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Abstract 

This paper is concerned with the numerical solution of parabolic equations coupled with gradient equations. The gradient 
equations are ordinary differential equations whose solutions define positions of particles in the spatial domain of the 
parabolic equations. The vector field of the gradient equations is determined by gradients of solutions to the parabolic 
equations. Such mixed parabolic-gradient systems are for example, used in neurobiological studies of the formation of 
axonal connections in the nervous system. We discuss a numerical approach for solving parabolic-gradient systems on 
a grid. The basic ingredients are the fourth-order spatial finite differencing for the parabolic equations, piecewise cubic 
Hermite interpolation for approximating the gradient equations, and explicit time-stepping by means of a Runge-Kutta­
Chebyshev method. © 2001 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

The mathematical model motivating our work emanates from a neurobiological study in Hentschel 
and Van Ooyen [7] on the development of neuronal connections in the nervous system, in particular, 
outgrowth of axons from neurons in a developmental phase. Growth of axons to their targets is 
partly guided by concentration gradients of biochemical molecules in the extracellular space. These 
gradients arise from diffusion and chemical interactions and vary in space and time. The diffusion 
processes, the chemical interactions and the positions of the growth cones of axons, are modelled 
by systems of parabolic equations with source terms coupled with gradient equations. The gradient 
equations are ordinary differential equations and define positions of the axonal growth cones. 

This paper deals with numerical methods. We discuss a general approach for solving parabolic­
gradient systems on a grid. For spatial discretization we use the fourth-order finite differencing for 
the parabolic equations and piecewise cubic Hermite interpolation for approximating the gradient 
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equations. This spatial discretization leaves us with a semi-discrete system whose time integration is 
the main subject of our study. Because the semi-discrete gradient equations are nonstiff, and locally 
defined and nonlinear, explicit integration is attractive. On the other hand, the semi-discrete parabolic 
problems are stiff and therefore cannot be efficiently solved with a standard explicit method. 

For time intebrration, we examine the explicit Runge-Kutta-Chebyshev (RKC) method. This 
method originates from [8] and has been designed for the time integration of systems of ordi­
nary differential equations which have a 'close-to-normal' Jacobian matrix with eigenvalues located 
in a long, narrow band along the negative axis in the complex plane (see also [11,14]). Many 
semi-discrete parabolic partial differential equations fulfil this property. RKC is based on a family of 
second-order consistent RKC formulas with a real stability boundary approximately equal to 0.65s2 , 

where s;;:::: 2 denotes the number of stages. Hence, the real stability boundaiy is quadratic in s. Note­
worthy is that s can vary and can be made arbitrarily large to fulfil the stability requirement for a 
chosen step size. This makes it possible for RKC to select at each step the most efficient step size 
(maximal) defined by local error control [11], as well as the most efficient stable formula (minimal 
s ). This also makes it possible to use RKC for a march to steady state, provided s can be kept 
within reasonable bounds for efficiency. Moreover, RKC evaluates the explicit formulas in just a 
few vectors of storage. These characteristics of the method make it especially attractive for pai·abolic 
problems in several spatial variables. Because we wish to integrate the gradient equations explicitly, 
it is interesting to examine RKC for mixed parabolic-gradient systems. 

The contents is as follows. In Section 2, we outline the mixed parabolic-gradient system taking 
the system from [7] as an example. Section 3 is devoted to the Hermite interpolation procedure. 
Since in this paper we restrict ourselves to numerical illustrations in two spatial dimensions, we only 
discuss the 20 interpolant adopting the style in [12]. Spatial discretization aspects are dealt with in 
Section 4. In Section 5, we derive a simple model for linear time-stepping stability for which we 
examine power boundedness for Runge-Kutta methods. Section 6 is devoted to the RKC method. 
We examine its stability, briefly discuss its convergence for the approximate gradient equations, and 
illustrate its performance as a variable stepsize solver using the code from [11]. In Section 7, we 
mention possibilities for future research on parabolic-gradient systems. 

2. A mixed parabolic-gradient system 

The model from [7] has been designed to admit an analytical-numerical treatment. It should 
be considered as a first prototype for more realistic models which undoubtedly will require a full 
numerical approach. In this section, we will briefly outline the model from [7], in particular, some 
properties of the gradient equation. The numerical methods discussed in later sections are applicable 
to this special model and easily allow generalizations on the model side. 

The model contains parabolic equations of the type 

8p1 d A • n m at= 1u.P1 - 61P1 + Sz, t > 0, x E ~.:: C ~ , (1) 

where p 1(x, t) represents the concentration of a chemical l at the spatial point x and time t. The 
chemical l is either a chemoattractant or a chemorepellant. For further use, we introduce the notations 
Pi.a and Pt,r for attractants and repellants, respectively. Boundary conditions play no special role so 
that we may assume that we have a pure initial value problem or periodic boundaiy conditions. For 



J.G. Verwer, B.P. Sommeijer/Journal of Computational and Applied Mathematics 132 (2001) 191-210 193 

numerical convenience we impose periodicity and put Q = [O, ir. The coefficients d1 and 61 are 
positive constants and S1 is a source flux. The source flux may depend on other chemicals, released 
at the so-called fixed-target points E Q or at moving points r n( t) E Q representing the position of 
the growth cone of axon n at time t. Source terms are typically strongly localized or even delta-like. 
Omitting the index n for convenience of notation, Y(t) is a solution of the gradient equation 

~; = L)1,aVP1.a(Y(t),t)- LA1,rVP1,r(Y(t),t), t > 0, 
l l 

(2) 

where Y(O) =Yo and At.a and ),1,r are positive constants. For given concentration gradients, (2) is a 
standard initial value problem for an autonomous system of ordinary differential equations r = f(Y). 
The parabolic equations (I) and the gradient equations (2) are coupled through the sources S1• More 
general parabolic or gradient equations leading to stronger coupling are conceivable. For example, 
the coefficients Ai.a and At.r could be made dependent on concentrations and positions. 

