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On a Theorem of Cooperstein 

ARJEH M. COHEN 

A theorem by Cooperstein that partially characterizes the natural geometry A,,d(F) of subspaces 
of rank d -1 in a projective space of finite rank n over a finite field F, is somewhat strengthened 
and generalized to the case of an arbitrary division ring F. 

Moreover, this theorem is used to provide characterizations of A,.2 (F) and A 5•3(F) which will 
be of use in the characterization of other (exceptional) Lie group geometries. 

1. INTRODUCTION 

Theorem A by Cooperstein in [2] provides a partial characterization of the geometry 
Aa,d (F) on all subspaces of rank (=projective dimension) d -1 of a projective space of 
rank a over a finite field F. Though there are more (partial) characterizations (cf. [5], [6]) 
this one has the advantage of being ready-made for characterizations of geometries 
corresponding to groups of Lie type, see for instance Theorem B of [2]. This paper deals 
with a generalization of Theorem A to the case of a projective space of finite rank over 
an arbitrary division ring F. The present version is stronger than the original theorem 
in that it describes more specifically what happens in "case (iii)". In fact; it shows that 
case (iii) does not occur at all if the geometry is finite. 

Many steps in the proof are taken from or inspired by Cooperstein's proof of Theorem 
A. The infinite case (i.e., where the geometry and hence F is infinite) depends on the 
classification of polar spaces of rank 3 (used in 4.2) as given in [7]. 

Two applications of the theorem are given: a characterization of the space of lines in 
a projective space of finite rank, and a characterization of the space of planes in a 
projective space of rank 5. Precise formulation of the results will be given in Section 2 
after some notation and terminology has been introduced. 

2. TERMINOLOGY, NOTATION AND MAIN RESULT 

An incidence system (P, !e) is a set P of points together with a collection 5e of subsets 
of cardinality> 1, called lines. If (P, !e) is an incidence system then the collinearity graph 
of (P, !e) is the graph whose vertex set is P and whose edges consist of the pairs of 
collinear points. The incidence system is called connected whenever its collinearity graph 
is connected. Likewise terms such as (co )cliques, paths will be applied freely to (P, !e) 
when in fact they are meant for its collinearity graph. For x, y E P, let d (x, y) denote 
the ordinary distance in the collinearity graph, and let x j_ stand for the set of points 
collinear with x. Instead of x E yj_ we shall often write x l. y. For a subset X of P and 
y E p we put d(y, X) = minxexd(y, x) and xj_ = nxeXXJ_, (P, !e) is called nondegenerate 
if Pj_ = 0. A subset X of P is called a subspace of (P, !e) whenever each point of P on 
a line bearing two distinct points of X is itself in X. A subspace is called singular whenever 
it induces a clique in (P, 2). The length i of a longest chain X 0 cX1 c · · · cXi =X of 
nonempty singular subspaces Xi of X is called the rank of X and denoted by rk(X). 

For a subset X of P, the subspace generated by X is denoted (X). Instead of (X) we 
also write (x, Y) if X = {x} u Y, and so on. 

If fJi is a family of subsets of P and X is a subset of P, then fli(X) denotes the family 
of members of fJi contained in X, while flix denotes the family of members of fJi containing 
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X. If X = {x} for some x E P, we often write fFx instead of fF{xl· Furthermore, if 'JC is 
another family of subsets of P, then %(~) denotes {!Yi(H) I HE 'JC}. 

If G is a group of automorphisms of (P, :£) such that L Z:: x 0 for any x E P and L E :£, 
then (P, !£)/ G denotes the quotient of (P, !£) by G, i.e. the incidence system whose points 
are the orbits in P of G and whose lines are of the form {x 0 Ix EL} for L E :£. The 
incidence system (P, !£) is called linear if any two distinct points are on at most one line. 
If x, y are collinear distinct points of a linear incidence system, then xy denotes the 
unique line through them; thus xy = (x, y ). 

A line is called thick if there are at least three points on it, otherwise it is called thin. 
Recall (from [2]) that (P, :£) is a polar space if Ix .L n LI ;6 1 implies L ~ x .L for any x E P 
and LE!£, that the rank of a polar space is the maximal number k + 1 such that there 
exists a singular subspace of rank k in (P, :£) and that a generalized quadrangle is a 
polar space of rank 2. The objects under study here are incidence systems (P, !£) in 
which the following four axioms hold: 

(Pl) For any x EP and L E.2 with lxL nLI > 1 the line L is entirely contained in x.L 
(this means (P, .2) is a Gamma space in D. G. Higman's terminology). 

(P2) The connected components of (P, !£) are not complete. 
(P3) For any two x, y E P with d (x, y) = 2, the subset x .L n y .c forms a subspace 

isomorphic to a nondegenerate generalized quadrangle. 
(P4) For x E P, L E !£such that x .L n L = 0 but x .L n L .L ;6 0 the subset x J_ n L .Lis a line. 
For ease of reference and with the result below in mind, an incidence system with 

thick lines satisfying (Pl), (P2), (P3), (P4) (but not necessarily connected) will be called 
a Grassmann space. The incidence structure whose points are the subspaces of rank d 
of a projective space over a division ring F of rank n and whose lines are the subspaces 
incident to an incident pair x, y of a subspace x of rank d - 1 and a subspace y of rank 
d + 1, is denoted by An,d+1(F). 

MAIN THEOREM. (P, :£) is a connected Grassmann space whose singular subspaces 
have finite rank iff one of the following holds 

(a) (P, .2) is a nondegenerate polar space of rank 3 with thick lines. 
(b) There are a ~ 4, d ~(a+ 1 )/2 and a division ring F such that (P, !£) == Aa,d(F). 
(c) There are d;;;. 5, an infinite division ring F and an involutory automorphism <r of 

A2d-i,d(F) induced by a polarity on the underlying projective space of Witt index at most 
d-5 such that (P, :£) =:.Azd-l,d(F)/(a). 

This theorem is proved in Section 6. 

APPLICATIONS. Suppose (P, !£) is an incidence system with thick lines. 
(a) (P, .2) is a Grassmann space whose singular subspaces have finite rank and in 

which x in Li ;6 0 for any x E P and L E .2 iff (P, !£) is either a nondegenerate polar space 
of rank 3 or isomorphic to Aa.2(F) for some a> 4 and some division ring F. 

(b) (P, .2) is a Grassmann space in which for any two intersecting lines L 1 , L 2 E !£and 
any point z E P there exists u E z .L with u .L n L 1 ;6 0 and u .L n L 2 ;6 0 iff (P, !£) is either 
a nondegenerate polar space of rank 3 or isomorphic to one of A 4 ,1(F), A 5,3(F) for some 
division ring F. 

These applications are treated in Section 7. 

The following example, kindly supplied by Professor Shult, shows that the main theorem 
no longer holds if in the definition of Grassmann spaces the requirement that lines are 
thick is dropped. Let q be a nondegenerate quadratic form on IF~ of Witt index 2, and 
set P for the set of nonzero nonsingular points (with respect to q) and .2 for the set of 
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(unordered) pairs of mutually perpendicular vectors from P (with respect to the bilinear 
form ~efined by q ). Then (P, 2) is a connected incidence system on 36 points satisfying 
the axioms (Pl), (P2), (P3), (P4) of Grassmann spaces. However, neither (a), (b) nor (c) 
of the main theorem holds for (P, 2). 

3. PRELIMINARY RESULTS 

Throughout this section, (P, 2) will be a Grassmann space. 
Some useful properties of generalized quadrangles and polar spaces can be found in 

[2], [7]. Some facts shall first be recalled from [2] whose proofs do not depend on any 
finiteness assumption. 

LEMMA 3 .1. Let (P, 2) be a Grassmann space. Then (P, :t?) is linear and is determined 
by its collinearity graph in the sense that for any two distinct collinear x, y E P, {x, y}-'- 1 is 
the unique line on x, y. Moreover, we have 

(a) maximal cliques are singular subspaces; 
(b) for any clique X of P, the subspace (X) is singular; 
(c) if X is a subset of P, then X"- is a subspace; 
(d) if x, y, z form a clique of P not contained in a line, then {x, y, z }l. is a maximal 

singular subspace. 

