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The adaptive stochastic filtering problem for Gaussian processes is considered. 
The self-tuning synthesis procedure is used to derive two algorithms for this 

problem. Almost sure convergence for the parameter estimate and the filtering error 

will be established. The convergence analysis is based on an almost-supermartingale 

convergence lemma that allows a stochastic Lyapunov-like approach. 

1. INTRODUCTION 

The goal of this paper is to present two algorithms for a continuous-time 
adaptive stochastic filtering problem and to establish almost sure 
convergence results for these algorithms. 

What is the adaptive stochastic filtering problem? Problems of prediction 
and filtering arise in many areas of engineering and economics. For these 
problems mathematical models in the form of stochastic dynamic systems 
may be formulated. When the parameter values of these systems are known, 
the prediction or filtering problem may be solved by applying known filtering 
techniques such as the Kalman filter. When the parameter values are not 
known these have to be estimated. The parameter estimation may be done 
off-line, before the filtering operation starts, or on-line, concurrent with the 
filtering operation. The adaptive stochastic filtering problem for a stochastic 
system whose parameter values are not known, is to simultaneously estimate 
the parameter values and to predict or filter the state of the process. This 
problem is highly relevant for applications. Algorithms for this problem are 
especially of interest when the parameter values are slowly changing as is 
often the case in industrial applications. 

In discrete time the adaptive stochastic filtering problem has been 
investigated by many researchers. Why should one consider the continuous
time version of the problem? Time is generally perceived to be continuous. 
In practice a continuous-time signal is sampled and the subsequent data 
processing is done in a discrete time mode. One question then is what 
happens with the predictions when the sampling time gets smaller and 
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smaller? Does the discrete-time algorithm converge in some sense? To study 
these and related questions continuous-time algorhtims must be derived and 
their relationship with discrete-time algorithms investigated. 

The questions that one would like to solve for the adaptive stochastic 
filtering problem are how to synthesize algorithms, and how to evaluate the 
performance of these algorithms. 

Synthesis procedures for the adaptive stochastic filtering problem are 
summarized below. The self-tuning synthesis procedure prescribes to 
estimate, separately but concurrently, the parameter values and perform the 
filtering operation. On the contrary, the second synthesis procedure 
prescribes to estimate the parameter values and states jointly. In the latter 
procedure the extended Kalman filter is often used. A criticism of the second 
procedure is that it treats states and parameters on an equal basis. In this 
paper attention is restricted to the self-tuning synthesis procedure. This 
procedure suggests first to solve the associated stochastic filtering problem, 
and secondly to estimate the values of the parameters of the filter system in a 
recursive or on-line fashion. A continuous-time recursive parameter 
estimation algorithm is thus needed. 

What is known about continuous-time parameter estimation algorithms? 
A search of the literature has turned up mainly nonrecursive or off-line 
algorithms [ 1-4, 20 ], for which convergence questions are discussed. 
However, for adaptive stochastic filtering, recursive algorithms are 
absolutely necessary. Two such algorithms are presented below. 

In the performance evaluation of the algorithms the major question is the 
convergence of the error in the filtering estimate and the parameter estimate. 
For these variables one should consider almost sure convergence and the 
asymptotic distribution. Convergence results for these error processes will be 
provided below. This result is based on a convergence theorem that is of 
independent interest. 

A brief outline of the paper follows. The problem formulation is given in 
Section 2. The main results are presented in Section 3, while their proofs may 
be found in Section 5. Section 4 is devoted to a convergence theorem. A 
preliminary version of this paper, without proofs, has been presented 
elsewhere [ 18]. 

2. THE PROBLEM FORMULATION 

The adaptive stochastic filtering problem is to predict or to filter a 
stochastic process when the parameters of the distribution of this process are 
unknown. The object of this section is to make this problem formulation 
precise. Recall that the self-tuning synthesis procedure for this problem has 
been adopted which prescribes first to derive the solution of the stochastic 
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filtering problem and then to estimate recursively the parameters of the filter 
system. 

Throughout this paper (.Q, F, P) denotes a complete probability space. Let 

T = R. The terminology of Dellacherie and Meyer [ 6, 7] will be used. 

