
LECTURES ON INVARIANTS, REPRESENTATIONS AND LIE 

ALGEBRAS IN SYSTEMS AND CONTROL THEORY 

Michiel HAZEWINKEL 

The Math. Centre, P.O. Box 4079, 1009 AB Amsterdam 

The general purpose of these three lectures is to explain to an audience 

assumed to consist mainly of pure mathematicians, algebraically oriented perhaps, 

some of the many mathematical problems (and their solutions) which arise in systems 

and control theory with maybe a little extra emphasis on unsolved problems. It was 

a pleasure and an honor to be invited to speak on this topic in the Seminaire 

d 'Algebre and I here record my feelings of indebtedness in this respect towards the 

organizer in this case, Mme Prof. Marie-Paule MALl..IAVIN. 
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Lecture I. INVARIANTS AND MODULI FOR LINEAR SYSTEMS AND APPLICATIONS 

I. 1. Systems and linear systems. Very roughly a system is a device which accepts 

certain inputs : deterministic controls, stochastic noises or a mixture of the two, 

which processes these inputs and then produces certain outputs in response. The 
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traditional diagramnatic picture is as follows 

u 1 (t) 

~ 
y 1 (t) 

( I:) 

u (t) > y (t) m p 

where (u 1 (t), .•. , um (t)) E Rn is an m-dimensional vector of inputs (depending 

on time t) and (y1(t), .•. ,yp(t)) E lRP is a p-dimensional vector of outputs. It 

is easy to imagine systems with more general input and output spaces (than IRn and 

For example the machine suggested by picture (1.2) couldbe described by 

a set of differential equations : 

(1.3) f(x,u) , y h(x) , x E nf, u E IRm • y E IRP. 

More generally x could evolve on a finite dimensional differentiable manifold 

M with f(x,u)a familyofvectorfields on M parametrised (differentiably) by 

u E IR.n. 

A particularly important class (for applications) of systems are the 

linear time invariant systems which are given by the equations : 

(1. 4) :it = Ax + Bu , y = Cx , x E ]Rn , u E IR111 , y E lRP 

where A,B,C are constant matrices of the appropriate dimensions, i.e. they are 

of sizes nxn, nxm and pxn, respectively. Equations (1.3) and (1.4) describe 

a continuous time model; equally important are discrete time models, which in the 

linear case look l:i.ike : 

(I. 5) 

(Sometimes one considers more general models tha:i (1.4),(1.S) involving also a 
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direct feed through term, so that then : y = Cx + Du , resp. yt = Cxt + Dut ; fot 

the mathematical problems considered in this paper this makes little difference/. 

It is to be observed that (I .5) makes sense over any ring ; also it is a fact that 

such systems over rings have real applications, e.g. in automata theory, picture 

processing. 

In this first lecture we shall be exclusively concerned with linear 

systems and various (open) problems concerning them. 

1.6. A selection of questions concerning systems. Systems as roughly described 

above arise e.g. as ~entative) (approximate) models of certain (ill understood) 

dynamic in put/out put phenomena (processes) like for instance economic develop-

ment processes (or time series) and as models of devices involving controls 

(sometimes partly to be automated) like aeroplanes. Most of the questions discussed 

below receive content when viewed in the light of such examples. 

A. Realization questions Given a device (!. 3), ( J.4) or (1. 5) and a 

starting point x(O) = x 0 at time zero, the equations (1.3),(l.4) or (1.5) define 

an input /output operator taking input functions u(t) to output functions y(t). 

This operator describes what comes out of the device (i. e. is observed) when it is 

started at time zero in x(O) and it is fed the input function u(t). 

E. g. if L =(A,B,C) is the system (1.4) and x(O) = 0 E lRn, 

then the corresponding input/output operator Vz: is given by the convolution 

formula : 

Jt 
y(t) c e(t--r)A Bu(T)dT. 

0 

The basic "realization theory" question is now : given some input/output op>erator 

V when does there exist a system of type (1.3) or type (J.4) together with an 
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initial state x 0 such that the associated input/output operator is the pregiven 

operator V, or is a "best" approximation. 

In this connection it should be remarked that there are often great 

advantages in having a model of say type (1.4). It should also be noted that the 

socalled state space models (l.3),(1.4),(l.S) are by no means the only way to 

specify a dynamic input/output relationship. Another way are the socalled AID'l.A 

models which in discrete time e.g. are specified by a relation-ship of the form 

(1. 8) 

Bits of realization theory will be discussed in sections 1.14 and 1.19 

below. 

B. Moduli problems. Invariants. As was remarked before if it is 

possible to realize a given input/output operator V by means of a linear system 

( 1. 4) and ( l. 5) it is for many purposes advantageous to do so. However, there is 

a price. The input/output operator VE, E = (A,B,C) , given by (1.7) in the 

continuous time case, does not uniquely determine the triple of matrices (A,B,C). 

Indeed if S is an invertible n x n matrix then the triple 

( 1. 9) 

gives exactly the same input/output operator (as follows immediately from (1.7)). 

The question imnediately arises whether this is the only redundancy in E = (A,B,C) 

vis-il.-vis VE. (Generically this is the case: cf. section 1.14 below). This 

leads to the following invariants and moduli problem. 

Let Lm,n,p (lR) be the space of all triples (A,B, C) of real matrices 

of dimensions nxn, nxm, pxn respectively. Consider the action of GLn(JR), 

the group of real invertible nxn matrices, on L (lR) given by (1.9). What m,n,p 
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are the invariants for this action ? To what extend does the quotient space 

L (lR) / exist ? Is it a nice space in some sense ? Results concerning 
m,n,p GLn (JR.) 

these questions can be found in 1.21 below. More generally for discrete time 

systems these questions are important over any ring (instead of lR). 

c. Feedback problems. Stabilization. A linear system (1.4) or (1.5) is 

said to be stable if, for all initial states x(O), x(t) goes to zero as 

t + ~ if u(t) = 0. In case of continuous time (system (1.4)) this is the case if 

all eigenvalues of A have strictly negative real parts and in discrete time 

(system (1.5)) this is the case if all eigenvalues of A are less than one in 

absolute value. An important class of problems in system theory asks to what extent 

systems can be stabilized or be caused to have bther desirable properties by means 

of feeding back certain linear combinations of the state or outputs into theinputs. 