PROPOSITION 3.2 (Cooperstein). Let (P, 2) be a Grassmann space. For any x, y E P 
with d (x, y) == 2, the subset S (x, y) defined by 

S(x, y) =={z EPl('v'L E:i?)(L c:;;;{x, y}"-:::~n"- nL,,: 0)} 

is a subspace isomorphic to a polar space of rank 3 with the property that z 1 n S is a 
singular subspace (possibly empty) for any z E P\S. Moreover, S(x, y) = ({x, y} u {x, y} 1} 

As a matter of fact, 0:'4) is not needed for Lemma 3.1 and Proposition 3.2. 
The family of all S (x, y) obtained as described above will be denoted by ff, and the 

family of all maximal cliques will be denoted by .Ji. A member of g will be called a 
symp; a maximal singular subspace will often be called max space for short. 

COROLLARY 3.3. 
(a) Each singular subspace of rank ;;;;; 2 is contained in a symp. Hence, it is a point, a 

line or a projective plane. 
(b) If Mis a singular subspace and M properly contains a line, then Mis a projective space. 

We shall denote the family of singular subspaces of rank 2 by 'V' and call its members 
planes. 

REMARK 3.4. Axiom (P4) can be replaced by 

(P4)' ('v'S E ::t)(\;;/x E P\S)(lx"- n SI> 1:::}x 1 n SE 'V) 

PROOF. (P4):::} (P4 )'. Let Ix"- n SI> 1 for SE ff and x E P\S. By the above proposition, 
x "- n S is a singular subspace of S and hence of rank 1 or 2. Take z Ex"- n S and 
y E S\(x"- u z"-). Apply (P4) to the point y and the line L == xz. Since y 1 n (x 1 n S) "i'- 0, 
as S is a polar space and x "- n S contains a line, we have y 1 nL 1 ~ 0. Moreover, 
u E y"- nL would yield u E y"- n z"-; hence u E S\{z} and x E uz, so x ES, which is absurd. 
Therefore y "- n L == 0, so that y 1 n L "- is a line contained in x "- n S but not on z. It 
follows that x "- n S is a plane. 
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(P4){::(P4)'. Suppose xEP and LE!!! are such that xl.nL=0 and xJ.nLJ.¥0. 
Take y EL and consider S = S(x, y ). Since (y, x J. n L J.) is a singular subspace of S of 
rank;:;;. 1, it is a plane by (P4 )'. It follows that x J. n L J. is a line, as wanted. 

LEMMA 3.5. If Sis a symp and x, y EP\S are collinear, while xl. n SE 'V and yl. n S "'-
0, then either y J_ nS ~ x l. nS or y J_ n SE 'V and x J. n y J. nS is a singleton. 

PROOF. Suppose z E y J_ n S\x J.. First of all we show that y J. n S is a plane, too. As 
xJ.nSE'Y(S) and Sis a polar space, zJ.nxl.nS is a line in S. Now both zJ.nxJ.nS 
and y are in the generalized quadrangle xJ_nzJ., so there is uExl.nS with {u}= 
xJ_ nz J_ nS nyl.. Since uz r;; yl. nS, Remark 3.4 implies that yJ_ nS is a plane. Finally, 
xl. nyl. nS = z-'- nxl. nyl. nS = {u}. 

COROLLARY 3.6. If SE f:I and M EA(, satisfy IM nSI > 1, then M nS E 'V(S). 

PROOF. For any w E M\S, we have w l. n SE 'V(S) by Remark 3.4. If z, w E M\S, then 
zJ_ nS = wl. nS by Lemma 3.5. If Mr;; S, there is nothing to prove; so assume M\S "¥ 0. 
Taking zEM\S, we get zJ.ns=nwEM\swl.ns=nwEMwJ_nS=MJ_nS=MnS. In 
particular, Mn S = zJ_ nS E 'V(S). 

Let S be a symp. On the set of planes 'V(S) a graph ('Y(S), =) is defined by Vi= Vz 
iff rk (Vi n V2 ) = 0 CVi. V2 E 'V(S)). It is well known that ('V(S), =) has either one or 
two connected components. In the latter case, each line is in precisely two members of 
'V(S), one of each connected component, and the connected components are complete 
graphs. 

COROLLARY 3.7. Let SE f:I and let JC be a union of connected components of ('V(S), = ). 
Then 

H(JC, S) = LJ Kl. 
KEX 

is a subspace containing S. 

PROOF. As S = UKExK, the subsetH(J'{, S) clearly contains S. We need only show 
that if x, y E P\S are collinear and x J. n S, y J. n SE%, then any z E xy is contained in 
H (%, S). If x J. n y J. n S = x J. n S, then clearly z .L n S = x J. n SE%, so we are done. There­
fore (cf. Lemma 3.5), we may assume xJ_ n yl. nS = {u} for some u EP. Consequently, 
z E P\S. Take v Ex .L n S\{u} and w E vJ. n yl. nS\{u} (notice that w exists because v, yl. n 
S are in the polar space S). Now x, y, w, v is a 4-circuit and z E xy, ~o that there is 
z 1 E z l. n vw. Notice that z 1-¥ u, for otherwise v E uw, whence v E y J. n S conflicting v "¥ u. 
Thus JzJ. nSJ > 1 as z 1, u E zJ. nS, and we are done by Remark 3.4 and Lemma 3.5. 

LEMMA 3.8. (a) If ME.;(/, and x EP\M satisfy xl. nM 7'= 0, then xJ_ nM E!f!. 

(b) If ME At, and LE!!! with rk(L n M) = 0, then there is a unique NE At,L with 
MnNE!!!. 

PROOF. (a) Suppose z Ex .L n M. Take y E M\x .L and consider S = S(x, y ). If Mr;; S, 
there is nothing to prove. Otherwise, M nS contains z and y, so M nS E 'V(S) by 
Corollary 3.6. It results that x .L nM = x J. n (Mn S) is a line. 

(b) By (a), L L nM is a line. Thus N = (L, L .L n M)J. is the unique max space containing 
L with M nN E !/!. 
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Notice that Lemma 3.8(b) can be reformulated as: (f!l.0 Aix) is a generalized quadrangle 
for each x E P. 

LEMMA 3.9. The graph er, ~)defined by Vi""' V2 iff Vi Sf:: v~ and V1 n V2E2 for 
V1, V2 E r is connected. 

PROOF. Notice that the sub graph induced on 'Y(S) is connected for any SEY'. Let 
VE 'V. By connectedness of (P, 2), it suffices to prove that any plane W with V n W ¥ 0 
is joined to X by a path in ('V, <:::: ). Let WE 'V\{ V} with V n W ~ 0. Suppose there are 
v E V\ Wand w E W\ V with v E w .L. Consider S(v, w ). There are planes M, N in S(v, w) 

suchthat(v, Vn W)£Mand(w, Vn W)£N.Nowrk(Mn V)>rk(Vn W)andrk(Nn 
W) > rk( V n W), so by the induction we are reduced to the case where V £ W.L. It 
suffices to treat the case where V n WE 2. 

Because of Corollary 3.3(a) there is a symp S containing V. Let U be a plane in S 
with V n U = V n W. Again, take v E V\ W, w E W\ V and u E U\ V. Then u E v .L and 
w E v.L. If w E u.L, then W = (w, V n W) £ (u.L n v.L, Un V) £ S. So we may assume we u .L. 

But then W<::: U22 'V, finishing the proof of the lemma. 

COROLLARY 3.10. The graph (Ai, 22) defined by M 1 <:::M2 iff rk(M1nM2)=l, is 
connected. 

PROOF. Note that M 1 and M 2 are adjacent in (.J;t, <::::) iff there are planes V £ M 1 

and W £M2 with V Sf:: W.L and V n WE 2. Thus there is a surjective morphism ('V, "=') ~ 
(At, z) of graphs given by y,_..,. V.L (cf. Lemma 3.l(d)). The desired result is therefore 
a consequence of the above lemma. 

LEMMA 3 .11. The graph (::£, - ) defined by L 1 - L 2 iff rk(L 1 n L2) = 0 and L 1 '6 Lt, is 
connected. 

PROOF. As before, the proof comes down to the case where L 1 c Li and rk(L 1 n L 2) = 
0. But then (Li, L 2) E 'Y, so the lemma results from the analogous statement for polar 
spaces with thick lines. 

LEMMA 3 .12. Let Li, L 2 E ::£. There is a bijection between JtfL, and .11.L,· 

PROOF. By connectedness of (2, - ) as defined in Lemma 3.11, we need only prove 
the lemma for Li. L 2 E 2withL 1 Sf:: Lt andL 1 nL2 is a point. Takex EL1 \L2 and y E L2\L1 
and let u: AtL1 ~.JJL2 be given by u(M) = (y, Mn y.L).L. It is not hard to verify that u is 
a bijection. 

LEMMA 3.13. Let M, NE At satisfy rk(M nN) = 0. Then rk(M) = rk(N). 

