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0. Heuristic introduction to the defect correction principle 

Often the numerical analyst is faced with the problem of solving an 

equation 

F x y, 

where y E Y and a mapping F : X + Y are given; X and Y are linear spaces. An 

element x EX hns to be found such that the equation Fx= y is satisfied. 

Often we cannot or we will not solve the equation directly because this 

would exceed our computational capacities. On the other hand we can solve 

simpler equations that are all similar to the previous equation: 

Fx = y, 

for some arbitrary y E Y c Y. Sometimes this yields the possibility to solve 

the original equation by means of an iterative process. 

EXAMPLE. Solve the equation x2 = 3. In other words: compute /3. We assume 

that we cannot find the answer immediately, but we can (I.) square the value 

of a real number (i.e. we can apply the operator F in the equation), and 

(2.) we can add and (scal~r) multiply the real numbers (i.e. we use the fact 

that X = Y = lR is a linear space). In this example th"! linear spaces are 

X = Y = lR . The operator F JR + :m is defined by F x = x 2 and y is defined 

by y = 3.0. We notice that F is neither surjective nor injective; F is de

fined on the whole of X, which (in the general case) is not necessary. 

f 1 k . . . 2 3 h h f 11 I we oo for the positive solution of x = , t en we can apply t e o ow-

ing iterative process 
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* If the iterands xi would c-onvt0rge to a value x f. 1R, then w~· know that it 

w()uld Nti.sfy 

i.r. we would have found a solution to the original equation. ~1en does the 

iterative process converge? 

This implies that 

lxi+ 1-x*I 

!x. - x *I 
l 

• * 2 2 • (xi - x ) + B[ (x ) - (xi) 1 

• JI - S(x. + x*>I; 
l 

therefore, the condition for convergence is 

We know: 1 < x* < 2, hence we take x0 such that' 1 s x0 s 2. Now 2 < 

holds and consequently the process will converge with 0 < B < 1/2. 

As a numerical e:irample we take B • 1/4, x0 • 1.5. Now we find 

i 
2 3- x7 xi xi l 

0 l.5 2.25 0.75 

I I .6875 2.84766 0.15234 

2 I. 72559 2.97765 0.02235 

3 1.73117 2.99696 0.00304 

4 I. 73193 2.99959 0.00041 I 
5 I. 73204 2.99995 0.00005 I 

l 
6 1.73205 2.99999 0.00001 

7 l. 73205 3.00000 i 0.00000 
i 
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* ' The convergence factor is I - S(xi+ x) ~I - 1/4.2.13 ~I - 0.866 = 0.134 ~ 

~ l/7. In many problems we are really plea~ed by such a convergence factor.· 

Analysing the above process, we write it in the abstract form 

where xi € X, y € Y, F 

derived from 

x ... y' s Y -+ X, X y ll. . The convergence is 

from which it is clear that we have a convergent process if Ill I - SF Ill < I, 
-J i.e. if the operator S is close enough to F • In other words S should be a 

-1 
sufficiently close approximation to the solution operator F • 

l. The basic principle 

In principle, a defect correction process is an iterative process to 

solve an equation that we cannot or we do not want to solve directly: 

(P) F x = y, 

where F : Ac X-+ Y. This short notation means that F : A+ Y is a mapping, 

A is a subset of X and X and Y ·are normed linear spaces. In general F is 

not linear, F is not defined on the whole of X and F is neither injective 

nor surjective. We assume that there exist subsets A c X and B c Y such 

that F is defined on the whole of A, and Vy € B 3x E A such that Fx = y 

(i.e. the mapping F : A-+ B is surjective). In addition we often require 

that there exists a unique x E A such that Fx = y (i.e in addition the 

mapping F : A+ Bis injective and hence it is bijective). 

As an introduction to a more formal approach in the following paragraph, 

we first proceed informally to introduce the notion of "approximate in

verse". We assume that we can soh·e some approximations (P) of the problem 

(P), i.e. for ally E Y c B we can solve the equation 

(r) Fx"' y, x E X, 

where F X + Y is some "approximation" of the operator F. 
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Formally we describe this as follows: we assume that for some subset 

Y c B, with y € Y, there exists a mapping 

G Y +A, 

which we shall call the appl'oximate inve~·se of F. The meaning of G is, that 

for any y € Y an approximation to the solution of the equation Fx y if> 

given by Gy € A. The mapping G needs not to be linear and is neither neces

sarily injective nor surjective. 

REMARK. If G is not surjective, then possibly x I. GY , with x the solution 

of Fx = y. 

REMARK. If G is injective, then an F: GY -+ Y exists such that FG = I~· 
y 

where I- is the identity operator on Y.. Then F is "an approximat·ion to F". 

Here wey notice that F is only defined on GY and not on A! 

In a Defect Col'rection Process the solution of the original pl'oblem (PJ is 

found fol' approximated) by the itel'ative appl.ication of one fol' mor-r) ap

proximate inverse(s) G. 