Mathematically state space feedback is described by the following 

action of the additive group M(m,n) of all m x n matrices on L m,n,p 

(I. 10) K 
(A,B,C) = (A+ BK,B,C) , K E M(m,n) 

and output feedback is described by the action of M(m, p) on L given by m,n,p 

(I. 11) (A,B,C)1 (A+ BLC,B,C). 

In block diagrams these feedback loops are depicted as below 

(I. 12) 

I. 
) 

-'. (E) ~ 
Typical problems are now : Which systems can be stabilized by state space feedback? 
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Completely solved by Wonham ( 1) . Which systems can be stabilized by out?Ut feed-

back ? This one is still essentially canpletely open for some recent results 

using Grassmann manifolds and intersection theory cf Byrnes [2]. 

Another problem could be : y.iven an additional input channel through 

which undesired disturbances (or noise) enters the system. It is possibly to use 

state-space or output feedback in such a way that the disturbances do not show up 

in the outputs or such that (by employing larger and larger feedback matrices 

(a high feedback gain)) , the influence of these disturbances can be made as 

small as desired. Considerable and interesting work on this last problem has been 

done by Willems (36). 

D. Model matching. nynamic feedback. Another class of problem has to 

do with whether at certain points in an interconnected collection of linear 

dynamical systems there can be inserted a linear dynamical system (preferably of 

minimal dimension) such that certain properties hold. Consider for example two 

given systems E1 and E2 and the question of whether there exists a E such 

that the composed system 

has the same input/output operator as E2. Or let there be given one system 

E1 and consider the problem of constructing a system E such that the system 

with dynamic feedback loop : 

....._ 
~ ~ .,, ~ El / 

, E / 

...... ~ 
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is stable. There are many similar problems often involving much more complicated 

diagrams. 

1.13. Why one should study families of systems rather than single ones. 

In many cases with design problems as indicated under C and D above it will be 

the case that the given E1 are only imperfectly known. Or these systems 

may have certain parameters which can be adjusted to a variety of possible uses. In 

both cases the question arises how to solve these problems not for one system but 

for a family of systems (perhaps uniformly), and the question arises which of the 

single system solutions (if any) is continuous in the system parameters. Most of the 

problems mentioned abuve are largely open, even in the case ofthli largest family of 

them all, the one parametrized by the "quotient" L /GL • Still more reasons for 
m,n,Pf · n 

studying families of systems rather that single ones can be found in [ 4, S, 6] • 

1.14. On realization theory. Applying the Laplace transform to formula (1.7) yields: 

(1. 15) Y(s) T(s) U(s) 

where Y(s) and U(s) . are respectively the Laplace transforms of y(t) and u(t) 

and where T(s), the socalled transfer function, is given by 

( J. 16) Thus one 

way to pose the realization quesdon of I. 6.A above is to ask given a sequence 

of p x m matrices H0 ,Hl'H2,... when do there exist matrices A,B,C such that 

H.= CAiB, i = 0,1,2, •.• The answer is as follows. Form the block Hankel matrix: 
l 

H 
0 
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Then such (A,B,C) exist if and only if the rank of this matrix is finite. Moreover 

the minimal n for which there exists an (A, B, C) E L for which m,n,p 

0,1,2, ... is equal to the rank of this Hankel matrix. These minimal 

dimensional realizations of the sequence (H0 ,H1,H2 , ••. ) have two additional 

properties : they are completely observable (co) and completely reachable (er). 

The abstract definitions of these two notions are as follows. The system 

1: = (A,B,C) E L is er iff the matrix : m,n,p 

(I. 17) R(A,B) A~) 

consisting of the blocks B, AB, ... ,AnB, is of rank n. Dually (A,B,C) is 

completely observable if the matrix 

(I. 18) Q(A,C) 

has rank n. Here an upper T denotes transposes. These notions have the physical 

meanings their names suggest. 1: is er if starting in x(o) = 0 at time 0 any 

state x can be reached by means of a suitable control function u(t) and 1: is 

co if from the observations y(t), t ;;;.. O, it can be seen whether two initial stams 

x(o), x' (o) are different or not (assuming u(t): 0). It is also true that two 

realizations (A B C) (A I B' c I) E L 
' ' ' ' ' m,n,p which are both er and co yield 

the same input/output 

(A',B',C') = (A,B,C)s. 

operator if and only if there is an S E GL such that 
n 

The fact that a minimal dimensional realization is er and co follows 

immediately from the observation that 'fle= Q(A,C) R(A,B) if (A,B,C) realizes 

For more details concerning the deterministic realization theory 

described above (which is due to Kalman) cf [ 7] and also [ 8]. 
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1. 19. Stochastic realization theory. If u(t) in (1.4) is white noise, more 

precisely if we rewrite (1.4) as an Ito stochastic differential equation : 

(I. 20) dx Axdt + Bdwt , dy = Cxdt + dvt 

where wt and are independent unit variance Wiener processes also independent 

of x(o), then y(t) is a Gaussian stochastic process. The question now arises : 

given a (Gaussian) stochastic process, when does there exists a machine (system) 

(I. 20) which generates this process. This belongs to the area of s tochas tic reali-

zation theory where there are still a good many open problems. For a recent survey 

cf. [ 9]. 

1.21. Moduli theorems. Invariants. Let --- L er (IR) (resp. 1 co ( IR)) denotes the 
m,n,p m,n,p 

space of all er (resp. co) triples (A,B,C) and let Lco,cr (IR) be the intersec­
m,n,p 

tion of these two subspaces of L (JR) • The basic theorem concerning the action 
m,n,p 

of Gln(IR) on Lco,cr (IR) is the following : 
m,n,p 

J.22. Theorem. The quotient Lco,cr (lR)/GL (IR) = Mco,cr (IR) exists and it is a 
m,n,p n m,n,p 

smooth differentiable manifold of dimension mn + np. The projection 

: L co, er (IR) + Mco,c:t (IR) is a principal 
m,n,p m,n,p 

GL (IR) -fibre bilndle which is trivial 
n 

f and only if m = 1 or p=l. The manifold Mco,cr (:IR) is never compact ; it 
m,n,p 

connected iff mp;>2. The map (A,B,C) + (H0 , ••• ,H2n), Hi= CAiB , induces an 

iedding of differentiable manifolds Meo, er (IR) + IR <2n+l)mp. (Actually H2n is 
m,n,p 

erfluous and can be calculated from H0 , ••• ,H 2n_ 1). 

