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We present an algorithm to factor polynomials in several variables with integral coef-

ficients that is polynomial-time in the degrees of the polynomial to be factored. Our 

algorithm generalizes the algorithm presented in [7] to factor integral polynomials in 

one variable. 

1. Introduction. 

The problem of factoring polynomials with integral coefficients remained open for a 

long time, i.e. no polynomial-time factoring algorithm was known. The best known alga-

rithms took exponential-time in the worst case; these algorithms had to consider a pas-

sibly exponential number of combinations of p-adic factors before the true factors 

could be found or irreducibility could be decided. In [1] it was proven that the prob-

lem of factorization in Zl[X] belongs to NP n co-NP, which made its membership of P 

quite likely [2]. That this was indeed the case, was proven in [7] where a polynomial-

time algorithm for factoring in Zl[X] was given. This algorithm is based on the fol-

lowing three observations: 

{ 1. 1) The multiples of degree < m of a p-adic factor together form a lattice in Zlm; 

(1. 2) If this p-adic factor is computed up to a high enough precision, then the factor 

we are looking for is the shortest vector in this lattice; 

(1.3) An approximation of the shortest vector in such a lattice can be found in poly-

nomial-time by means of the so-called basis reduction algorithm. 

In this paper we show that (1.1) and (1.2) can be generalized to polynomials in 

ZZ[x1, x2 , ..• , Xt] in an elementary way, for any t 2: 2. Combined with the same basis 

reduction algorithm as in (1.3), this leads to a polynomial-time algorithm for fac-

toring in :zz[x1 , x2 , .•. , Xt]. In [8, 9, 10] we show that the above three points can be 

applied to vari·ous other kinds of polynomial factoring problems as well {like multi-
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variate polynomials over finite fields or over algebraic number fields). Another ap-

proach to multivariate integral polynomial factorization is given in [5]. There the 

multivariate case is first reduced in polynomial-time to the bivariate case, next 

bivariate is reduced to univariate. 

For practical purposes we do not recommend any of these polynomial-time algorithms; 

their running time will be dominated by the rather slow basis reduction algorithm. For 

polynomials in 2Z[X1 ,x2 , ... ,Xt] the algorithm from [12] for instance is very useful, 

although it is exponential-time in the worst case. 

We restrict ourselves in this paper to integral polynomials in two variables; the 

multivariate case follows immediately from this. In Section 2 we present an important 

result from [7: Section 1] concerning the basis reduction algorithm mentioned in (1.3). 

The generalizations of (1.1) and (1.2) to polynomials in 2Z[X,Y] are described in 

Section 3, and in Section 4 we give an outline of the factoring algorithm, and we ana-

lyze its running time. 

2. The basis reduction algorithm. 

The basis reduction algorithm from [7: Section 1] makes it possible to determine in 

polynomial-time a reasonable approximation of the shortest vector in a lattice. We 

will not give a description of the algorithm here. It will suffice to summarize those 

results from [7: Section 1] that we will need here. 

n 
Let b 1 , b 2 , ... , bn E 2Z be linearly independent. For our purposes we may assume 

that the nxn matrix 

i-dimensional lattice 

i 
r.E2Z}. u:j=l r. b.: 

J J J 

having 

L.c 2Z 
i 

l. 

We put 

b 1 , b 2 , ... , bn as columns is upper-triangular. The 

i 
with basis b 1 , b 2 , ... , bi is defined as Li= L:j=l 2Z bj 

L= L • 
n 

(2.1) Proposition. (cf. [7: (1.11), (1.26), (1.37)]) Let BEZZ~ 2 be such that 

I b. J 2 ,.; B for 1 $ j $ n, where I I denotes the ordinary Euclidean length. The basis 
J 

reduction algorithm as described in [7: ( 1. 15) ] determines a vector b E L such that 

fi belongstoabasisfor L, andsuchthat 1£1 2 s2n-llxl 2 forevery xEL, x>'O; 

the algorithm takes O(n4 logB) elementary operations on integers having binary length 

O(n log B). Furthermore, during the first O(i 4 logB) operations (on integers having 

binary length o (i log B)) , vectors i\ E Li, belonging to a basis for Li, are deter-
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mined such that for every xi E Li, x. z 0, for 
1. 