Let us recall some properties of gradient equations. Consider, for simplicity, the equation 

dY 
dt = AVp(Y(t),t), t > 0, Y(O) =Yo, (3) 

based on a single concentration p and a constant A being either positive or negative. The Jacobian 
matrix is the symmetric m x m matrix composed of the second-order spatial derivatives of p. Hence, 
if p is at least twice continuously differentiable, we have Lipschitz continuity guaranteeing existence 
and uniqueness of solutions. From (3) we deduce 

d . , . a ) 
dtp(Y(t),t)=AVp(Y(t),t). Vp(Y(t),t) + a/(Y(t),t 

=AllVp(Y(t),t)l\ 2 + :/(Y(t),t). (4) 

Consequently, for negative (positive) A the concentration will eventually decrease (increase) along 
a solution of the gradient equation in the approach to a stationary concentration field. Hence, for 
a stationary concentration field, extremal points (zero gradient vector) are limit points. Maxima are 
stable if A > 0 and unstable if A < 0. At minima, the situation is reversed, stability if A < 0 and 
instability if A > 0. Saddle points are always unstable. In the application, one assumes that solutions 
p of the parabolic equations converge to a stationary solution so that the above observations apply. 

The gradient equation (2) describes the combined effect of a growth cone growing up gradients 
of attractants and growing down gradients of repellants. Associate to (2) the auxiliary concentration 

<J> = L A1,aPl,a - L A1,rPl,r· 
I l 

Then (2) is rewritten as 

dY 
dt = V<l>(Y(t),t), t > 0, r(O) = r0• 

(5) 

(6) 

Hence, in the approach to steady state, maxima of <I> are stable limit points of ( 6) and minima are 
always unstable. For an extensive discussion on gradient equation properties, see [13]. 
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2.1. Example 

The model in [7] is based on three species, a target-derived attractant p1, an axon-derived attractant 
p2 and an axon-derived repellant p3• The target-derived attractant is released at N1 fixed target points 
Xn. The two axon-derived species are released at Na moving positions rn(t). Typically, in simulations 
Na and M range from about 10 to 50. Hence, we have three coupled parabolic equations 

8p1 at= d1i:l.P1 - b1P1 + S1(x, {xn}, p1,p2, p3 ), (7) 

(8) 

a:i3 = d3i:l.p3 - 03p3 + S3(x, {rn}, pi, P2, p3), (9) 

subjected to given initial functions at t = 0 and coupled to the Na initial value problems 

drn A dt = A1 V Pi (rn(t), t) + A2 V P2(rn(t), t) - 3 V p3(rn(t), t), (10) 

where rn(O) = rn,o and n = 1, ... ,Na. For the sake of generality, we here let the Sk depend on all 
three concentrations. The target-derived attractants serve to control guidance of axons to the target 
points. The axon-derived attractants and repellants serve to control axon bundling and debundling, 
respectively. In a simulation, one should start from given initial concentration fields and given initial 
positions rn(O) appropriately chosen in Q, one for each axon. The simulation is then to be continued 
up to a time at which all growth cones have reached a target point Xn (for innervation) and the 
attractant and repellant fields have become stationary. Van Ooyen [9] estimates the maximal distance 
between start positions and targets in axonal growth during development to be about 1.0 mm. At 
greater distances, the growth cones cannot sense gradients of target derived chemoattractants. Hence, 
1.0 mm is a reasonable unit as length scale for the spatial domain Q. The various diffusion constants 
approximately vary between lo-s and io-3 mm2 s-1• The growth rates for the axons approximately 
lie between 10-6 and 10-4 mms- 1, yielding maximal periods of 104-106 s to travel a distance of I 
mm. Hence, axonal growth simulation may involve very long-time intervals. 

We should remark that axonal growth simulation models are still in an early state of development. 
Biologically, the process of target-derived attraction is now fairly well established. The working of 
axon derived attractions and repellants seems plausible, but there is less direct evidence. Hentschel 
and Van Ooyen [7] give a nice example of a successful simulation of axon development in the 
presence of all three diffusible fields (see [7, Fig. l]). This simulation is based on a quasi-steady-state 
approximation for the parabolic equations and on an analytical solution of the resulting elliptic 
equations. The quasi-steady-state approximation makes sense if the axonal growth is much slower 
than the speed at which the concentration gradients are set up. This often seems to be true. The use 
of analytical solutions is of course a genuine restriction. As it is, the model seems rather sensitive for 
simulating bundling and debundling. The various coefficients and source terms must be chosen with 
real care to obtain, subsequently, bundling, debundling, target point attraction and finally complete 
steady state. Imposing the quasi-steady-state approximation of course simplifies matters. 
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3. Hermite interpolation 

Let Q" denote a uniform space grid on Q with grid size h and knots (xi, y1 ) (assuming two space 
dimensions). We wish to interpolate p(x, t ), x = (x, y ), in grid cells 

Qi)= {(x,y)ixi-1 ~X~X;,YJ-1 ~y~y;} (11) 

by means of two-dimensional Hermite interpolation. The Hem1ite interpolant on Q;1 is the unique 
bicubic polynomial [4,12] 

·' 
Pp,;j(X, t) = L /'mnU )(x - X;-1 )m( Y - Yf-1 )", 

m,n=O 

which at the four comer points fits the values of 

op Dp iYp 
p, t'x' Dy' cxoy· 

This means the matrix I'=(";'m,,) is given by I'=HKHT, where [12, p. 31] 

B1k = . K = (B;-1,;-1 B;-l,J) (p(x,k,t) p,.(x!k,t) ) 

B;,J-1 Bi.J ' · px(x1bt) Pxy(X1k.t) ' 

x,k = (x,, Yk) and 

0 
0 

3h-2 

-2h-3 

Let 0 = (x - X;-1 )/h and Y/ = (y - Y;-1 )/h. Taylor expansion at (x;_ 1, Y;-i) gives . . 

p(x, t) - Pp,ij(X, t) = ~ ( 0 2(f) - l )2 Puxx + Yf2(Y/ - l )2 Pyyyy) h4 + O(h5), 

(12) 

(13) 

revealing order 4 if p is sufficiently differentiable. The leading en-or constant is rather small, being 
bounded by the cell center maximum 3 ~4 (1Pxxxxl + IPvv.rvl). The enor depends on the location in the 
grid cell, implying that upon grid refinement the order behaviour will be somewhat effatic when 
examining a fixed location. The Taylor expansion reveals that in the remainder term only derivatives 
of order 5 and higher are present. It also reveals that in the leading error tenn the derivatives 
Px.vyy. Pxxxy and Pxx.v.v are eliminated. A fomih-order enor bound valid for nonunifonn Cartesian grids 
can be found in [ 12]. In this bound, the derivatives Pxxm Pi·yyi· and Pxxyy are present. 

