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Consider the GI/Gl/1 queue with the Last-Come First-Served Preemptive-Resume 
service discipline. We give intuitive explanations for (1) the geometric nature of the 
stationary queue length distribution and (2) the mutual independence of the residual 
service requirements of the customers in the queue, both considered at arbitrary 
time points. These distributions have previously been established in the literature 
by either first considering the system at arrival instants or using balance equations. 
Our direct arguments provide further understanding of properties 1 and 2. 

1. INTRODUCTION 

The steady-state distributions of queue length and residual service requirements of 
the customers in the GI/Gl/I queue with the LCFS-PR (Last-Come First-Served 
Preemptive Resume) service discipline are well known. The distribution of the queue 
length considered only at arrival (or departure) instants is geometric and the re­
maining service requirements of the customers are independent and identically dis­
tributed (i.i.d.). At arbitrary time instants, the queue length distribution is geometric 
too-except for the probability of an empty queue-with the same parameter as that 
at arrival (and departure) instants. Furthermore, the remaining service requirements 
of all customers but the one in service are i.i.d. with the same distribution as before. 
The remaining service requirement of the customer in service has the forward re­
currence distribution of the service requirements and is independent of the queue 
length and the other service requirements. 

In the queueing literature (see the next paragraph for a short overview), the 
distributions at arbitrary times have been derived either from the steady-state dis-
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tributions at arrival and/or departure instants or by solving the steady-state balance 
equations. Our purpose is to give direct arguments that lead to these time-average 
distributions and, at the same time, provide understanding of the results. Our argu­
ments rely on basic renewal theory. 

Let us briefly review the literature on the LCFS-PR discipline. For the case of 
Poisson arrivals, the joint distribution of the number of customers in the system 
and their residual service requirements was derived by Kelly [8]. Fakinos [ 4] ex­
tended the results to general interarrival time distributions by deriving the joint 
distribution of the queue length and the remaining service requirements at arrival 
instants. The proofs are based on the analysis of ascending ladder indices [10, 
p. 309]. Fakinos [ 4] further remarked that at departure instants, these distributions 
must be the same as at arrival instants, a fact that was proved by Yamazaki [19]. 
Direct and insightful arguments for these findings were provided later by Fakinos 
[5]. The corresponding distributions at arbitrary time instants were first derived 
by Yamazaki [20] and for a more general model, with queue-dependent services, 
by Fakinos [6] (both used balance equations). Shanthikumar and Sumita [16] 
considered generalizations in several directions (interarrival times not i.i.d. and 
queue-dependent acceptance probabilities, more general service disciplines). Using 
sample-path arguments and renewal theory, they related time averages and cus­
tomer averages. Part of our approach relies on similar arguments. The analysis of 
the LCFS-PR discipline proved to be very useful for studying the workload dis­
tribution in queues. Fakinos [4] already observed that his results gave new insight 
into the workload distribution in the G//GJ/1 queue. Cooper and Niu [3] ex­
ploited the special case with Poisson arrivals to explain Benes's inversion of the 
Pollaczek-Khintchine formula. Niu [13] gave representations for the workload in 
the Gl/Gl/1 queue. 

The structure of the article is as follows. In Section 2, we specify the model and 
provide a preliminary analysis of the sojourn time of customers in the system. In 
Section 3, the geometric nature of the queue length distribution at arbitrary times is 
explained, and in Section 4, we extend the analysis to the residual service require­
ments of customers. In Section 5, we briefly comment on the special case of expo­
nentially distributed service requirements. Section 6 concludes the article. 

2. DESCRIPTION OF THE MODEL AND PRELIMINARY ANALYSIS 

Let the cumulative distribution functions of the interarrival times and the service 
requirements be denoted by A(x), x;::::; 0, andB(x), x ~ 0, respectively, withA(O+) = 
B(O+) = 0. We assume that the mean interarrival time a and the mean service re­
quirement bare finite and that the queue is stable (i.e., a> b). 

