such systems as vecg.oss in a finite dimensjonal Hilbert space, in this case a two dimensional one. We will
identify the vector ‘31
bit 1. This notation is called Dirac or ket notation from bra-ket. The bra is (| and |ajb) denotes the inner
product between a and 5. Quantum mechanics now allows for a superposition of these two classical states:

with [0) to denote the classical bit 0 and vector ?i with |1} denoting the classical

aj0) + 3|1) (1)
Where o and J, called ampistudes, are complex numbers with the property that:
e +18F =1 @

Next observing or measuring a qubit «|0) + 3!1) will yield outcome 0 with probability |@|* and 1 with
probability 3|°. Moreover after this measurement the qubit is either in the classical state |0} when we
measured a 0, and in 1) when we measured a 1. Note that equation 2 guarantees that a qubit, when
measuted, indeed induces a probability distribution over 0 and 1.

Let’s try to plug in some values for & and 3:

1 1
7—240) - E“) (3)

Observing this qubit will result with probability 0.5 in seeing a 0 and with probability 0.5 in a 1.

In general our system will consist of more than just one qubit. Equations 1 and 2 generalize in the obvious
way. Suppose we want to model k qubits. Classically k bits can be in any of 2* different configurations:
1...2% This means that k qubsts can be in a superposition of all, or part, of these 2* basis states:

k I3
e, e N, .
@000+ el )= Y e (4)
1€{0.1}*

with the additional requirement that:
T et =1 5)
1€{0,1}*

When observing these k qubits we will see i with probability |e;|2.
If we have two qubits |z) and ly} then |z) ® y) are the two qubits in a 4 dimensional Hilbert space. This
construction is called the tensor or Kronecker product:

2} ®y) = (@00) +e1|1}) @ (5oi0) ~ A1)
@0/3(00) + @034 01) + 1 Fol10) + @131 11},

1

by convention |0) ® |0}, ,0}|0), and |00) will mean the same thing.
In general not all the 2 qubit states that satisfy equations 2 and 4 are obtained as the temsor of two
qubits. We will see an important example, the EPR-pair, in subsection 2.3. Such states are called entangled.

2.2 Unitary Operations

Next we would like to model operations on qubits. Quantum mechanics tells us that these operation have to
be modeled as knear operations with the additional constraint that these operations preserve the probability
interpretation, that is the squares of the amplitudes sum up to 1 (see equations 2 and 5). Such transformations
are called un:tary and can be stated in purely mathematical terms:
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Ut =1 (6)

Where U* is the complex conjugate transpose of U/ and [ is the identity matrix. In terms of computation
the unitary constraint implies that the computation is reversible.

The following transformation on a single qubit is important and very useful. It is called the Hadamard
transform.

egli 4]

It is a unitary operation since:

Al Al ()

Now let’s do a Hadamard operation on a qubit that is in the classical state |0):

1711 1 o 2 L
Vo1l -1 0]~ 2
This is in ket notation: T}Elo) + \—}5|1) which is the random qubit from equation 3. When we apply the
Hadamard transform again on this qubit:

11 1 11 i3l _n
70 Al -] -l ®
We get the |0) again. The important thing to notice is the minus sign in the Hadamard transform. Its
effect is illustrated in the above equation 9. The minus sign caused the } — % in the lower half of the vector
to cancel out, or destructively interfere, while both terms in the upper half constructively interfered. It is
both the superposition principle together with this interference behavior that gives quantum computing its
power.
The tensor product is also defined on linear operations. In general if we have an m x n matrix 4 and an
n’ x m' matrix B then A ® B is a (m-m') x (n-n') matrix defined as:

3 ®

@y B ma-B ... a1, B
Qa1 B Q22 B ... ay g - B
am1-B am2 B ... am.- B

2.3 Einstein-Podolsky-Rosen paradox

In the section 2.1 we have seen that any set of k qubits is admissible if it satisfies equations 4 and 5. Bearing
this in mind let’s examine the following state consisting out of 2 qubits:

1 1
E|00>+ﬁ|11)