Let Pp(x, t) denote the piecewice bicubic polynomial on Q obtained by connecting all cell poly­
nomials Pp,;;(x, t). The functions 

oPp cP [i2p 
PP, .:__!!_ _. __ P 

" ' Dy ' Dxi'iy ex 

are continuous across grid cells, so that Pp is C 1 on Q. When p is four times continuously dif­
forentiable in space, the interpolant Pp is fomih-order accurate and cPp/ax and DPp/cy provide 
third-order approximations. In 3D, the same procedure can be applied using a 3D, Hermite inter­
polant. In exactly the same manner He1mite interpolation can be used on nonuniform Cartesian grids 
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(see [12]). Hence, a uniform grid Q is not necessary allowing the possibility of locally refined 
Cartesian grids. 

Next consider, for simplicity, again the gradient equation (3) and write 

:~ =Jc 'i7 Pp(r(t), t) + 0 'i7 p(r(t), t) - Jc 'i7 Pp(r(t), t)) 

=l'i1Pp(r(t),t)+O(h3 ). (14) 

Omitting the O(h3 )-term yields the approximate gradient equation 

dr 
dt =Jc 'i7 Pp(r(t), t), (15) 

using the same notation for solution r for convenience. This approximate gradient equation approx­
imates its original counterpart ( 3) with third-order spatial accuracy. It is obvious that the more 
general gradient equation ( 2) can be approximated in the same way and that the gradient equation 
property (4) carries over to Pp. The approximate solution r and its first derivative are continuous 
in the whole of Q yielding a smooth trajectory at the passing of grid cell boundaries. We note that 
global interpolation, e.g., cubic splines, would yield an even smoother trajectory. However, global 
interpolation is more expensive, and redundant, since we only need to approximate the gradient 
equation at a few single cells Qij· 

4. Spatial discretization 

Before choosing a spatial discretization, we first make the following observation. The Hermite in­
terpolant Pp discussed in the preceding section, uses finite-difference approximations of the involved 
derivatives, which in turn are based on semi-discrete concentration values. When inspecting the inter­
polant one can see that its fourth-order is maintained when applied to a semi-discrete concentration 
field which is at least fourth-order accurate. 

Now, consider the parabolic problem ( 1) (for convenience of notation we here omit the index /). 
On Qh the Laplacian is approximated using the fourth-order difference stencil 

[ - 1 16 - 30 16 - 1]/(12h2). (16) 

This stencil can also be used near the boundaries due to the periodic boundary conditions. By spatial 
discretization we thus approximate ( 1) on Qh by the ordinary differential equation 

dph 
dt = df::i.hPh - bph + Sh, (17) 

where Ph is the approximation to p on Qh and Sh represents the source term S on the grid. In the 
Hermite interpolated gradient equation (15), we have to replace, at the corner points of grid cells, 
the true values (13) by approximate values defined from the grid function Ph· This incurs a second 
approximation error for the gradient equation. We use the fourth-order difference stencil 

[1 - 8 0 8 - 1]/(12h), 

and denote the resulting, spatially discrete, gradient equation by 

drh dt = A.'i1Pph(rh(t),t). 

(18) 

(19) 
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The third-order accuracy is maintained because we use fourth-order difference stencils. Also the 
gradient equation property carries over. Because of the cross derivative, 36 grid points are involved 
(in 2D) in computing PPh for a grid cell. Convenient is that the periodic boundary conditions allow 
the use of stencil ( 18) also at cells near boundaries. 

To sum up, the use of the cubic Hermite interpolation procedure and the fourth-order difference 
stencils ( 16) and ( 18) provides us with third-order spatial accuracy for the mixed, semi-discrete 
system (17 ), ( 19 ), i.e., 

Ph(x,t) - p(x,t) = O(h3 ), rh(t) - r(t) = O(h3 ). 

In the gradient equation, we lose one order because we differentiate the interpolant. In the parabolic 
equation, we lose one order through the r-dependence of the source term. This order result extends 
to more general mixed parabolic-gradient systems. When assessing spatial accuracy, one should keep 
in mind that due to the interpolation the spatial-order behaviour will normally be somewhat erratic 
upon grid refinement. For time integration, it is important to note that only the solution rh and its 
first derivative are continuous across grid cells. We shall pay attention to this point in Section 6.4.1. 

4.1. Numerical illustration 

We will illustrate the spatial accuracy behaviour for the single-species system 
;'Jp 
~ = 2 10-4 /:::,,,p - 10-4 p + o.2e-200(x-0.5)2-200(y-0.5)2 ' t > 0, 
ot 

drn -2 dt = 10 Vp(r,i(t),t), t > 0, n = 1, ... , 10, 

(20) 

(21) 

with 0 ~x, y ~ 1, the zero initial function for p, and the initial solutions for r n positioned on a circle 
with center point ( ~, 0 and radius 0.34, 

rn(O) = (k + 0.34 cos( inn),~ + 0.34 sin( inn)), n = 1, ... , 10. 

