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0. Heuristic introduction to the defect correction principle

Often the numerical analyst is faced with the problem of solving an

equation
Fx =1y,

where y ¢ Y and a mapping F : X » Y are given; X and Y are linear spaces. An
element x € X has to be found such that the equation Fx =y is satisfied.
Often we cannot or we will not solve the equation directly because this
would exceed our computational capacities. On the other hand we can solve

simpler equations that are all similar to the previous equation:

for some arbitrary ; ¢ Y c Y. Sometimes this yields the possibility to solve

the original equation by means of an iterative process.

EXAMPLE. Solve the equation x2 = 3. In other words: compute 3. We assume
that we cannot find the answer immediately, but we can (1.) square the value
of a real number (i.e. we can apply the operator F in the equation), and

(2.) we can add and (scalar) multiply the real numbers (i.e. we use the fact
that X = Y = R is a linear space). In this example tha linear spaces are

X =Y = R. The operator F : R ~ R 1is defined by Fx = x'Z and y is defined
by y = 3.0. We notice that F is neither surjective nor injective; F is de-
fined on the whole of X, which (in the general case) is not nectessary.

If we look for the positive solution of x2 = 3, then we can apply the follow-

ing iterative process
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*
If the iterands £ would converge to a value x ¢ R, then we know that it
would satisfy

* * . w2
®o=ox o+ Fi3 - {x 370

1.0, we would have feund a sclution to the original equation. When does the
d

iterative process converge’

A x
(x,, - x) = X - e 2l (3 - CHRIENC IO I

* 2
SRRSO RNt
= (= xD0 - Bl xT))

This implies that

*
- 1
ixiﬂ x !

*
N QI—B(xix*x)!;
iTX

therefore, the condition for convergence is

0« B(x, + x) < 2.

* N *
We know: 1 < x < 2, hence we take xO such that 1 < xo < 2. Wow 2 < xi+x <4

holds and consequently the process will converge with 0 < 8 < 1/2.

As a numerical example we take B = 1/4, x, = 1.5. Now we find

0
i )'(i x5 3- xi

0 1.5 2.25 0.75

1 1.6875 | 2.84766 | 0.15234
2 1.72559 | 2.97765 | 0.02235
3 1.73117 | 2.99696 | 0.00304
4 1.73193 | 2.99959 | 0.00041
5| 1.73206 | 2.99995 | 0.00005
6 | 1.73205 2.99999 | 0.00001
7 1.73205 | 3.00000 = 0.00000
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The convergence factor is 1 - B(xi+ x") = 1 - 1/4.2./3 ~ 1 - 0.866 = 0.134 w~
~ 1/7. In many problems we are really pleaéed by such a convergence factor.’

Analysing the above process, we write it in the abstract form
Xigp = %t B(y - in) = (I - BF)x; + By,

where x; € X, ye Y, F: X>Y,B8:Y~>X, X=Y=R. The convergence is

derived from

%
1

%
A

T - 8Flf Ix; - x"1,

from which it is clear that we have a convergent process if [T ~ 8Ffl] < 1,
i.e. if the operator B is close enough to F~l. In other words B should be a

.. . . . -1
sufficiently close approximation to the solution operator F .

1. The basic principle

In principle, a defect correction process is an iterative process to

solve an equation that we cannot or we do not want to solve directly:
(P) Fx=1y,

where F : A ¢ X » Y. This short notation means that F : A > Y is a mapping,
A is a subset of X and X and Y are normed linear spaces. In general F is
not linear, F is not defined on the whole of X and F is neither injective
nor surjective. We assume that there exist subsets A ¢ X and B < Y such
that F is defined on the whole of A, and Vy ¢ B 3x ¢ A such that Fx=y
(i.e. the mapping F : A -~ B is surjective). In addition we often require
that there exists a unique X € A such that Fx=y (i.e in addition the
mapping F : A+~ B is injective and hence it is bijective).

As an introduction to a more formal approach in the following paragraph,
we first proceed informally to introduce the notion of "approximate in-
verse''. We assume that we can solve some approximations (F) of the problem

(P), i.e. for all ; € Y c B we can solve the equation
(5) Fx=1y, X ¢ X,

where F : X » Y is some "approximation" of the operator F.
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Formally we describe this as follows: we assume that for some subset

Ve B, with y € '{", there exists a mapping

E:?-*A,

which we shall call the approximate inverse of F. The meaning of G is, that
for any ; €Y an approximation to the solution of the equation Fx = ; is
given by E;e A. The mapping C needs not to be linear and is neither neces-

sarily injective nor surjective.

REMARK. If G is mot surjective, then possibly x ¢ (8% , with x the solution

of Fx=y.

REMARK. If G is injective, then an F: CY - Y exists such that FG = I;;
where I; is the identity operator on Y. Then F is "an approximation to I,

Here we notice that F is only defined on GY and not on A!

In a Defect Correction Process the solution of the original problem (P) is
found (or approximated) by the iterative application of one (or morc) ap-

proximate inverse(s) G.

