
Session-Based Concurrency, Reactively

Mauricio Cano1, Jaime Arias2, and Jorge A. Pérez3(B)

1 University of Groningen, Groningen, The Netherlands
2 Inria Grenoble Rhône-Alpes, Montbonnot-Saint-Martin, France

3 University of Groningen and CWI, Amsterdam, The Netherlands
j.a.perez@rug.nl

Abstract. This paper concerns formal models for the analysis of com-
munication-centric software systems that feature declarative and reactive
behaviors. We focus on session-based concurrency, the interaction model
induced by session types, which uses (variants of) the π-calculus as spec-
ification languages. While well-established, such process models are not
expressive enough to specify declarative and reactive behaviors common
in emerging communication-centric software systems. Here we propose
the synchronous reactive programming paradigm as a uniform foundation
for session-based concurrency. We present correct encodings of session-
based calculi into ReactiveML, a synchronous reactive programming
language. Our encodings bridge the gap between process specifications
and concurrent programs in which session-based concurrency seamlessly
coexists with declarative, reactive, timed, and contextual behaviors.

1 Introduction

In this paper, we introduce the synchronous reactive programming paradigm as
a practical foundation for communication-centric software systems. Our motiva-
tion is twofold. First, synchronous reactive programming allows us to uniformly
integrate point-to-point communications (as in the π-calculus) with declarative,
reactive, timed, and contextual behaviors—this is an elusive combination for
process models such as the π-calculus. Second, by relying on ReactiveML (a
synchronous reactive programming language with a formal semantics), we may
bridge the gap between π-calculus processes and actual concurrent programs,
thus bringing a rigorous communication model to programmers.

Large software systems are deployed as aggregations of distributed interacting
components, which are built using a myriad of different programming platforms
and/or made available as black-boxes that expose minimal interaction interfaces.
In these complex, heterogeneous systems communication emerges as the key
unifying glue. Certifying that interacting components conform to their prescribed
protocols is thus an important but challenging task, and is essential in ensuring
overall system correctness.

Besides protocol conformance, analyzing communication-centric software sys-
tems entails addressing additional challenges, which can be seen as related to
c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
A. Bouajjani and A. Silva (Eds.): FORTE 2017, LNCS 10321, pp. 74–91, 2017.
DOI: 10.1007/978-3-319-60225-7 6

Session-Based Concurrency, Reactively 75

the increasing ubiquity of these systems. Indeed, communication-centric soft-
ware appears in emerging trends (e.g., collective adaptive systems) and as such
is subject to various classes of requirements that are orthogonal to communica-
tion correctness. We focus on communication-centric software systems featuring
declarative, reactive, timed, and contextual behaviors. (In Sect. 2 we illustrate
these intended systems, using a transactional protocol subject to failures.) By
stipulating governing conditions (rather than how to implement such condi-
tions), declarative approaches naturally specify, e.g., security policies. Closely
intertwined, constructs modeling reactivity, time, and context-awareness are at
the heart of mechanisms that enforce, e.g., self-adaptation and fault-tolerance in
dependable systems. Therefore, while not directly connected to protocol specifi-
cations, declarative, reactive, timed, and contextual behaviors (and their inter-
play) do influence communication and should be integrated into the analysis of
protocol conformance.

Process calculi (such as the π-calculus [17]) have long offered a principled
basis for the compositional analysis of message-passing programs. Within these
approaches, our work concerns session-based concurrency, the interaction model
induced by session types [11], which organize protocols as sessions between two
or more participants. In session-based concurrency, a session type describes the
contribution of each partner to the protocol. Interactions are structured, and
always occur in matching pairs; e.g., when one partner sends, the other receives;
when one partner offers a selection, the other chooses. Different session type the-
ories for binary (two-party) and multiparty protocols have been developed [12];
here we focus on binary sessions.

Binary and multiparty session types rely on π-calculi with session constructs.
These session calculi have been extended with declarative, reactive, timed, and
contextual behaviors, but none of these extensions captures all these features. For
instance, session calculi with assertions (logical predicates) [3,5] may describe
certain declarative requirements, but do not account for reactive and contextual
behaviors. Frameworks with time-related conditions, such as [1,4], have simi-
lar limitations. The framework in [13] supports contextual information through
events, but does not represent reactive, declarative behaviors. Integrating these
extensions into a single process framework seems rather difficult, for they rely
on different languages and often conflicting assumptions.

Here we pursue a different approach: we embed session-based concurrency
within the synchronous reactive programming (SRP) model for reactive, timed
systems [2,10]. Hence, rather than extending session π-calculi with declara-
tive, reactive, timed, and contextual features, we encode session-based commu-
nication into a setting where these features (and their interplay) are already
well understood. We consider ReactiveML, a programming language based on
SRP [15,16], as target language in our developments. ReactiveML is a general
purpose functional language with a well-defined formal semantics. Our tech-
nical contributions are two correct encodings of session π-calculi into Reac-
tiveML. In a nutshell, we use signals in ReactiveML to mimick names in session
π-calculi. Our encodings enable us to integrate, in a seamless and uniform way,

76 M. Cano et al.

session-based constructs as “macros” in ReactiveML programs with declarative
and reactive constructs. Moreover, since our encodings are executable (well-
typed) ReactiveML programs, our results have a direct practical character, which
serves to bridge the gap between specifications in process models and actual con-
current programs.