The solution p(x, t) is circle symmetric. The constant source creates a bell-shaped profile with a 
maximum at ( ~' ~ ). We consider the solution on the time interval [O, 100] during which p remains 
practically zero on the boundary. The maximum at <t, t) acts as target point for all rn(t). Due to the 
circle symmetry, all solutions rn(t) travel along straight lines from their initial circle position to their 
joint target point and hence frequently cross cell boundaries with a slope. Due to the bell-shaped 
profile, initially they move very slowly. At time t = 100, the target point has been reached. Observe 
that the rn are not present in the source term. For the current illustration, this means no restriction. 
Fig. l shows all 10 positions at times t = 40, 45, 100 and the corresponding trajectories. 

We have solved system (20)-(21) in high temporal accuracy for grid sizes h = fa• k· io and 
3~0 • The resulting Ph-fields and rn,h(t)-values for the coarse grids were then compared with their 
counterparts for the fine grid, considering these as reference solutions. Table 1 lists maximum norm 
spatial errors at times t = 40 and 45. The errors for Ph reveal the common fourth-order convergence 
(the source term does not depend on the solutions of the gradient equations). Noteworthy, is that 
the gradient equations are solved in high accuracy, in spite of the somewhat erratic convergence 
behaviour upon grid refinement. As mentioned in Section 3, this behaviour is inherent to interpolation. 
Note that at t = 40 the errors in the gradient equation solutions are much smaller than at t = 45. 
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Fig. 1. Gradient equation solutions for the test problem of Section 4.1. 

Table 1 
Maximum norm spatial errors at t = 40,45 for the test problem of Section 4.1 

h ll(p - Ph)(40)11 I l(r. - rn,h )( 40 )I I li(P - Ph)(45)ll ll(r. - r.,h)(45)ll 

1120 0.274. 10- 1 0.254. 10-2 0.277. 10- 1 0.234. 10-1 

1/40 0.192. 10-2 0.137. 10-3 0.194. 10-2 0.116· 10-2 

1/80 0.126. 10-3 0.778. 10-6 0.127. 10-3 0.970. 10-5 

This is due to the fact that at t = 40 the positions are still close to the boundary, where V p is much 
smaller than at t = 45. 

5. Stability analysis 

We are now ready to discuss the time integration and begin with some stability considerations. 
For that purpose, we use the coupled system (7)-(10) with a few simplifying assumptions. To begin 
with, we suppose zero decay terms, equal diffusion coefficients and consider one gradient equation. 
These restrictions are nonessential for what follows. Denote jJ =(Pi. p2, p3 )T and S =(Si. S2, S3 )T and 
rewrite system (7)-(10) as 

a jJ d " .... S-( -) at= up+ r,p, 

dr 
dt = .A.1 V P1(r(t), t) + A2 V P2(r(t), t) - Jc3 V p3(r(t), t), 

(22) 

(23) 

where we have suppressed the dependence of S on the independent variables t and x. We rely 
on standard linear stability arguments, hence linearize along a given solution, freeze coefficients 
and drop constant terms. An elementary calculation yields the following constant coefficient model 
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system for linear stability: 

~ = db,,.p + G · r + S'p, (24) 

dr 
dt = Jr, (25) 

where p and r now stand for perturbation solutions, G = V S with respect to r, S' is the Jacobian 
matrix of S with respect to p, and J denotes the Jacobian matrix on the right-hand side of (23). 
For example, in 3D, we have the symmetric matrix 

( 
Cxx Cxr (c) 

J = (xy (yy (y:: , ( = ).1 Pi + A2P2 - ).3p3. 
~ ,. ,, 
t..c Syz l,z; 

Because J is composed of bounded second derivatives, it makes sense to assume that 'llJll ~ 1 for 
step sizes "! which are realistic with respect to accuracy. Hence, we can say that the gradient equation 
is nonstiff and can be integrated explicitly. A practical reason to always choose for explicit integration 
of the semi-discrete gradient equation is the use of local piecewise interpolation. A consequence of 
local interpolation is that during integration we have to make updates when we pass a grid cell 
boundary. Updating renders no problem for an explicit method, but is not advocated within implicit 
integration using modified Newton iteration because the Jacobian matrix of the semi-discrete system 
is not continuous across grid cell boundaries. 

In spite of the fact that I IJI I is of moderate size, a standard explicit integrator may eventually 
become inefficient in a march to steady state during which we would like to steadily increase r. 
This holds even stronger for the parabolic problem because the Laplacian gives rise to stiffness, 
something which manifests itself already in the transient phase. Hence, the parabolic problem cannot 
be efficiently integrated with a standard explicit method. In the current application, we may assume 
that both 11S'11 and 11 GI I are of moderate size, similar as I IJ 11 · 

Next, we will impose two further simplifying assumptions on ( 24) and ( 25 ). First, we assume 
that we may decouple the three parabolic equations. Specifically, the Jacobian matrix S' is supposed 
to be similar to a real-valued diagonal matrix with a real-valued, well-conditioned eigensystem. For 
stability investigations we then may replace (24) and (25) by 

ap at = d !:;,,.p + G · r + Spp, (26) 

dr 
-d =Jr, 

t 
(27) 

where p is a scalar, Sp represents an eigenvalue of S' and G a transfo1med gradient vector, both 
real-valued and of moderate size. Second, we also assume that we may diagonalize J and replace 
(26) and (27) by the model system 

cp 
-0 = d b,,.p + G · s + Spp, 

t 

ds 
dt =Ds, 

(28) 

(29) 
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where D is the eigenvalue matrix of J and, using the same notation, G a new transformed gradient 
vector, still real-valued and of moderate size. 

The same exercise can be carried out for the associated semi-discrete problems. Using the same 
notations G and Sp, the semi-discrete version of model (28)-(29) is written as 

dph 
dt = (d L::i.h + Sµ)Ph + G · sh, (30) 

(31) 

where the entries of D now represent derivatives of the interpolant PPh' Finally, we decompose Ph 
in Fourier modes, 

( Ph(x,t)) = (c(t)) cos(w ·x) 
sh(t) u(t) ·' 

so that we end up with the following model for linear time-stepping stability: 

de 
- =d0c+G ·u dt , 

du 
dt =Du, 

(32) 

(33) 

where d0 = dK + Sp, K being a real, negative eigenvalue of the discrete Laplacian L::i.h. Due to ( 16), 

64m 
- --~K~O 

12 h2 """ """ . 
(34) 

In the remainder, we will denote the entries of D and GT by dk and gk and hence use the notations 
D = diag(di, ... , dm) and GT= [gi, ... 'gm]. 