In its most elementary form we have two versions of the defect correction

process for the solution of (P):

The first defect correction process (DCPA)

XOEA,

xi+l = (1 - GF))(i + Gy,

(DCPA) {

with the standard starting value
Xq = Gy;

and the second (or dual) defect correction process (DCPB)

~

EO €y, x; = Ge,,
(DCPB) { .

£i+1 = (I - F(;)Ki +y,

with the standard starting value

Zo=y.



REMARK. DCPA is completely described by F,E,y and X, (DCPB) is completely
E .

described by F,G,y and EO.

REMARK. In order that the above defect correction processes make sense (are

well defined) a number of conditions should be satisfied, such as:
for DCPA : {xi} < A and {in } < ¥;
for OCPB : {£,} < Y.

Note that y € Y follows from the definition of E, which was defined on Y

with y € Y.

REMARK. With DCPA we use the fact that X is a linear space and not the
fact that Y is. With DCPB we use the fact that Y is a linear space and not

the fact that X is. (Note that both F and [§ may be non-linear!)

DEFINITION. A value x' ¢ X is called a stationary point (or a fixed point)

of an iterative process

X. = P(x. .
( 1%

i+l 177

. * A
if x satisfies
* * *
X = D(X ,% 45...).

DEFINITION. The convergence factor of an iterative process to a stationary
point x" is defined by
Ix,  -x1

1+]1
sup sup

x. €A 120 Ix. - x'I
0 1

2. The first Defect Correction Process

The first thing we notice when we consider DCPA is that the solution
x of (P) is a fixed point of DCPA; moreover, for any stationary point X of
DCPA, we have

(2.1) GF x” = Gy = GF x.

, . * * . .
(Notice that x ¢ A and Fx € Y are natural assumptions that go with the

astumptions of x* to be a stationary point of DCPA.)



As a direct consequence of (2.1) we find the following

THEOREM. If DCPA has a stationary point x e X with Fx ¢ Y and if C is in-
e * . * . .
Jjective, then Fx =y (t.e. then x s a solution of (P)).

REMARK. Even, if 5 is not injective, the solution x of (P) and the fixed
point x" of DCPA are mapped by GF onto the same element of GY (although we
have not necessarily Fx* =y = Fx). In other words: C defines subsets of
Y (viz. the sets of points that are mapped to the same point of X) and Fx”

and Fx now are elements of the same subset.

DEFINITION. The amplification operator of DCPA 1is defined as

M=1- GF.

~

THEOREM. The convergence factor of DCPA to a fized point x* e A, Fx €Y,

is bounded by Il 1 - EFHIAcx+x‘

PROOF. Let % be an arbitrary iterand of DCPA, then

* ~ ~ *
Xigg —% = (I —'GF)xi - (I-GF)x .
Hence,
I - X1 = 1(1- CFx, - (I-CeM)x’!
X, " x b= x5 x
~ *
< fl1-GFlil ﬂxi -x |
and “xi+1 _ x*“
m <t - GF"IACX+X . {1
|lxi - x |

If |l I- EFHl < 1, the sequence of iterands of DCPA converges and it might
make some sense to call G an approximate inverse of F indeed. If F is in-

jective, we can give the following definition.

DEFINITION. The approximation error of G for the solution of (P) is
Approx. error(a;F,x) D sup {ﬂx—EﬂlEFx = EFE}.
feA

As a direct consequence of this definition we have for any injective G

Approx. error(a;F,x) = 0.
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REMARK. In the special case that G is an affine mapping, i.e. if we can

write Ey as
By = E'y + EO, Vy € Y,

where G' is a linear operator, then we may write DCPA as

{ xo e X,
_ _ o .
X, x; = G (Fx -y).

1+]

3. The second Defect Correction Process

If K* e Y is a stationary point of DCPB, then we clearly have
FGL™ = y.

Hence, we immediately have the following

~

n ~ * . .
THEOREM. If DCPB has a stationary point L% ¢ ¥, then G& = x is a solution
of (P) in GY < X. '

REMARK. If F : A > B is injective, then L™ is the unique solution of (P).

REMARK. If G : Y ~ A is not surjective, then possibly x ¢ GY and hence no

L . ~ o . . * 3 .
£ € Y exists such that G£€ = x. In that case no fixed point £ € Y can exist.

* DEFINITION. The amplification operator of DCPB is defined as
M=1- FG.

THEOREM. The comvergence factor of DCPB to a fixed point £* ¢ Y is bounded

by T - FGll g g,y

PRQOF.
e, - L < |11 - FGIl e, - e, O

1+

.

THEOREM. If C is injeetive, we can define its left-inverse T ond DEPB  can
be written as
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F x. = (f - F)xi +y.

PROCF.

32
M

]
=1
©2
&~
1l
&>

and

]
"

3 Fx. -FGL. =F x, - .+
X4 Fx:L FG£l+y F‘xl Fx, +y

F - F)x, + y. 0

REMARK. In many problems the operator ('f-: - F) can be much simpler to compute

than either F or F.

