On the Uniqueness of a Certain Thin Near Octagon (or Partial 2-Geometry, or Parallelism) Derived from the Binary Golay Code

A. E. BROUWER

DEDICATED TO JESSIE MACWILLIAMS ON THE OCCASION OF HER RETIREMENT FROM BELL LABORATORIES

Abstract—The question of the uniqueness of a certain combinatorial structure has arisen in three contexts: a) is the regular near octagon with parameters $(s, t_2, t_3, t) = (1, 1, 2, 23)$ unique [5]? b) is the partial 2-geometry with nexus three and blocksize 24 unique [2]? c) is there a unique graph such that it is the graph of a parallelism of $\begin{pmatrix} 24\\ 4 \end{pmatrix}$ with respect to any vertex [1]? We observe that these questions are equivalent and give an affirmative answer. In fact, we prove a more general theorem, showing the truth of a conjecture by Cameron.

I. INTRODUCTION

F OR the definition of near *n*-gon (see [5], [6]). We shall only use thin regular near 2*d*-gons which are nothing but distance regular bipartite graphs of diameter *d*. If d(x, y) = i then let $c_i := |\langle z | z \sim y \text{ and } d(z, x) = i - 1 \rangle|$ (where ~ denotes adjacency). By distance regularity c_i does not depend on the choice of x and y. Write $k := c_d$, the valency of the graph.

A partial λ -geometry with nexus *e* is an incidence structure with *b* blocks and *v* points which satisfies:

- a) two distinct points are on 0 or λ common blocks;
- b) two distinct blocks have 0 or λ common points;
- c) given a point x not on a block B, there are precisely e blocks on x meeting B;
- d) no point is on all blocks and no block contains all points;
- e) all blocks have size k and all points are in r blocks, where $k, r > \lambda$, (see [1], [2]).

If $\lambda > 1$ then one may weaken e) to each block has more than λ points and each point is on more than λ blocks and obtain the existence of k and r and moreover that k = r. Assume $\lambda > 1$ and e < k (when e = k we have a symmetric BIBD).

One immediately verifies that the bipartite graph with points and blocks as vertices and incidence as adjacency is distance regular with $(c_1, c_2, c_3, c_4) = (1, \lambda, e, k)$, i.e., we have a thin regular near octagon. The converse also being clear we see that the concepts of thin regular near 8-gon (with $c_2 > 1$) and partial λ -geometry with nexus e (with $\lambda > 1$ and e < k) are equivalent.

II. UNIQUENESS

Let Γ be a distance regular bipartite graph with diameter $d \ge 4$ and $c_i = i$ $(1 \le i \le d - 1)$.

Lemma: Let 2^j be a *j*-cube (vertices: binary vectors of length *j*, edges: pairs of vectors differing by a unit vector) and π be a map sending 0 to $x_0 \in \Gamma$ and the unit vectors to (distinct) neighbors of x_0 in Γ . Then π can be extended in a unique way to a map $\pi: 2^j \to \Gamma$ preserving adjacency and squares. Moreover, π is injective when restricted to (2d - 1)-cubes.

Proof (cf. [1, th. 5.11 (i)]): First observe that two points at distance three in Γ determine a 3-cube: each has three neighbors at distance two from the other, and on these six points we have a regular bipartite graph of valency two, hence a hexagon, completing the cube. It follows easily that a 2-claw determines a square and a 3-claw a 3-cube.

We define $\pi(v)$ by induction on the number of nonzero coordinates (the weight) of v. If the weight is zero or one $\pi(v)$ is prescribed. If the weight is two so that v = e + e' for two unit vectors e, e', then let $\pi(v)$ be the common neighbor of $\pi(e)$ and $\pi(e')$ distinct from $\pi(0)$.

Suppose $\pi(v)$ defined for vectors v of weight less than i, and let v have weight $i \ge 3$: $v = \sum_{h=1}^{i} e_h$ for distinct unit vectors e_h . Then we can define $\pi(v)$ as the common neighbor of $\pi(v - e_1)$ and $\pi(v - e_2)$ distinct from $\pi(v - e_1 - e_2)$. For h > 2 the points $\pi(v)$ and $\pi(v - e_1 - e_2 - e_h)$ have distance three, hence determine a 3-cube, and we find that $\pi(v)$ is adjacent to $\pi(v - e_h)$ as was required. Thus, using only $c_2 = 2$ and $c_3 = 3$ we find a unique map π satisfying all requirements and injective on 3-cubes. If we

Manuscript received April 12, 1982; revised June 8, 1982.