As a corollary of theorem 1.22 it follows that the only invariants of 

:m) acting on L (JR) are functions of the entries of the m,n,p 

O,J,2, ••• ,2n-l. (These entries are of course obvious invariants). The relations 

•een these invariants are the defining equations of the closure of Meo, er (IR) 
m,n,p 
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in IR Znmp. These are all determinantal identities and are given by the prescription 

that all (n+l)x (n+l) subdeterminants of the matrix (of block Hankel type) : 

H HI ..... Hn-1 H 
0 n 

HI H2 ..... H H n+I n 

• 
H n-1 H 82n-2 82n-l n 

H Hn+I" •. H2n-I H2n n 

are zero. 

As a matter of fact an even stronger theorem that 1.22 holds. It turns 

our that Meo, er (IR) is a fine moduli space, i.e. that there exists over m,n,p 

Mco,cr (IR) an universal family of co and er systems from which every family m,n,p 

can be obtained uniquely by pull-back. This family is defined on an n-dimensional 

vector ·bundle over Mco,cr (lR) which is trivial if and only if m=l or p=l. m,n,p 

cf [ 1 O] or [ 5] for details. 

In the next section we shall see how this fact can be used to say things 

about the realization theory of certain infinite dimensional systems. 

There exists also an algebraic geometric version of theorem 1.22 which 

essentially says that there exists a scheme M m,n,p 
defined over Z of which 

Meo, er (IR) 
m,n,p 

and Mco,cr (~) are the varieties of real and complex points. 
m,n,p 

One can of course also study pairs of matrices (A,B) under the action 

of GL given by : (A,B) S 
n 

(SA s- 1,SB). This is also of relevance to system and 

control theory (through to a lesser extent). Mathematically though things come out 

prettier and this particular problem fits in better with the existing techniques an:i 
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theorems of geometric invariant theory. See the lecture notes by Tannenbaum I 12]. 

1.23. Systems with delays. A linear system with delays is e.g. 

(I. 2 4) xl (t) 2xl (t) + xl (t-al) + 3x2 (t-a2) + u(t-a.l-a2) + 2u(t) 

x2(t) x1(t-3a1) + 4 x2 Ct) + u(t-2a2) 

y(t) = 4 x 1 (t-a2) - 2x2 (t) 

where a 1,a2 are two positive numbers (the delays) such that al'et2 are indepen­

dent over IQ. 

The transfer function of this example, that is the Laplace transform of 

the corresponding input/output operator is a rational 
-a s 

2 M ·1·· 'l '1 e . ore precise y it is a strict y proper rationa 

ficients which are polynomials in e-a15 , e-a2s 

-a1s 
function in s, e 

function in s with coef-

These are in principl~ infinite dimensional systems. (To predict for 

given inputs u(t) the development of the system on:e needs data not finite dimensional 

like x(o) but initial data which live in an infinite dimensional space, e.g. one 

needs the function x(T) for -max(a 1,a2) ~ T ~O.). 

Let denote the delay operators f(t-ai), i=l,2. Then 

we can rewrite (1. 24) in the form : 

(1. 25) 

and associate to this in tum the family of systems (1.25) parametrized by the 

complex parameters o 1,o2. By this technique one can e.g. prove certain stabiliza­

tion theorem for systems with delays, cf. [ 11] (and the survey paper [ 6] for a 
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different proof of this same theorem). On spite of these results (which rely on the 

Quillen-Suslin theorem) most questions concerning stabilization and feedback. for 

delay systems are sill open and many more results should come out of associating 

families of systems to them. 

One can also pose the realization problem for delay system. Let there be 
-a1 s -ars 

given a matrix valued rational function T(s) in s,e , ..• , e , where 

a1 , .•• ,ar are positive numbers linearly independent over ~.Does there exists a 

linear delay system with delays a 1, ••• ,ar 

is a result concerning this. First because 

with this transfer function ? Here 
-a1 s -nrs 

s,e , .•• ,e are algebraically 

independent there exists a uniquely determined rational function 
-(l. s 

with 

coefficients in lR [ o 1, ••• ,or] such that substituting l e gives T(s). 

For each complex vector cr = (o 1, ••• ,or) this gives an ordinary complex transfer 

function T_(s). These are all realizable. Suppose that the minimal realization 
(J 

dimension (called the Mac Millan degree) of 

o + (first 2n+l matrix coefficients of the 

. r (2n+l)mp T_(s)) defines a continuous map ~ + ~ 
(J 

T (s) 
0 

s-1 

is n for all o E 

power series 

whose image is in 

development of 

Mco,cr(«)C~(2n+l~ 
m,n,p 

Pulling back the universal family over 

«r, which is algebraic and defined over 

Mco,cr(«) gives a family of systems of 
m,n,p 

lR. By the Quillen-Suslin theorem the 

underling vector bundle is trivial which implies that there are matrices A(cr), 

B(cr), C(cr) which coefficients which are polynomials over lR. [ cr 1, •• .,cr r1 . Now 

reinterpret cr. 
l 

as the delay operator cri f(t) = f(t-Cli) 

system with delays. cf [S,6) for more details. 

to find the desired 

Remark. Both the stabilization theorem and the realization theorem for delay 

systems mentioned above rely on the Quillen-Suslin theorem on the triviality of 

algebraic vector bundles over the affine spaces : Spec(k[X1, ••. Xr1)· This means 

that to calculate the desired feedback matrix (with delays) and the realizing 

delay system we need an algorithmic (effective) way of obtaining the Quillen-Suslin 
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trivialization. I.e. a constructive proof is needed and this is so far missing. 