THEOREM. If G is injective, then the convergence factor of DCPB is bounded
by
WF - Fll =z e

CYcXoy Yey-x°
where F is the left-inverse of G.
PROOF .
it - ¥l = NEG- FG I =

= sup I (FG-FG)x - (FG-FG)yl /I x-yl
= sup IFG x - FGx - FGy + FGyl /lx-yl
= sup I (F-F)Cx - (F-F)Cyl /Ix-yl

| (F-F)Cx ~ (F-F)C IGx - Gyl
sup I (F F)Sx £F PGyl ) IGx - Gy
IGx - Gyl Ix - yl

IWF - Fl WC - 0

In

REMARK. Clearly, the above bound of the convergence factor can also be ex-

pressed, in terms of relative error of F and the condition of F, by

* ~
"£i+1 - 27 e - FIHl

* < ~
e, - &7 iRl

cond (f) .
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THEOREM. If G is an affine mapping, then the sequences {xi} in (DCPA), and

{xi} tn (DCPB), defined with their standard starting values Xy = Gy and

50 =y, are identical.

PROOF. Let {ﬂi}i=0,1,2,... and {xi}i=0,l,2,... be defined as in DCPB, then
i) Xy = G ﬂo = Gy , and
ii) X;,, =6 !'i+1 = c(i’_i - FG J&i + y)

=x; - GF x; + Cy= (I - GF)xi + Gy.

I.e. the values from the sequence {xi} satisfy exactly the generation rules

for the sequence {xi} from DCPA. Hence, both sequences are identical. [J

REMARK. It is clear from the proof of the last theorem that for general [d
both processes DCPA and DCPB yield different sequences {xi}.

4. Further remarks on DCPB

If G in DCPB is not surjective (i.e. possible x ¢ 5?,vﬁxh x the solu-
tion of Fx = y, and hence possibly there exists no fixed point for DCPB),

then sometimes we still can write
(4.1) G=Ta,

where A : Y > A Y is a linear projection (4 Y c B), and T:aY~ 0y is

surjective.

et

NV

~ ~

Fig. 4.1. The mappings G, A and T.
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The iterands {Ki} in the iterative provess DCPB are all in Y. If, instead
of Zi ¢ Y, we consider their projections A (’i c AY, we get the following

iterative process of which all iterands are in A Y:

AL

. .- AFC L. + A
is) S A& - ATCE y

AL - AFT AL, +4y.
1 . 1

~

With the definitions Ai = Mi and Ei =T )\i we get

i+] 1

A, =\ -AFT A, t Ay,
(4.2) {

>
1]
=4
()
]
>
<

This is exactly the DCPB for the problem:
(4 P) AF £ =4y,

where T takes the part of the approximating inverse of AF . Since, by hypo-

thesis, T is surjective, this new DCP has a fixed point »* and the solution
* ~

(4 P) is found as £ =T A™.

REMARK. Notice that 5* eTAY=0Y. The problem (AP) can now be considered
as: find § € Gy such that

A(FE-Y) = 0.

By application of a projection A to the residual of the problem (P), more
solutions in X are generated which satisfy the equation. The projection &
has to become so strong that even a solution becomes in GY . If we find a &
such that the problem has a solution for all y € ?, we have found a decom-
position G =TA that satisfies the hypotheses.

In the case that the operator T in the decomposition G =T 4 is not

only surjective but also injective, we can formulate the following

THEOREM. If the approximate inverse G in DCPB can be decomposed as G=Ta,

where A 1s a linear projection and T :8Y-CY abijective mapping, then
~ ~ =1 ~e ~ ~

a ¢ = (T) : GY - AYexists, and a DCPB tn AY can be formulated:



which has a fixed point g* € GY such that A(Fg* -y) =0.
PROOF. Follows immediately from (4.2) and Theorem 3.3.

5. Another Defect Correction Process for non-linear G

In this section we give a generalization of DCPA. In the linear case

we can write a defect correction step DCPA

(5.1) Xipp = %~ Gin + Gy
as
(5.2) xi+[ = xi + G(y - in)-

For general - nonlinear - G, the solution of Fx = y is not a fixed point of
the latter iteration. In (5.2) the operands of G are in the neightbourhood
of zero, whereas in (5.1) they are in the neightbourhood of y and in. An

approximation (linearization) of the non-linear DCPA ( 5.1) can be given by

= G (v -
xi+1 xi + G (}’) (y in)’

where E'(§) denotes the Fréchet derivative of G at ;, where ; is thought
to be in the neighbourhood of both y and in. The Fré&chet derivative not

being available for computation, we may approximate further
G (38 by C(y+ &) - (.
Also noting that

G'Ms = u &G/,

we may write down a new Defect Correction Process
(DCPC) X. = x; +u 5(; + (y- in)/u) - uGy.

1+]

In this iteration step the parameters u and y are still free to choose.
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1.

6.

REMARKS. With respect to this new Defect Correction Process we notice:

Near a solution of Fx = y the operator C is applied only in the neigh-
bourhood of ;.
In the general case (i.e. for any value of p and ;), the solution of

Fx = y is a fixed point of DCPC .

