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We prove that any regular near hexagon with 729 vertices and lines of size 3 is derived 
from the ternary Golay code, thus settling the last case in doubt among the regular near hexagons 
with lines of size 3. 

Introduction 

A near hexagon is a partial linear space (X, fE) such that 
(a) For any point pEX and line t'EfEthere is a unique point on t nearestp. 
(b) Every point is on at least one line. 
(c) The distance between any two points is at most three. 
(The distances are measured in the point graph: d(p, q) = 1 iff p and q are collinear.) 
A regular near hexagon with parameters (s, t, t2) is a near hexagon such that each 
line contains 1 + s points, each point is in 1 + t lines, and a point at distance 2 from 
a fixed point x0 is in 1 + t 2 lines containing a neighbour of x0 • 

Shult and Yanushka [4] showed that there are exactly eleven possibilities for 
the parameters of a regular near hexagon with s=2. For ten parameter sets the cor­
responding near hexagons have been classified completely (by Cameron, Shult and 
Yanushka, Tits, Cohen and Brouwer). Here we settle the last case by showing that 
there is a unique regular near hexagon with parameters (s, t, t2)=(2, 11, 1). As Shult 
and Yanushka indicate, an example is given by the 729 vectors of the extended ternary 
Golay code, where lines are triples {x,y, z} with x+y+z=O and dH(x,y)= 
=dH(x, z)=dH(y, z)= 12 (where dH is the Hamming distance in F~2). One finds that 
distance 0, l, 2, 3 in the point graph corresponds to vectors at Hamming distance 
0, 12, 6, 9, respectively. 

Here we find another way to describe this near-hexagon in terms of the exten­
ded ternary Golay code, and prove that any regular near hexagon with (s, t, tJ= 
=(2, 11, 1) can be obtained in this way. 

AMS subject classification (1980): 05 B 30, 51 E 10, 94 B 25 
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1. Parameters 

Let :ft be a regular near hexagon with parameters (s, t, t 2)=(2, 11, 1). Let 
ki= !I'lx0)l = # {xld(x, x0)=i} for some fixed x0EJ'l'. Then 

k1 = 24 (= s(t+ 1)) 

k2 = 264 (= k1. s. tl(t2+ 1)) 

k3 = 440 (= k2·S·(t-tz)/(t+l)) 

so that v=Eki=729. 
Diagram of the distance regular point graph: 

:ft is an association scheme with intersection numbers (p~j), where 

[1 0 0 OJ [ 0 1 0 

l~J. k - 0100 k - 24 1 2 
(Poj)jk - 0 0 1 0 ' (Pij) - 0 22 2 

0 0 0 1 0 0 20 12 

[ 0 
0 1 

OJ [ 0 
0 0 

IJ k - 0 22 2 12 k - 0 0 20 12 
(p2) - 264 22 131 78 ' (Pa) - 0 220 130 174 . 

0 220 130 174 440 220 290 253 

Using some properties of :ft that will be proved in the next section we give here also 
the parameters w.r.t. a quad. If Q0 is a fixed quad (cf. Shult and Yanushka [4]) then 
there are 9, 180, 540 points at distance 0, 1, 2 from Q0 , respectively. Diagram: 

~ 4 20 1 5 18 6 18 

(A point in Q0 is in 12 lines, 2 in Q0 and 10 with one point in Q0 and two points in 
I' 1 (Q0). A point in I' 1 (Q0) is in 12 lines, 1 meeting Q0 , 2 contained in I' 1 (Q0), 9 with 
two points in I'2 (Q0). A point in I'2 (Q0) is in 12 lines, 6 contained in I'2(Q0) and 6 
having one point in I'1 (Q0).) 
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2. Quads and cubes 

(For definition, existence and properties of quads, see [4].) In :Yt the quads 
have 9 points and 6 lines and look like the picture shown, i.e., they are GQ (2, l)'s. 
Any two intersecting lines determine a quad. We shall show that any three concurrent 
lines determine a 3 X 3 X3 cube (called H (27) by Shult and Yanushka). 

E8 
A point x at distance one from a quad Q has a unique neighbour in the quad, 

say nQ(x) or just n(x). In any near hexagon the following is true: 

Lemma. Let Q be a quad and x, y two adjacent points at distance one from Q, where 
n(x) ~n(y) (i.e., the line xy does notintersect Q). Then 
(i) any point on xy has distance one to Q; 
(ii) n(xy) is a line in Q. 