The author is with the Mathematical Center, Kruislaan 413, Amsterdam, The Netherlands.

BROUWER: UNIQUENESS OF A THIN NEAR OCTAGON

also have $c_i = i$ ($2 \le i \le h$) then one easily sees that π is still injective on (2h + 1)-cubes: if two vectors have the same image then by choosing the origin appropriately one may suppose that they have disjoint supports of equal weights at most h (note that Γ is bipartite and 2^{j} is connected so that vectors with the same image have even distance), but inside a radius of h nothing can happen.

Now let k be the valency of Γ and apply the Lemma to find a labeling of Γ with vectors from 2^k . The number of vertices of Γ is

$$|V(\Gamma)| = 1 + k + \binom{k}{2} + \cdots + \binom{k}{d-1} + \frac{d}{k}\binom{k}{d},$$

so that on the average each point gets $2^k/|V(\Gamma)|$ labels. But the collection of labels of a point x is a binary code \mathcal{C}_{x} with word length k and minimum distance at least 2d, and this average is just the trivial upper bound for the cardinality of such a code when one observes that spheres of radius d - 1around codewords are disjoint, and a vector can have distance d to at most k/d distinct codewords. Consequently each point has exactly $2^k/|V(\Gamma)|$ labels, and each \mathcal{C}_x is an extended perfect code. By the classification of perfect codes (see e.g., [4, ch. 6, th. 33]) it follows that we have one of the following three possibilities:

- a) $|\mathcal{C}_{x}| = 1$, the code is trivial. Now d = k, $|V(\Gamma)| = 2^{k}$ and we have a k-cube.
- b) $|\mathcal{C}_x| = 2$, a repetition code. Now $d = \frac{1}{2}k$, $|V(\Gamma)| = 2^{k-1}$ and we have a half k-cube (i.e., a k-cube with antipodal vertices identified).
- c) $|\mathcal{C}_{r}| = 2^{12}$, a code isomorphic to the extended binary Golay code \mathcal{C} . Now k = 24, d = 4 and all codes \mathcal{C}_x are translates of each other (for: suppose $x \sim y$. For each $v \in \mathcal{C}_{v}$ there is a unique $v' \in \mathcal{C}_{v}$ with d(v, v') =

1. The map $v \rightarrow v'$ changes distances by at most two, but since all distances are multiples of four it must preserve distances. Considering triples of vectors of weight 8 u, v, w in \mathcal{C}_x such that u + v + w is the all-one vector one sees that this map is a translation over a vector of weight one). Our graph Γ is the graph with as vertices 2^{12} cosets of \mathcal{C} , and two vertices are adjacent if and only if the corresponding cosets contain vectors differing by a unit vector.

This settles question 5.7 in [1, p. 94]—there also d = 3 is allowed, but in this case it is given that 3-claws generate 3-cubes and our reasoning still works.

Let us formulate a theorem.

Theorem: Let Γ be a distance regular bipartite graph with diameter $d \ge 3$, valency k and parameters $c_i = i$ (1 \le $i \leq d-1$). If d=3 then suppose additionally that any 3-claw generates a 3-cube (in the sense of [1, p. 91]). Then Γ is a *d*-cube, a half 2*d*-cube, or we have d = 4, k = 24, and Γ is the graph of the sextet parallelism (or, in other words, is the thin near octagon derived from the extended binary Golay code as described above).

References

- [1] P. J. Cameron, Parallelisms of Complete Designs. Cambridge, England: Cambridge University Press 1976.
- P. J. Cameron and D. A. Drake, "Partial λ -geometries of small [2] nexus," Ann. Discrete Math., vol. 6, pp. 19-29, 1980.
- [3] D. A. Drake, "Partial λ -geometries and generalized Hadamard matrices over groups," to appear. F. J. MacWilliams and N. J. A. Sloane, *The Theory of Error-Correct-*
- [4] ing Codes. Amsterdam: North Holland, 1977.
- [5]
- S. Shad and E. Shult, "The near *n*-gon geometries," to appear. E. Shult and A. Yanushka, "Near *n*-gons and line systems," Geo-[6] metriae Dedicata, vol. 9, pp. 1-72, 1980.