Note that the first 0 and the first 1 form the first qubit and the second 0 and the second 1 form the second
qubit. This state is called the EPR state after their inventors Einstein, Podolsky, and Rosen [EPR35]. The
purpose of this state was to devise a thought experiment to show the incompleteness of quantum mechanics.
Imagine that we have this EPR state and that Alice has the first qubit somewhere on Mars and that Bob
has the second, say, here on earth. If Alice measures her qubit she will see a 0 or a 1 with equal probability
and the state will have collapsed to either |00), if she saw a 0 or |11) in case it was a 1. The same is true for
Bob. This leads to the following situation. Suppose that the first qubit, on Mars, was measured first and

(10




that Alice saw a 1. This now means that when Bob measures his qubit he will also measure a 1. It appears
that information, i.e. the outcome of Alice's measurement, has somehow traveled to earth instantaneously.
Since nothing can travel faster than the speed of light something must be wrong.

The EPR paradox has been, and still is, a subject of dispute. Much progress was made when Bell [Bel64]
came up with a test that would, in case quantum mechanics was correct, show correlations that could not be
explained with just classical reasoning. This test has been done in the lab [ADR82| and these non-classical
correlations have been observed.

In the following we will see that this EPR paradox cast in a quantum communication complexity setting
sheds some more light on the matter. As we will see it turns out that EPR pairs can not be used to reduce
communication but they can be used to reduce ¢ ication lezit

In the next section we will see another feature of EPR pairs: teleportanon

3 No-Cloning and Teleportation

Classical bits can be copied. Qubits on the other hand can not be copied [WZ82].
Theorem 1 [WZ82] Qubits can not be copied

The reason for this is that the copy-qubit operation is not linear and hence not unitary. Suppose we had
a linear operation U, that would copy a qubit. That means on state (@|0) ~ 3|1)) ® 0) it would do the
following:

Uel{ai0) ~ 311)) ®10)] = (2]0) + 8]1)) ® (j0) + 5{1)) (11)
o?|00) + a]01) + aB[10) + 3%111) (12)

On the other hand since U, is linear and because (a[0) + 8]1)) ® 0) = «|00) ~ 3|10):
Uc[e]00) + 3110)] = of00) + B|11) (13)

It is clear that equation 12 and 13 are the same if and only if e =l and 3 =0 or @« =0 and 8 = L.
Which is precisely the case if we have a classical 0 or 1. Hence there can not be a linear operation that
copies an arbitrary unknown qubit.

Now imagine that Alice has an unknown qubit = = «|0)+ 3|1) that she wants to send to Bob and that she
furthermore can only communicate using classical bits. Is it, in this case, possible for Alice to communicate
z to Bob? In the light of the no-cloning Theorem 1 it certainly is impossible to do this since whenever she
measures z she will destroy/collapse it to a classical bit and she can not copy it first. But suppose that Alice
and Bob in addition each share one half of an EPR-pair (see equation 10). The surprising thing is that there
is a scheme that allows Alice to send or teleport x to Bob using only 2 classical bits '/BBC*93].

In operational terms the scheme works as follows. Let @™ be the first part of an EPR-pair and ¢~ the
other half. That is ¢™ is the first bit of 7-1600) +{11)] and ¢~ the second bit.

Alice has ¢™ and Bob has ¢~. At some point Alice gets the unknown qubit z = |0) + 8|1). She now
does a unitary operation’ on the two qubits, ie ™ and z. Then she measures these two qubits obtaining
two bits: 00, 01, 10, or 11. Next she send these two bits to Bob who depending on the two bits does one of
four unitary operations on his ¢~. It turns out that this last unitary operation on ¢~ has changed ®into the
unknown qubit z. After the protocol the EPR-pair is destroyed, so in order to repeat this procedure a fresh
EPR-pair is needed.

The important point for communication complexity is that this teleportation scheme is a way to simulate
a qubit channel between Alice and Bob with a classical channel, at the cost of two bits per qubit, whenever
Alice and Bob share EPR-pairs.

Theorem 2 (BBC* 93] When Alice and Bob share EPR-pairs, they can late o qubit ch l with a
classical but channel at the cost of two classical bits per qubit.

‘The unitary operation is a controlled-not of z on @+, followed by a Hadamard on z.