In this model, c E IR represents a concentration and u E !Rm a position. For the sake of the stability 
analysis, we assume that all eigenvalues dk (O:::;;k:::;;m) are nonpositive. Of importance is that d0 can 
take on very large negative values according to (34) (stiffness), while the gradient vector G and the 
diagonal matrix D are of moderate size. During transient phases stiffness thus only emerges from 
the 'parabolic' term d0c. 

To a large extent the stability analysis of the model (32) and (33) is the same as for a single 
parabolic equation. However, as we will see in the next section, there is a difference due to the 
coupling with the gradient equation. Therefore, any method for mixed parabolic-gradient systems 
must pass the stability test for this simplified test model. 

5.1. Power boundedness for Runge-Kutta methods 

In what follows, we write the real-valued, linear model system (32)-(33) as 

dd~ =AU, U = ( ~) , A = ( ~ <;;) . (35) 
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The Runge-Kutta-Chebyshev method discussed later on in this paper belongs to the class of explicit 
Runge-Kutta methods. Hence, when applied to (35), it yields a linear recurrence relation 

s 

Un+1=R(rA)Un, n=O,I,. . ., R(rA)=_L:Cj(rA)i, (36) 
j=O 

where Un is the approximation at time t = tn, r is the step size, and R is the stability polynomial, 
assuming s stages. We associate stability with the concept of power boundedness. For a given step 
size r, the matrix R( rA) is power bounded if there exists a constant C such that 

I IR(TA t 11 ~ C for all n ~ 1. (37) 

Hence, C should exist independent of n and for practice C should of course be of moderate size. 
Trivially, power boundedness implies llUnll ~CllUoll uniformly in n for the value of r under con­
sideration (stability). 

We will derive a general expression for R( rA ), where R(z) can be any polynomial or rational 
function or the exponential function. Consequently, the derived expression is also valid for stability 
functions generated by implicit Runge-Kutta or linearly implicit Runge-Kutta-Rosenbrock methods, 
as well as for the exact solution operator exp(rA). First, let d0 be distinct from all entries dk of the 
diagonal matrix D and compute the eigenvector-eigenvalue decomposition A = XAX- 1, 

A= (do or) -(1 GT(D-dol)- 1 ) 
OD' X- 0 I ' (38) 

x-1 = ( ~ -GT(D-; do/)- 1 ). 

Elaborating R(rA) =X R(TA)x-1 gives 

R(TA) = ( R( 1o) R~~)), VT= [u1,. .. , Um], (39) 

where 

(40) 

With the mean value theorem we can write vk also as uk = rgkR'(rdk), where do ~dk ~dk. Next, 
suppose that d0 equals one or more of the entries dk of D. The above derivation then still can be 
used when accompanied with a standard limit argument. Specifically, if d0 = dt. then 

uk = rgkR'(rdk). (41) 

The powers of R( rA) read 

R(TAr = 0 (
R(rd )n wr ) 

0 R(r:Dt ' 
(42) 

where 
n-1 

wk = vk ~R(r:dk)'°R(rdot-i-1. (43) 
i=O 
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Inserting expressions ( 40) and ( 41 ) yields 

or 

wk = { rgk(r~k - rdon~~ 1 (Rn(rdd -Rn(rdo)) ~f d0 # dk, 
nrgkR (rddR (rdk) if do =dk> 

{ 
nrgkR'(rdk)Rn- 1 (rdk),do~dk~dk if do# dk. 

w -
k - nrgkR'(rdk)Rn- 1(rdk) if do= dk. 

(44) 

(45) 

These inequalities are valid for R( rA) = erA and for R( rA) generated by stability functions R(z ). Due 
to consistency, R(z)=e= +O(z2 ) for z-+ 0. Hence, for z=rdk (O~k~m) close to zero, R(nrA) will 
be close to enrA in the sense that the bound C introduced in definition (37) will be close to I. For 
values not close to zero the situation is different because stability functions decay much slower than 
the exponential, or do not decay at all. However, for power boundedness decay is not necessary. 
With a minor exception it is sufficient (see Theorem 1) that all values rdk (0 ~k ~ m) belong to 
the real stability interval [-{J,O], f3=max(zp: IR(z)l~l,-zp~z~O), which is the common (scalar) 
stability requirement. 

Remark. Here we see the difference of the stability analysis for parabolic equations with and without 
coupling to a gradient equation. This is exemplified by formula ( 45) where we observe potential 
linear growth with n for a fixed step size r. Hence, the coupling term G · u in (32) is relevant in 
the stability analysis. The linear growth must be counterbalanced by Rn- 1(rdk) which suggests to 
choose time integration methods providing some damping. The Runge-Kutta-Chebyshev method can 
be applied with damping and will be discussed in Section 6. 

Lemma 1. Suppose R(z) is damped for rd0 ~z~rdk> i.e., IR(z)l~IJ <I. Then, for all n~I, 

I I lrgkR'(rdk)I -
Wk ~ l , do~dk~dk. 

e11 lllJ 
(46) 

Proof. Imposing IR(z)i~IJ in (45) yields lwkl~nrlJn- 1 lgkR'(rdk)I, where d0 ~Jk~dk. The positive 
function f(x)=xlf- 1, x~ l, vanishes for x-+ oo and has a maximum at x=-1/lnlJ. This maximum 
is given by -l/(e1Jln17). 0 

Theorem 1. The amplification matrix R( rA) is power bounded if all values rdk (0 ~ k ~ m) belong 
to the real stability interval [ - /3, O] and none of the pairs rd0, rd k ( 1 ~ k ~ m) coalesce at the 
boundary. 