In its most elementary form we have two versions of the defect correction 

process for the solution of (P): 

The first defect correction process (DCPA) 

(DCPA) 
{ x0 € A, 

xi+I = (I - GF)x. + Gy, 
l. 

with the standard starting value 

and the second (or duaZ) defect correction process (DCPB) 

{ l.0 € Y, xi = Gli' 

l. I = (I - FG)f.. + y. 
i.+ l. 

(DCPB) 

with the standard starting value 
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RH!ARK. DCPA is completely described by F,G,y and x · (DCPB) is complet.ely o' 
described by F,G,y and £0 . 

REMARK. In order that the above defect correction processes make sense (are 

well defined) a number of conditions should be satisfied, such as: 

for DCPA 

for DCPB 

{xi} c: A and {Fxi} c Y; 

{li} c: Y. 

Note that y E Y follows from the definition of G, which was defined on Y 
withyEY. 

REMARK. With DCPA we use the fact that X is a linear space and not the 

fact that Y is. With DCPB we use the fact that Y is a linear space and not 

the fact that X is. (Note that both F and G may be non-linear!) 

DEFINITION. A value x* E X is called a stationary point (or a fixed point) 
of an iterative process 

if x* satisfies 

* * * x r(x ,x , ... ). 

DEFINITION. The convergence factor> of an iterative process to a stationary 

point x* is defined by 

sup 
i;:;:O 

* llxi+l-xll 

II x. - x*ll 
l 

2. The first Defect Correction Process 

The first thing we notice when we consider DCPA is that the solution 
. . * x of (P) is a fixed point of DCPA; moreover, for any stationary point x of 

DCl'A, we have 

( 2. 1) * GF x Gy GF x. 

(Notice that x* ~ A and Fx* E Y are natural assumptions that go with the 

~s~umptions of x* to be a stationary point of DCPA.) 
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As a direct consequence of ( 2. l) we find the following 

THEOREM. If DCPA has a stationary point x* E X with Fx* E Y and ij" G is i11-

;jective, then Fx* = y (i.e. then x* is a solution of (P)). 

REMARK. Even, if G is not injective, the soluti.on x of (P) and the fixed 

point x * of DCPA are mapped by GF onto the same element of GY (although we 

have not necessarily Fx* = y = Fx) .. In other words: G defines subsets of 

Y (viz .. the sets of points that are mapped to the same point of X) and Fx* 

and Fx now are elements of the same subset. 

DEFINITION. The anrpZification operator of DCPA is defined as 

M I - GF. 

THEOREM. The convergence factor of- DCPA to a fixed point x* 

is bounded by Ill I - GF Ill AcX-+X. 

PROOF. Let xi be an arbitrary iterand of DCPA, then 

Hence, 

and 

* xi+l - x 

II - x*ll x. 1 1+ 

* nxi+I - x n 

llx. - x*ll 
1 

(I -· GF) x. - (I - GF) x * . 
1 

11 (I- GF)x. - (I- GF)x*n 
1 

s Ill I - GF Ill llx . - x *II 
1 

S Ill I - GF Iii AcX-+X 

* E A, Fx E Y, 

rJ 

If Ill I- GF!ll < 1, the sequence of iterands of DCPA converges and it might 

make some sense to call G an approximate inverse of F indeed. If F is in

jective, we can give the following definition. 

DEFINITION. The approximation error of G for the solution of (P) is 

Approx. error (G;F, x) ~ sup {!I x-f;ll i GF x 
~EA 

GF<;}. 

As a direct consequence of this definition we have for any injective G 

Approx. error(G;F,x) 0. 
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REMARK. In the special case that G is an affine mapping, i.e. if we can 

write Gy as 

Gy G'y + GO, Vy E Y, 

where G' is a linear operator, then we may write DCPA 

{ 
XO E X, 

x.-G'(Fx-y). xi+l l. 

3. The second Defect Correction Process 

as 

If .e.* E Y is a stationary point of DCPB, then we clearly have 

FGf* = y. 

Hence, we immediately have the following 

* ~ * THEOREM. If DCPB has a statfonary point l € Y, then G l x is a solution 

of (P) in GY c x. 

REMARK. If F A+ B is injective, then G .e* is the unique solution of (P). 

REMARK. If G Y + A is not surjective, then possibly x t GY and hence no 
* ,..., ,...., * * ,..., .t E Y exists such that c.e = x. In that case no fixed point .t E Y can exist. 

· DEFINITION. The amplification operator of DCPB is defined as 

M I - FG. 

THEOREM. The com,ergence factor of DCPB to a fixed point .e.* E Y is bounded 

by Ill I - FGl!I YcY+Y" 

PRO.OF. 

11.e. . - .e.* II s Ill I - FG Ill 11 l . - l *II • 
i+J l. 

0 

THEOREM. If G is injective, we can define its left-inve~se F c.nd DCPB can 
be l;)ritten as 

17 



PROOF. 

and 

{ x0 E GY 

F xi+I = (F - F)xi + y. 

Fx.-FGl.·+y=Fx. -Fx. +y 
l. l. l. l. 

(F - F)x. + y. 
l. 