Assume to be given an R-valued Gaussian process with stationary 

increments. Under certain additional conditions it follows from weak 

Gaussian stochastic realization theory [ 9] that this process has a minimal 

stochastic realization as the output of what will be called a Gaussian system 

(1) 

(2) 

where y:DXT-+R, x:.QXT-+R", v:.QXT-+Rm is a standard 

Brownian motion process, A E Rn x n' B E Rn x m' c E R I x n' D E R I x m. The 

precise definition of a realization is that it is a stochastic system such that 

the distribution of the output y of this system is the same as that of the given 

process. 

One may construct the asymptotic Kalman-Bucy filter for the above 

Gaussian system, which is 

where 

is constructed such that it satisfies the "usual conditions" [ 6 J. This filter may 

be rewritten as a Gaussian system 

(3) 

(4) 

where v : .Q X T-+ R is the innovations process, a Brownian motion process. 

say with variance a 2t. It is a result of stochastic realization theory that the 

two realizations (I), (2) r.nd (3 ), ( 4) are indistinguishable on the basis of 

information about the distribution of y only. For adaptive stochastic filtering 

one may therefore limit attention to the realization (3 ), ( 4 ). That realization 

has the additional advantage that it is suitable for prediction purposes. 

The minimality of (l), (2), and hence the minimality of (3), (4), implies 

that (A, C) is an observable pair and that the spectrum of A is in C · .-

1 c EC] Re(c) < O}. 
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2.1. PROBLEM. Assume given an R-valued Gaussian process with 
stationary increments having a minimal past-output based stochastic 
realization given by 

(5) 

(6) 

(7) 

with the properties given above. Assume further that the values of the 
dimension n and of a 2, occurring in the variance of iJ, are known, but that 
the calues of A, K, C are unknown. The adaptive stochastic filtering problem 
for the above defined Gaussian system is to recursively estimate i given y. 

The second step of the self-tuning synthesis procedure prescribes to recur
sively estimate the parameters of the filter system (3), (4). To solve this 
parameter estimation problem another representation of this dynamic system 
is required. This representation is derived below. For notational convenience 
the time set is taken to be T = R + in the following. 

2.2. PROPOSITION. Given the Gaussian system as defined in (I), (2) and 
(3 ), ( 4 ), the two following representations describe the same relation between 
iJ and i: 

(a) 

(b) 
dh 1 = Fh1 dt + G 1 dy1 + G2 dvl' 

i,= hTp, 

dy'"{ = hTP dt + dv1, 

where h : Q X T -io R in, 

Yl 1)=Y1• 

I 

x0 =0, 

Yo=O. 

h0 =0, 

Y0 =0, 

yjO = fo Y~i-1> ds, for i = 2, 3, ... , n, 

(8) 

(9) 

(10) 
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p ER zn is related to A, K, C, as indicated in the proof, 

F1 = ( O 

Jn-I 

G 1 = e 1 E R 2n, 

where e; is the ith unit vector. 

Proof (a)--+ (b ). By the remark below ( l ), (2 ), (A, C) is an observable 
pair. Then there exists a basis transformation, say TE Rn x" nonsingular. 
such that with w1 = T.'<1 

0 

ii= (10 ... 0) ~·1· 

By successive substitution it is then shown that 

where h is as given before, and 

The representation (b) then follows. 

(b) --+ (a). Set p as above 

dv1 = dy 1 - h;rp dt, 

w: = h{p, 

d;\,·7- 1 = a11 ~·: dt + k 11 dv/' 

d1v7- I= Q 11 _ 1 W: dt + )~'7 dt + kn-1 diJI, 

It is then shown by induction that 

II 

>~'o = 0, 
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3. THE MAIN RESULTS 

In this section two algorithms are presented for the continuous-time 
adaptive stochastic filtering problem, and convergence results are provided. 
The proofs of the convergence results may be found in Section 5. 