. With p = -1 and ; =y, DCPC 1is identical with DCPA .
. For arbitrary p and ;, with € affine, DCPC is identical with DCPA and

hence, by Theorem 3.3. also equivalent with DCPB

The amplification factor of DCPC is bounded by

Ix. - xl ~
Ti?- o S HT = TR e WS E - ST E e WET W,

where G' and G are defined by
G(y+8) - G(y) = G'6 + G's,

. ~ . ~%
with G' linear and G such that

~%

E%?%E -0 as & » 0,
i.e. HIG*H[ is arbitrarily small in a sufficiently small neighbourhood
of ;. F' and F* are defined analogously as F(x+e) — F(x) = F'e + Fre.
We note that, for Fréchet differentiable F and E, by this definition the
Lipschitz constants || F* I and IIG™ Il can be taken arbitrarily small if
we restrict {xi} to a sufficiently small neighbourhood of x.
Note: by the above definition is G' the Fréchet-derivative of G at y and

is F' the Fréchet-derivative of F at x.

Examples of defect correction processes

Example !. The iterative refinement of linear systems.

In this case the problem (P) is the solution of the finite dimensional

linear system

(bol) Fx =Y,

n n . . n
where F : R° x IR" is a square matrix and x,y ¢ R are n—-vectors.
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The approximate inverse G represents the numerical solution by means of
(an approximation of) a LU-decomposition, which had been obtained by numer-

ical means and for which we may write
(6.1) LU =TF + E;

E is the error in the LU-decomposition.

The process of iterative refinement now reads

LUx0 =y,
r. =y - Fx,, 1
(6.2) 1+] 1 I
LU di+1 =T i=0,1,2,... .
X1 = X Y iy

Clearly, this is DCPA with G = (F+ E)—], and because of the linearity of E,

the process is equivalent to a DCPB. As a result of Theorem 3.4 we know the

upperbound of the convergence factor:

I
’HLLE'“- cond(F+ E).

We can also obtain the following convergence result in terms of cond(F).

THEOREM. The sequence of <iterands in  (6.2) converges if
cond(F) IEl/IElI < 1/2.

PROOF.

1 1

F=(F+E) 'E =

T-CGF =1- (F+E)

1]

F+E) 't E= ! !

- F+E) @ 'E)
- =+t @ ).
If ﬂFﬂEﬂ < 1, then
~ 1r el
M1 - GFl = ———— .
1-1r "El
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F : Cé(—l,ﬂ] + C(-1,+1).

We construct an approximate problem, replacing e* by 0.99 + 0.81x (i.e. a
reasonable approximation if -0.4 < x < 0.0). Thus we get the approximate

problem Fx = y, viz.

{ X" - 0.81x -0.99 =y on (-1,+1),
x(-1) = x(+1) = 0.

This is a linear two-point boundary value problem and we can write its
solution as

+1

x(t) = [ K(t,z) (y(z) + 0.99)dz,

-1
for some suitable kernel-function K(t,z). This integral operator defines
an approximate inverse G for the problem (6.3). With this G we can con-
struct a DCPA or DCPB to find the solution of (6.3). Both processes are

equivalent since G is an affine operator.

EXAMPLE 5. A Defect Correction Process for a singular linear system.

We consider the finite-dimensional linear system

vhere A is singular; A is approximated by a nonsingular A and we consider
che DCPB

~

A i T Axi.— Axi + b

or, equivalently, the DCPA

{ XOF = Bb,
(- BA)xi+ Bb,

X,
1+1

~=1 .
where B = A . Generally, x; can be written as
i

- ~aayd
x; = [ (I-BA)'Bb.
j=0

o
[o2]



If we take e.g.

we have
also

and hence

L O D0 9

Clearly, the sequence {xi} is not converging. We also see that the sequence

{ﬂi) in the DCPB will not vanish:

(1 0
oae (39).

Now we take a slightly more general A and a general B:

A=<0 0>’ B = (P @),

a 1, \r s/’

The amplification operator I — BA reads

1-pa= {729 9
\ as 1I-s
and has the eigenvalues Ap=l and Ay = l-s-aq. Because of the eigenvalue
1 in the amplification operator, it is clear that no B can be found such
that the process will converge. More generally, for arbitrary matrices F

or G we know that IT - FGI > | and IT - GFI = 1.

EXAMPLE 6. The non-existence of a fized point 2, whereas x exists.

Our original problem Fx = y is to find the solution of the initial value
problem
) { x'"+Ax =0 on [0,1]
x(0) =1, A F -1,
The approximate problem Fx = y is to find a linear function x on [0,1]
such that
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{ X'(l) + )\X(l) = y(l),

x(0) = 1;

(i.e. we try to find an approximate solution by one single backward Euler

step.) The sets and spaces we consider are:

x =c'ro,1, ‘

A =C]]3[0,1J={xlxe X, x(0) = 11},

Y =c0[0,1],

B =Y =y,

GY = {(1+Mt) | M e R},

FGY = F{(14Mt)} = {M + A + AMt | M e R}.