D 

REMARK. In many problems the operator (F - F) can be much simpler to compute 

than either For F. 

THE~. If G is injective, then the convergence factor of DCPB is bounded 

by 

Ill Ji - F Ill -- Ill G Ill y-cy~x, GYcX-+-Y ~ 

~here F is the left-inverse of G. 

PROOF. 

Ill I - FGlll Ill FG - FG 111 = 

sup ll(FG-FG)x - (FG-FG)yll/llx-yH 

sup n'Fc x - FGx - FGy + FGyll /II x-yll 

sup II (F-F)Gx - (F-F)Gyll /llx-yll 

II (F-F)Gx - (F-F)Gyll. ucx - cyn sup 
u'Gx - cyu llx - yll 

s Ill F - Fiil 111c111 D 

REMARK. Clearly, the above bound of the convergence factor can also be ex

pressed, in terms of relative error of F and the condition of F, by 

n.e.. I - .e.*11 
i+ 

n.e.. - .e.*11 
l 

Ill F - Fiii 

l!!Flll 
cond(F). 
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THEOREM. If G is an affine mapping, then the sequences {xi} in (DCPA), and 
{xi} in (DCPB), defined with their standa.rd starting values x0 = Gy and 

l 0 y, are identical. 

PROOF. Let {l.}.=O 1 2 and {x.}.=O 1 2 be defined as in DCPB, then 
J. 1 ' ,. " • • • l. 1 ~ ' ' •.. 

i) G .e.0 = Gy , and 

'Gc.t. - FG .e.. + y) 
l. l. 

G 0 + c'.t. - G 0 - G'FG .e.. + G 0 + c'y 
l. l. 

G .t. - G FG L + Gy 
]_ l. 

x. - GF x. + G y = (I - GF)xi + Gy. 
l. l. 

I.e. the values from the sequence {xi} satisfy exactly the generation rules 

for the sequence {xi} from DCPA. Hence, both sequences are identical. D 

REMARK. It is clear from the proof of the last theorem that for general G 

both processes DCPA and DCPB yield different sequences {xi }. 

4. Further remarks on DCPB 

If Gin DCPB is not surjective (i.e. possible x (_ GY, with~ the solu

tion of Fx = y, and hence possibly there exists no fixed point for DCPB), 

then sometimes we still can write 

(4. I) G r b.' 

where b. : Y ~ 6 Y io. a linear projection (b. Y c B), and r 
surjective. 

Fig. 4.1. The mappings G, b. and r. 
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The iterands {l.} in the iterative pro~ess DCPB are all in Y. If, instead 
- l. -of l. € Y, we consider their projections /\ {'. r: /\ Y, we get the following 

l. 1 

iterative process of which all iterands are in 6. Y: 

6. l. - A FG i. + /\ y 
1 1 

With the definitions A. 
l. 

ni. and i;. 
l. l. 

r \ we get 

(4.2) 
Ai - 6. F r Ai + 6. y, 

r:,. .e.0 = 6 y. 

This is exactly the DCPB for the problem: 

(6. P) 6.y, 

where r takes the part of the approximating inverse of 6. F . Since, by hypo

thesis, r is surjective, this new DCP has a fixed point A* and the solution 

(6 P) is found as ~* r A* 

REMARK. Notice that i;* € r 6. Y 

as: find I; € '(;y such that 

6(Ff,;- Y) O. 

G Y . The problem (6. P) can now be con:,idercd 

By application of a projection 6. to the residual of the problem (P), more 

solutions in X are generated which satisfy the equation. The projection l 

has to become so strong that even a solution becomes in GY . If we find a t. 

such that the problem ~as a solution for ally € Y, we have found a decom

position c; = r n that satisfies the hypotheses. 

In the case that the operator r in the decomposition G r 6. is not 

only surjective but also injective, we can formulate the following 

THEOREM. If the approximate inverse Gin DCPB can be decomposed as G r 6, 

whe!'e !:. is a Zinear priojeation and r : !:. y -+ GY a bijective mapping, then 

a ~ = (f)-I : GY -+ 6. Y exists, and a DCPB in t:. Y oan be formu"lated: 
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which has a fixed point i;* € GY such that ll(Fi;* - y) = o. 

~· Follows immediately from (4.2) and Theorem 3.3. 

5. Another Defect Correction Process for non-linear G 

In this section we give a generalization of DCPA. In the linear case 

we can write a defect correction step DCPA 

(5. I) 

as 

(5.2) 

For general - nonlinear - G, the solution of Fx = y is not a fixed point of 

the latter iteration. In {5.2) the operands of G are in the neightbourhood 

of zero, whereas in ( 5. I) they are in the neightbourhood of y and Fxi. An 

approximation (linearization) of the non-linear DCPA ( 5. I) can· be given by 

~· 

where G'(y) denotes the Frechet derivative of G at y, where y is thought 

to be in the neighbourhood of bothy and Fxi. The Frechet derivative not 

being available for computation, we may approximate further 

c' <1>o by ccy+ o) - c(y). 