PROOF. Mn N = {u} for some u E P. In view of Lemma 3.8, the map </:>: 2u (M) ~ 
::e .. (N) given by <f> (X) = X.L nN is well defined. Moreover, it is an isomorphism of 
projective spaces. Hence the result. 

Consider the graph (.J;t, =) defined by M 1 = M2 iff rk(M1 n M2) = 0. The above lemma 
states that the members of a connected component of (Ai, =) all have the same rank. 
Lemma 3.8(b) and connectedness of (P, 2) yield that for any line L and each connected 
component :JC of (.J;t, =) there is a member of 'J[ on L. The following lemma shows that 
in fact (Ai, =) cannot have more than two connected components. 
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LEMMA 3.14. Suppose a line is contained in at least three max spaces. Then (.JU, =) 
is connected. In particular, all max spaces have the same rank. 

PROOF. By Lemma 3.12, any line is contained in at least three max spaces. Let M, N 
be two max spaces with M nN E.:£. We claim the existence of K EAi with K nM = K nN 
a singleton. In view of Corollary 3.10 this yields that (li, =) is connected. The last 
statement is then a direct consequence of Lemma 3.13. 

To show the existence of K as described choose x EM n N and y E (Mn N)i\(M u N). 
Notice that y exists because of the assumption that M nN is in at least three members 
of ,11,. By Lemma 3.9, (M nN, y) is contained in a syrup, so there is z E P with z in 
(M nN; y) = (x, y). Now K = (x, y, z)i E.Jfi and {x}sK nM == zi n (yi nM) == 
zi n (M nN) = {x} by Lemma 3.8. So K nM = {x}. Similarly, K nN == {x }. Therefore, 
the claim holds. 

LEMMA 3.15. If rk(M) = 2 for some ME Ai, then for any x E P and LE.:£ we have 
x 1 n Li f:- 0. In particular, the diameter of (P, .:£) is 2. 

PROOF. We may assume that xinL=0. By induction with respect to d(x,L), it 
suffices to prove the first statement in the case where d (x, L) == 2. Let y, z E P be such 
that x E y i and z E yin L, and take w EL \{z }. The hypothesis implies that there is a 
max space N of rank 2 on yz. Since xinN and w 1 11N are lines in N, they intersect 
. . s· i i N i 1 i i Li h h i m a pomt, say u. mce u Ex n w n s;;; x n w n z == x n , we ave s own x n 
Li f:- 0 as wanted. 

COROLLARY 3.16. If all max spaces have rank 2, then (P, 5£) is a polar space of 
rank 3. 

PROOF. Let x E P and LE.:£. We prove the Buekenhout-Shult axiom x l. n L f:- 0, 
cf. [1]. Suppose the contrary. Then, since the above lemma yields x in Li f:- 0, axiom 
(P4) implies that x J. n L 1 is a line disjoint from L. Thus rk( (L, x .L n L J.)) = 3, which 
conflicts with the hypothesis. 

LEMMA 3.17. If SE !:I and x E P satisfy 2x s £'(S), then (P, 5£) is a polar space of 
rank 3. 

PROOF. We prove that P = S. In view of the connectedness of (P, £') it suffices to 
show that for any y Ex i all z E y J. are contained in S. Let y, z be as described. If z Ex i\{x} 
we must have zx E 5£(S), so z ES. Suppose z Ex J.. Then S(x, z) is a syrup on x. But since 
symps are geodesically closed, S is the only symp on x. We obt2in S(x, z) = S, and z ES 
as wanted. 

4. A PROPERTY OF CLASSICAL GENERALIZED QUADRANGLES 

Throughout this section, (P, 5£) is a generalized quadrangle with thick lines. (P, £') is 
called classical whenever it occurs as the residue of a point in a nondegenerate polar 
space of rank 3 whose lines are thick. Since polar spaces of this rank are classified [7], 
the list of all classical generalized quadrangles is known. The result is quoted in Theorem 
4.1. For the duration of this section, we shall adopt terminology from [7], without 
recalling all definitions. The aim of this section is to prove Proposition 4.2. 
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THEOREM 4.1. (Buekenhout-Shult, Veldkamp, Tits.) Let (P, .2) be a classical 

generalized quadrangle. Then (P,.2) is one of the following: 

(a) A polar space Q ( 1T) of a projective space over a division ring F where r. is a polarity 

determined by a nondegenerate trace-valued (u, e)-hermitian form of Witt index 2 for 

some antiautomorphism a of F with u 2 = 1 and some e E {1, -1}. 

(b) A polar space Q (K) of a projective space over a division ring F where K is a projective 

pseudo-quadratic form represented by a nondegenerate u-quadratic form of Witt index 2 

for some antiautomorphism er of F with u 2 = 1. 

(c) The dual of the generalized quadrangle Q(Ko) in a projective space over a field F 

defined in (b) where Ko is represented by the quadratic form q: E xF4""' F over F defined 
by 

for Ea Cayley division algebra over F and N: E ""'F the quadratic norm form of this algebra. 

(d) {x, y}J. for two noncollinear points x, y of A 3,2(F). 

A grid is by definition a generalized quadrangle in which each point is in precisely 

two lines. Clearly the generalized quadrangles in (d) are grids. In Lemma 4.5 we shall 

find all grids occurring in the list. 

We recall that a family £1'l of lines in (P, .2) is called a spread in (P, .2) if the members 

of 112 partition P (i.e. P=ULE~L and for any two distinct Li.L2 Et.Jl we have 

L1nL2= 0). 
A grid has precisely two spreads, they are also called the parallel classes of the grid. 

If Li, L2 are disjoint lines of (P, .2) such that the subspace (Li. L 2) is a grid, then L 1L 2 

denotes the parallel class of the grid containing L 1 and L 2 • 

PROPOSITION 4.2. Let (P, .2) be a nondegenerate generalized quadrangle with thick 

lines which is either finite or classical. Suppose it admits a spread 97i in which for any two 

distinct Li. L 2 E £1'l the subspace (Li. L 2) is a grid and the family L1L2 is contained in 97i 

while (112, {L 1L 2 IL 1, L 2 E £1'l; L 1 r= L 2}) is a projective space. Then the rank of t.Jl as a 

projective space is 1 and (P, 2) is a grid. 

The remainder of this section is devoted to the proof of this proposition. Thus, from 

now on until the end of this section we assume that £1'l is a spread of the generalized 

quadrangle (P, 2) as described in the hypothesis of the above proposition. In the next 

lemma, the finite case is dealt with by a standard computational argument. 

LEMMA 4.3. If (P, 2) is finite, then rk(£1't) = 1. 

PROOF. Suppose rk(£1'l) > l. Then (P, 2) is not a grid. In particular, it is then a regular 

generalized quadrangle, i.e. there is a constant number, say 1 + t, of lines through each 

point, and a constant number of points, say 1 + s, on each line. By well-known theory 

[3], we have t ~ s 2 • On the other hand, 1 +st = l.o/i I= (s"'+ 1 -1)/(s -1) if the rank of 97i is 

m. It follows that t = 1 + s (and m = 2). A straightforward computation on multiplicities 

of eigenvalues of the adjacency matrix of the collinearity graph (cf. [3]) leads ~o integrality 

conditions which are only satisfied if s = 1. But this is excluded by the requirement that 

the lines are thick. 

The assumption that lines are thick is necessary, since the regular complete bipartite 

graph on 6 points provides a counterexample. 
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The classical case depends on the classification of classical generalized quadrangles as 
stated in Theorem 4.1. If (P, !e) is as in (d) of this theorem, there is nothing to prove. 

LEMMA 4.4. (P, !£)is not isomorphic to a generalized quadrangle as described in 4.l(c). 

PROOF. Suppose (P, !£) satisfies (c) of Theorem 4.1. Then the dual of {Li. Lz) is a 
bipartite graph in the dual of (P, !£). On the other hand, according to 10.7 of [7], the 
dual of {Li. L 2) is the dual of (P, !£) itself. This yields the absurdity that Q (Ko) of Theorem 
4.l(c) is a bipartite graph. 

If X is a subset of a projective space we denote by [X] the projective subspace of 
this projective space spanned by X. 

LEMMA 4.5. Let F be a division ring, let u be an antiautomorphism of F such that 
a 2 = 1 and let e E {1, -1}. Suppose g is either a polarity 'TT' determined by a nondegenerate 
trace valued (a, e)-hermitian form f of Witt index 2 or a projective pseudo-quadratic form 
K represented by a nondegenerate u-quadratic form q of Witt index 2. If Li. L 2 are lines 
of Q (g) with Lin L 2 = 0 such that (Li. L 2) is a grid, then a = 1 and (if g = 'TT') e = 1. 
Thus, Fis a field. Furthermore, (L 1 uL2)=[L1 uL2]nQ(g) unless g='TT' and F has 
characteristic 2. 