1.26 Continuous canonical forms : To obtain the matrices (A,B,C) from measurement 

data H0 , ••. H2n certain choices have to be made because the H0 , ••• ,H2n determine 

(A,B,C) only up to GLn (]R) -equivalence. In other words given certain (statistical) 

data on the input/output behaviour of a system which is assurred to be linear of }~ac 

Millan degree n, the statistical problem of finding the best (A,B,C) which model 

the data is not well posed : there are redundant parameters to be eliminated. And 

the question arises whether this can be done in a continuous way. (For obvious 

reasons this is desirable). A continuous canonical form on L co, er (:IR) 
m,n,p 

is a 

continuous mapping c: Lco,cr (lR) + Lco,cr (lR) such that (i) (A,B,C) and c(A,B,C) 
m,n,p m,n,p 

have the same input/output map and (ii) (A, B, C) and (A' ,B', C') have the same input/ 

output operators iff c(A,B,C) = c(A',B' ,C'). The question now is whether continuous 

canonical forms exist. The answer is given by theorem 1.22 : such a canonical form 

exists iff p=l or m=l. 

Given the fact that in general no continuous canonical forms exist one 

wonders whether there exist discontinuous ones such that the discontinuities are 

'verywhere bounded by a universal constant k (in norm), and how small k can be. 

ais is completely open • 

. 27 A few open questions concerning Mco,cr. As was stated above a continuous m,n,p 

nonical form usually does not exist on L co,cr (Ill). Discontinuous ones do of m,n,p 

urse exist. So this approach to get rid of the superfluous parameters does not 

:m to work very well. It seems much more natural to eliminate the redundant para-

:ers by going to the quotient Meo, er (lR) and to view identification of a system m,n,p 

walking around on Mco,cr (Ill) getting closer and closer to the true (a best m,n,p 

Hoximating) system as more and more measurement data come in. With this in mind 

! would like to know much more about Mco,cr (lR) than we do at present. For m,n,p 

•tance : it is complete in some metric which agrees with a natural concept of 
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;ence of input/output operators ? (For some initial results in such questions 

~"' [ 4]. One would also like the Riemannian metric on Mco,cr(JR) to aeree 
m,n,p 

~e statistics of the situation perhaps in the following sense. Consider the 

:1 .20) for two different triples (A,B,C),(A',B',C'). Feed these systems the 

~ite noise wt starting in the same initial point x(o). There result two 

~nt random processes y(t), y'(t). The distance between (A,B,C) and (A',B',C') 

,uld have much to do with the amount of information which y(t) carries about 

ind vice versa (perhaps for small t only). 

wild problem. The action of GLn on triples (A,B,C) corresponds to "base 

in state space 11 ; that is if it = Ax + Bu, y = Cx it corresponds to a 

,.rmation x -+ Sx. In some settings it seems entirely natural to admit also 

~ange in input space and output space. This leads to an action of 

-1 x Gl 
.? lI' p on triples given by 

(A,B,C)S = (SAS-1,SB,CS-l), S EGL, 
n 

(A,B,C,)T= (A, BT-I, C) , TE GLm 

(A,B,C)U = (A,B,UC) , u E GL 
p 

ere arises the problem of studying and describing the "quotient 11 

I GL x Gl x GL . This is the problem of describing all the representations n m p 

diagramm : 

sense of quiver theory. It is also a wild problem in the technical sense of 

rd. The proceedings [ 13) contain much information on this branch of represen-

theory of algebras. 

jrstems with special structure. Symmetry algebras. Often dynamical systems are 

•ed of several (identical) subsystems interconnected in various ways. As an 
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example one might have a linear control system x = Ax + Bu with A and B given 

by .: 

(I. 30) 

This represents a linear model of two helicopters connected with a rigid beam as 

sketched below : 

where M is a load to be lifted which is too heavy for a single helicopter. Then 

x = Fx + Gu is a linear model of a single helicopter and H represents the interae-

ction dynamics. 

A problem is now e. g. to find a feedback matrix of the form 

(!. 31) 

1hich stabilizes the compotmd system. <Dr in any case to do this by rr.e.ans of a 

:eedback which preserves the special structure of the matrix A. One approach to 

•uch questions is as follows. Given a class of systems like (1.30) the symetry alge-

ra R is defined as consisting of all elements (S ;T) in M(2n,2n) x M(2ru,2m) 

le re M(q, q) is the matrix algebra of all q x q matrices) such that : 

SA =AS SB = BT. 

2n 2m 
~ and lR are natural M(Zn, 2n) x M(2m, 2m)-modules and R is the maximal sub-

Lgebl:a for which A and B are R-module homomorphisms. In the example under 
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consideration R turns out to be JR. [ i]" a:. The algebra R is the symmetry algebm. 

for this class of systems. 

One can show that every associative finite dimensional algebra can arise 

as the symmetry algebra of some class of systems with special structure [21]. The 

extra requirement that the feedbacks preserve the special structure now becomes 

that K : state space + input space be a homomorphism of R-modules. In this 

example that means that K must be of the form : 

which is still not what is required. This can be taken care of by a second larger 

symmetry algebra R' '.) R and r~quiring that K be a R'-module homomorphism. 

I remark that output feedback problems can also be put in this frame-

work indicating that these problems of special structure preserving feedback will 

probably be quite hard. 

Indeed in the example under ccnsideration, it s~ems likely that there 

exist examples with the following properties 

(i) (A,B) is completely reachable 

(ii) (F, G) is completely reachable 

(iii)There exists a number t such that for every feedback K of the form (l.31) 

with !\Kii;;. t the system (A + BK, B) is unstable. 

For more details concerning this topic of linear systems with special structure and 

decentralized control, cf [21,35]. 
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Lecture 2. FEEDBACK INVARIANTS OF SYSTEMS, NILPOTENT MATRICES , SCHUBERT CELLS, 

REPRESENTATIONS OF THE SYMMETRIC GROUPS AND HOLOMORPHIC VECTOR-BUNDLES. 