This paper is structured as follows. Section 2 illustrates our approach via an
example. Section 3 summarizes the syntax and semantics of a session π-calculus
and of ReactiveML. In both cases, we consider languages with synchronous and
asynchronous (queue-based) communication. Section 4 presents our two encod-
ings and states their correctness. Section 5 collects closing remarks. An online
appendix includes further examples and technical details (omitted definitions
and proofs) [7].

2 A Motivating Example

We use a toy example to illustrate (i) the limitations of session π-calculi in rep-
resenting structured communications with declarative/reactive behaviors, and
(ii) how our approach, based on encodings into ReactiveML, can neatly over-
come such limitations.

A Ride Protocol. Suppose a conference attendee who finds himself in a foreign
airport. To get in time for his presentation, he uses a mobile app in his phone to
request a ride to the conference venue. The intended protocol may be intuitively
described as follows:

1. Attendee sends his current location and destination to a neighbouring Driver.
2. Driver receives these two pieces of information and offers three options to

Attendee: a ride right now, a ride at a later time, or to abort the transaction.
3. Attendee is in a hurry, and so he selects to be picked up right now.
4. Driver replies by sending an estimated arrival time at Attendee’s location.

Using session π-calculus processes (as in, e.g., [18]), this protocol may be imple-
mented as a process S = (νxy)(A(x) | D(y)), where processes A(x) and D(y)
abstract the behavior of Attendee and Driver as follows:

A(x) = x〈loc〉.x〈des〉.x � now.x(e).0
D(y) = y(l).y(d).y � {now : y〈eta〉.0, later : y(t).y〈ok〉.0, quit : Closey}

where process Closey denotes an unspecified sub-protocol for closing the trans-
action. Above, we write x〈z〉.P (resp. x(w).P) to denote the output (resp. input)
along name x with continuation P . Processes x � l.P and x � {li : Pi}i∈I denote
internal and external labeled choices, respectively. Above, now, later, and quit
denote labels. Process 0 denotes inaction. Process (νxy)P declares x and y as
dual session endpoints in P . This way, S says that A(x) and D(y) play comple-
mentary roles in the session protocol.

Session-Based Concurrency, Reactively 77

The Need for Richer Behaviors. Session-based concurrency assumes that
once a session is established, communication may proceed without interruptions.
This is unrealistic in most real-life scenarios, where established sessions are prone
to failures or interruptions. For instance, a connectivity issue in the middle of
the protocol with Driver may leave Attendee stuck in the airport. In such cases,
notions of contextual information, reactivity, and time become essential:

Contextual Information such as, e.g., external events signalling a malfunction,
allows relating the system with its environment. For instance, we may like
to relate A(x) and D(y) with a connectivity manager that triggers warning
events.

Reactivity serves to detect unforeseen circumstances (e.g., failures) and to
define appropriate system behaviors to run in such cases. For instance, we
may like to define A(x) so that another driver is requested if a failure in a
protocol with D(y) arises.

Time allows to track the instant in which a failure occurred, and also to establish
a deadline within which the failure should be resolved. For instance, in case of
failure A(x) may try contacting alternative drivers only until k time instants
after the failure.

As mentioned above, the session π-calculus does not support these features,
and proposed extensions do not comprehensively address them. We rely on syn-
chronous reactive programming (SRP) and ReactiveML, which already have the
ingredients for seamlessly integrating declarative, reactive behavior into session-
based concurrency.

ReactiveML. ReactiveML extends OCaml with reactive, timed behavior. Time
is modelled as discrete units, called instants; reactivity arises through signals,
which may carry values. In ReactiveML, expression signal x in e declares a new
signal x. We use constructs emit s v and await s(x) in e to emit and await a
signal s, respectively. Preemption based on signals is obtained by the expression
do (e1) until s → (e2), which executes e1 until signal s is detected, and runs e2
in the next instant. Moreover, ReactiveML can encode the parallel composition
of expressions e1 and e2, denoted e1 ‖ e2.

Embedding Sessions in ReactiveML. Our first encoding, denoted �·�f (cf.
Definition 14), translates session π-calculus processes into ReactiveML expres-
sions; we use substitution f to represent names in the session π-calculus
using (fresh) signals in ReactiveML. Our second encoding, denoted ([·]) (cf.
Definition 17), supports an asynchronous semantics.

We illustrate �·�f by revisiting our example above. Let us define a concur-
rent reactive program in which �A(x)�f , �D(y)�f , and �D′(w)�f represent Reac-
tiveML snippets that implement session-based communication. We consider a
simple possibility for failure: that Driver (D(y)) may cancel a ride anytime or
that communication with Attendee (A(x)) fails and cannot be recovered. Ide-
ally, we would like a new driver D′(w), whose implementation may be the same
as D(y), to continue with the protocol, without disrupting the protocol from

78 M. Cano et al.

Fig. 1. Reduction relation for π processes (contextual congruence rules omitted).

the perspective of A(x). This could be easily expressed in ReactiveML as the
expression S′ = signal w1, w2 in (RA ‖ RD) where:

RA = do (�A(x)�{x←w1}) until fail → (await w2(z) in �A(x)�{x←z})
RD = do (�D(y)�{y←w1}) until fail → (BD)
BD = signal w3 in (emit w2 w3; �D′(w)�{w←w3})

S′ declares two signals: while signal w1 connects a reactive attendee RA and
the reactive driver RD, signal w2 connects RA with a backup driver BD. If no
failure arises, RA and RD run their expected session protocol. Otherwise, the
presence of signal fail will be detected by both RA and RD: as a result, the
attendee will await a new signal for restarting the session; process �D(y)� stops
and BD will become active in the next instant. After emitting a fresh signal w3,
BD can execute the protocol with RA.