In the LCFS-PR discipline, a newly arriving customer is immediately taken into 
service. If, upon arrival of the new customer, there is a customer in service, then this 
service is interrupted, to be resumed at the moment that the new customer leaves the 
system. Note that the new customer's service can also be interrupted by subsequently 
arriving customers. The total sojourn time of a customer equals the time needed to 
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decrease the amount of work in the system by a random amount distributed accord­
ing to B(x) (the customer's service requirement), starting just after an arrival. Thus, 
the sojourn time of any customer is distributed as the busy period of the GI/Gl/l 
queue and, moreover, it is independent of previous arrivals and service require­
ments. In particular, the sojourn time is independent of the number of customers 
found in the system. 

To facilitate the presentation, it is convenient to decompose the sojourn time, as 
is done below. This decomposition is well known for the busy period of the Gl/Gl/l 
queue, but in order to set the notation, we give the decomposition in detail. In Fig­
ure 1, a typical sojourn time is depicted. Let B be the service requirement of an 
arriving customer (which we will indicate by*) and, for concreteness, let n;::: 0 be 
the number of customers present just previous to the arrival. Immediately upon 
arrival, customer* is taken into service. Let the time until the next arrival be denoted 
by A0 ; clearly, A0 has cumulative distribution function A(x). If B ::5 A0 , then the 
service of customer* is not interrupted and its sojourn time S equals B. An example 
of the case when B > Ao is depicted in Figure 1. The arrow pointing upward (just 
after Ao has elapsed) indicates that at that time, the number of customers in the 
system is increased from n + 1 to n + 2. The service of customer * is interrupted at 
that moment and is resumed as soon as the number of customers decreases again 
from n + 2 ton+ 1 (in Fig. 1, this is indicated by a downward arrow). The length of 
this interruption, which we denote by S1, equals the sojourn time of the customer that 
entered after A 0• By the arguments given above, S1 is distributed as the busy period 
of the Gl/Gl/l queue. At the end of S1, the service of customer* is resumed until the 
next arrival; this period of service is denoted by A 1• Note that, in general, A 1 is not 
distributed according to A(x), since at the end of the busy period Si. part of the 
current interarrival time has already elapsed. Instead, A 1 is distributed as the idle 
time between two busy periods in the Gl/Gl/l queue; see, for instance, Cohen [l, 
p. 283]. At the end of Ai. the service of customer* is interrupted for a period S2, 

which is again distributed as a busy period, followed by a period A2 of service for 
customer *• which is distributed as an idle period, and so forth. In Figure 1, the 
service of customer* is completed during A3, indicated by a downward arrow marked 
by* (the number of customers decreases from n + 1 ton). If there was a customer in 
service when customer * arrived (i.e., if n =::: 1), then this customer's service is 
resumed; otherwise, an idle period follows until the next arrival. 

s 

FIGURE 1. Customer's sojourn time. 
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Remark 2.1: In general, the random variables Ak and Sh k = 1,2,3, ... , are not 
independent; however, the pairs (S1'A 1),(S2,A 2),(S3,A3 ), ••• form an i.i.d. se­
quence. The pair (Sh Ak) constitutes a busy cycle with busy period Sk and idle period 
Ak> k = 1,2, ... (cf. (1, p. 283]). 

Let u0 := 0 and, fork= 1,2,3, ... , 

Furthermore, let 

k 

uk := 2:. Aj-1· 
j=I 

l(B) := sup{k: uk < B} 

be the number of times that the service of customer * is interrupted. Then, the so­
journ time of customer* is given by 

l(B) 

S = B + ,L. Sk> (1) 
k=I 

where, by convention, we set the empty sum equal to 0. Note that S has the same 
marginal distribution as (but, clearly, is not independent of) the sk. 