“In fact after the controlled-not and the Hadamard transform of Alice, it follows that their Jjoint state is: {00)(<|0) + B(1)) +
'01){eil} + 310)) +:10)(al0) — 3]1)) + |11)(a|l) — B10)). This means that after Alice does her measurement, the third bit ie ¢~
is the unknown qubit z up to a possible bit flip and/or phase shift depending on the outcome of Alice’s measurement.
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that classicaily in gen & ) in the setting 1, 2,
follows from a theorem of Hs!@m Hol b I are used for cation Alice
eeds to send & qubits. Moreover Cleve et.al. | ) | show that the same is true when both parties
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e there is a und of a reverse of Theorem 2. This is a scheme,
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-ha&e n EPR-pair. It can be shown that like Holevo's theorem this is optimal.
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Communication Complexity

xity was introduced by Yao and Abelson Abe80, YaoT9]. Alice and Bob each have
and their goal is to compute some function f {0,1}" « {0,1}* — {0, 1} minimizing
ommunicate to each other. The area of communication complexity is well studied
for enmp»e »ke book by Kushilevitz-Nisan ! 7]. The question we want to address here is how does
exity of certain problems v -a:v when different models of quantum communication
We will denote C(f) to denote the classical communication complexity of f. That is the number
timal prawwi uses on the worst-case input. The model where only qubits can be used for
model 1 tion 4.1) was mtrodaced bv Yao “‘1&09‘3‘ We will use Q(f) for the quantum
mmunication ‘umpkemty
that model were lower bounds or impossibility results due to Yao
ion 4.3.

model where the communication is classical but both parties share entanglement, model 2, was
introduced by Cleve and Buhrman [{CB97]. We will denote the communication complexity in this model
Wl:.u C*(f), the model which uses both EPR-pairs and qubits will be Q*{f). Cleve and Buhrman were the
show that communication complexity can be reduced contrary to what one might believe considering
theorem. Their setting differed slightly from the models we discuss here. In this setting they exhibit
hree party communication problem where the three parties share an entangled state, like
an EPR-pair but then for three parties. It is shown that when the parties share this entangled state the
ion problem can be solved with two bits of communication whereas without such a prior shared
ree bits are necessary. That is there is a function f such that C*{f) = 2 whereas C{f} > 3. Better
separations in the multiparty setting were found in {BCvD97) and [BvDHT99!. The latter paper exhibits a

function f for & parties such that C*(f) and C(f) = Q{k logtk))
Next we will turn our attention to the qubit communication model Q(f). However keep in mind that
protoco for this model can be translated to the model where both parties sharf-‘ EPR-pairs and communicate

since via teleportation, Theorem 2 gives us: 2C*{f) < Q(f).




The first gap for two-party qubit communication complexity was demonstrated by Buhrman, Cleve, and
Wigdersun (BCWO8]. They showed for a promise version of the equality problem’®, £'()’ see section 52 for
a definition, that Q(EQ') = Ollog(n)) and that also C(EQ') = Q(n). This exhibnts an exponential gap
between (lassical and quantum communication complexity. In section 5 we will show in more detail how the
protocol works

4.2.1 Bounded Error Protocols

All the above {quantum) protocols don't make errors and compute the outcome exactly. When studying
randomuzed versions of communication complexity however it is unavoidable to introduce errors. A classical
randomized protocol for f, Ra(f), is a protocol where both Alice and Bob can use random bits. They are
required to compute the correct outcome with probability at least 2/3. The distinction between private and
public random bits can be made, where in the public bit/coin model Alice and Bob see the same random
bits and in the private they each have a different random source. Newman [New91] has shown that up to an
additive logarithmic term the models are the same

Rabin and Yao show for EQ that there exists a classical randomized protocol that only needs O(log(n))
bits: R{EQ) = O(log(n)). This implies that the promise problem EQ' also has a O(log{n}) randomized
classical bit protocol that is correct with probability at least 2/3. Note however that the quantum protocol
never makes an error.

The disjointness problem DISJ is defined as follows. Alice and Bob each have a subset 4 and B of
{0.1}". they have to decide whether AN B = §. Kalyanasundaram and Schnitger [KS92] show that this
problem also has high communication complexity in the randomized setting: R:(DISJ} = Q(n)

Buhrman, Cleve and Wigderson in the same paper show that when we allow the quantum protocol to
compute the answer with probability at least 2/3, we denote this by Qa(f), that Q2(DISJ) = O(y/nlog(n)).
Exhibiting an almost quadratic gap between classical randomized and quantum communication complexity.
Moreover this is the only example of a gap known where the function f is not a promise problem.