3 Preliminaries

A Session π-calculus. Our presentation follows closely that of [18]. We assume
a countable infinite set of variables Vs, ranged over by x, y, A variable repre-
sents one of the two endpoints of a session. We use v, v′, . . . to range over values,
which include variables and the boolean constants tt, ff. Also, we use l, l′, . . .
to range over labels. We write x̃ to denote a finite sequence of variables (and
similarly for other elements).

Definition 1 (π). The set π of session processes is defined as:

P,Q ::= x〈v〉.P | x(y).P | x � l.P | x � {li : Pi}i∈I | v? (P) :(Q) | P | Q | 0
| (νxy)P | ∗ x(y).P

Process x〈v〉.P sends value v over x and then continues as P ; dually, process
x(y).Q expects a value v on x that will replace all free occurrences of y in Q.
Processes x � lj .P and x � {li : Qi}i∈I define a labeled choice mechanism, with
labels indexed by the finite set I: given j ∈ I, process x � lj .P uses x to select
lj and trigger process Qj . We assume pairwise distinct labels. The conditional
process v? (P) : (Q) behaves as P if v evaluates to tt; otherwise it behaves as
Q. Parallel composition and inaction are standard. We often write

∏n
i=1 Pi to

stand for P1 | · · · | Pn. The double restriction (νxy)P binds together x and y in
P , thus indicating that they are the two endpoints of a session. Process ∗ x(y).P

Session-Based Concurrency, Reactively 79

Fig. 2. Reduction relation for aπ processes (contextual congruence rules omitted).

denotes a replicated input process, which allows us to express infinite server
behaviors. In x(y).P (resp. (νyz)P) occurrences of y (resp. y, z) are bound with
scope P . The set of free variables of P , denoted fv(P), is as expected.

The operational semantics for π is given as a reduction relation −→, the
smallest relation generated by the rules in Fig. 1. Reduction expresses the com-
putation steps that a process performs on its own. It relies on a structural con-
gruence on processes, denoted ≡S, which identifies processes up to consistent
renaming of bound variables, denoted ≡α. Formally, ≡S is the smallest congru-
ence that satisfies the axioms:

P | 0 ≡S P P | Q ≡S Q | P P ≡S Q if P ≡α Q
(P | Q) | R ≡S P | (Q | R) (νxy)(νwz)P ≡S (νwz)(νxy)P

(νxy)0 ≡S 0 (νxy)P | Q ≡S (νxy)(P | Q) if x, y 	∈ fv(Q)

We briefly comment on the rules in Fig. 1. Reduction requires an enclosing
restriction (νxy)(· · ·); this represents the fact that a session connecting end-
points x and y has been already established. Rule
Com� represents the syn-
chronous communication of value v through endpoint x to endpoint y. While
Rule
Sel� formalizes a labeled choice mechanism, in which communication of a
label lj is used to choose which of the Qi will be executed, Rule
Repl� is similar
to Rule
Com�, and used to spawn a new copy of Q, available as a replicated
server. Rules
IfT� and
IfF� are self-explanatory. Rules for reduction within
parallel, restriction, and ≡S (not given in Fig. 1) are as expected.

The following notion will be useful in stating properties of our translations.

Definition 2 (Contexts for π). The syntax of (evaluation) contexts in π is
given by the following grammar: E ::= [·] | E | P | P | E | (νxy)(E), where P
is a π process and ‘[·]’ represents a ‘hole’. We write C[·] to range over contexts
(νx̃ỹ)([·] | P1 | . . . | Pn), with n ≥ 1. E[P] (resp. C[P]) will denote the process
obtained by filling [·] with P .

An Asynchronous Session π-calculus (aπ). Following [13], we now define
aπ, a variant of π with asynchronous (queue-based) semantics. The syntax of
aπ includes variables x, y, . . . and co-variables, denoted x, y. Intuitively, x and
x denote the two endpoints of a session, with x = x. We write Va to denote the
set of variables and co-variables; k, k′ will be used to range over Va. As before,
values include booleans and variables. The syntax of processes is as follows:

80 M. Cano et al.

Definition 3 (aπ and aπ�). The set aπ of asynchronous session processes is
defined as:

P,Q ::= k〈v〉.P | k(y).P | k � l.P | k � {li : Pi}i∈I | v? (P) :(Q) | P | Q | 0
| (νx)P | μX.P | X | k[i : m̃; o : m̃]

We write aπ� to denote the sub-language of aπ without queues.

Differences with respect to Definition 1 appear in the second line of the above
grammar. The usual (single) restriction (νx)P is convenient in a queue-based
setting; it binds both x and x in P . We consider recursion μX.P rather than
input-guarded replication. Communication in aπ is mediated by queues of mes-
sages m (values v or labels l), one for each endpoint k; these queues, denoted
k[i : m̃; o : m̃], have output and input parts. Synchronization proceeds as follows:
the sending endpoint first enqueues the message m in its own output queue; then,
m is moved to the input queue of the receiving endpoint; finally, the receiving
endpoint retrieves m from its input queue. We will use ε to denote the empty
queue. Notions of free/bound (recursive) variables are as expected.

The operational semantics of aπ is defined as a reduction relation coupled
with a structural congruence relation ≡A. The former is defined by the rules in
Fig. 2, which either follow the above intuitions for queue-based message pass-
ing or are exactly as for π; the latter is defined as the smallest congruence on
processes that considers standard principles for parallel composition and inac-
tion, together with the axioms:

(νx)(νy)P ≡A (νy)(νx)P (νx)0 ≡A 0 μX.P ≡A P{μX.P/X}
k[i : ε; o : ε] ≡A 0 (νx)P | Q ≡A (νx)(P | Q) if x 	∈ fv(Q).