Proof. First of all n(x)"'n(y) (,..., denotes adjacency, i.e., collinearity), since 
d(x, n(y))=2 and a shortest path from x to n(y) can be found through n(x). If 
zExy and d(z, Q) =2 then the collection 0 of points in Q closest to z forms an oval 
in 0 (i.e., a set of points in Q meeting each line of Qin exactly one point), but n(x), 
n(y)E 0, a contradiction. This proves (i), and shows that n(xy) is a clique in Q, so is 
contained in a line t. Let pEt. Let q be the point on xy closest top. Since there are 
two points on xy at distance 2 fromp and xy does not meet Q it follows that d(p, q) = 
= l, i.e. pEn(xy). I 

In our case there are 6 ovals in any quad - the quad together with (lines and 
ovals) as lines is an affine plane AG (2, 3) - and the ovals fall into two parallel clas­
ses. Fix a quad Q and call the two parallel classes //and\\. If x and y are two adja­
cent points in I'2(Q) then either the line xy is contained within I'2 (Q), and the ovals 
determined by x and y are disjoint, hence parallel, or the third point z of xy is in 
I'1 (Q), and the ovals determined by x andy meet in n(z), hence are not parallel. 

Fix a point xEI'2 (Q) and consider the quads Q' containing x. These are of 
seven possible types indicated by a diagram: an open dot is a point of Q, a solid dot 
is in I' 1 (Q) and //and \ \ label points belonging to ovals in these two parallel classes. 
We may assume that x itself is labelled. 

0EE 1EB 
'!:. ~ 

20=:! 
CD, 

3E8 
!i 

4.EE 5EE 6t-y=l 
·~ • ,/I CD 

(Note that patterns with one or three solid dots (not on a line) are imposs~ble. The 
former since it cannot be completed with //and\\ labels. The latter because 1f p, q, r 
are three points in Q' n I' 1 (Q) and y is a common neighbour of p and q in Q' then the 



336 A. B. BROUWER 

oval determined by yin Q contains n(p) and n(q) and therefore is {n(p), n(q), n(r)}; 
now y must be adjacent ro r, a contradiction.) 

In order to exclude possibility 1, let us write down some equations for n;, 
the number of quads Q' of type i. 
(a) Count lines yz in I'1 (Q) with x"'y: X is in 12 lines, 6 contained in I'2 (Q) and 
6 with a unique point in I'1(Q). Thus we have 6 choices for y, and given y we have 2 
choices for the line yz. This shows that 

2n1 +n2 = 12. 

(b) Count pairs of lines passing through x and contained in I' 2 (Q): 

n3+n4 = 15. 

(c) Count pairs of lines passing through x and meeting I' 1 (Q): 

n0 +n1+n6 = 15. 

(d) Count pairs at distance 2 from x in I'1 (Q): One one hand there are 2110 + 
+ 3n1 +2112 +2n4 +115 such points (for: such a point determines together with x a 
unique quad Q'); on the other hand, for points zEI'1 (Q) with d(x, z)=2 consider 
y=n(z). If d(x,y)=2 thentherearep~1 =2 pointszwith n(z)=y. If d(x,y)=3 
then there are p~1 -2= 10 points z with n(z)=y. Altogether we find 3 · 2+6 · 10= 
=66 points z. Thus: 

( e) Count points at distance 2 from x in Q: 

n0 = 3. 

(f) Count pairs of lines passing through x: 

This gives us six equations with seven unknowns. Putting n1 =a we find 

n5 = 24+2a, n6 = 12-a. 

Now put a=a(x), 111=n1(x) and vary the point x. Clearly, each quad Q'with2 points 
in I' i ( Q) is of type 4 for one point x, of type 5 for four points x and of type 6 for two 
points x. Consequently, averaging over x, we have n5 =4ii4 and n6 =2ii4 , so that 
a=O. But if n1 is zero on the average then it is always zero, and we have for each x: 

n = (3, 0, 12, 9, 6, 24, 12). 

In particular case (1) does not occur, so that we proved: 



NEAR HEXAGONS ON 729 POINTS 337 

Lemma. Let Q, Q' be two points such that Q' n r l (Q) contains two intersecting lines. 
Then Q'cI'1 (Q). I 

Now we are in a position to prove the announced e»istence of cubes: 

Proposition •. f:et t1, t2, t 3 bt; three concurrent lines. Then there is a unique minimal 
set C contammg these three Imes and such that if it contains two points at distance 2 
~hen also ~he quad determined by them. We hai:e IC I =27 and the graph induced on C is 
isomorphic to the graph on the Hamming scheme J1 where adjacency = Hamming 
distance one. Such sets Care called cubes. 