Also noting that 

c' <'Y).s µ c• (y) (t5/µ), 

• we may write down a new Defect Correction Process 

(DCPC) 

In this iteration ste,p the parameters µ and y are still free to choose. 
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llliMARKS. With respect to this new Defect Correction Process we notice: 

J. Near a solution of Fx = y the operator G is applied only in the neigh

bourhood of y. 

2. In the general case (i.e. for any value of µand y), the solution of 

Fx = y is a fixed point of DCPC 

3. With µ = -I and y y, DCPC is identical with DCPA 

4. For arbitrary µ and y, with G affine, DCPC is identical with DCPA 

hence, by Theorem 3.3. also equivalent with DCPB 

s. The amplification factor of DCPC is bounded by 

and 

lxi+J - xl 

llx. - xH 
s ur - G'F'H + n'G•n 111F*lll+111'G*111 HF'll +Ill 'G*111 Ill F*lll, 

l 

where G' and 'G* are defined by 

'G<Y'+o) - G(y) 

with G' linear and c* such that 

..... 0 as o ...,. 0, 

i.e. Ill c* Ill is arbitrarily small in a sufficiently smal 1 neighbourhood 

of y. F' and F* are defined analogously as F(x+E) - F(x) = F'E + F*E. 

We note that, for Frechet differentiable F and G, by this definition the 

Lipschitz. constants Ill F* Ill and Ill c* 11~ can be taken arbitrarily small if 

we restrict {xi} to a sufficiently small neighbourhood of x. 

Note: by the above definition is G' the Frechet-derivative of G at y and 

is F' the Frechet-derivative of F at x. 

6. Examples of defect correction processes 

Example I. The iterative refinement of Zinear systems. 

In this case the problem (P) is the solution of the finite dimensional 

linear system 

(6, I) Fx "'y, 

where F Rn x 1Rn is a square matrix and x,y e: 1Rn are n-vectors. 

22 



The approximate inverse G represents the numerical solution by means of 

(an approximation of) a LU-decomposition, which had been obtained by numer

ical means and for which we may write 

(6. I) LU F + E; 

E is the error in the LU-decomposition. 

The process of iterative refinement now reads 

LU XO = y, 

ri+J = y - F xi, 1 
(6.2) I 

LU di+! = ri+ I' 

! 
i 0, I , 2, ... 

xi+J x. + di+!' ]. 

Clearly, this is DCPA with G 
-1 (F+ E) , and because of the linearity of G, 

the process is equivalent to a DCPB. As a result of Theorem 3.4 we know the 

upperbound of the convergence factor: 

II E II llF+Ef cond (F + E). 

We can also obtain the following convergence result in terms of cond(F). 

THEOREM. The sequence of iterands in (6.2) converges if 

cond(F) llEll/llFll < 1/2. 

PROOF. 

I - GF 

II I - GFll 
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2r ] F c0 .. -1,+1 ... c(-1,+1). 

We construct an approxim~te problem, replacing ex by 0.99 + 0.81 x (i.e. a 

reasonable approximation if -0.4 $ x $ 0.0). Thus we get the approximate 

problem Fx = y, viz. 

{ x" - 0.81 x - 0.99 \,: y 

x(-1) = x(+l) = 0. 

on (-1,+1), 

This is a linear two-point boundary value problem and we can write its 

solution as 

+l 

x(t) I K(t,z)(y(z) + 0.99)dz, 

-1 

for some suitable kernel-function K(t,z). This integral operator defines 

an approximate inverse G for the problem (6.3). With this G we can con

struct a DCPA or DCPB to find the solution of (6.3). Both processes are 

equivalent since G is an affine operator. 

EXAMPLE 5. A D.efect Correction Process for a singuiar Zinear system. 

We consider the finite-dimensional linear system 

Ax b, 

~here A is singular; A is approximated by a nonsingular A and we consider 

che DCPB 

Ax. - Ax. + b 
l.' l. 

or, equivalently, the DCPA 

Bb, 

(I- BA)x. + Bb, 
l. 

where B 
~-1 
A • Generally, xi can be written as 

x. 
l. 

i 
l (I- BA)jBb. 

j=O 
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If we take e.g. 

A (~ ~) A (~ n, 
we have 

B ( I/c 
-I/c ~) ' and I - BA (_: OJ 

0, 

also 

(I - BA)j = ( I o\ 
-I o) 

and hence i 

l (_: o\ ( 1/E: o\ b i+~ ( I ~) b. x. 
0/ \-I/£ I) l -I J. 

j=O 

Clearly, the sequence {xi} is not converging. We also see that the sequence 

{li} in the DCPB will not vanish: 

I - AB = (~ ~). 

Now we take a slightly more general A and a general B: 

A = (~ ~) B 
(p 
\r 

q\. 
s I ' , 

The amplification operator I - BA reads 

I - BA (1-aq q ) 
\ as 1-s 

and has the eigenvalues AI= I and A2 = I- s- aq. Because of the eigenvalue 

1 in the amplification operator, it is clear that no B can be found such 

that the process will converge. More generally, for arbitrary matrices F 

or G we know that II I - FG II ~ I and II I - GF II ~ I . 