The biggest gap between the randomized and the quantum model was obtained by Ran Raz [Raz99]. He
showed that there is a promise problem f such that Q(f) = O(log(n)) but Ry(f) = Q%)

Theorem 3 The best known gaps between Quanturn and Classical communication complerity are:
1. There exsts a promuse problem EQ', such that Q(EQ') = O(log(n)) but C(EQ') = Q(n) [BCW3S).
2. There exists o promuse problem f, such that Q(f) = O(log(n)) but Ry(f) = Q7 [Raz99).
3. Q2{DISJ) = O(y/nlog(n)) [BCW98] and Ry(DISJ) = Q(n) [KS92].

Ambainis et. al. [ASTS*98] also exhibit an exponential gap between quantum protocols and classical
protocols for a different form of communication problem called sampling which we shall not discuss here
further.

Summarizing for promise problems there exist exponential gaps between classical and quantum commu-
nication complexity. For total problems the best known gap is only nearly quadratic. In turn this sheds
some light on the EPR-paradox. Holevo's theorem proves that EPR-pairs can not be used to reduce com-
munication. Since all the protocols in this section work for the model where the parties share EPR-pairs
and communicate classically it follows that EPR-pairs can reduce the communication complexity of certain
problems. This situation seems contradictory but notice that the actual amount of information that needs
to be communicated between Alice and Bob is only 1 bit, namely the outcome of f.

4.3 Lower Bounds

In the previous section we showed that quantum communication protocols are sometimes superior to classical
protocols, In this section we examine the converse and turn our attention to lower bounds for quantum
communication complexity.

SEQ(z.y) = Lof x = y and 0 otherwise. £Q requires n bits of communication. A promise version of a problem means that
Alice and Bob are only required to compute the answer correctly on certain instances that fall within the promise and it doesn't
tnatter what they compute on the other instances that don't satisfy the promuse
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Classically for deterministic communication complexity there is a general technique for proving lower
bounds. For any function f: {0,1}" x {0,1}" — {0, 1} one can define the boolean 2" x 2" communication
matrix M;(z,y) = f(z,y). Mehlhorn and Schmidt [MS82] related the rank of this matrix to the commu-
nication complexity. They show that log(rank(My)) < C(f). This is 2 very useful tool. Take for example
the equality problem. The communication complexity matrix for EQ is the 2™ x 2" identity matrix which
has only 1's on the diagonal and is O on off-diagonal entries. Since this matrix has rank 2™ it follows that
C(f) zn.

A similar statement is true in the quantum setting:
Theorem 4 For any communication problem f:

1. log(rank(M))/2 < Q(S) [Kre9s].

2. log(rank(My)) < C*(f) [BdW99).

3. log(rank(M;))/2 < Q*(f) [BdW99).

A natural and long standing open problem is whether the communication complexity is also a lower
bound for the log-rank. That is whether the log-rank characterizes the communication complexity. The
biggest known gap between the log-rank and the communication complexity is almost quadratic [NW95].
The log-rank conjecture states that for every total f, log(rank(f)) and C(f) are all polynomially related.

It follows from Theorem 4 that if the log-rank conjecture is true then for total f: Q(f),C*(f),Q@"(f),
and C(f) are polynomially related.

The log rank lower bound method only works well for errorless protocols. For bounded error models there
is another bound called discrepancy. Kremer [Kre95] and Yao show that the discrepancy bound also works
for the bounded error qubit communication model Q,. This enables them to show a linear lower bound in
this model for a problem called inner product modulo 2, JP. Here IP(z,y) =21 -y1 + -+ & yn mod 2.
Ambainis et. al. [ASTST98] extend this bound to also yield a 2(n) bound even when Alice and Bob are
allowed to make an error which is very close to 1/2.

For the model where both parties share EPR-pairs, Cleve et. al. [CvDNT98] were the first to show a
linear lower bound for /P. They came up with a new technique that is essentially quantum mechanical in
nature. It can be seen as a quantum adversary argument. This enabled them to show that any (quantum)
protocol for [P can be (ab)used, when run in superposition, to communicate n bits from Alice to Bob. Let
Q3(f) denote the communication complexity of f where Alice and Bob compute f correctly with probability
2/3, they share EPR-pairs and the communication is with qubits.