Proof. Let Qu=(ti. t;) be the quad defined by ti and t1 (i,j=l, 2, 3; i>=j). 
~et C=Q12UQ1aU {yld(y, Q12)=d(y, Q13)=1, d(y, t 1)=2}. Then Q28cC, and 
tf _yE~(Q12UQ1sUQ2a) and zEt1 with d(y,z)=2 thenbythelemmaaboveeach 
pomt of the quad Q(y, z) has distance one to Q23 . Using the fact that if Q is a quad 
and xEI'1(Q) there are exactly two lines passing through the point x and contained 
entirely within I' 1 (Q) one easily verifies all claims. I 

3. Vector space structure 

Assuming the validity of this proposition Shult and Yanushka proved the 
existence of a regular abelian group of automorphisms of :If. In fact they first proved 
(tediously): 

Let d(x, y)=3. Then there are precisely 4 cubes containing both x and y. 
These cubes meet, except for x and y, in a unique third point z, where z is the unique 
point at distance 3 from both x and y in each cube. 

Now fixing a vertex and calling it Q we may define an involution x- -x by 
fixing Q, interchanging points ~ Q on a line through Q, interchanging points ,: Q 
on an oval through Q, and interchanging points y, z if d(Q, y)=d(Q, z)=d(y, z)=3, 
and z is in each of the 4 cubes containing Q and y. 

The product of two such involutions (with different fixpoints) is an automorph­
ism without fixpoints and is uniquely determined by the image of some vertex Q. 
These automorphisms are our translations, and we have the group Z~. 

Identify the vertices with group elements. Now we have given ff the structure 
of a vector space over Fa, and lines and ovals have the property that the sum of their 
elements is zero. Lines, quads and cubes are one-, two- and three-dimensional sub­
spaces (but there are also other subspaces of these dimensions). [Our subspaces are 
affine subspaces - they need not contain Q.] 

4. Buekenhout diagram 

At this point I did not know how to continue: the extended ternary Golay code 
is a 6-dimensional subspace of a 12-dimensional vec.:tor sp~ce o~er Fa. We foun~ the 
subspace, but where is the big space? One would like to 1dentif1 the 12 coordmate 
positions, and an obvious choice seems to be !he set of twelve lines through Q .. But 
in Shult and Yanushka's construction these Imes do not correspond to coordmate 
positions. A coordinate position gives us a coclique of size 243, but it is not clear how 
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to find such cocliques. Arnold Neumaier suggested first to identify the objects belong­
ing to the Buekenhout diagram 

C C C Af 
a:=:::::::.....~-~--o--=-=--o 

of the extended Golay code, and indeed, these are easy to find. But having found these 
one may define a Golay code where the 12 coordinate positions are in fact the 12 lines 
through Q. Thus we find a new construction of the near hexagon Jlt' and prove that 
any near hexagon with these parameters can be obtained in this way. 

So, let us look at the diagram. The first three species are points, lines and 
quads; the next type is formed by the cubes. Objects F of the fifth type have the pro­
perty that any two cubes with a quad in common determine a unique such F. So these 
must be hypercubes, generated by four concurrent lines. (We shall call our objects 
i-spaces (i=O, 1, 2, 3, 4, 5); note that not each subspace of dimension i is an 
i-space.) 

We must show that the 4-space F generated by four lines (of Jlt') through a point 
x0 cannot contain other lines (of Jf'). Two cubes with a quad in common cannot meet 
outside this quad since the intersection of subspaces is a subspace. Thus we find that 
the four cubes determined by the triples from the four given lines contain together 
65 points (1, 8, 24, 32 points at distance 0, 1, 2, 3 from x0 , respectively) so that F 
contains 16 more points. If we set x0 =Q then these points are sum of four vectors 
along the four given lines, but each sum of these three vectors has distance 3 to Q so 
our new points have distance at least 2 to Q (in fact 8 are at distance 2 and 8 at di­
stance 3), and all points at distance 1 from Q in F lie on the four given lines. 

The last type of object is determined by two 4-spaces with a 3-space in common, 
hence must be a 5-space generated by five lines through a point x 0 • The stroke ~ 
denotes an AG (2, 3) in this case, so we want to prove (i) that this partial linear space 
has 9 points - and indeed, given a cube containing x0 there are 9 4-spaces F contain­
ing this cube, determined by the 9 lines on x0 not in the cube, and (ii) that this partial 
linear space has lines of size 3, i.e., that 5-spaces generated by five lines through x0 

contain in fact six lines through x0 • 

Suppose that the 5-space G on Q contains only 5 lines (of Jlt') through Q, i.e. 
only 10 points at distance one from Q. The point set of JC' is partitioned by G and 
its two cosets G1 and G2 . Since k1 =24 there is a coset, say G1 , containing at least 7 

oints at distance one from Q. G1 is union of three 4-spaces, at least one of which 
1ntains 3 points at distance one from Q. Now we find a contradiction from 

IDil1a. Let F be a 4-space. Then a point x1 F has at most 2 neighbours in F. 