First we apply the DCPB with 20 =y =0, to get

2
~ -2
£‘-£0-Fclo+y-m (1-t),
o _ o, _ At
X, = G ﬁl =1 T

By induction we easily show that, for n = 1,2,...,

AZ
—Xn(t-l), Zn(l) =0,

n 1+

(a]
(

£ (1) =
~ n A
xn'Gln—]+__T—+T—'t']—m't

X =0 =195
2
A
FXO l—:x(]t),
~. At
GFXO— 1 - 1+t _xoy

Thus we get X, = Xg for n=0,1,2,... .
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REMARK. Because G is affine, we knew beforehand that the sequences {xn} for
DCPA and DCPB are equal. Clearly, G is not injective in this example. The
fixed point X of the DCPA is not the solution of the original problem, but
we know

~

GFx = GFx = Gy.

~

G can be written as G = TA , where A is a projection, A : 00[0,1] -+ R
(viz. the restriction to the function value at the point t=1) and the problem

solved reads
AFE = Ay,

which has a solution that belongs to GY.

7. Defect Correction Processes with an approximate inverse of

deficient rank

In this section we consider the linear defect correction process, where
both F and G are linear operators RrY - Ifl; F is bijective (rank(F) = n)
and G is of deficient rank (rank(G) = m < n). This is a special case of a DCP
with G neither surjective nor injective. We can decompose the n X n matrix

G into its singular value decomposition (cf. LAWSON & HANSON [197417)
(7.1) G=uzvl,

where U, L and V are n X n matrices, U and V are orthonormal and I is a non-
negative diagonal matrix. Except for the ordering of the elements of I (and
the corresponding ordering of the columns of U and V), this decomposition is
uniquely determined. The diagonal elements of I are the singular values and

normally they are ordered such that

"Because rank(G) = m, we know that 03055+.+,0 are mon-zero and 0. = 0,
j=m+l,...,n.

More generally, for the m-rank matrix G we can write

(7.2) G =pPSR,

29



where R : R = ]Rm, s : R’ ~+ lRm, P: R" > R" and rank (P) = rank(S)

= rank(R) = m. Here we can take e.g.:

P = U, : the orthonomral set of the first m columns of U;

= : a diagonal matrix with elements 015052503

]
<E'M

1 : the orthonormal set of the first m rows of V'

or we can take arbitrary m-rank matrices P and R, with Range(P) = Range(E)

R

= Span(U]) and Kernel(R) = Kernel(a) = Span(Vz), in which case S is a non-

: .. - -1°. 1
singular full m x m matrix with S L R VIXIl U] P.

In order to see the relation with section 4 we remark that, in the
finite-dimensional linear case considered here, we can construct a decomposi-

tion (4.1) by taking

where I is a diagonal matrix with the first m diagonal elements c],cz,...,cm;
for the last n-m elements arbitrary non-zero values can be taken. TFor these
T and 4 we know that T is a full rank matrix and A is a projector of rank m.

In the decomposition (7.2) P is called the prolongation and R is the
restriction. Because P and R are full rank matrices: P has a left—inverse
R= (U'fP)'1
that

U? and R has a right-inverse = V](RVI)—l. Moreover, we know

1

is a projection operator of rank m.

Now we can consider what happens to the error to the solution or to
the residual after one iteration step of the DCP.
I. In order to study this effect on the error of the solution, we consider
the defect correction process in the form DCPA . Here the amplification

operator is
(7.3) M=1-0CF = I-PSRF,

We decompose the error e into two parts: ey *t e, with ey € Range (P) and

e, € Range(l’)'L

Kernel(ﬁ) = Span(UZ). Analogously we write Me = (Me)s+ (Me)u.
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Thus, we have

and

o
1

I - PR)e .
( de,
Now a simple computation shows

(7.4) Me =MPRe = (PR- PSRFPR)e_= P(I - SRFP)R e .

We see that the result is again in Range(P). Moreover, we notice that in

the special case that S_] = RFP we have M e, = 0. More generally, with

S_] = RFP + E, we have

Me = PSER e = CDER e
S S S

In practice, where G = PSR should be a reasonable approximation to F—I, it
is often possible to choose S_l equal to or close to RFP. The contribution

from e, to Me is given by

We see that the second term is again in Range(P), whereas the first term lies

in Range(P)l = Kernel(ﬁ). We conclude that

r (Me)s GPER e, - GF e,

(7.5)

L}

e .
u

(Me) |
REMARK. In the context of multi~grid methods (cf.Hemker 1981), the com-

ponents in Range(P) are called the smooth comporents, those in Kernel (R) the

unsmooth components of the error.

II. For the residual, the amplification operator is

(3.7.6) M=1~-FG =T - FPSK.