2. I. Invariants and the feedback group. Let 1 denote the space of all pairs 
m,n 

of matrices (A,B) of dimension n x n and n x m respectively. Lcr is the 
m,n 

subspace of all completely reachable pairs. The feedback group F acting on 
n,m 

L is generated by base change in state space, base change in input space and 
m,n 

state space feedback. More precisely F is the closed subgroup of 
n,m 

consh.ting of all matrices of the form : 

g = (~ ~) , S EGLn' TE GLm, K E M(m,n) 

acting on L by 
m,n 

(2. 2) (A,B)g 

The subspace 

(SAS-]+ SBTS-lK, SBT). 

is stable under F 
n,m 

GL 
n+m 

Now consider an array of dots of dimensions m x (n+l) as below 

• 
• 

• 
B 

The first column represents the columns of B. The second, the columns of AB, .... 

Now for a given (A,B) E Lcr play the following g:ame. Go down the first column and 
m,n 

put a cross whenever the corresponding column vector of B is not in the subspace 

generated by the previous vectors. (For the f~rst column vector this subspace 

is the zero subspace) ; continue with the second column of dots. The result could 

for instance be as below (m = 4 , n = 7) 
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x x 

x x x x 

x . 

which, if D. 
l. 

denotes the i-th column vector of the matrix D, means that 

BI ~ 0, B2 E <BI>, B3 ~ <BJ,B2>' B4~ <Bl,B2,B3>' (AB)l~ <Bl,B2,B3,B4>' 

(AB) 2 E <BI, ..• , B4,(AB) 1 > ,(AB) 3 ~ < Bl' .•. ,(AB) 2 >, (AB) 4 E< B1, •.. ,(AB) 3 >, 

(A2B)I E < B1, •.. ,(AB) 4 > , •.. 

It is an easy lemma to show that if there is a cross anywhere then to the 

left of it there are necessarily crosses. Also the total number of crosses is equal 

to n iff (A,B) E Lcr (by the definition of er). It follows that the pattern of m,n 

crosses is defined by m integers 

This sequence of integers ~(A,B) 

;;;, 0 giving the number of crosses in each line 
'\, '\, '\, 

(Kl (A,B), K2 (A,B), .•. , Km (A,B)) is called the 

Kronecker selection of the pair (A,B). In the example ~ = (2,0,4,1). The Krone-

cker indices K(A,B) of the pair (A,B) are the same integers arranged in decrea-

sing order of magnitude. Thus in the example K=(4,2, l,C). The final zeros are 

often omitted. More details, including an explanation of why these invariants are 

named after Kronecker are in [6]. 

Thus to each (A,B) E L er 
m,n 

Kronecker indices K(A,B). 

2. 3. Theorem (Kalman, Brunovsky). The 

there is associated a partition of n, the 

K(A,B) are invariants under F • They n,m 

are also the only invariants. I.e. (A,B)g = (A' ,B') for some gE F iff n,m 

K(A,B) = K(A' ,B'). All partitions of n occur as a K(A,B). 

The discrete set of all partitions of n thus is equal to the quotient 

(as a set} Lcr I F and it inherits a topology from 
m,n n,m 

in case we are 

working over lR or a: (or in fact any field using the Zariski topology in those 

cases). This is a partial order on the finite set of all partitions of n which 



turns out to be the following : 

(2.4) > µ 

r = l, ... ,m. 
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r 
(µ-1, ..• 'µ ) -- . I 

m l:=I 
;\. 

J. 

r 
..;; I 

i=l 
>.. for 

J. 

This is an ordering which I like to call the specialization ordering and which 

occurs under different names also in several other parts in mathematics. Thus the 

question arises whether it is an accident that the same ordering occurs all over 

the place or whether there are deeper connections. The latter possibility turns out 

to hold and the rest of this second lecture is devoted to describing some of these 

other occurences and some of the connections between them. Most of what follows 

(and more) can be found in more detail in [ 17]. 

The "degeneration of systems theorem" stated above which says that the 

specialization order on partitions of n is the quotient topology on Lcr /F is 
m,n n,m 

relevant for control theory in that it tells us how the control structure of a 

system can suddenly change under deformation (system failure). 

Let me insert here a few words on how one can prove Byrnes' theorem on 

the stabilization of feedback systems. Let I be such a system, cf. 1.23, and let 

Z:0 be the associated familyof systemspammettizedby a E if. The theorem says that if 

is constant as a function of a then Z: can be stabilized by means of a 

state feedback law (which has delays). To prove this one, first shows that for 

polynomial families over a:r the constancy of K(Z:0 ) implies the constancy of 

~(l:0). This uses the Quillen-Sus lin theorem. Then for the space of all systems with 

the same Kronecker selection there does exist a continuous, indeed algebraic, cano-

nical form (with respect to the action of GLn) [ 8] and in terms of this canonical 

form the stabilizing matrix can be written down ~m:nediately. 

2. 5. Orbits of nilpotent matrices. Let Nn be the space of all complex nilpotent 
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matrices of size n xn. Consider the action of GLn(a:) on Nn by similarity, i.e. 

N5 = S N S-I. The orbits are classified by partitions of n (Jordan canonical form) 

and the Gerstenhaber-Hesselink theorem says that if O(K) denotes the orbit clas-

sified by the partitfon K then 0 (K) ::i 0 (\) - K < A (in the specialization orde:Q. 

The connection with Kronecher indices is as follows. For every N E N let 
n 

s (N) = { (A,B) E L er (<!) : Ni Ai-\= 0 for all i E {I, ... ,n}} and for every 
m,n 

(A, B) E L er (a:) 
m,n 

let m(A,B) = {NE N : Ni Ai-I B 0 . 1 } Th n = , i= , •.. n . en s and m 

induce mutually inverse bijections from the set of closed orbits of N under n 

and Lcr (!t) under F (!t). 
m,n n,m 

2. 6. Holomorphic vector-bundles over lP 1 (a:). Let E be an m-dimensional holomor­

phic (or algebraic) vector-bundle over the Riemann sphere lP 1(a:). According to 

Grothendieck, E splits as a sum of line bundles : 

turn these line bundles are classified by an integer (their first chem number).Thus 

vectorbundles E over JP 1 (!t) are classified by decreasing sequences of integers 

K(E) = (K 1(E), •.. ,Km(E)). For a completely elementary proof of this fact cf. [14]. 

The bundle E is ample if Ki(E);;.. 0 all i. 