The notion of contexts for aπ includes unary contexts E and binary contexts C:

Definition 4 (Contexts for aπ). The syntax of contexts in aπ is given by
the following grammar: E ::= [·] | E | P | P | E | (νx)E, where P is an aπ
process and ‘[·]’ represents a ‘hole’. We write C[·1, ·2] to denote binary contexts
(νx̃)([·1] | [·2] |

∏n
i=1 Pi) with n ≥ 1. We will write E[P] (resp. C[P,Q]) to

denote the aπ process obtained by filling the hole in E[·] (resp. C[·1, ·2]) with
P (resp. P and Q).

Both π and aπ abstract from an explicit phase of session initiation in which
endpoints are bound together. We thus find it useful to identify aπ processes
which are properly initialized (PI): intuitively, processes that contain all queues
required to reduce.

Definition 5 (Properly Initialized Processes). Let P ≡A (νx̃)(P1 | P2) be
an aπ process such that P1 is in aπ� (i.e., it does not include queues) and
fv(P1) = {k1, . . . , kn}. We say P is properly initialized (PI) if P2 contains
a queue for each session declared in P1, i.e., if P2 = k1[i : ε, o : ε] | · · · |
kn[i : ε, o : ε].

Session-Based Concurrency, Reactively 81

ReactiveML: A Synchronous Reactive Programming Language. Based
on the reactive model given in [6], ReactiveML [16] is an extension of OCaml that
allows unbounded time response from processes, avoiding causality issues present
in other SRP approaches. ReactiveML extends OCaml with processes: state
machines whose behavior can be executed through several instants. Processes
are the reactive counterpart of OCaml functions, which ReactiveML executes
instantaneously. In ReactiveML, synchronization is based on signals: events that
occur in one instant. Signals can trigger reactions in processes; these reactions
can be run instantaneously or in the next instant. Signals carry values and can
be emitted from different processes in the same instant.

We present the syntax of ReactiveML following [14], together with two
semantics, with synchronous and asynchronous communication. We will assume
countable infinite sets of variables Vr and names Nr (ranged over by x1, x2 and
n1, n2, respectively).

Definition 6 (RML). The set RML of ReactiveML expressions is defined as:

v, v′ ::= c | (v, v) | n | λx.e | process e
e, e′ ::= x | c | (e, e) | λx.e | e e | rec x = v

| match e with {ci → ei}i∈I | let x = e and x = e in e | run e | loop e
| signale x : e in e | emit e e | pause | process e
| present e? (e) : e | do e when e | do (e) until e(x) → (e)

Values v, v′, . . . include constants c (booleans and the unit value ()), pairs, names,
abstractions, and also processes, which are made of expressions. The syntax of
expressions e, e′ extends a standard functional substrate with match and let
expressions and with process- and signal-related constructs. Expressions run e
and loop e follow the expected intuitions. Expression signalg x : d in e declares
a signal x with default value d, bound in e; here g denotes a gathering func-
tion that collects the values produced by x in one instant. When d and g are
unimportant (e.g., when the signal will only be emitted once), we will write sim-
ply signal x in P . We will also write signal x1, . . . , xn in e when declaring n > 1
distinct signals in e. If expression e1 transitions to the name of a signal then
emit e1 e2 emits a signal carrying the value from the instantaneous execution of
e2. Expression pause postpones execution to the next instant. The conditional
expression present e1? (e2) : (e3) checks the presence of a signal: if e1 transitions
to the name of a signal present in the current instant, then e2 is run in the same
instant; otherwise, e3 is run in the next instant. Expression do e when e1 executes
e only when e1 transitions to the name of a signal present in the current instant,
and suspends its execution otherwise. Expression do (e1) until e(x) → (e2) exe-
cutes e1 until e transitions into the name of a signal currently present that carries
a value which will substitute x. If this occurs, the execution of e1 stops at the end
of the instant and e2 is executed in the next one. Using these basic constructs,
we may obtain the useful derived expressions reported in Fig. 3, which include
the parallel composition e1 ‖ e2. We will say that an expression with no parallel
composition operator at top level is a thread.

82 M. Cano et al.

Fig. 3. Derived RML expressions.

We write ≡R to denote the smallest equivalence that satisfies the following
axioms: (i) e ‖ () ≡R e; (ii) e1 ‖ e2 ≡R e2 ‖ e1; (iii) (e1 ‖ e2) ‖ e3 ≡R e1 ‖ (e2 ‖ e3).

A Synchronous Semantics for RML. Following [14], we define a big-step opera-
tional semantics for RML. We require some auxiliary definitions for signal envi-
ronments and events. Below, and � denote usual multiset union and inclusion,
respectively.

Definition 7 (Signal Environment). Let D,G,M be sets of default values,
gathering functions, and multisets, respectively. A signal environment is a func-
tion S : Nr → (D × G × M), denoted S

�= [(d1, g1,m1)/n1, . . . , (dk, gk,mk)/nk],
with k ≥ 1.

We use the following notations: Sd(ni) = di, S
g(ni) = gi, and Sm(ni) = mi.