Now we decompose the residual r into two parts r = r, v, with L Range (B)

= Span(V]) and r, € Kernel(R) = Range(f’)l = Span(VZ). Analogously we write
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Mr = (ﬁr)s + (ﬁr)u. Again, a simple computation shows

(ﬁr)s = PERG T
(3.7.7) {_ -5
(Mr)u = -(I-PR) FGr_ + r .
i ~
REMARK. In the context of multi-grid methods, the components in Range(P)
are called the smooth components, those in Kernel(R) are called the unsmooth

components of the residual.

REMARK. In the special case that R = PT, we see that

Range (P) = Range(?) = Span(Ul) = Span(V]),
Kernel(R) = Kernel(R) = Span(Uz) = Span(Vz).
In this case the subspace of the smooth (resp. unsmooth) components of the

residual is the same as the subspace of the smooth (resp. unsmooth) compo-

nents of the error.
SUMMARY.
1. The error in the solution

G BER
Smooth components = Range(P) i:j;;:::;a' Range (P)
G

Range(a),

Unsmooth components = Kernel(ﬁ) e Kernel (R) = Range(a)l.

2. The error in the residual
BER G

I
]

~ ~ 1

—~———— _Range(P) Kernel(G)™,
TS (PR-T)TC

'Kernel(R)*~————;:ﬁ+ Kernel (R) = Kernel(G).

I

Smooth components = Range(?)

Unsmooth components

3. In the case R = PT we have
Range(P) = Range(P),
Kernel (R) Kernel(ﬁ).

"
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EXTENSIONS OF THE
DEFECT CORRECTION PRINCIPLE

P.W. Hemker
Mathematical Centre
Amsterdam
The Netherlands

0. Introduction

Since a defect correction process is an iterative technique to solve
“hard" problems by means of "simpler" ones, we can apply this principle
iteratively or recursively again. The "simple" problem Fx = y may be approxi-
mated again by an even simpler omne, etc. . On the other hand; if we are able to
solve a problem, we can try to solve nearby harder problems. In this way we
can try e.g. to solve a high-order discretization of a problem by means of a
low-order discretization of it. Or we may solve a discretization on a fine
grid with the aid of the discretization on a coarser one. Also, starting
with a coarse discretization of a continuous problem, we can try to find
more and more accurate approximations on finer and finer grids.

In this section we extend the idea of the defect correction-process in
several ways. First we allow different approximate inverses to serve in one
iteration process and we consider the process obtained when a fixed combina-
tion of approximate inverses is used all over in a defect correction process.
Then we describe the iterative and the recursive application of the DCP and
in the last subsection we describe how more discretizations of a problem can

be applied alternately in order to get a stable and accurate approximation.

1. Non-stationary defect correction processes

In order to find a solution to the problem (P) it is not necessary to
use one fixed approximate inverse in an iteration process as described in the
the preceding section. As we anticipated in the example with Newton's method,
it is possible to use different approximate inverses in each iteration step.
Theé the iteration steps of DCPA and DCPB read respectively

~ ~

a.n Xiep = % 7 CpagFxg * Gy

Hardback 0-906783-12-7 /82 $2.50 + .10 © 1982 Boole Press Limited
Paperback 0-906783-09-7 /82 $2.50 + .10
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and
(1.2) £i+1 = Zi - FGi Ki + y.

A similar modification of DCPC can be given.
In this way we are able to adapt the approximate inverse during the

iteration and we can try to find sequences {Ci} in order to accellerate the

convergence of the iteration.

REMARK. We see that for general affine operators {Ei} we have no longer the
equivalence DCPA and DCPB. Instead we see DCPA to be equivalent with the
iteration.

1.3 =F. G.&. -F ¢
(1.3) £i+1 Fio Gty — F cizi +y,

or DCPB to be equivalent with

(1.4) Fet®ie1 = Fox, - F Xty
or

] R~ ~. y.
(1.5) X Ci+lFixi Gi+1F X + Gi+l

Various methods are known to find a proper sequence {Gi}. Here we mention

a few.

EXAMPLE 1. G, , = G(x,).

The approximate inverse depends on the last iterand computed. This is the
case e.g. in Newton's method for the solution of non-linear equations, where
E(x) = F'(x))_l, with F'(x) the Fréchet derivative of the operator F in the

problem (P).

EXAMPLE 2. G, = G(u,)-

The approximate inverse depends on a single real parameter. This is the case
e.g. in>non-stationary relaxation processes for the solution of linear sys-
tems. The value w, can be taken from a fixed sequence of values or it can be

computed adaptively during the iteration process.
EXAMPLE 3. Gi € {G],Gz}.

In each iteration step the approximate inverse is chosen from a set of two
(or more) fixed approximate inverses. This is the case e.g. in Brakhage's

and Atkinson's methods for the solution of Fredholm integral equations of the
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2nd kind. (See ATKINSON [19761 and BRAKHAGE 19601.)

REMARK. From the pratical point of view ( 1.2) seems to be the more attrac-
tive of the two processes (1.1) and ( 1.2) because in (1.2) Ei appears
only once in an iteration step. This implies that only one approximate prob-

lem has to be solved, whereas 5i+ appears twice in (1.1).