Now consider a holomorphic family Et of m-dimensional vector-bundles 

over JP 1 (Cl) with L K. (E ) constant. Then according to a theorem of Shatz 
. ]. t 
]. 

K(E0) < K(Et) for t small and conversely if K and A are two partitions of n 

and K < A , then there exists a family Et of 1 ine bundles over lP 1 (!t) such that 

2. 7. The Herman-~.artin vectorbundle of a system. 
er r-: n+m Let (A, B) E L and let 1....>t n (a: ) 
m,n 0 

be the Grassmann manifold of all n-dimensional subspaces of !tn+m. The map 

'f! (A,B) : JP 1 (a:) + qn (([n+m) is defined as follows. For each Sof"' in lP 1 (a:), let 

'f! (A,B) (s) be the point in 9n (ctn+m) represented by the n x (n+m) matrix : 
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(sI - A ! B) 

and to s = co E lP I (0:) . . G ( n+m) associate the point of dn !!: represented by (I : O). 
n• 

It is not difficult to check that this defines an holomorphic map lPI (0:)-+ ~n (a:n+m). 

G n+m Now let sm be the very ample universal bundle over .fn(O: ) whose 

f .b x E Gnca:n+m) · h t" t ,,.n+m/ i re over cf1 is t e quo ien space "' x. 

The Hermann-Martin bundle of a completely reachable pair (A,B) E L er (0:) 
m,n 

is the induced bundle <{J ~A, B) Sm over ]p I (a:) and they prove that Ki (<P !A ,B) sm) 

Ki (A, B) i= I, ••. ,m, which explains why the same ordering occurs for families of 

vector bundles under isomorphism and families of systems under feedback. 

2.8 Schubert cells. Let df:, =(A1, ••• ,An) be a sequence of subspaces 

0rA 1 C A2 C A3 C ••• C A C a:n+m of !Cn+m. The closed Schubert cell determined 
f f f f n 

by cfG is defined by : 

In particular if 0 < T 1 < ... < Tn .;;; n+m is a sequence of increasing natura 1 

mb ...- . ( ) 1 . ( 1j Tn) nu ers -.. n+m, we write SC T for the Schubert ce 1 determined by a: , ... ,a: 

where a:j c a:n+m is the subspace of all vectors whose last n+m-j coordinates are 

zero. It is easy to check that SC(T) ::> SC(cr) if T. ;;;., 0. for all i. 
l. l. 

Now let K be an ( .;;m part) partition of 

To K associate the following sequence T(K) of n natural numbers : 

~ '~ .•. ,lKl+ ... +Km-J+~ 

K 
m 

, K. ;;,. 0. 
J 



23 

one verifies immediately that K >A.- Ti(K);;;. Ti(A), i=!, ••• ,n. 

The relations between Schubert cells and completely reachable pairs are 

mediated by the Hermann-~artin map <P(A,B) : 
I & n+m 

lP (CJ:) + ([rt (a:: ) • The results are as 

follows : 

2. 9. Theorem : Let (A,B) E L er (a:) and let K =K(A,B). Then there exists a sequence m,n 

of subspaces Jl:j = (A 1, ••• ,Am) of a:n+m such that dim Ai= Ti(x) and such that 

Im( \C(A,B)) C SCtJ\::,). Conversely if SC4(,) is a closed Schubert cell such that 

Im( ~A,B)) C SC(B), then dim Bi;;;.. Ti (K). 

This shows that the degeneration (or specialization) of the Kronecker indices rela-

tes to the closure ordering of Schubert cells and links this order with the Bruhat 

order (or Bernstein-Gelfand-Gelfand order) on the symmetric groups 

2.10. Representations of the symnetric group. 

s . 
n 

Let Sn denotes the symmetric group of all permutations of n letters. 

For a partition K of n let SK denote the socalled Young subgroup 

s x s x 
Kl K2 

by inducing 

SK C Sn. Finally let p(K) 
m 

the trivial representation of 

be the representation of S obtained 
n 

SK up to Sn. It is a theorem of Young 

Snapper, Lam, Llebler-Vitlale that p(K) is a direct summand of p(X) iff K < A • 

For a completely elementary proof see [ 15) • 

There is a natural connection of this result with the result discussed 

before due to Kraft (with further developments by de Concini-Procesi). It goes as 

follows. Let O(K) be the orbit of nilpotent matrices under similarity classified 

by the partition K. Let O(K) c ~<(n,n) be its closure. Let£2)be the closed 

subvariety of diagonal matrices of M(n,n). The set theoretic intersection of~ 
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and O(K) is the zero matrix, but the scheme theoretic intersection need not be 

trivial. It is the spectrum of a finite dimensional local algebra A(K) over a:. 

Both V and O(K) are invariant under Sn (viewed in the natural way as a 

subgroup on Gln(O:), so 

sentation p(K). 

A(K) carries a representation of Sn. This is the repre-

The manifold interrelated occurences of the specialization order are not 

exhausted by what has been said above (indeed a few more appear below). This par-

ticular one (between nilpotent matrices and representations of Sn) also occurs in 

another diagram of functorial relations involvinp, such things as the Springer 

representations, irreducible quotients of Verma modules, 'l'he Jantzen conjectures 

recently proved by A. Joseph, work of Kazhdan-Lusztip. and work of Gelfand-~.ac 

Pherson (which again lihks up Schubert cells). Clearly there is much room for 

further work here (and much is, in fact, in progress). 

2. 11. Some combinatorial occurences of the specialization order. In combinatorics 

the specialization order turns up in connection with such theorems as the marriage 

theorem, the theorem that every doubly stochastic matrix is a convex linear com-

bination of permutation matrices, and the existense of (0, I)-matrices with prescri-

bed row and column sums(Gale-Ryser theorem). A doubly stochastic matric is a matrix 

consisting of ;;;,. 0 elements such that all rows and columns sum to 1. One mani-

festation of the specialization ordering is that K > !. iff there exists a doubly 

stochastic matrix ¥. such that K= t-<J-. Another one involves }'uirhead' s inequality 

which is a far reaching generalization of the well known arithmetic mean geometric 

mean inequality. The latter corresponds to the extreme partition specialization 

ordering relation (l,1, ... ,1) > (n,0, .•. ,0). Cf [ 16] and [ 17]. 