In the following attention is restricted from the Gaussian system defined 
by (3), (4), or by (5), (6), to the autoregressive case described by 

or 

Yo= 0, 

where now h: fJ X T--+ Rn, p E Rn, 

Then 

h T _ ( (I) (n)) 
t - Yi , ... ,y, , 

PT= (a1····· an)• 

(11) 

( 12) 

h0 = 0. (13) 

One concludes that asymptotically h is a stationary Gauss-Markov process. 
Since the interest here is in the stationary situation, it will henceforth be 
assumed that h is a stationary Gauss-Markov process. Because of the 
stability of the Gaussian system, the covariance function of h is integrable, 
hence h is an ergodic process [ 19, p. 69 ]. 

3.1. DEFINITION. The adaptive stochastic filtering algorithm RLS for the 
autoregressive representation ( 11 ), ( 13) based on the least-squares parameter 
estimation algorithm is defined by 

dft1 = Q,h1a- 2 [dy1 - hTfi1 dtl, 

dQ1 = -Q1h1hTQ1a- 2, 

~ hT~ 
z = 1P/' 

(14) 

(15) 

(16) 

where,6 :fJ X T--+Rn, Q :fJ X T--+Rnxn, Q0 ERnxn such that Q0 = QJ > 0, 
i : fJ X T--+ R. Here i is the desired estimate of i and p is an estimate of the 
parameter p. 
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It follows from [ 8] that the stochastic differential equation for p ( 14) has a 

unique solution. Here y is assumed to be generated by ( 11 ), the underlying a
algebra family generated by the Brownian motion process v, and p ER n. 

In the following digression a derivation of the algorithm 3.1 via the 

Bayesian method is given. Consider the representation 

dpt = 0, 

dy1 = h"{p1 dt +du" 

Po= 0, 

Yo= 0, 

where it is now assumed that iJ is a Brownian motion process, p : Q x 
T-+Rn,p is a Gaussian random variable with mean 0 and variance Q0 , and 

that p and iJ are independent objects. From (12) one concludes that (hi' Fj', 

t E T) is adapted. The conditional Kalman-Bucy filter [ 13, 12. l ] applied to 

the above representation then yields the algorithm given in 3.1. Actually the 

conditions of [13, 12.1] are stronger than necessary; a similar result holds 

under weaker conditions. This is the end of the digression and in the 

following the assumptions above 3.1 will be in force. 

To evaluate adaptive stochastic filtering algorithms two questions are 
relevant: 

(1) lS limt-cXJ £1 - £1 = 0 m some sense, and if so what is the 

asymptotic distribution of this difference; 

(2) is lim1--t00 fi1 -p = o in some sense, and if so what is the 

asymptotic distribution of this difference. 

The first question concerns the difference of the filter estimate i obtained 

with knowledge of the parameters, and the adaptive filter estimate i. The 

second question deals with the error in the parameter estimate. 

In the literature the second question is often emphasized. In the opinion of 

the author the first question is much more relevant, because the adaptive 

filter estimate is available to an outside observer and is what one is 

ultimately interested in; the parameters are inaccessible to an outside 

observer anyway. 

3.2. THEOREM. Consider the adaptive stochastic filtering problem 2.1 for 
the system (5 ), ( 6) restricted to the autoregressive case as indicated above. 
Assume that the conditions of 2.1 hold, in particular that n, a 2 are known. If 
the algorithm RLS is applied to this stochastic system, then 

( ) 1. -1 1·1 (, ~)2 d 0 a as- 1m1--> 00 t . 0 zs - z s = ; 

(b) as-lim 1_m p1 = p. 

The above result means that under the conditions given the error in the 

filter estimate goes to zero in the above defined sense. Why convergence can 
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only be proven in the sense of 3.2(a) is not clear. It is related to the fact that 
in adaptive stochastic control only results for the average cost function can 
be proven. 

One might conjecture that a result like 3.2 holds if the restriction to the 
autoregressive case is relaxed and an extended least-squares algorithm is 
applied. An investigation has indicated that such a conjecture may not be 
true. The reason for this may be explained as follows. Consider the represen
tation ( 11 ). The recursive least-squares algorithm RELS applied to this 
representation is given by 

Po= o. 
Qo, 

h0 = 0, 

A detailed derivation of this algorithm, as given below 3.1 for the RLS 
algorithm, runs into serious trouble, but let us not consider that question 
here. The process ii contains, besides y, the second innovation process 

and its integrals. Furthermore, fz is not a stationary process, while in the 
proof of 3.2 the stationarity of h plays a key role. Convergence of the 
estimates produced by the RELS algorithm has not been established, and is 
unlikely in the author's opinion. Prefiltering of the observations and the 
innovations seems necessary. A consequence of these remarks is that the 
value of the estimates produced by a discrete-time RELS algorithm may be 
doubtful when the sampling time goes to zero. 