PROOF. Take distinct points ei. e3 in Li and e2, e4 in L2 such that {e2} =et nL2 and 
{e4}= ef nL2. Put Fu,e = {t-tue It eF}. As in (8.10) of [7], choose Ei. E 2 , £3, £4, points 
of the vector space underlying the projective space in which Q(g) is defined, such that 
E; represents e; (i.e. such that the ray through E; is e; for i = 1, 2, 3, 4) and such that 

f Cti E;x;, Ji E;y;) = xfyz + ex2yi +x3y4 +exry3 

and 

Now take a E Fu,e (where e = 1 if g = K ). Then the calculation performed in (8.10) of [7] 
shows that the projective point p(a) represented by (1, a, 0, 0) on the basis Ei. E 2, E 3, 

£4 is in (Li, L 2). But p(a) is collinear with both e3 and e4 and hence in {ei. e2} as (Li. L 2) 
is a grid. It follows that a = 0, and the conclusion is that Fu,e = {O}. 

If e = -1, this reads t +tu = 0 for all t E F, so that F has characteristic 2 and e = 1. 
It results that e = 1 and t - t"" = 0 for all t e F, whence a = 1. Since u is an anti­

automorphism, F must be commutative and therefore a field. 
The final statement of the lemma now results from (8.10) of [7]. 

LEMMA 4.6. Let F be a field and let g be either a polarity 'TT' determined by a 
nondegenerate symmetric form f of Witt index 2 or a projective quadratic form K represented 
by a nondegenerate quadratic form q of Witt index 2. Suppose Li. L 2, L 3 are distinct lines 
of Q (g) such that for each i E {1, 2, 3} the subspace {L; u L;+i) of Q (g) is a grid and 
L; n{L;-i uL;+i) = 0 (indices modulo 3). Then there are lines Ni. Mi EL1L 2\{Li} and 
Nz, Mz ELiL3\{Li} such that if (Ni uN2) and (Mi uM2) are grids, N1N2 nMiM2 does 
not contain a line of Q(g) which is disjoint with Li. 

PROOF. Let ei. e2, e3, e4 and Ei. E2, £3, £4 be as in the proof of Lemma 4.5. Thus 
ei, e3 E Li; ei ;C e3; e2, e4 E Lz and ei Ee~", ez e et; furthermore the vector E; represents 
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e, (i = 1, 2, 3, 4) and 

f (J1 E,x,, ,t E,y.) = X1Y2 + X2Yi + X3y4 + X4y3, 

q(t1 E;x,) =x1x2+x3X4 
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if g = 1T}. 

if g= K 

Next, take e5EL3 with {e5}=efnL 3 and e5 Ee 1e5 with {e5}=efne1e5. Then e 5 E 
(L1 uL3) so there is a line L; E 9't on e 5 contained in (Li uL3). Since ei,,: e5 , we may 
replaceL3 by L; without harming generality, so as to obtain e5 E ef nef nL3. Lete6 EL3 
be such that {e6}=d nL3 and let e~ EL 2 be such that {e~}=dnL2 • The projective 
space A= [L1 u L 2 u L 3 ] has rank 3, 4 or 5. 

Let us first consider the case where rk(A) = 5. If g = 1T, then char(F),,: 2 as otherwise 
the Witt index would be strictly larger than 2. So we may assume that g = K. Consider 
q I [L,uL 3J· Let 'YE F and E~ a vector representing e ~ be such that E~ = £ 4 + E 2y (notice 
that e ~ >6 e2). It is easily derived that there are vectors £ 5, E 6 representing e5, e6 such that 

q (E2x2 + £4X4 + Esxs + E6x6) = X2X6 + X4X5 + yX4X6 (x; E F). 

Considering q lcL,uL3 J, we obtain a, {3 E F\{O} such that 

q(E iX1 + E3X3 + Esxs + E6x6) = ax1X6 + {3x 3x 5 (x; E F). 

The foregoing restrictions describe q !A fully: 

(x; EF) 

Now let ni (n2, n 3, n4, respectively) be the point of Q(K) nA whose homogeneous 
coordinates with respect to E i, £ 2 , .•. , £ 6 are (1, 0, 0, 0, 1, 0) ((0, 0, -a, 0, 0, {3), 

(1, 0, 0, 1, 0, 0), (0, -1, 1, 0, 0, 0), respectively). Then N 1 = n1n2 is a line of L 1L 3 and 
N 2 = n3n4 is a line of L 1L 2. 

Notice that Ni nN2 = 0 as LiL 2 n LiL 3 = {L 1}. Now suppose (N1 uN2) is a grid with 
N EN1N2nL2L3 for a line N of Q(K). Then clearly N,,: Ni, N 2 . Moreover e2e5 is a line 
of (L2uL 3 ) not parallel to L 2 , so e 2e5 nN>60. But a point of N\(L 1 uL2) has 
homogeneous coordinates of the form v + A.u for A. E F, where v = ((, 0, -a, 0, (, (3) and 
u = (1, -71, 71, 1, 0, 0) for (, 71 E F are homogeneous coordinates of a point in Ni, N 2, 

respectively. Thus e2e5 nN,,: 0 implies the existence of(, 71, A.,µ, v EF such that 

(1 +A.(, -71, 71 -A.a, 1, A.(, A.(3) = (0, µ, 0, 0, v, 0). 

The equation leads to a classical contradiction in the fourth coordinate. This proves the 
lemma in the case where rk(A) = 5. 

Next, assume that rk(A)~4. Then L3n[L 1 uL2],t-0, so L3n([LiuL2]n 
Q(~)\(L 1 uL2 )),,: 0. According to Lemma 4.5, this implies that F has characteristic 2 
and that g = 7T. In particular, 1T is a symplectic form. 

If rk(A) = 4, then 7T is degenerate and has a kernel consisting of a single (projective) 
point z. Clearly z e An Q(g), so we may consider the quotient by [z] so as to reduce the 
proof to the case where rk(A) = 3. 

Thus, for the rest of the proof, we have that F has characteristic 2, that rk(A) = 3 and 
that f, = 1T is a polarity determined by the symplectic form whose restriction to A is given 

by 

(x;, y; EF). 



116 A.M. Cohen 

A straightforward computation using e5 E {e1, e2}J_ yields the existence of a E F\{O} such 
that Es given by (0, 0, a, 1) on the basis Ei, E2, £3, £4 represents es. 

Also, e6 e {e3 , esV leads to the existence of {3 E F\{O} such that the vector E6 given by 
(1, {3, 0, 0) on the same basis, represents e6. 

Now Jet n 1 (n 2, n 3, n4 , respectively) be the point of 0(11") whose homogeneous coordin­
ates with respect to Ei. E2, £3, £4 are (1, 0, a, 1) ((1, {3, {3, 0), (1, 0, 0, 1), (0, 1, 1, 0), 
respectively). Then N 1 =n1n2 is a line in L1L3 and N2=n3n4 is a line in L1L2. Now 
(N1 uN2) is a gfid. Put N=(N1uN2)n(L2UL3). Let x, y be the point of Q('1T") whose 
homogeneous coordinates with respect to E1, E2, £3, £4 are 

X = (0, a, a, 1), 

x = (0, ((+ l)a:, (a, n 
Y =(a, a{3, 0, a+ T/f3), 

if a= {3, 

if a ¥- {3, and where ( 2 =a (a+ {3), 

where 17 2 =a (a+ /3)/ {3 2 , 

respectively. Then x, y are distinct collinear points of N and XT1f3 2 + Y(a + ri/3) = 
(a 2 +riaf3, 0, a 2{3, 0) (=Xa2 + Ya if a ={3) represents a point of xy on L 1• 

It follows that {xy} = NtN2 nL2L3, so that N1N2 n L2L3 does not contain a line of 
Q('1T") which is disjoint with L1. This settles the lemma. 

The classical case of Proposition 4.2 is dealt with by the following lemma. 

LEMMA 4. 7. If (P, !t) is classical, then rk(@'l) = 1, whence (P, 2) is a grid. 