Theorem 5 1. Q2(IP) = Q(n) [Kre95].

2. Q3(IP) = (n) [CvDNTI8).

Theorem 4 yields a lower bound of Q(n) for DISJ in the errorless models since the Mp;g, has rank 27.
In the bounded error setting however the best known lower bound is 2(log(n)) [BdW99].
5 Quantum Computation and Communication Complexity

In this section we will explain in more detail how to reduce the communication complexity of certain functions
in the quantum model. The main idea is to use a quantum algorithm that outperforms any classical algorithm.

5.1 Quantum Black-Box Computation

perhaps the simplest form of a computational task is the following. Suppose we have n boolean variables

Xg,..., Xn-1, and we want to compute a property P(Xo,...,Xn_1). The goal is to compute P with the
minimum amount of variables we look at. For example suppose P(Xg,..., X,-)) = | iff there exists an i
such that X, = 1. That is we want to compute the OR(Xo, ..., X,-1). How many variables do we have to

query? It is not too hard to see that we have to look at all the variables. A similar kind of reasoning shows
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that also in the randomized setting the bound is Q(n). It has been shown by Grover [Gro96] that a quanturm
algorithm can solve the OR with only O(,/7) quantum queries.

Next we will turn our attention to another problem that allows even an exponential speed up. Define the
following promise on the variables. We are guaranteed that they are either constant: all the X; are either
all 0 or all 1. Or they are balanced: exactly half the X are 0 and the other half is 1. The problem is to find
out whether the variables are constant or balanced.

It is easy to see that classically this problem requires n /2 + 1 queries to the variables. One of the first
quantum algorithms by Deutsch and Jozsa [Jos92] establishes that this problem can be solved with just
a single quantum query! Before we demonstrate this algorithm we first have to explain how we model a
quantum query.

5.1.1 Quantum Query

We have to model a quantum query in such a way that it is a unitary operation. We define a quantum query
to variable X, as follows. The query |i,0) becomes after the query %, X;), and |4, 1) becomes [i,1 — X;). That
isfor1<i<nandbe& {0,1}:

i, B ~ li,b© X;) (14)

It can be easily checked that this operation is unitary. Since this describes what a query does on basis states,
because of linearity it also works on states that are in superposition:

S alib)ye Y alibi@X) (15)

i€{0,1}los(™) i€{0,1}tostm)
for b; € {0,1}
5.1.2 The Deutsch-Jozsa Algorithm
Suppose n is a power of 2 and | = log(n). We start in a state with / 0’s followed by a 1:
0'1) (16)
Remember the Hadamard transform H on one qubit from equation 7.‘+I;Iext we do a Hadamard transform

e —
on all the qubits of the state. That is the following operation H ® H ®...® H = H®*!, This will result
in the following state:

1 1
= 3 liy=5(10) - 1) (17)
v €01} V2
Then we perform the only quantum query. This will effect our state according to equation 15 as follows:
1 1
—= > (=D¥)—=(10) - 1) (18)
vn i€{0,1} V2

To see that this is correct first observe that we perform the quantum query with the target qubit in
superposition (|0)—|1)) This means that state [i) 2= (|0)—[1}) after the query becomes |i) Z=(|08X;)~|18©X.))-
Furthermore if X; is O then this is simply 11‘)7‘5([0) — |1)), on the other hand if X; = 1 then it becomes
|i)7‘-z-(\1) ~ |0)) which is the same as (—1)|i)7‘-2-(|0) — [1)). Hence we get a factor of —1 iff X; = 1. Next we
apply again H®! to the state and obtain the following messy looking expression:

1 1

= 7= 3 (=pXena (19)

i€{0,1}! j€{0,1}p
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Where (4, §) is the inner-product between i and j modulo 2. Let’s take a closer look at the part of this sum
where j = 0!

L3 DRG0 (20)
1€{0,1}!
Suppose that all the X; = 0 and we are in the constant 0 case. Then equation 20 boils down to:
%er(o,x)' |0Y]1) = |0'1). For the constant 1 case we will end up in (—1)[0'1). This means that when
we observe the final state in equation 19 we will see 0‘1 with probability 1.