Proof. Because IR('rddl ~ 1 (0 ~k ~ m ), we have power boundedness if the entries wk are bounded 
uniformly in n. First suppose d0 # dk. Boundedness of wk then follows immediately from ( 44 ). 
Second, suppose do = dk. By assumption, z = rd0 then lies in the interior of the stability interval. 
Now two situations can occur, either IR(z )I~ 17 < 1 or IR(z )I= 1. If IR(z )I ~ IJ < 1, Lemma 1 applies 
so that wk is bounded. If IR(z)I = 1, then R'(z) = 0 because z belongs to the interior of the stability 
interval and IR(z)I = 1 is an extremum. In this situation wk = 0. O 
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Remark. Suppose that r > 0 and that do = dk = 0. Then -rd0 , rdk coalesce at the boundary point 
z = 0. Because R(O) = R'(O) = l, we then get wk = nrgk (cf. (45)) which increases without bound 
with n. However, also the exact solution increases linearly with time and hence the case d0 = dk = 0 
is of no interest and should be excluded in a stability analysis. Next suppose that rd0, rdk coalesce 
at the other boundary point z= -P and that f3 is finite. By definition, then JR( -/3)1=1 so that in this 
case JwkJ=nrjgkR'(-[J)j which is also unbounded. Hence, in this special case uniform boundedness 
of R(rA) does not exist. Theorem 1 therefore excludes it. Would f3 be infinite and IR(-{J)j = 1, the 
eigenvalues are allowed to coalesce because at infinity R' vanishes. 

6. The Runge-Kutta-Chebyshev method 

We proceed with the explicit Runge-Kutta-Chebyshev method. This method is intended for solving 
systems of ordinary differential equations 

dU =F(U) 0 dt , t > , U(O) =Vo, (47) 

which possess a 'close-to-normal' Jacobian matrix F' ( U) with eigenvalues located in a long, narrow 
band along the negative axis in the complex plane. In the present application it is the Laplace operator 
that counts. Since the Laplacian gives rise to a real, negative spectrum, RKC is a suitable candidate. 
Another reason for choosing RKC is that we wish to integrate the nonstiff gradient equation by 
means of an explicit method. In this section, we will discuss the integration formula, its stability 
properties, and we will discuss two numerical tests. 

6.1. The integration formula 

RKC is based on the s-stage formula 

Yo= Un, 

Y1 =Yo+ [J. 1rFo, 

Yj =(I - /lj - v1)Yo + µ1Yj-I + VjlJ-2 + t11rFj-1 +1'1rFo, j =2, ... ,s, 

Un+I = Ys, (48) 

where F1 = F( Yj ). All the coefficients are available in analytical form for arbitrary s:;;::: 2. They are 
defined as follows. Let T1 be the Chebyshev polynomial of the first kind of degree j satisfying the 
three-term recursion T0(x) = 1, T1 (x) = x, Tk(x) = 2JCTk-1 (x) - Tk-2(x ), 2:::;:; k :::s;j. Defining 

2 r;(w0 ) T"(wo) 
e = 13' Wo =I + e/s2, W1 = r;'(wo), b1 = crycwo))2 (2 ~j :::s;s), 

and b0 = b2 , b1 = b2 , the coefficients are given by 

2b;Wo V· _ -bj _ 2b;Wt 
Jl1 = b1Wi, µj = -b--, J - b ' µj = -b--, 

j-1 j-2 j-1 
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The stage formula computing Yj is reminiscent of the three-term Chebyshev recursion [8]. All ap­
proximations Yj ( 2 ~} ~ s) are second-order consistent [ 14 J and the real stability boundary f3 is very 
close to 0.65s2• Hence, f3 is quadratic in s. Noteworthy is that s can vary and that s can be made 
arbitrarily large so as to fulfil the linear stability requirement for a chosen step size T. This makes 
it possible for RKC to select at each step the most efficient step size (maximal r) defined by local 
error control [1 lJ, as well as the most efficient stable formula (minimals). This also makes it attrac­
tive to use RKC for a march to steady state, provided s can be kept within reasonable bounds for 
efficiency. Moreover, RKC evaluates the explicit fonnulas in just a few vectors of storage, which 
can be of interest for parabolic problems in several spatial variables. For more details we refer to 
the original paper [8J, the survey paper [14], and the software paper [11] where a FORTRAN code 
is discussed. We will illustrate this code in Section 6.4.2. 

6.2. The stability polynomial 

The stability polynomial of the s-stage RKC method is the Bakker-Chebyshev polynomial R(z) = 
1 - bsTs(Wo) + bsTs(Wo + W1Z) [14] for which 

/3 = (wo + l)T;'(wo) ~ ~ (s2 - 1) (1 - 2-e). (49) 
T}(w0 ) 3 15 

The parameter e has been introduced to obtain damping. Would we choose e=O, then R(z) alternates 
between ~ t and 1 as long as z lies in the stability interval [ - /3, OJ. That means that at isolated 
points z we have R(z) = l. For 0 < e ~ 1, the RKC polynomial is damped, i.e., IR(z)I ~ 17 < 1 on a 
subinterval [ - /31, -/3r JC [ - {3, OJ such that /31 ~ f3 and f3r ~ 0. The value e =-ft gives approximately 
5% damping (see Section 6.3 ), letting R(z) alternate between ~ t and 11=0.95 for z E [ - {31, -f3r]. 
For this value of e, the boundary /3 ~ 0.65s2• Fig. 2 illustrates this damped case for s = 10. Note 
that [31 and f3r are the values of z where R(z) intersects the upper dashed line. 

6.3. Power boundedness 

According to Theorem 1, RKC will be power bounded as long as z = rd k ( 0 ~ k ~ m) belongs to 
the stability interval [ - /31, OJ, which is only slightly smaller than [ - /3, OJ (see, e.g., Fig. 2 ). To be 
more specific about RKC, we now wish to apply Lemma 1 and are therefore going to specify the 
exact amount of damping over [ - ,81,0] = [ - ,Bi,-/3r] U [ - f3n0]. 