3. GEOMETRIC QUEUE LENGTH DISTRIBUTION 

We first argue that the distribution of the queue length at arbitrary time points is 
geometric (apart from the probability of an empty queue). The approach is similar to 
that used by several authors (e.g., Kleinrock [10, p. 247], Wolff [18, p. 396], Tijms 
[17, p. 128]) to determine the queue length distribution of the Gl/M/I queue at 
arrival instants. In Section 4, we show how the arguments can be extended to derive 
the distribution of the residual service requirement of the customers in the system. 

Suppose we start at time t = 0 with less thank E {1,2, ... } customers in the 
system. Let T1 be the first time that an arriving customer increases the number of 
customers in the system from k - 1 to k and let T2 be the first moment (thereafter) that 
the number of customers decreases again from k to k - 1. Since T2 - T1 is equal to the 
sojourn time of the customer that arrived at time Ti. it is distributed as the busy 
period of the Gl/GI/I queue (cf. Sect. 2). 

Let N(t) be the queue length at time t and let N be distributed according to the 
stationary queue length distribution (here defined as the Cesaro limit): 

I ft 
P{N = k} = lim - P{N(u) = k}du, k E {0,1,2, ... }. 

t->oo t u=O 

Before giving a formal derivation, we provide the following intuitive argu­
ment for the distribution of N\ N > 0 to be geometric. Note that immediately after 
time T2, the queue length is less than k; therefore, we might define T3 to be the 
next time instant at which the queue length is again equal to k. Necessarily, this 
must be immediately after an arrival (customers arrive one at a time since we 
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assumed that A(O+) = O; see Sect. 6 when A(O+) > O). Therefore, the processes 
{N(T1 + t), t 2:: O} and {N(T3 + t), t 2:: O} have the same distribution until the next 
visit to level k - l after time instants T1 and T3, respectively. Let k E N := 
{l,2,3, ... } and m E N0 :=NU {O} = {0,1,2, ... }. If we "delete" all periods of 
time during which the queue length is less than k and concatenate all periods with 
at least k customers, in the newly formed process the steady-state probability of 
k + m customers in the system is equal to P{N = k + mlN::::: k}, and by the 
arguments given earlier, this probability is independent of k. Therefore, NIN> 0 
must have a geometrical distribution; see, for instance, Feller [7, Sect. XIII.9]. 

The queue length distribution may be formally derived along the following 
lines. Let Cb k E N, be distributed as the amount of time between two consecutive 
moments at which the queue length increases from k - 1 to k. From Remark 2.1, we 
know that C1 is distributed as the busy cycle in the GI/Gl/l queue. Since we as­
sumed the queue to be stable, we have E[ C1] < oo (cf. Cohen [l, p. 286]). Let rk,J• 
k E N andj E N0 , be the expected amount of time spent with k + j customers in 
the system during a period ck. By the arguments given in Section 2, Tk,j+I = 
E[I(B)]rk+l,J (see also Remark 3.1). Moreover, rk,J is independent of k: rk,J =: r1. 
Because of the Renewal-Reward theorem (see, for instance, Ross [14, Thm. 3.16, 
p. 52]), 

Hence, for any k E N, 

T· 
P{N = j + 1} = - 1 -

E[ Cd. 

P{N = k +I} 
P{N = k} = E[l(B)] =: y, 

so that NIN> 0 is geometrically distributed. 

Remark 3. I: Note that y is the expected number of "up-crossings" from k to k + 1 
during Ck. After each such up-crossing, the expected amount of time spent with 
k + j + 1 customers until the next "down-crossing" to k is Tk+ 1, 1, and so Tk,J+ 1 = 
yrk+l,J· Using rk,J = r1 this directly implies T1 = yiT0,j E N0 • 

To find the complete queue length distribution, it suffices to note that 
P{N = O} = 1 - p, where p := b/a is the traffic load. Thus, 

P{N = k} = p(I - y)yk-i, k EN. (2) 

Using Little's law, the parameter y can be expressed in terms of the mean busy 
period (which equals the mean sojourn time E[S]): 

_P_ = ~E[S]; 
I - y a 

hence, y = I - b/E[S]. 