The second algorithm for the autoregressive case is related to that of 
Goodwin, Ramadge, and Caines [ 10 ], and that of Chen [ 5 j. The latter also 
provides a continuous-time algorithm not only for the autoregressive case but 
also for the general case of 2.1. 

3.3. DEFINITION. The adaptive stochastic filtering algorithm for the 
autoregressive representation ( 11) based on the parameter estimation 
algorithm AML2 j 10 I is defined to be 

dp1 = h1r,- 1a- 2 [dy1 - h'Jp,dt \, 

dr1 = a- 2h1;h1 dt, 

~ hT' z = tPI' 

Po= o, 
r 0 = 1, 

( 17) 

( 18) 

( 19) 
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where p:!JXT->Rn, r:ilXT->R, i:ilXT->R, and his as given in 
( 12 ). Here i is the desired adaptive filter estimate of i and p is an estimate of 
p. 

3.4. THEOREM. Consider the adaptii·e filtering problem 2. J for the 
system (5 ), ( 6) restricted to the autoregressive case as indicated above. If the 
algorithm AML2 is applied to this system, then 

./ 

as-lim t- 1 j (£5 - i,) 2 ds = 0. 
t-+'J.; ~o 

The comments given below 3.2. also apply here. The method of proof 
does not provide information on the question whether as-lim p1 = p. One may 

pose the question how the asymptotic variances of (£5 - f 5) of the estimates 
produced by the algorithm RLS and AML2 are related. Chen [ 5 [ considers 
also the algorithm AML2 but applies it to the representation ( 10). Almost 
sure convergence for such an algorithm is established under an unnatural 
assumption [5, (54)J. 

4. A CONVERGENCE RESULT 

The convergence results of Section 3 are based on an almost sure 
convergence theorem that is of independent interest. In this section this result 
is stated and proven. 

As some of the other concepts and results of system identification, the 
convergence theorem is also inspired by the statistics literature, in particular 
by the area of stochastic approximation. Robbins and Siegmund [ 15 J 

established a discrete-time convergence result for use in stochastic approx
imation theory. A simplified version of that result is given as an exercise in 
[ 14, II-4 J. Solo [ 16, 17 I has been the first to use this result in the system 
identification literature, and since then it has become rather popular [ 10, 12 \. 
This popularity is due not only to the ease with which convergence results 
are proven but also to the formulation in terms of martingales which show 
up naturally in stochastic filtering and stochastic control problems. Below 

the continuous time analog of [ 15, Theorem l J is given. 
A few words about notation follow. (F1, t E T) denotes a a-algebra family 

satisfying the usual conditions. A+ is the set of increasing processes, M 1 uioc 

the set of locally uniformly integrable martingales, and L1x1 = x, - x 1 the 
jump of the process x at time t E T. 

4.1. THEOREM. Let x : Q X T--+ R + , a : Q X T--+ R + , b : Q X T--+ R + , 

e : Q x T--+ R + , and m : Q X T--+ R be stochastic processes. Assume that 
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(i) x 0 : Q-+ + is F0 measurable; 

(ii) (a1 , FI' t E T) EA+, a0 = 0, a 00 < oo a.s., and there exists a 
c1 ER+ such that for all tE T, Aa 1 ~c 1 ; (b 1,F"tE T)EA +and b0 =0; 

(iii) (e1,FI' t E T) is adapted and Jg' es ds < oo a.s.; 

(iv) (ml' FI' t ET) E M 1utoc• m0 = O; 

Then 

(v) x is the unique solution of 

(a) x 00 := as-limi-00 x 1 exists in R +, thus xro < oo a.s.; 

(b) b00 := as-limr-. 00 b1 exists or b00 < oo a.s. 