Oun the other hand if half of the X; = 1 and the other half are 0 then half of the terms in equation 20
are 1 and the other half are —1 and cancel each other out. The result of this is that |0‘1) has amplitude 0
and will be seen with probability 0.

So by observing state 19 we can conclude that if we observe 0'1 we are in the constant case and if we
observe anything else we are in the balanced case.

5.2 The Communication Problem and Protocol

The idea for the communication complexity problem is to use the Deutsch-Jozsa algorithm from the previous
section in a distributed manner.

This boils down to the following communication complexity problem EQ'. EQ'(z,y) = 1 iff z = y but
with the extra promise that it will always be the case that the Hamming distance A(z,y) = 0 or /2. The
Hamming distance between two strings z and y, A(z,y), is the total number of bits where z and y are
different. It can be shown 'BCW98| that C(£Q’) = Q(n) using a deep and surprising combinatorial theorem
from Frankl and Rédl [FR&7].

Next we will see that £Q’ can be solved with just log(n) + 1 qubits of communication from Bob to Alice.
Note that under the Hamming distance promise, Alice and Bob have to figure out whether 21 @y .. . 2o BYn
is constant or balanced, since in the constant 0 case z = y and in the balanced z # y. So if we set X; = z:®y;
then we have the Deutsch-Jozsa problem back.

If Alice could obtain the final state from equation 19:

4 T T (pFea (21)

vn ie{0,1}! vn j€{0.1}
she would do a final measurement and know the answer. To this end Bob prepares the following state:

1 1
—= Y h=z(0ew) - 18 (22)
V/E i€{0,1} \/5
and sends these log(n) +~ 1 qubits to Alice. Alice then performs the unitary transformation that changes
state |1)|b) to |i)|b @ z,) resulting in state:

= T Wvenes)-ienes) (23)

1€{0,1}

which is after we rewrite it precisely the state from equation 18:

L
7/n

Next Alice proceeds as in the Deutsch-Josza algorithm and applies H®!°8(%)*! and measures the final
state.

The general idea is to use a quantum black-box algorithm in a distributed setting. Whenever the black-box
algorithm wants to make a query, Alice and Bob exchange a round of log(n) + 1 qubits and Alice continues
the black-box algorithm. This allows one in general to use any black-box algorithm as a communication
protocol. In this way it can be shown that, by using Grover’s algorithm [Gro96] the Disjointness problem
can be solved with O(y/nlog(n)) many qubits [(BCW98].

) (—1)*‘|ﬁ>%<|0> -1 (24)

1€{0,1}}




6 Open Problems

We have surveyed some of the resuits in quantum communication complexity. Many problems however
remain. What is the relationship between the various models, @, C*, Q" both in the errorless and in the
bounded error setting? For the errorless models, a positive answer to the log-rank conjecture shows that
they are all polynomially related but also this is at the moment still wide open.

We have seen that exponential gaps between classical and quantum communication complexity problems
are possible. however all of these examples entailed promise problems. Can there also be exponential gaps
for total problems in the bounded error setting?

What 15 the quantum lower bound for the DISJ problem? The best known lower bound is Q(log(n})
whereas the upper bound is O{y/7 log(n}}.

References

[Abe80] H. Abelson. Lower bounds on information transfer in distributed computations. J. Assoc.
Comput. Mach., 27(2):384-392, 1980. Earlier version in FOCS'78.

{ADR82!  A. Aspect, J. Dalibard, and G. Roger. . Phys. Rev. Lett., (49):1804, 1982.

'ASTS™98] A. Ambainis, L. Schulman, A. Ta-Shma, U. Vagzirani, and A. Wigderson. The quantum com-
munication complexity of sampling. In 39th [EEE Sy sum on Foundat: of Comput
Seience, pages 342-351, 1998.

‘BBC*93] C. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. Wootters. Teleporting an
unknown quantum state via dual classical and Einstein-Podolsky-Rosen channeis. Phystscal
Review Letters, T0:1895-1899, 1993.

[BCvD97! H. Bubrman, R. Cleve, and W. van Dam. Quantum entanglement and communication complex-
ity. accepted for SIAM journal on Computing, see http://xxx.lanl.gov/abs/quant-ph,/9705033,
may 1997.