Remark 3.2: Computing the parameter y is therefore as difficult as computing the 
mean busy period. See [l, p. 286] for a formal expression of the latter. 
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4. RESIDUAL SERVICE REQUIREMENTS 

We extend the results of the previous section, deriving the joint distribution of the 
queue length and the residual service requirements of the customers in the system. 
As earlier, let N denote the queue length in equilibrium and, given that N = n EN, 
let Xh k = 1, 2, ... , n, be the service requirement of the kth customer in the system.By 
convention, the kth customer in the system arrived later than the (k - l)st and prior 
to the (k + l) st. · 

OBSERVATION 4.1: The distribution ofX1 given that N = 1 equals the excess distri­
bution of the service requirements; that is, 

_ Ix 1 - B(u) 
P{X1 sxlN=1} = B(x) := du. 

u=O b 

To see this, suppose that we only monitor the queue length process N(t) when 
there is exactly one customer in the system and we "delete" all periods during which 
N ( t) ;;/= l. What we observe is the concatenated sequence of service periods of cus­
tomers that arrived to an empty system. (In Fig. I, eliminate all periods Sk and the 
part of A3 after the departure of customer*; what remains is exactly the service time 
of customer*.) The latter process is just a renewal process with renewal times drawn 
from B(x). 

B (x) is the distribution of the residual service requirement of the first customer 
in a busy period, given that that customer is being served. In addition, it is conve­
nient to introduce the distribution function of the residual service requirement of the 
first customer in the busy period when that customer's service has been interrupted: 

B1(x1 ) = P{X1 s xi!N;:: 2}. 

For n ;:: 2, we write 

P{N = n,X1 S x 1,X2 S x 2 , ••• ,Xn :Sxn} 

= P{N = n,X2 s x2 , ••• ,X,, s x,,IN 2: 2,X1 :S x 1}P{N;:: 2}B1(x1). (3) 

OBSERVATION 4.2: For n 2: 2, 

P{N = n,X2 :S x2 , ••• , X,, :S x,,IN 2: 2, X1 s x 1} 

= P{N = n,X2 :S x2 , ••• , X,, :S x,,IN 2: 2} 

= P{N = n - l,X1 S x2 , ••• ,Xn-I S x,,IN2: l}. 

The first equality (independence of X1) follows in the same way as the inde­
pendence of the Sk from the state of the system in Eq. (1) and in Figure 1: The 
behavior of the queue length process above the level 1 (i.e., during a service inter­
ruption of the first customer) is independent of the residual service requirement of 
the first customer. A constructive proof may be given as earlier, by considering the 
system only at times when there are at least two customers in the system and the 
residual service requirement of the first customer is at mostx1• The stochastic evo-
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lution of the processes (queue length and residual service requirements of all cus­
tomers but the first) that result from this construction is independent of x1. Similarly, 
the second equality (shift in level) follows from the fact that if we observe the system 
only at times that there are at least k customers, the number of additional customers 
(besides the first k) and their service requirements evolve stochastically in the same 
way for all k. Using Observation 4.2 repeatedly in Eq. (3), we have, for n ;.::: 2, 

P{N = n, X1 ::5 Xj, X2 ::5 Xz, .. . , xii ::5 xii} 

= P{N = n - l,X1 ::5 Xz, .. . , X11 _ 1 ::5 x 11 IN;.::: l}P{N;.::: 2} B1(x 1) 

P{N;;::: 2} 
=P{N=n-l,X1:5Xz, ... ,X11 .-1:5x11 } { }B1(X1) 

P N;.::: 1 

(4) 

Setting the empty product equal to I and using Eq. (2) and Observation 4.1, we have, 
for n EN, 

n-1 

P{N = n,X1 ::5 X1,. • .,Xn ::5 Xn} = p(I - y)y"- 1B(xll) n B1(xk). (5) 
k=I 

Remark 4.3: B1(x) can be shown to have the same distribution as the idle period in 
the dual queueing model (see Fakinos [6, Sect. 3]). 