PROOF. In view of Lemma 4.4 and the observation, made before, that (P, 2) is a 
grid in case (d) of Theorem 4.1, we need only consider cases (a) and (b). Let Li. L2 be 
two lines from £ili. Then L 1 nL2 = 0 and (L 1 uL2) is a grid, so by Lemma 4.5 we may 
assume that (P, 2) = Q(~) fore as described in the hypotheses of Lemma 4.6. Suppose 
we have L3E£ili\L1L2. Then (L;uL;+1) is a grid and L;-1n(L;uLi+1)= 0 for each 
i e{l, 2, 3} (indices taken modulo 3). By Lemma 4.6, however, there are Ni. M1 E 
L1L2\{L1} and N2,M2EL1L3\{L1} such that N1N2 nM1M2 does not contain a member 
of £ili. This means that Pasch's axiom is not satisfied, contradicting that (g'l, {L1L2JLi. L2 E 
£ili; L 1 ¥- L 2}) is a projective space. The conclusion is that £ili = L 1L 2 , in other words, that 
rk(£ili) = 1. 

5. THE POINT RESIDUE OF A GRASSMANN SPACE 

We continue the study of Grassmann spaces. Proposition 4.2 will be used in Lemma 
5.7 to derive Proposition 5.9, the main goal of this section. For the duration of this 
section, (P, 2) is a connected Grassmann space. Furthermore, oo is a fixed point of P 
and P"", 2"", [!"", .fd"" stand for 200, 2oo('V oo), 200(9' oo), !too(.JJ,oo), respectively. Moreover, 
if VE 'V ""' then V"" denotes .ftoo( V). Similarly for members of .ft, 9' and .Ji,. 

It is straightforward to check that the residue (P"", 2"") on oo is a connected incidence 
system of diameter 2 satisfying axioms (Pl) and (P2). By Lemma 3.1, the members of 
.;{{""are maximal singular subspaces of (P"", ,;eoo) isomorphic to projective spaces and of 
the form L.i. for any line L e.ft00 contained in them. Moreover, (PCIJ, .JJ,CIJ) is a generalized 
quadrangle by the remark following Lemma 3 .8, which is easily seen to be nondegenerate. 
Members of [I lead to generalized quadrangles in (P00

, .ft""). We shall call them quads. 
Any two noncollinear points are in a unique quad. Also, if Se yoo and x E P 00\S, then 
xJ. nS is either empty or a line of (P"",2""). This is immediate from (P4)'. 
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LEMMA 5 .1. Suppose Me .Ji 00 and S, Te ft"" satisfy Sn T ;:C 0, M 11 S ;:C 0 and 
M 11 T ;:e 0. Then M nS n T ;:e 0. 

PROOF. Let x eS n T and u eM nS, w eM 11 T. If x eM or u = w, we are done. So 
assume that xeM and u ¥-w. Now xew_L would imply weu_1_nx_1_s;;S if uex_L and 
x E (uw )_1_ = M otherwise; similarly x E u _1_ can be settled. Assume x e u _1_ u w _1_. There is a 
unique pointy in x_1_ nM. We have y E {x, u}_1_ n{x, w }_]_ s;;S n T, soy e M nS 11 T. 

LEMMA 5.2. Assume that for any M e.Ji 00 and SE ft"", we have M 11S ;:C 0. Then 
.Ji 00 = !£00 and 19""°1 = 1, so that (P, !£) is a polar space of rank 3. 

PROOF. Fix x eP"". Suppose S, Tare distinct quads on x. Write L = S 11 T. We shall 
first show that L is a line. Indeed, it is a singular subspace on x, so L is either a point 
or a line. Choose M e.Ji00 not on x. By Lemma 5.1, there must be a pointy inM nS n T, 
so that xy s;; L. It follows that L = xy is a line. If N e.JJ, 00 is disjoint from L _1_' we get a 
contradiction with N n L = 0. Since such N exist, it follows that S is the only quad on 
x. Therefore, S contains all points in P00 noncollinear with x. But for each point z Ex _1_\{x }, 
there is a point u e z _j_\x _1_, so that z ex _1_ 11 u _1_ s;; S. This shows that P00 = S. Thus the 
maximal cliques are members of 2 00, i.e . .Ji 00 = 2 00 • Finally, by Lemma 3.17, the 
Grassmann space (P, 2) must be a polar space of rank 3. 

LEMMA 5.3. If rk(M0 ) = 2 for some M 0 e.Ji, then x_1_ nM ;:C 0 for any x eP and any 
M E .Ji of rank > 2. 

PROOF. Suppose Me .Ji is of rank> 2 and x e P\M. In view of the connectedness of 
(P, !£), we may restrict attention to the case where there are z E P and y e M such that 
z ex_1_ n y_1_. As ye z_L nM, we have L = z_L 11M E2 by Lemma 3.8(a). If x_L 11L ;:C 0, 
we are done. So assume x_1_nL=0. Now zex_1_nL_1_, so x_1_11L_1_e2 by (P4), and 
(x _1_ n L _1_, L) is a projective space of rank 3 on L. But M is the unique space on L of 
rank> 2 by Lemmas 3.13 and 3.14, so z ex_1_ 11L _1_ s;;M; in particular z ex_L 11M, ter­
minating the proof. 

LEMMA 5.4. Suppose rk(M0) = 2 for some M 0 e.Ji. If both Mi. M2 e.Ji have rank >2, 
then IM1nM2!=1. 

PROOF. We only need to establish M 1 nM2 ;:C 0 in view of Lemma 3.14. Suppose 
M 1nM2 = 0. Take x eM1. By the previous lemma and Lemma 3.8(a), L =x_j_11M2 is 
a line. Take v, w eL with v ;:Cw and consider B = v_1_ nM1 and C = w_1_ nM1. If B = C, 
then (B, L) is a projective space of rank 3 on L so is contained in M2, which conflicts 
M 1 nM2 = 0. Thus B ;:CC. Now B, C are lines on x in Mi. so rk((B, C)) = 2 and there 
is yeM1\(B,C). But y_LnL=0 so A=y_j_nL_Le2 as xeA by (P4). Consequently, 
(A, L) has rank 3 and contains L, so is in M 2. It results that A is in M2, whence 
xEM1nM2. 

COROLLARY 5.5. Suppose there are Mi. M 2 e.Ji with rk(M1) = 2 and rk(M2) = m > 2. 
Let ,JJ,+ (.Ji-, respectively) be the connected component of (.Ji, ==) whose members have 
rank m (2, respectively). Then (.Ji+,p.M.+), where p.M.· ={,JJ,;jx eP}, is a projective space 
of rank m + 1 such that the points and lines of (P, 2) correspond to the lines and pencils 
of (.Ji+, p.M•) respectively. In other words, (P, 2) is isomorphic to Am+i,2(F) for some 
division ring F. 
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PROOF. We verify Tallini's axioms in [6]. First of all, it is obvious that no line is a 
maximal singular subspace. 

(a) Any two members of At,+ meet in exactly one point. (This is the content of Lemma 
5.4.) 

(b) If ME.;(;(,+ and M1 E At,- then M 11 M1 is either empty or a line. (This follows from 
Lemmas 3.13 and 3.l(d).) 

(c) For any line L there is exactly one ME.;(;(,+ and one M 1 E At,- such that L = M 11 M 1• 

(This results from the remarks preceding Lemma 3.14.) 
The corollary now follows from Proposition I in [6]. 

Instead of referring to [6], a direct proof could have been given, but this would have 
lengthened the paper by another few pages. 

LEMMA 5.6. Assume that each line is in at least three max spaces. If M nS is empty 
for ME At, 00 and SE f/00 , then {x EM Ix .i 11 S E 2 00

} contains a subspace which is a projective 
plane. 

PROOF. Take x ES. It has a unique neighbor y in M. As L 1 = y .1. 11 S contains x, it 
must be a line on x. Let L be another line in S on x, and take x2EL\{x}. There is 
y2 E xi 11M. Notice that y ':/: Y2 for y.i 11S is a clique and x2eLt. Write L2 = yi nS. This 
is a line disjoint from L1 (cf. Lemma 3.5). Suppose L 1 is a third line on x, not in Lt u L .i 
(such a line exists by assumption). Take w EL 1\{x }. If w .e S, then w .L n S contains x, so 
must be a line in S distinct from L 1 and L. Therefore there is a point X3Ex.i11S\(L1 u L ). 
Again, take y 3 ext 11M and consider yt 11S. It has a line on X3 not in (Li. L2)· Thus 
y3 e YY2 and (y, y2, y3) is a subspace of the desired kind. 

We recall from Corollary 3.7 that for SEY and M eAt,, the subset Su 
{zEM\Slz.inSe'V} is denoted by H('V(S),S). We shall also write H(S) instead of 
H('V(S), S). 

LEMMA 5.7. Suppose there are M eAt, and S eY with M 11S = {ro}. Then M 11H(S) 
is a subspace of M of rank at most 2. 