2.12. The specialization ordering in physics and chemistry. Consider a thermodyna­

mical process governed by a master equation. Then the vector p = (p 1 , ... , pm' ... )of 



3. 2. Theorem, [ 22]. Let a : W + V(M) 
n 
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or Wn/ll. I + V(M) be an homomorphism of 

Lie algebras where n ;;;.. and M finite dimensional. Then a = 0. 

Below I shall first try to indicate how this theorem applies to filtering 

problems and then proceed to discuss related matters linking the Kalman-Bucy filter 

of linear system theory to the Segal-Shale-Weil representation of quantum field 

theory and number theory. 

Before doing so let me remark that the present proof of the theorem ([2~) 

is highly computational and that a more conceptual proof would be a very desirable 

thing to have. Such a proof has now been given by Toby Stafford (remark added in 

proof). 

3.3. The recursive filtering problem. Consider an Ito stochastic dynamical system 

of the form : 

(3. 4) 

where f,g,h are vector and matrix valued functions of x of the right dimensions 

and where wt E E.m, v t E ~ are independant Wiener noise processes also inde-

pendant of' the initial random variable x • 
0 

The filtering problem is to find the best estimate xt of xt given the 

observations ys, 0.;; s.;; t. ¥.athematically (but not constructively or computa-

tionally) the answer is given by the conditional expectation xt = E[x \y ,O<s..;;t]. 
t s 

More precisely what we would like to have is a recursive finite dimensio-

nal filter for calculating xt or for aalculating the best estimate 

interesting function \p(xt) of xt. By definition such a filter is a "system" of 

the form : 
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a (i;t) dt + i:: Sr (i;t) dy rt' \0 (xt) 
r 

where a,~ are known vector fields on the finite dimensional manifold ~. yrt 

the r-th component of yt' and y is a known function on ~. The stochastic DE 

is 

in (3.5) is assumed to be in Fisk-Stratonovic form. 

Such filters for xt exist in the case of linear stochastic systems 

(3. 6) 

In this case there is a filter for it (the Kalman-Bucy filter) which evolves on 

JRN 
' 

l N = n + 2 n(n+l), as follows. A point!; in JRN is interpreted as a pair (n,P) 

with m E lRn and P a symmetric n x n matrix. The evolution equations for !; = (m, P) 

are now : 

(3. 7) 

where the upper T stands for transposes. The output map y is the pro~ection 

(m,P) ~ m. For an introduction to the Kalman-Bucy filter cf. e.g. [3]. E.g. in the 

case of the simplest possible non zero system : Wiener noise linearly observed 

(3. 8) 

the Kalman-Bucy filter is given by the equations 

(3. 9) dP Pdyt - mPdt 

so that the vectorfields a and 8 of this filter are equal to 

(3. 10) 8 



28 

The Kalman-Bucy filter is of enormous importance for applications. But 

not all phenomena can be modelled well by linear systems and thus ever since 1961 

(the year of birth of the Kalman-Bucy filter) there has been a search for recursive 

filters in non linear situations. Recently a new approach to this question has been 

initiated by Brockett and !~itter ([ 23] ,[ 24]) which I shall sketch now. 

3. 11. The Duncan-Hortenson-Zakai equation. The first ingredient in this new approach 

is the so called Duncan-lfortenson-Zakai equation. Let p (x, t) be the density of 

xt (assumed to exist). Then an unnormalized version p(x,t) of p(x,t) (i.e. 

p(x,t) = n(t) p(x,t) for some, unknown, function n(t)) satisfies the Dl"Z equation 

(in Fisk-Stratonovic form) : 

(3. 12) dp(x,t) =.tp(x,t)dt + 
p 
I: hr(x) p(x,t)dyrt 

r=l 

where ;;(; is the second order differential Fokker-Planck operator defined by 

(3. 13) .;(;(•) = -2
1 L: - 3-

2
- ((g rh .. •)-I:~ (f 1.•) - 1- I: h (x) 2• , 

. . ax. ax. , l.J i.' ox].. 2 r 

components of yt' 

becomes : 

i.,J i. J r 

T 
(gg ) .. , f. are respectively the r-th, r-th , (i ,j )-th, i-th 

l.,J l. 
T 

h(x), gg, f. E.g in case of the system (3.8) the operator 

3.14. The estimation Lie algebra. Now /:; and multiplication by hr(x) are linear 

operators on the space of functions. Thus apart from being infinite dimensional 

(3.12) looks like a socalled bilinear system, that is a system of the form: 

(3. 15) x =Ax+ u . 
r 
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this type of system it is known that the Lie algebra generated by the matrices 

a."Pd B1 , ..• ,Br has much to say about how hard it isto write down solutions of 

.5). 

;; is one bit of motivation for considering the Lie al?:ebra of differential ope-

~rs generated by the operators occuring in the D~ equation, and to define 

1 , the estimation Lie algebra of a system (l:) of type (3. 4) as the Lie algebra 

~rated by the operator rh of (3.13) and the operator~ "multiplication with hr(x)!' 

I a2 I 2 
In the case of the example (3.8) L(l:) is generated by 2 ~-2 - 2 x and 

dx 2 

L(l:) is the socalled oscillator Lie algebra with basis _!_ ~ - J_ x 2 
2 dx2 2 ;;O that ,x, 

I. 

5. Filters and homomorphisms of Lie-algebras. Now assume that there exists a 

i::.er (3.5) for cp(xt). Then we have two ways of calculating ~(xt), an infinite 

ensional one and the assumed finite dimensional one. The infinite dimensional 

t:.er consists of the D}<Z equation (3. 12) combined with the output map : 

f 'f! (x) p(x, t) dx 

l p(x,t) dx 

eh is a perfectly good output map y on the space of all unnormalized densitie& 

Thus we have two machines which when fed the same data 

,,/"'-. 
duce the same results 'f!(xt) . If both were finite dimensional realization 

cry tellsus roughly that there exists a differentiable map of the reacheable 

t of the one system to the other system takin~ the vector fields of the one to 

ones of the other. It is not unreasonable to expect that a similar result holds 
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for ~ertain) infinite dimensional systems and in certain cases this has been proved 

to be the case [ 25,26]. This implies in particular that there is an homomorphism 

of Lie algebras of the Lie algebra generated by the vectorfields of the first 

system to the Lie algebra generated by the vectorfields of the second system. 