EXAMPLE 6. The non-existence of a fixed point l, whereas x Pxists. 

Our original problem Fx = y is to find the solution of the initial value 

problem 

Ax = 0 
{ 

x' + 

x(O) = I, 

The approximate problem F x 

such that 

on [ 0, I] 

;\ + -I. 

y is to find a linear function x on [0,1) 
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{ x' (I) + h(l) = y(I), 

x (0) = I; 

(i.e. we try to find an approximate solution by one single backward Euler 

step.) The sets and spaces we consider are: 

x c1[0,11, 

A 
1 

CB[O,IJ = { x I x E X, x (0) 1 } ' 

y 0 C[O,l], 

B y = Y, 

GY { (l+Mt) I M E IB.}, 

FGY F{(l+Mt)} = {M + A+ AMt I M E IR}. 

First we apply the DCPB with t 0 = y = 0, to get 

_A2 
l+I . (1-t)' 

By induction we easily show that, for n 

x n G l 
n 

ln ( 1) - >. 
I+ __ l_+_A_ 

Now we apply the DCPA to get 

Gy I 
, t 

x = = ' 0 )+). 

2. 

Fx0 
). 

( 1-t) = l+I 

GFx0 I At - l+t XO' 

xl .. XO - GFx0 + XO .. XO' 

• t 

Thus we get xn x0 for n 0, 1,2, .... 

28 
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REMARK. Because G is affine, we knew beforehand that the sequences {xn} for 

DCPA and DCPB are equal. Clearly, G is not injective in this example. The 

fixed point ~ of the DCPA is not the solution of the original problem, but 

we know 

GF~ GFx Gy. 

G can be written as G ]' li 0 where li is a projection, li : C [0, 1] + lR 

(viz. the restriction to the function value at the point t=I) and the problem 

so 1 ved reads 

liFt; liy, 

which has a solution that belongs to G Y. 

7. Defect Correction Processes with an approximate inverse of 

deficient rank 

In this section we consider the linear defect correction process, where 

both F and G are linear operators lRn -+ lRn; F is bijective (rank(F) n) 

and G is of deficient rank (rank(G) = m < n). This is a special ~ase of a DCP 

with G neither surjective nor injective. We can decompose the n x n matrix 

G into its singular value decomposition (cf. LAWSON & HANSON [19741) 

(7. I) G U l: VT, 

where U, l: and V are n x n matrices, U and V are orthonormal and l: is a non

negative diagonal matrix. Except for the ordering of the elements of l: (and 

the corresponding ordering of the columns of U and V), this decomposition is 

uniquely determined. The diagonal elements of l: are the singular values and 

normally they are ordered such that 

~ CJ ~ 0. 
n 

'Because rank(G) m, we know that cr 1 ,cr2 , .. . ,am are non-zero and crj 0, 

j = m+J, ... ,n. 

More generally, for the m-rank matrix G we can write 

(7.2) G P S R, 
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where R : JR n ..,. "JRm , S : JRm ..,. "JRm , P 

= rank(R) = m. Here we can take e.g.: 

"JRm ..,. lR.n and rank (P) 

p ul the orthonomral set of the first m columns of U; 

s El a diagonal matrix with elements a 1 ,a2 , ••• ,am; 

R= vT 
I 

the orthonormal set of the first m rows of vT 

or we can take arbitrary m-rank matrices P and R, with Range(P) 

rank(S) 

= Range(G) 

= Span(U1) and Kernel(R) Kernel(G) = Span(V2), in which case S is a non-
-I -I T 

singular full m x m matrix with S = R v1E1 u 1 P. 

In order to see the relation with section 4 we remark that, in the 

finite-dimensional linear case considered here, we can construct a decomposi

tion (4.1) by taking 

r: = u r vT. /). 

where Eis a diagonal matrix with the first m diagonal elements a 1 ,a2 , ••• ,am; 

for the last n-m elements arbitrary non-zero values can be taken. For these 

r and /). we know that r is a full rank matrix and /). is a projector of rank m. 

In the decomposition (7.2) P is called the prolongation and R is the 

restriction. Because P and R are full rank matrices: P has a left-inverse 

R = cuiP)-l ui and R has a right-inverse P= Vl(RVl)- 1• Moreover, we know 

that 

PR= PR 
0 

0 

is a projection operator of rank m. 

Now we can consider what happens to the error to the solution or to 

the residual after one iteration step of the DCP. 

I. In order to study this effect on the error of the solution, we consider 

the defer.t correction process in the form DCPA • Here the a~plification 

operator is 

(7.3) M = I - GF • I- PSRF. 