5. DISCUSSION OF THE Gl/M/1 QUEUE 

When the service requirements have an exponential distribution, the evolution of the 
queue length is stochastically indistinguishable for all work-conserving service dis­
ciplines. Therefore, the geometric queue length distribution in the Gii M/I queue 
with FCFS (first-come first-served) services can be explained from the results for 
the LCFS-PR discipline. The GJ/ M /I queue was already extensively studied prior to 
Fakinos' [4] analysis of the GI/Gl/I queue with LCFS-PR. The GI/M/l queue length 
distribution at arrival epochs was first obtained by Kendall [9], and from it, the 
distribution at arbitrary time points could be determined (see, e.g., Cohen [ 1, p. 208)). 
Alternative derivations using the Laplace transform with respect to time of the 
transient distribution, were given by Conolly [2], Saaty [15, p. 223], and Cohen 
[I, p. 222]. 

In this case, the parameter y, which according to Remark 3.1 equals the ex­
pected number of service interruptions of an arbitrary customer, is the unique solu­
tion to the equation 

JI= a(µ(l- y)), JI E (O,l), 

where l/µ ( =b) is the mean service requirement and a(s), Re(s) 2: 0, is theLaplace­
Stieltjes transform of the interarrival time distribution A(x). 
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As a consequence of the geometric nature of the steady-state queue length 
distribution-both at arrival instants and at arbitrary time points-and the exponen­
tial service times, various performance measures have the same exponential distri­
bution, with a possible additional atom at 0. For the sojourn time S (under FCFS), 
the waiting time W (under FCFS), and the virtual waiting time V, we find, for x > 0, 

P{S s x} == P{W s xlW > O} = P{VsxJV > O} == 1 - e-<t-yJµx. 

All three random variables (Wand V conditioned on being positive) can be written 
as the sum of a geometric number (with mean 1/(1 - y)) of independent and iden­
tical exponentially distributed terms (each with mean l/µ). 

Remark 5.1: Many results for the G1/M/l queue easily generalize to the GI/M/c 
queue with c ~ l parallel servers (see also Wolff [18, p. 398]). The queue length 
distribution at arbitrary times is geometric for queue sizes of c and larger. The pa­
rameter Y<cl of the geometric tail is determined by the equation "Y<cl = a(cµ(l -
Y(c))). Also, the steady-state waiting time W(c) (FCFS) and virtual waiting time \t(c) 
are exponentially distributed (with an atom at 0): 

P{W(c) :S xJ W(c) > 0} = P{V(cl :S xJ \l(c) > O} == 1 - e-< 1-Y<c>lcµx. 

The sojourn time is not exponentially distributed. When the number of other cus­
tomers upon arrival is less than c, the sojourn time equals a single service time 
(exponential with mean 1/µ); otherwise, it is the sum of a waiting time (exponential 
with mean 1/((1 - "Y<cl)cµ)) and a service time. 

6. CONCLUDING REMARKS 

We have studied the steady-state distributions of queue length and residual service 
requirements at arbitrary times in the GI/GI/l queue with LCFS-PR. In the queue­
ing literature, these distributions have been obtained either through the steady-state 
distributions at arrival and departure times or through the balance equations. Our 
arguments apply directly to the system in continuous time, thus explaining the geo­
metric nature of the queue length distribution as well as the fact that residual service 
requirements are independent and all but one are identically distributed. 