1 sis n. D 

So, we can find a reasonable approximation of the shortest vector in L in polynomial-

time. But also we find, during this computation, approximations of the shortest vec-

tors of the lattices Li without any time loss. 

3. Factors and lattices. 

We describe howtogeneralize (1.1) and (1.2) to polynomials in 2Z[X,Y]. Let ft:<Z[X,Y] 

be the polynomial to be factored; we may assume that f has no multiple factors, i.e. 

f is square-free. Furthermore we assume that f is primitive with respect to X, i.e. 

the greatest common divisor of the coefficients in 2Z[Y] of f equals one. We denote 

by oxf and oyf the degrees of f in X and Y respectively, and by ~c(f) the 

leading coefficient of f with respect to X. We put n = o f x x 

Suppose that we are given a prime number p, an integer s and a positive integer 

k. By (s 1l we denote the ideal generated by p and (Y-s), and by (sk) we denote 

k n +1 
the ideal generated by p and (Y-s) Y . In Section 4 we will see how to find a 

polynomial h t:2Z[X,Y] such that: 

( 3. 1) 

(3. 2) 

(3.3} 

(3.4) 

k(h) = 1, 

(hmod (sk)) divides (fmod (sk)) in 2Z[X,Y]/(sk), 

(hmod (s 1ll E (2Z/p2Z)[X] is irreducible in (2Z/p2Z)[X], 

2 
(hmod(s 1ll doesnotdivide (fmod(s1ll in (2Z/p2Z}[X]. 

so 0 < t s n . 
x 

Let h 0 t:2Z[X,Y] be the irreducible factor of f for which (hmod (s 1)} divides 

(h0 mod(s 1ll in (2Z/p2Z)[X] (orequivalently (hmod(sk)) divides (h0 mod(sk)) 

in :?Z[X,Y]/(sk), cf. [7: (2.5) ]) ; notice that h 0 is unique up to sign. 

(3.5) Let mx and my be two integers with ~Smx<nx and O:Smy:Soyic(f). We de

fine L as the collection of polynomials g t:2Z[X, Y] such that 

(il oxg s mx' 

(ii) oyg='ny' 

(iii) oytc (g) :5 my' 

(iv) (hmod (sk)) divides (gmod (sk)) in ?Z[X,Y]/(sk). 



461 

Putting M=mx(ny+l)+my+l it is not difficult to see that L is an M-dimensional 

lattice contained in 2ZM, where we identify polynomials in L and 

mx-1 ny i j my mx j 

M-dimensional 

:l:i. =O :l: . O a .. X y + :1: ,,_ . x y 
J= 1.J j=O-mxJ 

vectors in the usual way (i.e. is identified 

with 
(aOO' aOl' · · ·' aony' alO' · • ·' ~-1 ny' ~x O• · · ·' ~x my)). Because of (3.1) a 

basis for L is given by 

{pkYjXi: 05j5ny, 05i<£} U 

j i-9, 
{(hY mod(sk))X : (05j5ny and £5i<mx) or (05jS~ and i=mx)}. 

This generalizes (1.1) (cf. [7: (2.6)]). We now come to (1.2). The height of 

a polynomial g is defined as the maximal absolute value of any of its integral coef-

ficients. We prove that, if k and s are suitably chosen, then a vector of small 

height in L must lead to a factorization of f. 

(3.6) Proposition. Suppose that g EL satisfies 

(3. 7) 
n +1 n +n m n 

lsl Y >(ex Yf /(n+l)(n+1)) X(g l(m+l)(n+l)) X 
max X Y max x y 

and 

(3. 8) 
k nx+ny m n n +1 n (n +m -1) 

P > (e f l(n +1) (n +1)) X(g /(m +1) (n +1)) X(l+(l+lsl) y ) y X X . 
m= X Y max x Y 

Then divides g in 2Z[X,Y], and in particular gcd(f,g)"' 1. 

Proof. Suppose that gcd (f, g) = 1. This implies that the resultant R E2Z[Y] of f and 

g is unequal to zero. Using the result from [4] one proves that 

(3 .9) 
m n 

IRI < (f l(n +1) (n +1)) X(g /(m +1) (n +1)) x, 
max X Y max X Y 

where IRI denotes the ordinary Euclidean length of the vector identified with R. 