We decompose the error e into two parts: e + e with e E Range(P) and 
J_ - s u s 

eu E Range(P) = Kernel(R) = Span(U2). Analogously we write Me= (Me)s+ (Me)u. 
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Thus, we have 

e PR e 
s s 

and 

e (I - PR)e . 
u u 

Now a simple computation shows 

(7. 4) M e 
s 

M PR e s (PR- PSRFPR) e = P(I - SRFP)R e . 
s s 

We see that the result is again in Range(P). Moreover, we notice that in 

the special case that S-I = RFP we have M es = 0. More generally, with 
S-l = RFP + E, we have 

M e 
s 

PSER e 
s 

GPER e . 
s 

-1 In practice, where G PSR should be a reasonable approximation to F , it 
-1 is often possible to choose S equal to or close to RFP. The contribution 

from eu to Me is given by 

M e 
u 

e - GF e . 
u u 

We see that the second term is again in Range(P), whereas the first term lies 

in Range(P).l = Kernel(R). We conclude that 

(7. 5) 
( (Me) 5 

l (Me)u 

GPER e - GF 
s 

e • 
u 

REMARK. In the context of multi-grid methods (cf .Hemker 1981), the com

ponents in Range (P) are called the smooth components, those in Kernel (R) the 

wzsmooth components of the error. 

II. For the residual, the amplification operator is 

(3. 7 .6) I - FPSR. 

Now we decompose the residual r into two parts r = r 5 + ru with r 5 E Range(P) 
~ .l = Span(V 1) and ru E Kernel(R) Range(P) = Span(V2). Analogously we write 
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Mr (Mr) + (Mr) . Again, a simple computation shows 
s u 

Ci1r> 
~ ~-

{ 
PERG r s' 

(3.7.7) 
s 

(Mr) -(I- PR) FG r + r 
u s u 

REMARK. In the context of multi-grid methods, the components in Range(P) 

are called the smooth components', those in Kernel (R) are called the unomooU1 

components of the residual. 

REMARK. In the special case that R = PT, we see that 

Range(P) = Range(P) = Span(U1) = Span(V 1), 

Kernel(R) = Kernel(R) Span(U2) Span(V2). 

In this case the subspace of the smooth (resp. unsmooth) components of the 

residual is the same as the subspace of the smooth (resp. unsmooth) compo

nents of the error. 

SUMMARY. · 

J. The error i'.n the solution 

Smooth components 

Unsrnooth components 

Range(P) 

Kernel (R) 

2. The error in the residual 

c PER 

I 

PER G 

Range(P) 

Kernel (R) 

Smooth components 

Unsrnooth components 

Range(P) ~~~~~~• _Range(P) 
~-(PR-I)FG 

Kernel(R) ~~~--""'~·~ Kernel(R) 

3. In the case R = PT we have 

Range(P) · 

Kernel(R) 

Range(P), 

Kernel(R). 

I 
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0. Introduction 

EXTENSIONS OF THE 
DEFECT CORRECTION PRINCIPLE 

1'.W. Hemker 
Matnematical Centre 

Amsterdam 
The Netherlands 

Since a defect correction process is an iterative technique to solve 

"hard" problems by means of "simpler" ones, we can apply this principle 

iteratively or recursively again. The "simple." problem Fx = y may be approxi

mated again by an even simpler one, etc .. On the other hand," if we are able to 

solve a problem, we can try to solve nearby harder problems. In this way we 

can try e.g. to solve a high-order discretization of a problem by means of a 

low-order discretization of it. Or we may solve a discretization on a fine 

grid with the aid of the discretization on a coarser one. Also, starting 

with a coarse discretization of a continuous problem, we can try to find 

more and more accurate approximations on finer and finer grids. 

In this section we extend the idea of the defect correction process in 

several ways. First we allow different approximate inverses to serve in one 

iteration process and we consider the process obtained when a fixed combina

tion of approximate inverses is used all over in a defect correction process. 

Then we describe the iterative and the recursive application of tne DCP and 

in the last subsection we -describe how more discretizations of a problem can 

be applied alternately in order to get a stable and accurate approximation. 

I. Non-stationary defect correction processes 

In order to find a solution to the problem (P) it is not necessary to 

use one fixed approximate inverse in an iteration process as described in the 

the preceding section. As we anticipated in the example with Newton's method, 

it is possible to use different approximate inverses in each iteration step. 

Then the iteration steps of DCPA and DCPB read respectively 

(I. I) 

Hardback 
Paperback 

0-906783-12-7 /82 
0-906783-09-7 /82 

$2. 50 + .10 
$2. so + .10 
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and 

(I • 2) 

A similar modification of DCPC can be given. 

In this way we are able to adapt the approximate inverse during the 

iteration and we can try to find sequences {Gi} in order to accellerate the 

convergence of the iteration. 

REMARK. We see that for general affine operators {G.} we have no longer the 
l. 

equivalenc.e DCPA and DCPB. Instead we see DCPA to be equivalent with the 

iteration. 

\I. 3) 

or DCPB to be equivalent with 

( l. 4) Fi+lxi+l F.x. - F x. + y 
l. 1 l. 

or 

\ l. 5) xi+l c. l.x. - Gi+lF x. + ci+1 y. 
i+ l. 1 l. 

Various methods are known to find a proper sequence {G.}. Here we mention 
1 

a few. 