Also, Sv = fold gi mi di where fold recursively gathers multiple emissions of
different values in the same signal; see [14,16] for details. An event E associates
a signal ni to a multiset mi that represents the values emitted during an instant:

Definition 8 (Events). An event is defined as a function E : Nr → M, i.e.,
E

�= [m1/n1, . . . ,mk/nk], with k ≥ 1. Given events E1 and E2, we say that E1 is
included in E2 (written E1 �E E2) if and only if ∀n ∈ Dom(E1) ∪ Dom(E2) ⇒
E1(n) � E2(n). The union E1 and E2 (written E1 �E E2) is defined for all
n ∈ Dom(E1) ∪ Dom(E2) as (E1 �E E2)(n) = E1(n) E2(n).

We now define the semantics of RML expressions. A big-step transition in RML

captures reactions within a single instant, and is of the form e
E,b−−→
S

e′ where S

stands for the smallest signal environment (wrt �E and Sm) containing input,
output, and local signals; E is the event made of signals emitted during the
reaction; b ∈ {tt, ff} is a boolean value that indicates termination: b is false if e
is stuck during that instant and is true otherwise. At each instant i, the program
reads an input Ii and produces an output Oi. The reaction of an expression
obeys four conditions: (C1) (Ii �E Ei) �E Sm

i (i.e., S must contain the inputs
and emitted signals); (C2) Oi �E Ei (i.e., the output signals are included in the
emitted signals); (C3) Sd

i ⊆ Sd
i+1; and (C4) Sg

i ⊆ Sg
i+1 (i.e., default values and

gathering functions are preserved throughout instants).
Figure 4 gives selected transition rules; see [7] for a full account. Rules

L-Par� and
L-Done� handle let expressions, distinguishing when (a) at least

Session-Based Concurrency, Reactively 83

Fig. 4. Big-step semantics for RML expressions (selection).

one of the parallel branches has not yet terminated, and (b) both branches
have terminated and their resulting values can be used. Rule
Run� ensures
that declared processes can only be executed while they are preceded by run.
Rules
Lp-Stu� and
Lp-Un� handle loop expressions: the former decrees that
a loop will stop executing when the termination boolean of its body becomes
ff; the latter executes a loop until Rule
Lp-Stu� is applied. Rule
Sig-Dec�
declares a signal by instantiating it with a fresh name in the continuation;
its default value and gathering function must be instantaneous expressions.
Rule
Emit� governs signal emission. Rule
Pause� suspends the process for
an instant. Rules
Sig-P� and
Sig-NP� check for presence of a signal n: when
n is currently present, the body e2 is run in the same instant; otherwise, e3 is
executed in the next instant. Rules
DU-End�,
DU-P�, and
DU-NP� handle
expressions do (e1) until e2(x) → (e3). Rule
DU-End� says that if e1 terminates

84 M. Cano et al.

Fig. 5. Big-step semantics for RMLq: queue-related operations.

instantaneously, then the whole expression terminates. Rule
DU-P� says that
if e2 transitions to a currently present signal n, then e3 is executed in the next
instant, substituting x with the values gathered in n. Rule
DU-NP� executes
e1 as long as e2 does not reduce to a currently present signal. We shall rely on
a simple notion of equality.

Definition 9 (Equality with case normalization). Let ↪→R denote the
extension of ≡R with the axiom match cj with {ci → Pi}i∈I ↪→R Pj, where cj

is a constant and j ∈ I.

RMLq: ReactiveML with a Queue-Based Semantics. We extend RML with an
explicit store of queues that keeps the state of the executed program. Unlike
signals, the store of queues is preserved throughout time. The syntax of RML
is extended with constructs that modify the queues located in the store; the
resulting language is called RMLq.

Definition 10 (RMLq). RMLq expressions are obtained by extending the gram-
mar of values in Definition 6 with the following forms:

v ::= · · · | pop | put | isEmpty.

The new constructs allow RMLq programs to modify queues, which are ranged
over by q, q′, Construct put receives a queue and an element as parameters
and pushes the element into the end of the queue. Construct pop takes a queue
and dequeues its first element; if the queue is empty in the current instant the
process will block the current thread until an element is obtained. Construct
isEmpty blocks a thread until the instant in which a queue stops being empty.

The semantics of RMLq includes a state Σ,Σ′ ::= ∅ | Σ, q : ṽ (i.e., a possibly
empty collection of queues) and configurations K,K ′ ::= 〈e ; Σ〉. The big-step

semantics then has transitions of the form 〈e ; Σ〉 E,b���
S

� 〈e′ ; Σ′〉, where S is a

signal environment, b is a termination boolean, and E is an event. The corre-
sponding transition system is generated by rules including those in Fig. 5 (see
also [7]).

Most transition rules for RMLq are interpreted as for RML; we briefly discuss
queue-related rules in Fig. 5. Rule
Put-Q� pushes an element into a queue

Session-Based Concurrency, Reactively 85

and terminates instantaneously. Rule
Pop-Q� takes the first element from the
queue (if not empty) and terminates instantaneously. Rule
NEmpty� enables
isEmpty to terminate instantaneously if the queue is not empty. Rule
Pop-Qε�
keeps the thread execution stuck for at least one instant if the queue is empty;
Rule
Empty� is similar. We rule out programs with parallel pop/put operations
along the same session in the same instant.

4 Expressiveness Results

We present our main results: correct translations of π into RML and of aπ into
RMLq.

The Formal Notion of Encoding. We define notions of language, trans-
lation, and encoding by adapting those from Gorla’s framework for relative
expressiveness [9].