>of. Suppose x has three neighbours in F. If C is a cube contained in F then x has 
:cisely one neighbour in C (not more since a cube is a Cameron set, i.e., is closed 
Jer formation of quads - not less since Fis union of C and two translates of C) . 

..>ordinatize F with Z~. Then the 3 points in Fat distance 1 from x have no coordi­
ate in common so are 1111, 2222 and 0000, say. Then x is at distance 2 from 1000, 
011 in the quad 10**, hence also from 1022. Looking at the line *022 we have two 

points, 1022, 2022 at distance 2 from x, so that 0022 must be at distance 1 from x, 
a contradiction. I 
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Consequently, G contains at least 6 lines through Q, and the linear space of 
4-spaces and 5-spaces on a fixed 3-space has lines of size at least 3. But there are only 
two linear spaces on 9 points with lines of size at least 3, namely AG (2, 3) and the 
space with a single line of size 9. The latter, however, is impossible - if G contains all 
lines through Q then G contains all of J/f and cannot be a 5-space. 

This proves that we indeed have the diagram given above. 

5. Uniqueness 

I . 11 k h . . b" . h d" c c c Af t 1s we - nown t at there is a umque o JeCt wit iagram o=-o-=-o=o-<i 
where Af denotes an AG (2, 3), namely the Witt design S (5, 6, 12). We use only the 
simple property that the complement of a block of this design again is a block. Choose 
six lines ti (0:§i:§5) through Q not forming a block in the local design S (5, 6, 12). 
Then the remaining six lines Ii (6§.i:§ 11) do not form a block either. Choose a point 
eir=Q on each of the lines ti. Then both B={eil0:§i:§5} and B'={ed6:§io:§ll} 
form a basis for the vector space :Yf. Associate a vector of length 12 with each point 
xEYf',writing x>->-(a0 , ••• ,ix11) if x=Ef= 1 ixiei=Ln 6 ixie., The image of :it' under 
this map is a 6-dimensional subspace of Z~2 • Let us prove that it is the extended Golay 
code. To this end it suffices to show that the minimum distance is 6 (cf. Delsarte and 
Goethals [2], Pless [3]). 

Suppose v=(ix0 , •.• , a11) is a nonzero vector of weight at most 5. Let wL(v)= 
= 4f {ilai:;£0 and 0§.i§.5} and wR(v)= # {ilixi,,:O and 6§.i§. l 1} be the left and 
right weights of v. Then v can be written as sum of wL multiples of vectors in B and 
also as sum of wR multiples of vectors in B'. Therefore there is a representation of Q 
as linear combination with nonzero cooefficients of w=w.1., +wR vectors in BUB', or 
also a representation of one vector in BUB' as linear combination of at most four 
others. But we know that the 4-sp·ice generated by these others does not contain other 
points of BUB', a contradiction. 

This proves that the image of Jf is the extended Golay code. But conversely, 
if'{! is the extended Golay code then let De Cf/ be the set of 24 vectors with exactly 
one nonzero coordinate in the first 6 positions or exactly one nonzero coordinate in 
the last 6 positions. We find :Yf back again by calling two vectors adjacent if their 
difference belongs to D. (Now the lines of J/f are the triangles in the point graph.) 

Note that we obtain only one near hexagon :Yf in this way (up to isomorphism): 
the automorphism group of <(J contains M 12 acting on the positions (cf. [l], page 85 ), 
and under this group the 6-sets fall into two orbits: those corresponding to a block 
of S (5, 6, 12), i.e., those forming the support of a codeword, and the remaining ones. 
Clearly, when talking about 'the first six positions' we mean a 6-set not forming a 
block. (Note: here automorphisms are monomial transformations, i.e., matrices 
with one nonzero entry in each row and column. That there are only two orbits, is 
seen as follows: M 12 is sharply 5-transitive and the setwise stabilizer of a 5-set has 
order 120; it fixes a 6th point and acts as PGL (2,5) on the remaining 6 points.) Thus 
there is a unique regular near hexagon with parameters (s, t, t 2 ) = (2, 11, 1 ). 
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