Proof (1) Define 9: Q X T X T-+ R, 9(t, s) = exp(J~ er dr) which 1s 
well defined by e positive and assumption (iii). Then 

~(t, 0) ~ ~( oo, 0) < oo a.s., 9(0,t)~ 1, 

and 

89(0, t)/ot = -ei</J(O, t). 

By [8] the stochastic differential equation 

has an unique solution, and x is a semimartingale. Define y : Q X T ~ R +, 

y 1 = 9(0, t) x1• Application of the stochastic calculus rule yields 

dy1 = 9(0, t) da, - 9(0, t) db 1 + 9(0, t) dmt' Yo= Xo· 

(2) For c ER+ define 

r = inf l t E TI { ~(O, s) das > c ~ , 

= +oo, otherwise. 

Then 

r 9(0, s) das ~ c + L.1aT < c + C1 
·o 
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by (I) above and assumption (ii). Furthermore, 

Let 

Then 

//\T 

ltxo<cl J ~(O, s) dms 
0 

r:DXT--+R, 

rt= r ~(0,s)dms. 
0 

219 

and if {rn, n E Z+ f is a fundamental sequence [7], then so is {rn /\ r, 
n E Z + f for r'. By the above 

{Ilxo< cl rt llT' FI' t E Tf 

is bounded from below. For s, t E T, s ~ t, then 

E[rt11J1xo<c) I Fs] 

~as-limE[rtllTllT IFsJl1x <cl' n n o 

by Fatou's lemma, 

by jr /\ rn, n E Z+} a fundamental sequence for rT. Thus 
(rt 11Jixo<cl• F1 , t ET) E SupM is bounded from below. By [7] 

Jt/\T 

as- lim ~(O, s) dm 5 f 1x <cl 
1-+CJJ 0 0 

exists and is finite almost surely, 

(3) Consider 

J//\T 

+ /txo<cl o ~(O, s) dms. 
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By (2) above, the third term on the right-hand side converges, while by the 
definition of r and assumption (ii) 

f//\T 

as- lim I 1x <cl ~(O, s) da 5 ~ c + c 1 
t-x; 0 0 

exists and is finite almost surely. Because y is positive and b increasing both 
terms on the left-hand side of the above equality must converge to finite 
limits. Then as-lim 1...,00 y1 exists and is finite on {x0 < c} n {r = oo f. 
Furthermore, 

{arn. ~ c} c )J~oc' ~(O, s) da,;::;; c ! c {r = oo f, 

thus as-lim y 1 exists and is finite on {x0 < cf n {aa. ~ cf. Since this holds for 
all c E R +, x0 < oo, and a 00 < oo a.s., as-limy 1 exists and is finite almost 
surely. Similarly, 

as- lim f 1 ~(O, s) dbs 
t-+00 0 

exists and is finite almost surely. 

(4) Finally, by assumption (iii), 

as-Jim ~(t, 0) = ~(oo,0) <co a.s., 
/-+oo 

hence 

as- Jim x, = as-lim y,~(t, 0) 
/-+CO /-+Uj 

exists and is finite almost surely, while also 

-I 

as- lim b, = as-lim J ~(s, 0) ~(O, s) db, 
1-+00 0 

.( 

~~(ro,O)as-lim j ~(O,s)db5 
0 

exists and is finite almost surely. I 

5. PROOFS 

In this section the proofs of Theorems 3.2. and 3.4. are given. The 
convergence result of Section 4 is used. The method of the proofs is 
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analogous to the Lyapunov method for proving stability of deterministic 
differential systems. 

5.1. Proof of 3.2. (1) Let p:Q X T-+W, p1 =p,-p, i:fl X T-+R, 
- A ~ 
z 1 = z 1 - z 1 • u: Q X T-+ R, 

./ 

-TQ 1- I lit =P1 1 Pr+ a 
. 0 

2z;ds. 

Elementary calculations then show that 

- A ~ hT -z1 =Z1 -Z1=- rPI' 

dp1 = Q1h1a- 2 li1 d1 + du,J, 

dQ 1
1 =h 1h/a- 2 dt. 

du 1 = h1rQ,h 1a 2 dt + 2(hift,) a 2 di'1• 

(2) Define r: f2 X T-+ R, 

dr1 = hih,a 2 di, ru = tr(Qo '). 