In our particular case this means that the existence of a filter (3.5) 

would imply that the map o/j i-.. ci, hr(x) ->- Sr defines an anti-homomorphism of 

Lie algebras L(E)r-+ V(¥.). It becomes an anti-homomorphism because the map which 

assigns to a linear operator on a linear space the linear vector-field defined by 

that operator ((a .. ) ->- E a •. xJ. a!. on :Jlf) is an anti-isomorphism. 
lJ lJ l 

Thus for example the existence of the Kalman-Bucy filter implies in the 

case of sys~em (3.8) that : 

l d2 l 2 -----x ......... 
2 dx2 2 

' x .... p .1.. 
am defines an anti-homomorphism 

of Lie algebras from the oscillator alp.:ebra to the Lie algebra V(l~.2) • This is 

easily verified. 

3.17. Robustness questions. As it stands the DMZ equation (3.12) is a stochastic 

partial differential equation and thus its solution need not be defined for every 

sample path yt(w). Yet in practice we will have one particular sample path which 

moreover will belong to the class of functions of bounded variation which is of 

measure zero. What is needed is a transformed version of (3.12) which makes sense 

for each separate sample path and which moreover is continuous with respect to 

varying sample paths : a robust version. In fact for a proof of the theorem that 

a filter induces an homomorphism of Lie algebras L(:E) ->- V(¥.) along the lines 

used in [25] for certain special cases we seem to need smooth dependence of the 

solutions on the sample path. 



31 

3. 18. The cubic sensor. The cubic sensor is the one dimensional system 

(3. 19) dxt 

3.20 Theorem ([22]. L(cubic sensor) = w1 

That is the estimation Lie algebra of the cubic sensor is maximally large 

This seems to be a generic phenomenon and I conjecture the following. Consider only 

polynomial f,g,h in (3. 4), then the estimation Lie algebra will generically be 

equal to all of w. 
n 

In the case of the cubic sensor we can show that a filter would give rise 

to an homomorphism of Lie algebras [25] ,f26] and thus it follows from theorem 3.2 

that : 

3.21 Corollary. The only statistics of the cubic sensor which can be computed by 

a finite dimensional recursive filter are constants. 

3.22. Ideals of the estimation algebra, filters, and approximate filters. One also 

expects the structure of the estimation algebra to help in finding actual filters 

that is one expects that suitable homomorphisms of Lie algebras : L(l:) + V(M) 

will indeed give rise to ~ilters. Thus it becomes relevant whether perhaps L(l:) 

has a series of ideals I 1 :i I 2 :i I 3 :i ... such that n Ii = {O} and L(l:) /Ii is 

finite dimensional for all i. This is e.g. the case if the system (3.4) is analyti:: 

and f(O) = g(O) = 0,[22]. 

A largely unexplored question is whether L(l:) also contains information 

on approximate filters. One could expect e.g. approximate filters to have to do 

with partial homomorphisms of Lie algebras ; that is linear mappings which respect 

Lie bracketts up to a certain order. The easiest way to formalize this is perhaps 
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as follows. The Lie algebra L(E) is not just a Lie algebra but a Lie algebra with 

prescribed generators /; , h1 (x), ..• ,hr (x). Introducing an extra variable s we 

can consider the filtered Lie algebra Ls(E) generated by the operators 

s~,sh 1 (x), ••. ,shr(x) and consider homomorphisms of this Lie algebra. If one can 

show that the DM..Z equation (or rather a robust version) is stable in the sense that 

the higher bracketts between the generators have but small influence one would 

expect representations of the finite dimensional quotients Ls(E) mod n 
s to be 

relevant for approximate recursive filters. Some positive evidence in this directi.on 

is contained in [ 27] and [ 2!3] for certain cubic sensor like systems and in [ 29] 

where it is shown that the extended Kalman filter in a particular case corresponds 

to partial homomorphiisms of Lie algebras. 

3.23 The Lie algebra ls • 
-n 

Let ls 
--n 

c w 
n 

denote the Lie algebra spanned by.. all 

differential operators : 

(3.24) 

with !al+ !bi.-; 2. Here a,b are multiindices and 

It is easily checked that this vector space is a sub-Lie-algebra of W . It is also 
n 

a maximal sub-Lie-algebra. I call it the linear systems Lie algebra for reasons 

which will become clear below. The elements (3.24) with lal+lbl < I span an ideal 

~ in ~ which is of course the n-dimensional Heisenberg Lie algebra and the 

quotient is easily shown to be isomorphic to the symplectic Lie algebra ~· so 

that there is an exact sequence : 

3. 25. The representation defined by all Kalman-Bucy filters Consider a linear 

system (3.6). One easily checks that in this case the operators occuring in the 

DMZ equation are all in ~· The estimation Lie algebras of linear systems (A,B,C) 
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are quite small in that L(A,B,C) n ~ is always an ideal of codimension in 

the estimation Lie algebra L(A,B, C). But for varying A,B,C the L(A,B,C) do span 

all of ls . 
~ 

Now the Kalman-Bucy filter for a linear system (A,B,C) defines an 

anti-homomorphism of Lie algebras L(A,B,C) -7 V(JRN) , N = n+~ n(n+l), and by 

adding one extra dimension (for the normalization factor essentially) one can lift 

this to injective anti-representation : 

3. 26. Theorem ([ 30]). The anti-representations p(A,B,C) fit together to define an 

anti-representation of all ls . 
-n 

This gives in particular a representation of ~n in V(JRN+l) via a Levi 

factor of ~n in lsn. It now turns out,[ 30], that this representation is closely 

related to the socalled Segal-Shale-Weil representation ([ 31-33]) of quantum 

field theory. One is a complex version of the other, which also throuws extra light 

on why the Kalman-Bucy representation can not be integrated in all directions 

(only a certain cone) while the SSW representation (also called oscillabor represen-

tat ion) can be integrated to a representation of the simply connected cover 
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