By construction, the point /3, is determined by the condition R( -/3,) = 17 at the right end point of 
the Chebyshev interval [ - 1, 1]. Hence, 

{3, = Wo - 1 = eT;'(wo). 
W1 s2T}(wo) 

Inserting r;(l) =s2, r;1(l) = ts2(s2 - 1), r;"(l) = fss2(s2 - l)(s2 - 4) and expanding in e yields 

ls2 -1 [ 2s2 +7 l /3,. = 3-:si-e 1 - e 15s2 + O(e2) ::::::: te. 

Let 11 = 1 - µ. By construction, as + b8 = 1 - µ. Hence, 
T"(w ) 

µ = (T;(wo~)z (Ts(w0 ) - 1). 
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RKC stability polynomial of degree 10 
1.1 

1.0 

0.9 

0.8 

'N 0.7 a: 

0.6 

0.5 

0.4 

0.3 
-70 -60 -50 -40 -30 -20 -10 0 

Z-axis 

Fig. 2. The stability polynomial R(z) of degree 10 along the stability interval -65 :s:;;z :s:;;O. 

Expanding in e, similar as for f3r, yields 

11=l--a 1-e +0(e2 ) s2 - 1 [ 3s2 + 3 l 
3 s2 10s2 

We see that for s~2 and e sufficiently small, 11/f3r < 1 (this holds fore= ft). Specifically, 

µ I S2 - 1 2 
-13 = 1 - 6e--2 - +O(e ). 

r S 

Because R'(O) = l and R(z) is convex for z E [ - f3r,O], on this interval we can bound R(z) by the 
straight line l + (µ/ f3, )z. On the whole of the stability interval [ - /31, O] this results in 

IR(z)I ~t] = { 
:=:::: 1- e/3 :=:::: 0.95 for - /31~z~ - /3r, 
1+(tl/fJr)Z~1 +z for -f3r~z~O. 

(50) 

This result enables us to specify bounds for the entries wk occurring in R( rA )n. First, suppose rd0 

and rdk both belong to the interval [ -(31, -f3r]. We then can apply Lemma 1 with '1 ~ 1-e/3 ~ 0.95. 
By also taking into account IR'(z)I ~ 1 for z in the stability interval, we obtain 

I I ~ lr:gkR'(rdk)I ~I rgk I "'76 I I 
Wk "' 1 """ 1 ,...., . ' gk . ery n11 e11 Il'Yf 

(51) 

Of interest is that this bound applies for the greater part of the stability interval, since f3r ~ e/3 :=:::: 0.05 
is very close to the origin. 
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Obviously. on the remaining small interval l - fJ,, OJ. all consistent Runge-Kutta methods have a 
bound for R( r.4 )" wry dose to that of the true solution operator e"ri. Suppose : = rdo or : = rdt 
belongs to this small interval and that they do not coalesce at : = 0. Let : rd; be the value closest 
to the origin. We then can apply Lemma I with '1 = I + (Wf'r ):. This yields 

I I I r1/AR1
( rJ.) I 1· r1/k I i l/t I 

WA~ ~--::::;'.1-1. 
e11In11 e11 ln '1 ! cdt 1 

(52) 

This bound gets larger as dt is closer to the origin. The bound is strict if du =d., reflecting the 
lack of boundedness if the eigenvalues coalesce at the origin. 

6.3.l. Example 
On fine space grids the largest eigenvalue is du. According to ( 34 ). d11 ::::: -T} ·~7. so that for 

( 32 H 33) we have power boundedness if 

0.65s1 7.8h2s1 
r:::;;;--::;::: --. (53) 

\do\ b4dm 

The test problem from Section 4.1 has d = 2.0 · I 0-4 and m = 2. Hence, when using the 80 x 80 
space grid. we have to satisfy the inequality r ~s2/2 l.005. The 320 x 320 grid yields the inequality 
r :::;;s1/336.08. A very valuable property of RKC is that it can be applied with any value of s. For 
actual computation we may therefore suppose that r is detennined by accuracy considerations based 
on local error control [ 11] and that s is adjusted for stability. For the two mentioned grids this 
means s ~ v'2 I.005r and s ~ v'336.08r. These numbers of derivative evaluations give an indication 
for the amount of work that RKC will need per time step in axonal growth calculations. 

6.4. Numerical illustrations 

6.4. l. Conreryence jiir the wadie11t equations 
The ODE system Li = F( U) to which RKC is applied contains all semi-discrete parabolic and 

gradient equations present in the model. The gradient equation components of F( U ) are defined by 
the piecewise Hennite interpolation procedure discussed in Sections 3 and 4. Let Eq. ( 19) be such 
a component. By construction. its solution rn and the first derivative rh exist and are continuous in 
t. Also the second derivative rh exists, but this second derivative is discontinuous at the crossing of 
a grid cell. When this happens, the second-order consistency of RKC reduces to one, causing some 
loss of accuracy. Because on a given grid the number of grid cell crossings is finite. the effect of 
the order reduction will diminish when the number of time steps increases. Specifically, for r -4 0 
the method is still second-order convergent, because only a finite number of local errors of 0( r") 
exist. When the spatial grid size is reduced. the number of grid cell crossings will increase. resulting 
in a larger-order reduction. 

We illustrate the temporal convergence behaviour of RKC for the test problem of Section 4.1. To 
emphasize the (minor) order reduction phenomenon, the very fine 320 x 320 grid has been used. 
Table 2 shows temporal errors for a number of fixed step sizes and associated convergence orders. 
We have also listed s, the number of stages. which can be computed from (53 ). It can be concluded 
that RKC converges as expected. Because the source term of the parabolic equation does not depend 
on the gradient equation solutions. the convergence behaviour for Ph is standard. For the gradient 
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Table 2 
Maximum norm errors for RKC for the problem of Section 4.1, t = 45, h = 3~0 

No. of steps s ii(P - Ph)(45)[[ Order [ [(r. - rn,h )( 45 )[ j Order 

50 18 0.463. 10-4 0.622. 10-2 

100 13 0.116· 10-4 1.99 0.197. 10-2 1.66 
200 9 0.295 · 10-5 1.98 o.567. ro-3 1.80 
400 7 0.762. 10-6 1.95 0.155. 10-3 1.87 

equations the order is only slightly smaller than two and the minor reduction diminishes when the 
number of time steps increases. 