2. A fixed combination of approximate inverses

In this section we assume that the operator F in (P) and the approximate
inverses G and G are linear operators. We consider two iteration steps in the
non-stationary DCPA in which, in turn, one or the other of two approximate

inverses is used. Then the iteration steps

xi+% = (I - GF)xi + Gy

and
~ ~
X < (1 - GF)xi+% + Gy

combine into a single iteration step of the form

~ ~ i3 N o~ ~
X < (I - GF) (I - GF)xi + (G - GFG + Q)y.
This is easily recognized as a new iteration step of the type DCPA, now with
the approximate inverse

~ R~ N o~ ~

G =G~ GFG + G.

We conclude that a fixed combination of DCPA-steps can be considered as a

new DCPA-step with a more complex approximate inverse. ‘
The amplification operator of the new DCPA process is the product of the

amplification operators of the elementary processes.

We can describe the DCPA in matrix notation by
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o times an application of the same iteration step yields

-1
(o) (T TN gy ((I—EF)U 1,0,
) (%)

-~

' = m=0 Xi\ .
\ Iy v o AR

Thus, we see that one iteration step which consists of ¢ applications of

DCPA-steps results in a DCPA with the amplification operator
M = (1-6F)°

and the approximate inverse

. o=l o - - _
¢= 3 @™ E=r1- a-emF .
m=0
Since the operators F and G are linear, we may look at the combined process
as a DCPB as well; its approximate inverse being the same as for the DCPA,

of course, and with the amplification operator

M= = (1- FO)C.

3. Iterative application of DCP

It is possible not only to change the approximate inverse G during the
iteration process, often it makes sense also to substitute different oper-
ators Fk for F during iteration. In general, the operators {Fk}k=1,2,...
will be simple to evaluate in the beginning of the iteration and they will
converge in some sense to the "target™ operator F, the operator of the orig-
inal problem, as the iteration proceeeds.

If we apply this technique, we solve (approximatively) a sequence of

problems (P of the form

Wk=1,2,...
(Pk) Fkx = yk’

where we use the approximate solution of (Pk—l) as a starting value for the



iteration of (Pk)' This way of looking at the changing F, yields a criterion

for the number of iterations that has to be spent to appioximate the solution
of (Pk); viz.*the iterand xk,i in the DCP for the solution of (Pk) should not
approximate X the solution of (Pk), better than the solution of (Pk) is

itself an approximation to the solution of (P ); i.e. we should not iterate

the DCP for (Pk) further than until

k+1

I I ol = x5
i T X% I A

EXAMPLES la and 1b. One example of the iterative application of a DCP is the

IUDeC (Iteratively Updated Defect Correction) process described by STETTER
[1978]. Here {Fk} are discrete approximations of higher and higher order to

an analytic operator F. The approximate inverse G = F-]

0 is kept constant

during the process.
Another example is the Full Multigrid Method (BRANDT [19771), in which

{Fk} are discretizations on finer and finer nets of an analytic operator F.

One way to create a sequence of problems (Pk) is Galerkin approxima-

tions of a "target" problem (P):

(Pk) R F PLXy = Rk y.
Then the different discretizations are determined by {ik,Pk}.

EXAMPLE 2. Global interpolation.
Here ik = ih is independent of k,

ih: c(Q) - ﬂh(nh)

is the restriction of a continuous function to its values on a set of nodal

points @ . The prolongation P, is global piecewise polynomial

h k
P £ () ~ C(R)

of order k: the set of ncdal values is interpolated to a continuous piecewise

polynomial function defined on Q. (Finite element interpolation.)

EXAMPLE 3. Local interpolation.

We take ﬁk = Eh as in example 2. Now P, is local interpolation in the neigh-

k

bourhood of nodal points. I.e. P, u_ is a function which is (only) defined

k "h
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4. Recursive application of DCP

Generally, the evaluation of the approximate inverse operator Ei implies
the solution of an equation which is (essentially) of a simpler type than the
original equation. However, also this simpler equation may be of a kind that
we want to solve by means of a DCP. For this we need an even simpler equation
to solve, etc.. Thus, the execution of a single iteration step may activate
new (simpler to solve) DCP. In this way we can construct a recursive construc-
tion of DCPs in which only on the lowest level of recursion a very simple
equation is to be solved.

Independently, this is probably not a real meaningful constuction, but
in combination with non-stationary processes, where also other (non-recur-
sive) approximate inverses are available, it describes the essentials of the
multigrid algorithm.

Such a combination of a non-stationary process with some recursive ap-

proximate inverses can be described by the following sequence of DCPs.

DCP]: X: = x - G1 (le-f]) Cj jo=1,2,...,n,
DCPZ: X: =X - Gz,i(sz—fz)
: : S, . e (G, ¥y,
. . 1,1 3 j-1
N ] = 2,3,...,n
DCP : x: =x-0_,(F x=f)
n n,i n° n

A full use of the sequence of DCPs is made by combining also the iterative
application: first DCP1 is solved and its solution is used as a starting
value for DCP2 etc.. In a multigrid context

DCPl, DCPZ,..-, a’

are processes to solve operator equations, discretized on finer and finer
grids. The complete iterative process is called: Full Multigrid Algorithm
(BRANDT [1977]).