Since (hmod(sk)) divides both (fmod(sk)) and (gmod(sk)), thepolynomials f 

and g have a non-trivial conunon divisor in 2Z[X,Y]/(sk), so that R must be zero 

modulo the ideal generated by 
k 

p and The polynomial 
n +1 

(Y-s) Y cannot 

n +1 
Is\ y s \RI, divide R, because this would imply, according to [11: Theorem 1], that 

n +1 
which is, combined with (3.9), a contradiction with (3.7). Therefore (Rmod (Y-s) y ) 

has to be zero modulo 
k 

p . Using induction on ny+l it is easy to prove that 

n +1 n +l n (n +m -1) 
(Rmod (Y-s) Y ) SR (l+(l+lsll Y ) Y X X , 

max max 

so that, with R $I R\ 
max 

and (3.8), it follows that 
n +1 

(Rmod (Y-s) Y ) cannot be zero 



modulo 
k 

p . We conclude that 
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gcd ( f, g) "' 1 . 

suppose that h 0 

(hmod (sk)) divides 

does not divide g. So does not divide r= gcd(f,g)., so 

((f/r) mod (sk)). Because f/r divides f, we find from [3] 

that 
n +n 

(f/r) ~ e X Yf 
max max 

This implies that the above reasoning applies to f/r 

and the same polynomial g in L, so that gcd(f/r,g) "'1. This is a contradiction 

with r= gcd(f,g), because f is square-free. D 

(3.10) Proposition. Suppose that s and k are chosen in such a way that (3.7) and 

(3.8) are satisfied with gmax replaced by Let b be as in 

(2.1) the result of an application of the basis reduction algorithm to the M-dimensional 

lattice L as defined in (3.5). Then h 0 EL if and only if (3. 7) and (3.8) are 

satisfied with g replaced by b. 

Proof. To prove the "if"-part, assume that (3.7) and (3.8) hold with gmax replaced 

by b 
max 

According to (3.6) this implies that divides b, so that 

To prove the "only if"-part, assume that h 0 EL. Because h 0 divides f, we 

n +n 
find from [3] that (h ) s e X Yf 

0 max max 
So there exists a non-zero vector in L 

with Euclidean length bounded by /M enX+nyf 
max 

Application of (2.1) yields that 

b :>lbl:>2(M-l)/2 /M enx+nyf 
max max 

Combined with the above choices of s and k, 

this implies that (3.7) and (3.8) hold with g replaced by b. D 

4. Description of the algorithm. 

In this section we present the polynomial-time algorithm to factor f. First we give 

an algorithm to determine the factor h 0 , given p, s and h. After that, we will 

see how p and s have to be chosen. 

(4.1) Let p, s and h be as in Section 3, such that (3.1), (3.3), (3.4) and (3.2) 

with k replaced by 

(3.10) with and 

are satisfied. Assume that s satisfies the condition in 

replaced by n -1 x and respectively: 

(4. 2) 
ny+l nx+ny n -1 (M 1)/2 n +n n lsl >(e f /(n+l)(n+l)) X (2 - /MeX Yf In (n+l)) X 

max X Y maxXY 

where We describe an algorithm that determines the 

irreduciblefactorof f suchthat (hmod(s 1)) divides (h0 mod(s 1)) in (2l/p2l)[X]. 
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We may assume that R.= a h < n • x x Take k minimal such that the condition from (3.10) 

is satisfied with ~ and ~ replaced by nx-1 and oYR.c(f) respectively: 

(4.3) pk> (enX+nyfmaxl{nX+l) (ny+l))nX-1(2(M-1)/2,iM enX+nyfmax/nX(ny+l))nX • 

n +1 2n (n -1) 
(1+(1+\s\) Y ) Y X • 

Next modify h in such a way that (3.2) also holds for this value of k; because of 

(3.4) this can be done by means of Hensel's lemma [13]. 

Apply Proposition (2.1) to the M-dimensional lattice L as defined in (3.5) for 

each of the values of M= R.(ny+1)+1, R.(ny+1)+2, ••. , R.(ny+1)+1lYR.c{f)+1, (R.+1) (ny+1)+1, 

.•. , (nx-1) (ny+1)+oYR.c(f)+1 in succession {so, for mx= R., R.+1, ••• , nx-1 in succession 

and for every value of mx the values my= O, 1, ••. , oYR.c { f) in succession) . But stop 

as soon as a vector b is found satisfying (3.7) and (3.8) with g replaced by b. 