6.4.2. The FORTRAN code RKC illustrated 
RKC has been coded in a FORTRAN program, also named RKC [11]. This code works as a 

variable step size ODE solver using local error control. In addition, to minimize work, at each step 
it selects the minimal number of stages s for stability. In the actual application s may increase to 
very large values. Algorithmically, s is only constrained by internal growth of round-off proportional 
to s2• For a very large number of stages, RKC can of course no longer be considered efficient. A 
great advantage is that it is explicit. Hence, programming is easy and adding or deleting equations 
in a model is straighforward for implementations. 

Focusing again on target attraction, we have applied the code to the test problem of Section 4.1, 
except that now the source is switched off when the target has nearly been reached. Our purpose is 
to illustrate the code's ability to approach a complete steady state with larger and larger step sizes. 
For switching off the source, we have used the condition 

10 

L dist (r11,h(t) - ( t, ! )) < 0.1, 
11=1 

which is satisfied at t ~ 46. The integration is continued up to t = 200 which is sufficiently far. The 
effect of switching off the source is that the bell-shaped solution for p slowly smooths out. 

To illustrate the reliability of RKCs variable ( <:, s )-strategy, we have used two space grids, 80 x 80 
and 320 x 320. Fig. 3 shows for both grids the step size history for a tolerance value TOL = 10-4 . 

Hardly any difference exists, indicating that the ( r, s )-strategy works fine. This is further exemplified 
by Table 3 which contains maximum norm temporal errors 1 at t = 45 for different values of TOL. 
The table also contains standard integration statistics. One can see that there is hardly any difference 
in temporal accuracy and number of time steps for the coarse and the fine grid. On the fine grid, the 
number of function evaluations is about four times larger, completely in accordance with (53 ). On 
the fine grid, the average number of (explicit derivative) evaluations per time step is, for example, 
equal to 14 for TOL =I 0-5. In view of the fact that we are solving a parabolic equation and gradient 
equations, this work load is still moderate. Of further interest is that the step size and local error 

1 The code described in [11] uses the weighted Euclidean norm for the local error estimation. For the current test, we 
have adapted the code to use the maximum nom1 to impose a more stringent test for the gradient equations. Observe 
that the factor of -fs in the formula for Estn+l in [11] must be replaced by f.; to have Estn+I = Le(t.+1 ) + 0( -r4 ). This 
correction is not essential for the application of the code. Our tests have been carried out with the factor ft. 
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Fig. 3. Step size plots for the experiment of Section 6.4.2; at the left for the 80 x 80 grid, at the right for the 320 x 320 
grid. Close to t = 200 the step size r has been automatically reduced to hit this end point exactly. 

Table 3 
Integration results for the experiment of Section 6.4.2. At time t = 200 the solution is very close 
to steady state so that the temporal errors are extremely small at this point of time. Therefore, 
we only give the temporal errors for t = 45 

tend TOL llP- Phil llrn - rn,hll Steps Acc. Rej. F-evals Smax 

Maximum norm errors and integration statistics on 80 x 80 grid 
45 10-2 0.386 .10-2 0.482 .10-1 13 11 2 128 16 

10-J 0.835 .10-3 0.204. 10- 1 23 22 159 12 
10-4 0.172. 10-3 0.550. 10-2 48 47 1 237 8 
10-s o.385. 10-4 0.138 . 10-2 103 103 0 365 6 

200 10-2 34 31 3 354 29 
10-J 64 58 6 468 21 
10-4 126 118 8 684 16 
10-s 261 250 11 1052 11 

Maximum norm errors and integration statistics on 320 x 320 grid 
45 10-2 0.376. 10-2 0.473. 10-1 13 11 2 490 65 

10-3 0.800. 10-3 0.188. 10-1 23 22 591 49 
10-4 0.161 . 10-3 0.499. 10-2 47 46 1 833 32 
10-5 0.341. 10-4 0.118. 10-2 97 97 0 1187 21 

200 10-2 34 30 4 1373 106 
10-3 64 56 8 1746 86 
10-4 115 111 4 2388 60 
10-5 251 238 13 3496 43 
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control can be seen to obey the theory given in Shampine [10, p. 339]. This theory says that upon 
reducing TOL by 10, the global error will asymptotically decrease by IOP/(p+I)_ For p=2, the order 
of consistency of RKC, this gives a factor of about 5, which we can trace in Table 3. 

7. Possible future research 

This paper deals with migration in gradient fields described by a model from neuroscience. In 
this model, the gradient fields are solutions of parabolic equations with source terms representing 
concentrations of biochemicals. Similar migration problems occur in other biological applications 
(see, e.g., [5]). The numerical solution we have discussed rests on a combination of efficient ex­
isting techniques, piecewise cubic Hermite interpolation, the fourth-order finite differencing, and the 
second-order time integration by an explicit RKC method especially designed for parabolic problems. 
We have shown that this combination works well and that it can be used for solving a wide range 
of mixed parabolic-gradient systems. 

This paper is the first in a co-operation with the Netherlands Institute for Brain Research in the 
field of computational neuroscience. The long-term goal is further model and algorithm development 
focusing on axonal growth. What comes to mind for further numerical research includes ( 1) treat­
ment of highly localized source terms on grids, (2) biquadratic or even quintic piecewise Hermite 
interpolation or global spectral or spline collocation methods [3,6] for obtaining smoother gradi­
ent equation solutions, (3) higher-order time stepping methods to exploit this, e.g., special purpose 
implicit-explicit methods [1,2] or Rosenbrock methods using approximate or factorized Jacobian 
matrices [ 15], ( 4) adaptivity and local refinement in the vicinity of steep gradients and near the 
trajectories, and (5) the efficient treatment of systems assuming a quasi-steady state for the parabolic 
equations. 
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