Definition 11 (Languages and Translations). A language L is a tuple
〈P,−→,≈〉, where P is a set of processes, → denotes an operational semantics,
and ≈ is a behavioral equality on P. A translation from Ls = 〈Ps,−→s,≈s〉
into Lt = 〈Pt,−→t,≈t〉 (each with countably infinite sets of variables Vs and
Vt, respectively) is a pair 〈�·�, ψ�·�〉, where �·� : Ps → Pt is a mapping, and
ψ�·� : Vs → Vt is a renaming policy for �·�.
We are interested in encodings: translations that satisfy certain correctness
criteria:

Definition 12 (Encoding). Let Ls = 〈Ps,−→s,≈s〉 and Lt = 〈Pt,−→t,≈t〉 be
languages; also let 〈�·�, ψ�·�〉 be a translation between them (cf. Definition 11). We
say that such a translation is an encoding if it satisfies the following criteria:

1. Name invariance: For all S ∈ Ps and substitution σ, there exists σ′ such
that �Sσ� = �S�σ′, with ψ�·�(σ(x)) = σ′(ψ�·�(x)), for any x ∈ Vs.

2. Compositionality: Let ress(·, ·) and pars(·, ·) (resp. rest(·, ·) and part(·, ·))
denote restriction and parallel composition operators in Ps (resp. Pt). Then,
we define: �ress(x̃, P)� = rest(ψ�·�(x̃), �P �) and �pars(P,Q)� = part(�P �, �Q�).

3. Operational correspondence, i.e., it is sound and complete: (1) Sound-
ness: For all S ∈ Ps, if S −→s S′, there exists T ∈ Pt such that �S� =⇒t T
and T ≈t �S′�. (2) Completeness: For all S ∈ Ps and T ∈ Pt, if �S� =⇒t T ,
there exists S′ such that S =⇒s S′ and T ≈t �S′�.

While name invariance and compositionality are static correctness criteria, oper-
ational correspondence is a dynamic correctness criterion. Notice that our notion
of compositionality is less general than that in [9]: this is due to the several impor-
tant differences in the structure of the languages under comparison (π vs. RML
and aπ vs. RMLq).

We shall present translations of π into RML and of aπ into RMLq, which
we will show to be encodings. We instantiate Definition 11 with the following
languages:

86 M. Cano et al.

Definition 13 (Concrete Languages). We shall consider:

– Lπ will denote the tuple 〈π,−→,≡S〉, where π is as in Definition 1; −→ is the
reduction semantics in Fig. 1; and ≡S is the structural congruence relation
for π.

– LRML will denote the tuple 〈RML,
E,b−−→
S

, ↪→R〉, where RML is as in Defini-

tion 6;
E,b−−→
S

is the big-step semantics for RML; and ↪→R is the equivalence in

Definition 9.
– Laπ will denote the tuple 〈aπ,−→A,≡A〉, where aπ is as in Definition 3; −→A is

the reduction semantics in Fig. 2; and ≡A is the structural congruence relation
for aπ.

– LRMLq will denote the tuple 〈RMLq,
E,b���
S

� ,≡R〉, where RMLq is as in

Definition 10;
E,b���
S

� is the big-step semantics for RMLq; and ≡R is the equiv-

alence for RML.

When events, termination booleans, and signal environments are unimportant,

we write P �−→ Q instead of P
E,b−−→
S

Q, and K ����� K ′ instead of K
E,b���
S

� K ′.

Encoding Lπ into LRML. Key aspects in our translation of Lπ into LRML are:
(i) the use of value carrying signals to model communication channels; and (ii)
the use of a continuation-passing style (following [8]) to model variables in π
using RML signals.

Definition 14 (Translating Lπinto LRML). Let 〈�·�f , ψ�·�f
〉 be a translation

where: (1) ψ�·�f
(x) = x, i.e., every variable in π is mapped to the same variable

in RML. (2) �·�f : Lπ → LRML is as in Fig. 6, where f is a substitution function.

Function f in �·�f ensures that fresh signal identifiers are used in each protocol
action. The translation of x〈v〉.P declares a new signal x′ which will be sent
paired with value v through signal x; process �P �f,{x←x′} is executed in the
next instant. Dually, the translation of x(y).P awaits a signal carrying a pair,
composed of a value and the signal name that to be used in the continuation,
which is executed in the next instant. Translations for selection and branching
are special cases of those for output and input. Restriction (νxy)P is translated
by declaring a fresh signal w, which replaces x, y in �P �f . Conditionals, parallel
composition and inaction are translated homomorphically. Input-guarded repli-
cation is a special case of recursion, enabling at most one copy of the spawned
process in the same instant; such a copy will be blocked until the process that
spawned it interacts with some process. In Fig. 6, α, β denote variables inside
the declaration of a recursive process, distinct from any other variables.

We state our first technical result: the translation of Lπ into LRML is an
encoding. In the proof, we identify a class of well-formed π processes that have
at most one output and selection per endpoint in the same instant; see [7] for
details.

Session-Based Concurrency, Reactively 87

Fig. 6. Translation from Lπ to LRML (Definition 14). Notice that fx is a shorthand for
f(x).

Theorem 1. Translation 〈�·�f , ψ�·�f
〉 is an encoding, in the sense of

Definition 12.

Encoding Laπ into LRML. The main intuition in translating aπ into RMLq
is to use the queues of RMLq coupled with a handler process that implements
the output-input transmission between queues. We start by introducing some
auxiliary notions.

Notation 1. Let P ≡A (νx̃)(
∏

i∈{1,...,n} Qi |
∏

kj∈˜k kj [i : ε, o : ε] be PI (cf. Def-

inition 5) with variables ˜k. We will write P as Cl[Ql,K(˜k)], where l ∈ {1, . . . , n},
Cl[·1, ·2] =

∏

j∈{1,...,n}\{l} Qj | [·1] | [·2], and K(˜k) =
∏

kj∈˜k kj [i : ε, o : ε].