If such a vector b is found for a certain value of M {mx = mXO and my= mYO) , 

then we know from (3.10) that h0 EL. Since we try the values of M in succession 

this implies that oXhO=mXO and oyR.c(h0)=~o· By (3.6) hO divides b, so that 

oxb = ~O and oYR.c (b) = myo· so ii= ch0 for some c E2Z, but ho E L and b belongs 

to a basis for L, so b = ±h0 . 

If no such vector i5 was found, then (3.10) implies that &Xh0 > nx-1, so 

that h0 = f, because f is primitive. 

This finishes the description of Algorithm (4.1). 

(4.4) Proposition. Denote by mxo= oXhO the degree in X of the irreducible factor 

h0 of f that is found by Algorithm (4.1). Then the number of arithmetic operations 

needed by Algorithm (4.1) is and 

the integers on which these operations have to be performed each have binary length 

3 2 2 2 3 
O{nx~ + nx~log {fmaxl + nXnYlog{ I sl) + nXnYlogp). 

Proof. Let M1 be the largest value of M for which (2.1) is applied; so M1 =O{mXOnY). 

It follows from (2.1) that the number of operations needed for the applications of the 

basis reduction algorithm for R.{ny+l)+l S MS M1 is equal to the number of operations 

needed for M= M1 only. Assuming that the coefficients of the initial basis for L 

are reduced modulo k p , we find, using (4.3), that the following holds for the bound 
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B on the length of these vectors: 

2 2 
log B = O (nXnY + nxlog (fmax) + nXnYlog ( Is I) + log p ) . 

With M1 =O(mxOnY) and (2.1) this gives the estimates in (4.4). 

The verification that the same estimates are valid for the application of Hensel's 

lemma is straightforward [13]. D 

We now describe how s and p have to be chosen. First, s must be chosen such 

that (fmod (Y-s)) = f(X,s) remains square-free, and such that (4.2) holds. The resul-

tant R of f and its derivative f' with respect to X is a non-zero polynomial 

in :ZZ[Y] of degree :;; ny(2nX-1). Therefore we can find in O(nXnY) trials the minimal 

integer s such that s is not a zero of R, and such that (4.2) holds. It is easily 

verified that log([sl) =O(n2 +n log(f )). 
X X max 

Next we choose p as the smallest prime number not dividing the resultant of 

f(X,s) and f'(X,s). Since log(f(X,s)ma)=O(n~ny+nXnYlog(fma)l, it follows as 

in the proof of [7: (3.6)] that p = O(n 3n + n 2n log(f ) ) . 
X Y X Y max 

The complete factorization of (fmod (s 1)) can be determined by means of 

Berlekamp's algorithm [6: section 4.6.2]; notice that (3.4) holds for every factor 

(h mod (s 1 )) of (f mod (s 1)), because of the choice of p, and that this factoriza-

tion can be found in polynomial-time, because of the bound on p. The algorithm to 

factor f completely now follows by repeated application of Algorithm (4.1). The 

above bounds on log( ls!) and p, combined with (4.4) and the fact that a factor g 

off satisfies log(gmax)=O(nx+ny+log(fma)l (cf. [3]), yields the following 

theorem. 

(4.5) Theorem. The number of arithmetic operations needed to factor f completely is 

7 6 6 6 
o (nXnY + nXnYlog (fma)), and the integers on which these operations have to be performed 

each have binary length 

5. Conclusion. 

We have shown that basically the same ideas that were used for the polynomial-time 

algorithm for factoring in ZZ[X] lead to a polynomial-time factoring algorithm in 

:ZZ[X,Y] (Theorem (4.5)). Our method can be generalized to polynomials in :zz[x 1 ,x2 , 
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· · ·' Xt] · The evaluation (Y = s) is then replaced by (X x x ) 
2 = s2' 3 = s3 ' · · · ' t = s t ' 

where the integers si have to satisfy conditions similar to (4.2). It will not be 

surprising that in this case the estimates become rather complicated. 

A somewhat simpler algorithm results if we use the algorithm from [7]; the details 

of this algorithm, which is similar to the one described in this paper, can be found 

in [10]. 
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