The analysis can be extended in a straightforward manner to the case where 
customers arrive in batches having a geometric size distribution. This corresponds to 
allowing A (O+) E (O, 1) (i.e., interarrival times may be equal to 0). In particular, in 
Section 3, a batch arrival of m customers when there are k already present must be 
counted as up-crossings of the levels k, k + 1, ... , k + m - 1. Another possible ex­
tension is to batch services with general batch size distributions. This is possible as 
long as the batch sizes do not depend on the queue length except for truncation of the 
batch when an attempt is made at servicing more customers than those present in the 
queue (see also Neuts [12, p. 183]). By similar arguments as those used in this 
article, a probabilistic treatment of the matrix-geometric theory developed by N euts 
[12] can be given (see Latouche and Ramaswarni [11]). 



Gl/Gl/1 QUEUE WITH LCFS-PR 187 

Acknow/edgments 
The author thanks Sem Borst, Richard Boucherie, Onno Boxma, and Jacques Resing for useful comments. 

References 

1. Cohen, J.W. (1982). The single server queue, rev. ed. Amsterdam: North-Holland. 
2. Conolly, B. (1958). A difference equation technique applied to the simple queue with arbitrary arrival 

interval distribution. Journal of the Royal Statistical Society Series B 20: 168-175. 
3. Cooper, R.B. & Niu, S.C. (1986). Benes's formula for M/G/1-FIFO "explained" by preemptive­

resume LIFO. Journal of Applied Probability 23: 550-554. 
4. Fakinos, D. (1981). The G/G/l queueing system with a particular queue discipline. Journal of the 

Royal Statistical Society Series B 43: 190-196. 
5. Fakinos, D. ( 1986). On the single-server queue with the preemptive-resume last-come first-served 

queue discipline. Journal of Applied Probability 23: 243-248. 
6. Fakinos, D. (1987). The single-server queue with service depending on queue size with the preemptive· 

resume last-come first-served queue discipline. Journal of Applied Probability 24: 758-767. 
7. Feller, W. (1968). An introduction to probability theory and its applications, Vol. I, 3rd ed. New York: 

Wiley. 
8. Kelly, F.P. (1976). The departure process from a queueing system. Mathematical Proceedings of the 

Cambridge Philosophical Society 80: 283-285. 
9. Kendall, D.G. ( 1953). Stochastic processes occurring in the theory of queues and their analysis by the 

method of the embedded Markov chain. Annals of Mathematical Statistics 24: 338-354. 
10. Kleinrock, L. (1975). Queueing systems. Vol. I: Theory. New York: Wiley. 
11. Latouche, G. & Ramaswami, V. (1999). Introduction to matrix analytic methods in stochastic mod­

eling. Alexandria/Philadelphia: ASA/SIAM. 
12. Neuts, M.F. (1981). Matrix-geometric solutions in stochastic models-An algorithmic approach. 

Baltimore: Johns Hopkins University Press. 
13. Niu, S.C. (1988). Representing workloads in GI/G/1 queues through the preemptive-resume LIFO 

queue discipline. Queueing Systems 3: 157-178. 
14. Ross, S.M. (1970). Applied probability models with optimization applications. San Francisco: Holden­

Day. 
15. Saaty, T.L. ( 1961 ). Elements of queueing theory. Chichester: McGraw-Hill. 
16. Shanthikumar, J.G. & Sumita, U. (1986). On G/G/l queues with LIFO-P service discipline. Journal 

of the Operations Research Society of Japan 29: 220-231. 
17. Tijms, H.C. (1994). Stochastic models: An algorithmic approach. Chichester: Wiley. 
18. Wolff, R.W. (1989). Stochastic modeling and the theory of queues. Englewood Cliffs, NJ: Prentice­

Hall. 
19. Yamazaki, G. (1982). The Gl/G/1 queue with last-come-first-served. Annals of the Institute of Sta­

tistical Mathematics 34: 599-604. 
20. Yamazaki, G. (1984). Invariance relations of Gl/G/1 queueing systems with preemptive-resume 

last-come first-served queue discipline. Journal of the Operations Research Society of Japan 27: 
338-347. 