[BCW98] H. Buhrman, R. Cleve, and A. Wigderson. Quantum vs. classical communication and compu-
tation. In The Thirtieth Annual ACM Symposium on Theory of Computing, to appear in 1998
1998.

iBdW99!  H. Buhrman and R. de Wolf. Communication complexity lower bounds by polynomials, 1999.
See http:/ /xxx.lanl gov/abs/cs.CC/9910010.

[Belt4] J.S. Bell. On the Einstein-Podolsky-Rosen paradox. Physics, 1, 1964.

[BvDHT99] Harry Buhrman, Wim van Dam, Peter Heyer, and Alain Tapp. Multiparty quantum communi-
cation complexity. Physical Review A, 60(4):2737- 2741, October 1999.

[BW92| C. Bennett and S. Wiesner. Communication via one- and two-particie operators on Einstein-
Podolsky-Rosen states. Physiscal Review Letters, 69:2881-~2884, 1992.

[CB97] R. Cleve and H. Buhrman. Substituting quantum entanglement for communication complexity.
Physical Review A, 56(2):1201-1204, august 1997.

‘CvDNTS8] R. Cleve, W. van Dam, M. Nielsen, and A. Tapp. Quantum entanglement and the communi-
cation complexity of the inner product function. In Springer-Verlag, editor, Proceedings of the
1st NASA International Conference on Quantum Computing and Quanturm Communications,
1998.

[EPR35,  A. Einstein, B. Podolsky, and N. Rosen. Phys. Rev., 47:777, 1935.
P. Frankl and V. Radl. Forbidden intersections. Trans. Amer. Math. Soc., 300(1):259-286, 1987.



[Gro96]

‘Hol73)

{Jos92]

'KS92]

{MS82)

[New91]
INW9s5]
{Ra299)
{Sho94]
[Sho97]

(Wz82]
Yao79]

{Ya093]

141

L. Grover. A fast quantum mechenical algorithm for database search. In 28th ACM Symposium
on Theory of Computing, pages 212-218, 1996.

A. S. Holevo. Bounds for the quantity of information transmitted by a quantum communication
channel. Problemy Peredachi Informatsiz, 9(3):3-11, 1973. English translation in Problems of
Information Transmission, 9:177-183, 1973.

D. Deutsch R. Josza. Rapid solutions of problems by quantum computation. Proc. Roy. Soc.
London Se. A, 439:553—358, 1992.

E. Kushilevitz and N. Nisan. C ication Complezity. Cambridge University Press, 1997.

I Kremer. Quantum communication. Master’s thesis, Computer Science Department, The
Hebrew University, 1995.

Bala Kalyanasundaram and Georg Schnitger. The probabilistic communication complexity of
set intersection. SIAM J. Discrete Mathematics, 5(4):545~557, 1992.

Kurt Mehlhorn and Erik M. Schmidt. Las Vegas is better than determinism in VLSI and
distributed computing (extended abstract). In Proceedings of the Fourteenth Annual ACM
Symposium on Theory of Computing, pages 330-337, San Francisco, California, 5-7 May 1982.

Dlan Newman. Private vs. common random bits in communication complexity. Information
Processing Letters, 39(2):67-71, July 1991.

N. Nisan and A. Wigderson. On rank vs. communication complexity. Combinatorica, 15:557—
566, 1995. Earlier version in FOCS'94.

R. Raz. Exponential separation of quantum and classical communication complexity. In Pro-
ceedings of 81th STOC, pages 358-367, 1999.

P.W. Shor. Algorithms for quantum computation: Discrete log and factoring. In Proceedings
of the 35th IEEE Sympostum on Foundations of Computer Science, pages 20 — 22, 1994.

P. Shor. Polynomial-time algorithms of prime factorization and discrete logarithms. SIAM J.
Comput., 26(5):1484-1509, 1997.

W.K. Wootters and W.H. Zurek. A single quantum cannot be cloned. Nature, (299):802, 1982.

A. C-C. Yao. Some complexity questions related to distributive computing. In Proceedings of
11th STOC, pages 209-213, 1979,

A. C-C. Yao. Quantum circuit complexity. In Proceedings of 34th FOCS, pages 352-360, 1993.