5. Mixed Defect Correction Processes

Up to now we have considered DCPs where each time one final target

problem
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(5.1) () Fx-=

was solved.

In this

Y F:X->Y

section we treat the éossibility of two (or more) differ-

ent target problems:

lel

Fyxy

(5.2) (pP1)

(P2)

to be used in one
and (P2) probably
operator F is not

We introduce

1

introduce the Mized Defect

F. and F2 respectively. We assume that F],

= yl, F.: X

= Y5 F, : X

iteration process. Behind the screen both procedures (P1)
are two approximations of an original problem (P), but the

used in the algorithmic procedure.

~

first the approximate inverses G, and G2 of the operators

1
Fy, G, and G, are linear. Then we

Correction Process

= u, GI(FIU'

D A

GZ(FZui+§ - y2).

Thus, the complete iteration step reads

(5.3)

u. =
1+1

(x- GZFZ)(I— G]Fl)ui + (I- GZFZ)GlyI + G2y2'

We find for MDCP the "amplification operator of the error"

(5.4)

A stationary point

(5.5)

In ghe case that y] and v, can be written as y]

RI Y > Y], R2

(5.6)

M= (I-

(I-M)a

r Y > Y2, equation

(G2F1+ G

G,F,)(I- G F)).
4 of (MDCP) satisfies

= (I- GZFZ)GIYI + GZyZ'

= Rly and y, = Ry¥s

( 5.5) is equivalent with

a R
2Fy  GoF) G Fu = (G R+ G,R, = G F,yG R )y
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If equation ( 5.5) has a unique solution G, this u is the statiomary point
of (MDCP) and with the error defined by

the operator M has again the property

ei+l = Mei.

For an arbitrary w we know

(5.7) (I-Mw = (I- G2F2)G1Flw + Gzew

and by (5.5) we find
(5.8) (I-M)(w=-u) = (I—GZFZ)G‘ (F‘w— yl) + GZ(sz—yz).

THEOREM

(1) Let (Pl) and (P2) be two discretizations of (P) with

1; .ﬁl 1 Y > Y]; §2 Y > YZ;
and such that y = ﬁly and y, = §éy;

(ii) Let the local discretization error of the discretizations (Pl) and
(Pz) of the problem (P) be resgectizfiy of order P, and Pys

(iii) Let the approximate operators Fk = Gk , Fk PX > Yk’ k =1,2, be
stable discretizations of F and let ?k be consistent with Fo» k= 1,2,
of order 9 0;
Let U € X be the solution of (P) and let u be a stationary point of
(MDCP), then

lo- Rall < ¢ W™0(ay%P 5Py)

PROOF. From (iii) it follows that, with k = 1,2,

~ Qi ~
_ I . . .
“Fk Fk“ <Ch , Hle < C unif. in h

42



Hence, for k = 1,2 we have

.Ch — 0.

llI—GkaII < IleIHIFk—FkH <.

A
aQ

Thus,

A

Ml < III-G]FIIIIII—GZFZII < C<1

for h small enough, and

h <

NI - M)~
for h small enough.
From (ii) it follows that the truncation errors of the discretizatiom with

respect to the solution u are of order P, and p, respectively:

T =

K Yy~ FkRu = RhFu - FkRu = (RkF- FkR)u = Tk(u)

e b= It (DI < c Rk
k Tk\.! = .

From (5.8) we derive

(I-M)(Ru-u) = (I~ G2F2)G1(FIRU— yl) - Gz(FzRu- yz)

-(1- GZFZ)G]Tl + 0212.
Hence '

~ -~ _.] ~ ~ ~
TRu-ul < 1 (1-M) HHGzﬂ{HF2~ FZ"“G]“"T1H+ Hrzﬂ}

q, P, P,
. c {Ch .C.h + h 7}

In
n

min(p,+q,,pP,)
< Ch 127" . O

REMARK. The theorem can easily be generalized for more different target

problems

(B Fox, = ¥y k= 1,2,...,8.
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With Ek

for the multiple MDCP

(MDCP)

an approximate inverse of Fh’ Kk

F oo

{ Ui/l T Uie -1y 72 7 G Fitingenye T G

k=1,2,...,2.

The amplification operator of the error is

M= MMy MM

1

We find
£2-1 N N
(I-M)(G-RY) = kzl MMy oo M (G T GpTy
and hence
-~ _a -1 L ~ g~ ~ 0
I3-Rral < I(1~-M) ﬂkzlllcﬁlllle-an oo IC W
z Qp*qp_ *te.-*q P
< c( e s k+1" Pk
k=1
*
< c kP
. L
with p = min (pk+ 2 q.).
k=l,...,4 < j=k+1 3
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+ h

~—] ~
Gk and Mk = (I—Gka) we get

- FRIEM!
Fk+1"“ck‘ lTk

Pz\
/
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