PROOF. Set V =Mn H(S). It follows from Corollary 3.7 that V is a subspace of M. 
Recall that M 00

, S00
, V 00 denote the subspaces of (P00

, 2 00
) induced by M, S, V, 

respectively. Let fYt be the subfamily of 2 00 whose members occur as z.i 11500 for some 
z E V 00• Then~ is a spread of the quad S 00 , for any two members of~ are disjoint (in 
P"") by Lemma 3.5 and if x E S 00 , then x .i 11M00 = {y} for some y E V 00 by Lemma 3.8(a), 
whence y.L n S"" is a member of fYt on x. Now let L be a line of (P"", 2 00

) in V 00
• Then 

U = UxeLX.L 11S00 is a grid in S00 • For suppose there are xi, y1 EU with x 1 E yf\{y1}. 
Then there are unique x, y e L with x 1 Ex .i n S 00 and y 1Ey.i11 S00

• If z 1 E X1Y i. then either 
x = y and z 1 ex.i nS00 or x ':/: y. In the latter case x, y, y1, x1 is a 4-circuit, so there is 
z exy with z1Ez.i11S00 • So U is a subspace. Proceeding with x ':/: y, we see that X1Y1 
and x.i nS"" are the only two lines on x1 in U, so U is indeed a grid in S 00

• Moreover, 
one parallel class of lines in U is entirely contained in f?t. Denoting by L1L2 for Li. L2 E fYt 
the parallel class of lines in (Li, L2) belonging to f?t, we obtain a surjective morphism 

of projective spaces given by u(x) = X .L nS""(x E Vj. If X i, X2 E V 00 satisfy x t 11 Sa:.= 
xi n s«>, then N = (xi, x2, xt n S00) is a singular subspace with rk(M00 nN);;;:; rk((xi. x2)). 
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S. N s°" .L s°" 0 °" °" mce 11 = x 1 11 #- , we have M #- N, whence rk(M 11 N).;; 0. It results that 

rk((xi,x2))=0, i.e. x1=x2. This shows that<-< is bijective, so that rk('V)=rk('V'°)+l= 

rk(f7l) + 1.;; 2 by Proposition 4.2. 

COROLLARY 5.8. Each line of (P, .:£) is in precisely two max spaces, unless (P, ;t') is 

a polar space of rank 3. 

PROOF. Suppose there is a line in strictly more than two max spaces. Let SE ::I and 

MEAi satisfy M11S={oo} and consider V=M11H(S) (cf. Corollary 3.7 and Lemma 

5.7). By Lemma 5.7, rk(V).;;2 and by Lemma 5.6, rk(V)~3, contradiction. It results 

that the conditions of Lemma 5.2 are satisfied, so that (P, :£) is a polar space of rank 3. 

We summarize the results obtained in this section. 

PROPOSITION 5.9. Let (P, :£) be a connected Grassmann space whose max spaces 

have finite rank. Assume (P, .:£) is not isomorphic to a polar space (of rank 3) or A,..i(F) 

for some n ~ 4 and some division ring F. Then for each point x E P, the residue (.2x, .«x) 

is a grid. In particular, each line is in precisely two max spaces. Moreover, the rank of any 

max space is >2. 

6. COOPERSTEIN'S THEOREM A 

Until further notice, (P, .:£) is a connected Grassmann space such that any line is in 

precisely two max spaces, each of them of rank> 2. We fix a point oo of P and maintain 

the notation of Sections 3 and 5. 

LEMMA 6.1. LetM, N EAiand S Efl'withM 11S,N 11S E 'V. Then rk (M 11N nS) =0 

if! M=N. 

PROOF. The asser!ion follows from the fact that x .L n S is a singular subspace for 

any x EP\S. 

We supply the graph (Ai, =) with the natural family of lines that turns "« into a 

Gamma space whose collinearity graph is (Ai, = ). To avoid confusion, we denote by 

MT for ME .;fi (rather than M.L which has a distinct interpretation) the set of vertices 

in (Ai, =) at distance at most 1 to M. For Mi. M1 E Ai with M1 = M1, the line M1M2 is 

defined by M 1M 2 ={Mi. M 2}n. A priori, it is not clear that this turns Ai into a linear 

incidence system, but it will follow from 6.3 that it does. By <& we denote the family of 

all such lines, i.e. 

We need some more notation. For x E P, L E.:£, V E r and ME Jtl with x EL s; V s; M, 

denote by p(L, M) or p(L, V) the unique member of .;fi containing L1 and di~tinct from 

M. Furthermore, put l(x, V) ={p(L 1, V)IL 1 E.2( V)x}, m(x, M) ={p(L ,M)IL E.2(M)x} 

and 

n(x, V)={p(L', W)IWE'Vx; Wnp(L", V)E.2,foreachL"E.2(V),;L'E2(W)}. 

LEMMA 6.2. Two distinct max spaces Mi, M1 are at distance 2 in (.;fi, =)if! M111M2 = 

0 and there is ME Ai with Mn M 1, Mn M 2 E.:£. Moreover, connected components of 

(Ai, =) are not complete. 
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PROOF. Write m = m(oo,M) and n = n(co, V). By Corollary 3.3, both m and n are 
projective spaces. By construction of m, there is a bijective map µ.: M°" ~ m given by 
µ, (L 00) = p (L, M) for L E !£00(M). Given 'V' E 'Y(M)ao, we have µ, (!£( 'Y')oo) = 
{p(L', V')lco EL' E 2( V')} = l(co, V'), so thatµ. maps lines of (P00 , 2 00) in Mao onto lines 
of (Al, ~) in m. As rk(M00) = i -1, this shows that rk(m) = i -1. 

Next, consider n. Choose Li. L 2 E !£( V)oo distinct and write Mi = p(L;, V). Furthermore 
let H; be a hyperspace of M; disjoint from oo. Given xi EHi. the line xt nM2 on oo 
intersects H2 in a point x2. 

This leads to a map If!: Hi~ n given by l/f(x 1) = p(x1x2, (co, xix2)). This map is easily 
seen to be injective. Moreover, if L1 is a line of Hi. then l/f (LD is a line of (Al, '?6'): 

Let L~ = UxeLi x 1 nH2 and take xi, y1 EL!, Xi ¥-y1. Then there are unique X2, Y2EL~ 
collinear with x i, y i respectively. Consider the generalized quadrangle x t n y t. It contains 
the lines cox2 and cx:iy 1, so there is a point co'exi nyt nxi nyi\ro1 • Now l/f(L1)= 
l(co', (oo', Ll)) is a line inn. 

As a consequence, r{l(H1) is a singular subspace of n of rank i -1 (note that Mi is of 
rank i). But l(oo, V) is a line of n completely disjoint from l/l(H1). We conclude that 
rk n;;;;:: i + 1. We finish by showing that any member N of n is on a line in (Al, '?6') from 
a member of l(oo, V) to a member of r{l(Hi). By analogous arguments to what we have 
seen before, we are easily led to the case where N = p(y1y2, V) for distinct Yi in 
NnMi\{oo} (i=l,2). Let x;ENnH;, so that xico=y;oo. If x1=Y1 and x2=Y2 then 
NE r{l(H1), so we may assume that x 1x2 ;C yiy2. Since both lines are in V, there is z E V 
with x1x2nY1Y2={z}. Now N=p(y1y2, V) is on the line l(z, V) which has member 
p(coz, 'Y) in l(co, V) and member p(xix2, V) in r{l(H1). 

We conclude that n is spanned by l(oo, V) and r{l(Hi). Thus rk(n)..:; i + 1, and equality 
holds. 

Recall that in Section 2 the quotient of an incidence system by an automorphism group 
is defined as well as the incidence system Aa,d(F). 

We are now ready for the proof of the main result of this paper. 
We drop the assumptions on (P, !£) made at the beginning of this section. 

6.9. PROOF OF THE MAIN THEOREM. First of all, notice that if (P, !£)is as described 
in (a) or (b) of the main theorem, then (P, !£) is a connected Grassmann space whose 
max spaces have finite ranks. Furthermore, if (P, !£) is a connected Grassmann space 
and a- is an involutory automorphism of (P, !£) satisfying d (x, x a-)~ 5 for all x E P, then 
(P, !£)/(a-) is readily seen to be a connected Grassmann space, too. This yields that if 
(P, !£) is as in (c) of the theorem, it is a Grassmann space of the desired kind. This 
proves the "if" part of the theorem. 