This notation allows us to distinguish two parts in a PI process: the non-queue
processes and the queue processes K(˜k). We now define the key notion of handler
process:

Definition 15 (Handler process). Given ˜k = {k1, . . . , kn}, the handler
process H(˜k) is defined as

∏

i∈{1,...,n} I(ki) ‖ O(ki), where I(k) and O(k) are
as in Fig. 7.

Given an endpoint k, a handler defines parallel processes Ik and Ok to handle
input and output queues. Transmission is a handshake where both Ok and Ik (or
viceversa) must be ready to communicate. If ready, Ok sends a pair containing
the message (pop ko) and a fresh signal for further actions (α′). Once the pair is
received, it is enqueued in ki (i.e., the dual Ik). The process is recursively called
in the next instant with the new endpoints. The translation of aπ� into RMLq
requires a final auxiliary definition:

88 M. Cano et al.

Fig. 7. Components of handler processes (Definition 15)

Fig. 8. Auxiliary translation from aπ� into RMLq (Definition 17).

Definition 16. We define δ(·) as a function that maps aπ processes into RMLq
states:

δ(k[i : ˜h; o : m̃]) = {ki : ˜h, ko : m̃} δ(P | Q) = δ(P) ∪ δ(Q) δ((νx)P) = δ(P)

and as δ(P) = ∅ for every other aπ process.

Definition 17 (Translating Laπinto LRMLq). Let 〈([·]), ψ([·])〉 be a translation
where:

– ψ([·])(k) = k, i.e., every variable in aπ is mapped to the same variable in
RMLq.

– ([·]) : Laπ → LRMLq is defined for properly initialized aπ processes C[Q,K(˜k)],
which are translated into RMLq configurations as follows:

([C[Q,K(˜k)]]) = 〈{[C[Q,0]]} ‖ H(˜k) ; δ(K(˜k))〉

where {[·]} : Laπ� → LRMLq is in Fig. 8; H(˜k) is in Definition 15; and δ(·) is
in Definition 16.

Two key ideas in translation ([·]) are: queues local to processes and compositional
(queue) handlers. Indeed, communication between an endpoint k and its queues
ki, ko proceeds instantaneously, for such queues should be local to the process
implementing session k. Queue handlers effectively separate processes/behavior
from data/state. As such, it is conceivable to have handlers that have more
functionalities than those of H(˜k). In [7] we provide an example of a handler
more sophisticated than H(˜k).

Session-Based Concurrency, Reactively 89

Translation ([·]) is in two parts. First, {[·]} translates non-queue processes:
output and input are translated into queuing and dequeuing operations, respec-
tively. Selection and branching are modeled similarly. Translations for the con-
ditional, inaction, parallel, and recursion is as expected. Recursion is limited to
a pause-guarded tail recursion in {[·]} to avoid loops of instantaneous expressions
and nondeterminism when accessing queues. Second, ([·]) creates an RML con-
figuration by composing the RMLq process obtained via {[·]} with appropriate
handlers and with the state obtained from the information in aπ queues. Because
of this two-part structure, static correctness properties are established for {[·]}
(for this is the actual translation of source processes), whereas operational cor-
respondence is established for ([·]) (which generates an RMLq configuration).

Theorem 2 (Name invariance and compositionality for {[·]}). Let P , σ,
x, and E[·] be an aπ� process, a substitution, a variable in aπ�, and an eval-
uation context (cf. Definition 4), respectively. Then: (1) {[Pσ]} = {[P]}σ, and
(2) {[E[P]]} = {[E]}[{[P]}].
Theorem 3 (Operational correspondence for ([·])). Given a properly ini-
tialized aπ process C[Q,K(˜k)], it holds that:

1. Soundness: If C[Q,K(˜k)] −→A C[Q′,K′(˜k)] then

([C[Q,K(˜k)]]) ����� ([C ′[Q′′,K′′(˜k)]]), for some Q′′,K′′(x̃), C ′ where
C[Q,K(x̃)] −→A C[Q′,K′(x̃)] −→∗

A (νx̃)C ′[Q′′,K′′(x̃)].

2. Completeness: If ([C[Q,K(x̃)]]) ����� R then there exist Q′,C ′,K′(x̃) such
that C[Q,K(x̃)] −→∗

A (νx̃)C ′[Q′,K′(x̃)] and R = ([C ′[Q′,K′(x̃)]]).

In soundness, a single RMLq step mimicks one or more steps in aπ, i.e., sev-
eral source computations can be grouped into the same instant. This way, e.g.,
the interaction of several outputs along the same session with their queue (cf.
Rule
Send�) will take place in the same instant. In contrast, several queue syn-
chronizations in the same session (cf. Rule
Com�) will be sliced over different
instants. Conversely, completeness ensures that our encoding does not introduce
extraneous behaviors: for every RMLq transition of a translated process there
exists one or more corresponding aπ reductions.

5 Closing Remarks

We have shown that ReactiveML can correctly encode session-based concurrency,
covering both synchronous and asynchronous (queue-based) communications.1

Our encodings are executable: as such, they enable to integrate session-based
concurrency in actual RML programs featuring declarative, reactive, timed, and
contextual behavior. This is an improvement with respect to previous works,
which extend the π-calculus with some (but not all) of these features and/or

1 Synchronous communication as in the (session) π-calculus should not be confused
with the synchronous programming model of ReactiveML.