EXAMPLE 1. Gi+l G(xi). 

The approximate inverse depends on the last iterand computed. This is the 

case e.g. in Newton's method for the solution of non-linear equations, where 

G(x) = F'(x))- 1, with F'(x) the Frechet derivative of the operator Fin the 

problem (P). 

EXAMPLE 2. G. G(w.). 
l. l. 

The approximate inverse depends on a single real parameter. This is the case 

e.g. in non-stationary relaxation processes for the solution of linear sys

tems. The value wi can be taken from a fixed sequence of values or it can be 

computed adaptively during the iteration process. 

In each iteration step the approximate inverse is chosen from a set of two 

(or more) fixed approximate inverses. This is the case e.g. in Brakhage's 

and Atkinson's methods for the solution of Fredholm integral equations of the 
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2nd kind. (See ATKINSON [1976] and BRAKHAGE r1960 !.) 

REMARK. From the pratical point of view ( I .2) seems to be the more attrac-

tive of the two processes ( I . I) and I. 2) because in ( 1.2) G. appears 
]_ 

only once in an iteration step. This implies that only one approximate prob·· 

lem has to be solved, whereas Gi+l appears twice in ( I. l) . 

2. A fixed combination of approximate inverses 

In this section we assume that the operator F in (P) and the approximate 

inverses G and G are linear operators. We consider two iteration steps in the 

non-stationary DCPA in which, in turn, one or the other of two approximate 

inverses is used. Then the iteration steps 

xi+~ (I - GF)x. + Gy 
]_ 

and 
~ "" xi+I (I - GF)x. , + Gy 

1+2 

combine into a single iteration step of the form 

~ ~ "" -(I - GF) (I - GF)xi + (G GFG + G)y. 

This is easily recognized as a new iteration step of the type DCPA, now with 

the approximate inverse 

"" ~ -G G - GFG + G. 

We conclude that a fixed combination of DCPA-steps can be considered as a 

new DCPA-step with a more complex approximate inverse. 

The amplification operator of the new DCPA process is the product of the 

amplification operators of the elementary processes. 

We can describe the DCPA in matrix notation by 
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a times an application 

( -i\+a\ ( 
J \ 

y 

( I-GF 

0 

of the same 

a 1-GF G \ 
0 I 

. ) 

iteration step yields 

cr-1 
- a l (I-GF)mG\ f ( xi\ cl-:F) xi\ 

\ y; 
m=O ) \ y; I 

Thus, we see that one iteration step which consists of a applications of 

DCPA-steps results in a DCPA with the amplification operator 

- a M = (I-GF) 

and the approximate inverse 

a-I 
G l (I-GF)m G 

m=O 

Since the operators F and G are linear, we may look at the combined process 

as a DCPB as well; its approximate inverse being the same as for the DCPA, 

of course, and with the amplification operator 

M = Fill'-! = (I- FG)(J. 

3. Iterative application of DCP 

It is possible not only to change the approximate inverse G during the 

iteration process, often it makes sense also to substitute different oper

ators Fk for F during iteration. In general, the operators {Fk}k=l, 2, ... 

will be simple to eva~uate in the beginning of the iteration and they will 

converge in some sense to the "target" operator F, the operator of the orig

inal problem, as the iteration proceeeds. 

If we apply this technique, we solve (approximatively) a sequence of 

problems (P ) of the form 
k k=J, 2, ... 

where we use the approximate solution of (Pk_ 1) as a starting value for the 
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iteration of (Pk). This way of looking at the changing Fk yields a criterion 

for the number of iterations that has to be spent to approximate the solution 

of (Pk); viz. the iterand ~.i in the DCP for the solution of (Pk) should not 

approximate~· the solution of (Pk)' better than the solution of (Pk) is 

itself an approximation to the solution of (Pk+l); i.e. we should not iterate 

the DCP for (Pk) further than until 

U *n II * - * II xk,i - ~ ~ ~ xk+I · 

EXAMPLES la and lb. One example of the iterative application of a DCP is the 

IUDeC (Iteratively Updated Defect Correction) process described by STETTER 

[1978]. Here {Fk} are discrete approximations of higher and higher order to 
-I an analytic operator F. The approximate inverse G = F0 is kept constant 

during the process. 

Another example is the Full Multigrid Method (BRANDT rt977l), in which 

{Fk} are discretizations on finer and finer net.s of an analytic operator F. 

One way to create a sequen~e of problems (Pk) is Galerkin approxima

tions of a "target" problem (P): 

Then the different discretizations are determined by {~,Pk}. 

EXAMPLE 2. GZobal interpoZation. 

Here I\_ ~ is independent of k, 

is the restriction of a continuous function to its values on a set of nodal 

points nh. The prolongation Pk is global piecewise polynomial 

~ of order k: the set of nodal values is interpolated to a continuous piecewise 

polynomial function defined on n. (Finite element interpolation.) 

EXAMPLE 3. LoaaZ interpoZation. 