As for the "only if" part, let (P, !£) be a connected Grassmann space whose max 
spaces have finite rank. We claim that one of the following holds: 

(a) (P, !£) is a nondegenerate polar space of rank 3 with thick lines. 
(b) (P, !£) ==Aa,d(F) for some a;;;;:: 4, d:;;;; (a+ 1)/2 and some division ring F. 
(c) There is a natural number d;;;;:: 5, a division ring F and an involutory automorphism 

<T of A= Azd-1,d(F), interchanging the connected components of the graph (Al, =)on the 
max spaces, with d(x, xu) ~ 5 for all points x of A such that (P, !£) :=A/(a-). 

In case (c) above, a- is induced by a polarity of the projective space over F of rank 
2d - 1 such that x r. x O' has codimension at least 5 in x for any subspace x of rank d - 1. 
By the classification of such polarities, cf. [3], it follows that F must be infinite. Therefore, 
establishing the claim suffices for the proof of the main theorem. 

By Lemmas 3.13 and 3.14, rk(M) for ME Al attains at most two values. Let d be the 
minimal of these and let b be the other one if it exists, let b = d otherwise. The proof 
runs by induction on d. The cased= 2 has been settled in Proposition 5.9. 
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Assume d > 2, and suppose (P, ft) is not a polar space of rank 3. By Proposition 5.9 
we have that each line is in exactly two max spaces. By Corollary 6.7 and Lemma 6.8, 
there is a connected component Al+ of (Al, =) such that the induced subgraph (.;(.(,+, ""') 
is the collin_;arity graph of the connected Grassmann space (.;(.(,+, ~+) where ~+ = 
{/ E Cf!J J l n.i(, ;i!: 0}, whose max spaces have ranks d-1, b + 1. The induction hypothesis 
then yields that (b) occurs, so that (.b.+,~+) ==Ad+b-l,d-i(F) for some division ring F. 
Now Ad+b-1,d(F) can be thought of as the incidence system obtained from Ad+b-l,d-i(F) 
by taking the max spaces of rank d - 1 from one connected component under = in 
Ad+b-t,d-1(F) for points and the relation = (i.e. M =N iff Mand N meet in a point) for 
collinearity. Remember that this determines Ad+b-l.d(F) as any Grassmann space is 
determined by its collinearity graph (cf. Lemma 3.1). 

Let (P', ft') be the incidence system that can be obtained from (.;(.(,+, ~+) in just the 
way Ad+b-1,d(F) is obtained from Ad+b-1,d-1(F) (notice that this makes sense as 
(.;fJ,\ Cf!J+) ==Ad+b-1,d-1(F)). 

If m E P', then m is a projective space in (.b.,~) of rank d -1, so m = m (x, M) for a 
unique x E P and some Me .;fJ,\m. Thus there is a map µ,: P' ~ P sending m e P' to the 
unique x E P for which there is ME Af.\m with m = m (x, M). This map is clearly surjective 
and is either 2: 1 or 1 : 1 according as Al =Al+ or not, i.e. according as (.;(.(,, =) has one 
or two connected components. We claim that µ, is a morphism of graphs. For if m, n 
are collinear in (P', 2'), the points µ, (m) and µ, (n) are both contained in the max space 
M for which m n n = {M}. Consequently, µ, (m) and µ, (n) are collinear in (P, ft). 

If (.;fJ,, ""') is disconnected, the inverse map is a morphism, too, and we have (P, ft)== 
(P', ft') =:Ad+b-1,d(F). 

Let from now on (.;fJ,, =) be connected. Now µ, is a surjective 2: 1 morphism. Also 
b =din view of Lemmas 3.13 and 3.14 so (P', 2') ==A2d-1,d(F) for some d;;;:: 3. Choose 
me P'. We shall show that µ, is bijective when restricted to the neighborhood m .J_ of m 
in (P', 2'). Let x, y be distinct collinear points of P, suppose µ, (m) = x and let m 1. m2 e P' 
both be collinear with m and such thatµ, (m1) = µ, (m2) = y. 

As before, we may assume that m = m (x, M) for ME.;(.(, with xy s;;; M. Similarly we 
may take M; e .;fJ, with xy s;;; M; such that m; = m (y, M;), for each i E {1, 2}. Suppose now 
that M 1 ;i!: M 2. Since each of M, Mi. M2 contains xy, it follows that M coincides with M1 
or M 2 • Without loss of generality we may assume that M = M1. Since m2 is collinear 
with m, there is YE...« such that YE m (x, M) nm (y, M2). 

Thus Y contains xy, so either Y =Mor Y =Mz. But Y =M confl.ictsM n Y eft and 
Y = M 2 conflicts M2 n Ye ft. It results that M1 = M2, so that mi= p (y, Mi)= p (y, M2) = 
m2. We have established that the restriction ofµ, to the members of P' collinear with a 
given point is injective. 

Our next step is to show that the restriction of µ, to the subset m .J_ of P' of members 
collinear with m is an isomorphism of graphs. Thus for mi. m2 E P'\{m} collinear with 
m such that x1=µ,(m 1), x2=µ,(m 2) are collinear in P, we have to derive that m1 is 
collinear with m2 in (P', ft'). Let V = (x, xi. x2>. where x = µ,(m}. 

Since m J_ m;, there are X; em nm; for i = 1, 2. Thus X; contains xx;. If x1 E xx2, then 
X 1 nX2 = xx 2 e ft, confl.ictingX1 =X2. It follows that Vis a plane. Since V nX; =xx; Eft, 
we have m; = m (x;, V.J.) so that p(x 1x2, V) E m1 n m2. Hence m1J_m2. 1 

Next, define u: (P', ft') ~ (P', 2') to be the unique map such that µ, - (µ, (m)) = {m, m "} 
for each m e P'. Clearly, u is an involution. Also, u is an automorphism of (P', 2'). For 
if mJ_n for m,neP', then µ,(m)..Lµ,(n) and n"em.J_ sinceµ, is bijective on m.J_. But 
then m" ..Ln" sinceµ, is bijective on (n").J.. So indeed, u is an automorphism of (P',.f£') 
and d(m, m");;;.:3 for any m eP'. 

But if there is m E P' with d (m, m") = 3, then there are mi. m2 E P' with m ..L m 1 .L m2 ..L 
m "', so that m ..L m 2 ..L m f .L m ". Since µ, is an isomorphism on the subgraph induced on 
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m-\ and{µ,(m 1), µ,(m 2), µ,(m)} is a clique, this yields that m 1 ..lm2. This is in contradiction 
with m1.l.m 2 • 

We have shown that d(m,ma)~4 for any mEP'. Suppose d(m,mcr)=4 for some 
m EP'. Then there is a minimal path m, mi, m2, m 3 , ma with mi EP' (i = 1, 2, 3), so that 
m1Emj_nm~ and m3Emj_n(m2)J_. This leads to two connected components µ,(m.Ln 
m~) and µ,(m..Ln(m2)J_) in µ,(m)J_nµ,(m 2 )..L. Indeed, if there are n 1 Emj_nm~ and 
nzEm..Ln(m2)J_ with µ,(n 1)1.µ,(n2), then n 1 J.n2 as ni,n 2 Emj_, so m 2 , ni, n 2 , m2 is a 
path of length 3 contradicting d (m 2, m n ~ 4. But this contradicts the fact that µ, (m )J_ n 
µ, (m2)..L is connected (as it is a generalized quadrangle by assumption). We conclude that 
d(m, mCT)~5 for all m EP'. Finally, since (P',2')==A2d-i.d(F) has diameter d, the 
existence of CT implies that d ~ 5. This ends the proof of the theorem. 

We conclude this section by mentioning that A2d-i,d(IR)/(CT) ford~ 5, where CT is the 
polarity associated with the quadratic form I~~ 1 x~ (or any other nondegenerate form 
of Witt index at most d - 5), provides an example of a Grassmann space of the type 
occurring in (c) of the main theorem. 

7. APPLICATIONS 

In this section (P, 2) is a connected Grassmann space. Consider the following two 
axioms, each of them stronger than (P4). 
( Q4) If x E P and L E 2 with x J_ n L = 0, then x J_ n L J_ E 2. 
(R4) If L 1,L2 E2 with L 1 nL2 :10 and z EP, then there is u Ezj_ with u..LnL 1 ¥0 

anduj_nL2¥0. 
It is an easy exercise to show that (04) holds for (P, 2) iff (Q4)' holds, where 
(Q4 )' If SEY and x E P\S, then xj_ n S is either empty or a maximal clique in S. 
Also, (R4) is easily shown to be equivalent to (R4)': 
(R4)' If SEY and x EP\S, then x..L nS is either a singleton or a maximal clique in S. 
We note that (P, 2) has diameter 2 if ( Q4) holds and diameter at most 3 if (R4) holds. 