90 M. Cano et al.

lack programming support. Interestingly, since ReactiveML has a well-defined
semantics, it already offers a firm basis for both foundational and practical stud-
ies on session-based concurrency. Indeed, ongoing work concerns the principled
extension of our approach to the case of multiparty sessions.

We have not considered types in source/target languages, but we do not
foresee major obstacles. In fact, we have already shown that our encoding �·�f

supports a large class of well-typed π processes in the system of [18], covering
a typed form of operational correspondence but also type soundness: if P is a
well-typed π process, then �P �f is a well-typed RML expression—see [7]. We
conjecture a similar result for ([·]), under an extension of [18] with queues. On
the ReactiveML side, we can exploit the type-and-effect system in [14] to enforce
cooperative programs (roughly, programs without infinite loops). Since �·�f and
([·]) already produce well-typed, executable ReactiveML expressions, we further
conjecture that they are also cooperative, in the sense of [14].

Acknowledgements. We thank Ilaria Castellani, Cinzia Di Giusto, and the anony-
mous reviewers for useful remarks and suggestions. This work has been partially
sponsored by CNRS PICS project 07313 (SuCCeSS) and EU COST Actions IC1201
(BETTY), IC1402 (ARVI), and IC1405 (Reversible Computation).

References

1. Bartoletti, M., Cimoli, T., Murgia, M., Podda, A.S., Pompianu, L.: Compli-
ance and subtyping in timed session types. In: Graf, S., Viswanathan, M. (eds.)
FORTE 2015. LNCS, vol. 9039, pp. 161–177. Springer, Cham (2015). doi:10.1007/
978-3-319-19195-9 11

2. Benveniste, A., Caspi, P., Edwards, S.A., Halbwachs, N., Guernic, P.L., de Simone,
R.: The synchronous languages 12 years later. Proc. IEEE 91(1), 64–83 (2003)

3. Bocchi, L., Honda, K., Tuosto, E., Yoshida, N.: A theory of design-by-contract for
distributed multiparty interactions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR
2010. LNCS, vol. 6269, pp. 162–176. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-15375-4 12

4. Bocchi, L., Yang, W., Yoshida, N.: Timed multiparty session types. In: Baldan, P.,
Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 419–434. Springer, Heidel-
berg (2014). doi:10.1007/978-3-662-44584-6 29

5. Bonelli, E., Compagnoni, A.B., Gunter, E.L.: Correspondence assertions for process
synchronization in concurrent communications. J. Funct. Program. 15(2), 219–247
(2005)

6. Boussinot, F., de Simone, R.: The SL synchronous language. IEEE Trans. Softw.
Eng. 22(4), 256–266 (1996)

7. Cano, M., Arias, J., Pérez, J.A.: Session-based Concurrency, Reactively (Extended
Version) (2017). http://www.jperez.nl/publications

8. Dardha, O., Giachino, E., Sangiorgi, D.: Session types revisited. In: Proceedings
of the PPDP 2012, pp. 139–150 (2012)

9. Gorla, D.: Towards a unified approach to encodability and separation results for
process calculi. Inf. Comput. 208(9), 1031–1053 (2010)

10. Halbwachs, N., Lagnier, F., Ratel, C.: Programming and verifying real-time sys-
tems by means of the synchronous data-flow language LUSTRE. IEEE Trans.
Softw. Eng. 18(9), 785–793 (1992)

http://dx.doi.org/10.1007/978-3-319-19195-9_11
http://dx.doi.org/10.1007/978-3-319-19195-9_11
http://dx.doi.org/10.1007/978-3-642-15375-4_12
http://dx.doi.org/10.1007/978-3-642-15375-4_12
http://dx.doi.org/10.1007/978-3-662-44584-6_29
http://www.jperez.nl/publications

Session-Based Concurrency, Reactively 91

11. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998). doi:10.1007/
BFb0053567

12. Hüttel, H., Lanese, I., Vasconcelos, V.T., Caires, L., Carbone, M., Deniélou, P.-M.,
Mostrous, D., Padovani, L., Ravara, A., Tuosto, E., Vieira, H.T., Zavattaro, G.:
Foundations of session types and behavioural contracts. ACM Comput. Surv.
49(1), 3:1–3:36 (2016)

13. Kouzapas, D., Yoshida, N., Hu, R., Honda, K.: On asynchronous eventful session
semantics. Math. Struct. Comput. Sci. 26(2), 303–364 (2016)

14. Mandel, L., Pasteur, C.: Reactivity of cooperative systems. In: Müller-Olm, M.,
Seidl, H. (eds.) SAS 2014. LNCS, vol. 8723, pp. 219–236. Springer, Cham (2014).
doi:10.1007/978-3-319-10936-7 14

15. Mandel, L., Pasteur, C., Pouzet, M.: ReactiveML, ten years later. In: Falaschi, M.,
Albert, E. (eds.) Proceedings of the PPDP 2015, pp. 6–17. ACM (2015)

16. Mandel, L., Pouzet, M.: ReactiveML: a reactive extension to ML. In: Proceedings
of the PPDP 2005, pp. 82–93. ACM (2005)

17. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I. Inf. Comput.
100(1), 1–40 (1992)

18. Vasconcelos, V.T.: Fundamentals of session types. Inf. Comput. 217, 52–70 (2012)

http://dx.doi.org/10.1007/BFb0053567
http://dx.doi.org/10.1007/BFb0053567
http://dx.doi.org/10.1007/978-3-319-10936-7_14

	Session-Based Concurrency, Reactively
	1 Introduction
	2 A Motivating Example
	3 Preliminaries
	4 Expressiveness Results
	5 Closing Remarks
	References