We take ~ = ~ as in example 2. Now Pk is local interpolation in the neigh

bourhood of nodal points. I.e. Pk uh is a function which is (only) defined 
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4. Recursive application of DCP 

Generally, the evaluation of the approximate inverse operator Gi implies 

the solution of an equation which is (essentially) of a simpler type than the 

original equation. However, also this simpler equation may be of a kind that 

we want to solve by means of a DCP. For this we need an even simpler equation 

to solve, etc .. Thus, the execution of a single iteration step may activate 

new (simpler to solve) DCP. In this way we can construct a recursive construc

tion of DCPs in which only on the lowest level of recursion a very simple 

equation is to be solved. 

Independently, this is probably not a real meaningful constuction, but 

in combination with non-stationary processes, where also other (non-recur

sive)' approximate inverses are available, it describes the essentials of the 

multigrid algorithm. 

Such a combination of a non-stationary process with some recursive ap

proximate inverses can be described by the following sequence of DCPs. 

DCP 1: x: = x - GJ (F 1x-f 1) G. = 1, 2, ... ,n, 
J 

DCP2 : x: = x - G2,i(F2x-f2) 

C. {c., -I 
€ F. I}, 

J. i J J-
2, 3, ... ,n. 

DCP x: x - G . (F x-f ) n n,1 n n 

A full use of the sequence of DCPs is made by combining also the iterative 

application: first DCP 1 is solved and its solution is used as a starting 

value for DCP2 etc .. In a multigrid context 

are processes to solve operator equations, discretized on finer and finer 

grids. The complete iterative process is called: Full Multigrid Algorithm 

(BRANDT [1977]). 

5. Mixed Defect Correction Processes 

Up to now we have considered DCPs where each time one final target 

problem 
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(5.l) (P) Fx y, F x -;. y 

was solved. In this section we treat the possibility of two (or more) differ

ent target problems: 

(5.2) (Pl) F1x1 

(P2) F2x2 

to be used in one iteration process. Behind the screen both procedures (Pl) 

and (P2) probably are two approximations of an original problem (P), but the 

operator F is not used in the algorithmic procedure. 

We introduce first the approximate inverse: G1 an~ c2 of the operators 

F 1 and F2 respectively. We assume that F1, F2 , G1 and G2 are linear. Then we 

introduce the Mixed Defect Correction Process 

(MDCP) 

Thus, the complete iteration step reads 

(5. 3) 

We find for MDCP the "amplification operator of the error" 

(5.4) M 

A stationary point u of (MDCP) satisfies 

( 5. 5) (I - M) u 

In the case that y 1 and y 2 can be written as y 1 = i 1y and Yz = R2y, 

1 R1 : Y + Y1, R2 : Y -> Y2 , equation ( 5.5) is equivalent with 

(5.6) 
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If equation ( 5.5) has a unique solution u, this u is the stationary point 

of (MDCP) and with the error defined by 

the operator M has again the property 

For an arbitrary w we know 

(5.7) (I- M)w 

and by (5.5) we find 

(5. 8) (I- M) (w- u) 

THEOREM 

(i) Let (P 1) and (P2) be two discretizations of (P) with 

(ii) 

(iii) 

and such that y 1 = R1y and y2 = R2y; 

Let the local discretization error of the discretizations (P 1) and 

(P2 ) of the problem (P) be respectively of order p 1 and p2 ; - --] 
Let the approximate operators Fk = Gk, Fk : x1 ~ Yk, k = I ,2, be 

stable discretizations of F and let Fk be consistent with Fk, k = 1,2, 

of order qk > O; 

Let ~ E X be the solution of (P) and let u be a stationary point of 

(MDCP), then 

PROOF. From (iii) it follows that, with k 1,2, 

ll ~Fk- Fkll ~ C hqk, 11-G II < C uni"f 1· h k - . n . 
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Hence, fork= 1,2 we have 

Thus, 

for h small enough, and 

for h small enough. 

h ... 0 
---+ o. 

From (ii) it follows that the truncation errors of the discretization with 

respect to the solution ~ are of order p 1 and p 2 respectively: 

'k yh - FkRu = I\iF~ - FkRu 

s c h 
Pk 

From (5.8) we derive 

Hence 

(I- M) (R~- ~) 

llR~-~11 s ll(I-M)- 111nc211{11F2 -F21111G 11111, 111+ lh2R} 

5 c c 

min(pl+q2,p2) 
< c h 

q2 P1 Pz 
c h . c . h + h } 

REMARK. The theorem can easily be generalized for more different target 

problems 

k 1,2,. . .,./'.. 
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~ - --J 
With Gk an approximate inverse of F h, F k = Gk and ~ 

for the multiple MDCP 

(MDCP) 
{ ui+k/I'. = ui+(k-1)/.1'. - Gk(Fkui+(k-1)/f- Gk)' 

k = 1,2, •. .,t. 

The amplification operator of the error is 

We find 

and hence 

(I - M)(G- Ru) 

( t 
c \ k~ l c 

t 
min (pk+. L 

k=l, .••• .e j=k+l 
q.). 

J 
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