LEMMA 7.1. Suppose (P, 2) satisfies (Q4). Let S, T be distinct symps on co. If 
Sn T :::i {co}, then Sn TE 'V. 

PROOF. Consider the residue of oo. Suppose x E S 00 n T 00
• Take y E T 00\x J_. Notice 

that ye S 00 as S 00 n T 00 is a clique. Since L = y J_ n S 00 must be a line in S 00\{x }, there is 
z E x.L n L\{x }. This implies z E xj_ n yj_ s T 00 , so that xz s S 00 n T 00 • Thus Sn T contains 
a plane, hence coincides with a plane, and we are done. 

THEOREM 7 .2. If (P, 2) is a connected Grassmann space all of whose max spaces 
have finite rank and in which (Q4) holds, then (P, 2) is either a polar space of rank 3 
or isomorphic to Aa.2(F) for some a ~ 4 and some division ring F. 

PROOF. Suppose Mi.M2E..;f;f, have rank >2 and M1nM2E2. In order to apply 
Proposition 5.9, we verifythatL =M1 nM2 is in at least three max spaces. The hypotheses 
on the ranks of Mi, M2 imply the existence of points x1, x2 E M1\M2 , and Y1, y2 eM2\M1 

such that rk((xi, x2, L)) = rk((yi, Y2, L)) = 3. Clearly x;E yf. Consider Si= S(x;, y;) for i = 
1, 2. As M 1 nM2 E.:£(S1 n S2), Lemma 7.1 yields that S 1 n S2 E °I/. Thus, if S1 n S2 sMi, 
then S1 n S2 = S1 nS2 nM1 = S1 nM1 = S2 nM2 by consideration of ranks, so (x 1, x2 , L) s 
S 1 n S2 and 3 = rk((xi, x2 , L)) ~ rk(S1 n S2) = 2, a contradiction. Hence S 1 n S2 'l;. M 1. 
Similarly, one can prove S 1 n S2 'l;. M2. Now (S 1 n S2 )J_ is a third max space on L, and we 
can finish by Proposition 5.9. 
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The only incidence systems among Aa,2(F) for a ~ 4 and F a division ring in which 
(R4) holds for those for which a =4. Thanks to Proposition 5.9, we may therefore, and 
shall, restrict attention to the case where any line is in precisely two max spaces, each of 
them of rank >2. 

LEMMA 7.3. Let X1, X2, x 3, x4, xs be a minimal 5-circuit (i.e. xt nx;+2x;+ 3 = 0 for 

all i, indices taken modulo 5). If xtnS(x2,x4)E'V, then x;LnS(x;+i,X;+3 ) and xf-n 
S (X;-1, X;-3) are in 'V for all i (1~i~5). 

PROOF. Notice that xt n S(x2, X4) E 'V iff {x 1, x 2 , x3 , x4}.L # 0. Thus x± n S(xi. x3 ) E "V 
fc~ll~ws. Al~o for u E {x1, X2, X3, X4}.L, we have UX4 c;; xt n S(xi. x4), so xt nS(xi, x 4 ) E 'V. 
Similarly X2 n S(xi. X4) E 'V. The argument is easily completed. 

LEMMA 7.4. Suppose (P, .2) satisfies (R4). If x1, x 2 , ••• , x 5 is a minimal 5-circuit in 
P, then 

(a) x f- n S(x;+i. X;+3) E 'V for each i (1~i~5; indices taken modulo 5). 
(b) {xi.x2, ... ,xs}.l=0. 

PROOF. (a) Suppose xi, xz, . .. , x 5 is a minimal 5-circuit which is a counterexample 
to the statement. By Lemma 7.3, it is a circuit with xf- nS(x;+i. X;+3) a singleton for 
each i. Let M be a max space on x 3x4 and take M 1 E .U on x 2x 3 with M 1 nM = {x3} and 

M2EJ({, on X4Xs with M2nME.2. Now L 1 =xtnMi, L 2 =xtnM2 , L 3 =x3nM2 = 
M nM2, L4 = x± nM1 are lines on x 2, x 5, X4, X3, respectively. 

Since Li nL4 c;; {xi. x2, X3. x4}.L andL2 nL 3 c;; {x1, xs, X4, x3}.L we have by the assumption 
thatL1 nL4 =L 2 nL3 = 0. Takeu EL3\{x4}andv EL4\{x3}. Thenue v.L.Foru E v.Lwould 
imply L 3 c;;L± and (L 3,L4).l=M so that MnM1 would contain the line L4, which 
conflicts Mn M 1 = {x3}. 

Consider S = S (u, v ). Notice that V = x t n S contains L 3 and must therefore be a 
plane in S. Similarly for W = xi n S. Also, x 1 e S, for else xt nx3x4 r' 0. 

Now xt nS ¥ 0 by (R4)'. As x 1 Exi uxt, Lemma 3.5 implies that xt nxf nS and 
xtnxtnS are nonempty. If zE{x 1,x2,x 5}.lnS, then zE{x 1,x 2,x3;x4,xs}.LnS, as 
xt n S is a clique on x4 and xt n Sis a clique on x3 • So we may assume {xi, x2, xs}.L nS = 

0. Thus lxtnSl~lxtnxtnSl+lxtnxtnSl~2, so that xtnSE"tl'. Write U= 
xt nS. Since U, x 3 , x4 are in S, there is w Ext nx± n U. But now wx3 is a line in 
x ± n S (x i. x 3 ); this settles (a). 

(b) Assume u E {x 1, x 2 , ••• , x5}.l. Put L = xt n (X3X4).L. Since xt nx3X4 = 0 by mini­
mality of the circuit, LE .2. Now (xi. x 5, u).l, (x1, x2, u ).LE .AfL, so (xi. L) c;; (xi. Xs, u ).L or 

(x1> L) s (xi. x2, u).L. 
Without loss of generality, assume (x 1, L) c;; (xi, xs, u ).L. Then (x4, L) c;; x t rut conflict­

ing ranks. 

LEMMA 7.5. Let (P, .2) satisfy (R4). If S, Tare distinct symps, then Sn T is not a 

singleton. 

PROOF. Suppose S, Tare symps such that Sn T = {x} for some x E P. Take z E S\x 1
. 

By axiom (R4 )', there is y E z J_ n T. Now y E T\x \ for else y E x .L n z .L <;;; S, so y E S n T = 
{x} and y = x, which conflicts with z ex .L. Choose v i. v2 Ex .L n y .L with v 1 ~ v i, and take 

.l J_ 
UEX nz. 

Let i E {1, 2}. Now u, x, V;, y, z is a 5-circuit with u e y .L (for else u Ex .L (I y .L <;;; T), 
x e z .l u y .Land V; e z .L (for otherwise V; Ex .L n z .L c;; S). Hence, by Lemma 7.4, either u E v i 
and vf nS 2xu, or vf- nS E 'V. At any rate, vt nS E 'Vfor each i E{l, 2}. Put V; = vf- nS 
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and consider W = y_J_ nS. As z E W\(Vi u V2), we must have WE 'V by Lemma 3.5. But 
then x_i_ n W is a line (as both x, Ware in S) contained in x_i_ n y.L, hence in T. 

LEMMA 7.6. Suppose (R4) holds for (P, !£). Then rk(M) ~ 3 for any M E.;f;f,. 

PROOF. Suppose M is a max space of rank;;,, 4. Pick x EM and V, WE 'V(M) with 
V n W = {x }, and let S, T be symps on V, W respectively. Since x ES n T, we know by 
Lemma 7 .5 that there is a line Lon x in Sn T. Now V s; L -L would imply Ls; V-L n T = W; 
but also L s; V, as ( V, L) is a singular subspace of S, so that Ls; 'V n "If/'= {x} which is 
absurd. Hence there is z E L\{x} with z e V-L. Sincez, V are inS, we obtain thatL 1 = z_i_ n V 
is a line on x. Similarly, L 2 = z.L n W is a line on x. But now z E Lt nLi =(Li. L 2 )-L =M, 
so Ls; M and V s; L _J_, which has just been excluded. 

It follows that no max space of rank ;;,,4 exists. 

THEOREM 7.7. If (P, !£)is a connected Grassmann space in which (R4) holds, then 
(P, !£) is either a polar space of rank 3 or isomorphic to one of A 4 ,2(F), A 5 ,3(F) for some 
division ring F. 

PROOF. This is a direct consequence of the main theorem and Lemma 7 .6. 
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