Then 

Define w: f2 X T-+ R, w1 = u1/r,. Then 

dw 1 = h,fQ 1h1r,--'a-- 2 dt- w1(h 1rh 1 r1 'a 2 ) dt 

+ 2r1 
1(h/ft,) a- 2 dii,. 

(3) To be able to apply 4.1, its conditions are checked. Because Q 1 is 

positive definite, so is Q, and hence u. Thus r and w are positive, and 

./ 

I -lhTQ h I r, s s sa 
• 0 

./ 

2 ds (; f rs 1 tr(Q,- 1) h;Q;h,a 2 ds 
• 0 

=tr ({ Qshsh;Qsa- 2 ds) 

= tr(-Q1 + Q0 ) ~ tr(Q0 ), 

·I 

as-lim f r,- 1h;Qshsa- 2 ds(;tr(Q 0 )<00. 
t~1x' ~ 0 
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( 4) From 4.1 then follows that as-lim w1 exists and that 

(5) As argued below 3.1, h is an ergodic process. Hence 

Then 

I 

as-Jim t- 1Q1-
1 = as-lim t 1 ( hshJ·a- 2 ds 

• 0 

I 

as-limri/t=as·limt- 1 r h-;,hsa- 2 ds 
. 0 

as-lim r 1 =+co, 

./ 

as-lim j r;W[hsa- 2 ds 
·o 

. =as-Jim r r;- 1 drs = as-lim Jn(r1)- Jn(ro) =+co. 
0 

(6) One now claims that as-lim w1 = 0. For if not, then there exists a set 
of positive measure and an t: E (0, co), such that on this set 

as-lim w1 > t: > 0, 

I 

as-lim J wsh;hsa- 1 ds 
0 

by using (5), which is a contradiction of the conclusion obtained in ( 4 ). 
Hence as-Jim w1 = 0, and by definition of u and positivity of the terms in u 

I 

as-lim rt-It z;a-2 ds = 0, 

as-lim r,- 1ftTQ; 1P1 = 0. 
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(7) By using a result of (5) above, one obtains 

.( ( ./ ) 
as-lim r I j z; ds = (as-lim rJt) as-lim rt- I I z; ds. = 0, 

0 • 0 

By (5) above as-limQ 1-
1/t>O, hence as-limp1 =0. I 

5.2. Proofof3.4. (1) Letp:QxT-+Rn,p1=Pt-p,i:QxT-+R, 

u:DXT-+R, 

t 

ut = ! p;rPt + rt- I I z;a . 2 ds. 
•o 

Elementary calculations then show that 

dp1 = htrc 1a- 2 [i1 dt+ dv1\, 

- A ~ hT-
Z 1=Z1 - Z 1 = - tPI' 

d lhTh -2 ·-2d (ft -2 -Zd) -2hTh 2d +d u 1 = 2 1 1rt a t -
0 

zsa s rt 1 ,a t m 1, 

(2) Let k :Q X T->R, 

Then 

From 4.1 then follows that 

k 1 =l-r,- 1 ~1, 

as- lim k, ~ 1. 
[-Hfj 

as-lim ut exists in R + , 

k 0 = 0. 
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(3) As in the proof of 3.2 one shows that 

Then 

I 

as-Jim rtf t = as-lim r- 1 J h"{h5 a- 2 ds 
0 

.1 

I. J hTh - I - 2 d as- 1m s s r 5 a s = co, 
0 

I 

as-Jim t- 1 J z; ds 
0 

= (as-lim rtft) (as-Jim r; I { z; ds) = 0. I 

6. CONCLUSION 

The adaptive stochastic filtering problem for Gaussian systems has been 
considered. For the autoregressive case two algorithms have been presented 
for which almost sure convergence results have been derived. 

In addition a rather general convergence theorem has been stated and 
proved. This result may be used to establish almost sure convergence for 
adaptive stochastic filtering problems and adaptive stochastic control 
problems. This result is also applicable when point-process systems are 
considered, rather than Gaussian systems. 

Future research efforts will be concentrated on synthesizing and 
establishing convergence for other classes of stochastic systems. The 
recursive maximum likelihood method is currently under investigation. 
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