
Math. Struct. in Comp. Science: page 1 of 29. c© Cambridge University Press 2017

doi:10.1017/S0960129517000159

Newton series, coinductively: a comparative study of

composition

HENNING BASOLD†, HELLE HVID HANSEN‡,

J EAN-ÉR IC P IN§ and JAN RUTTEN¶

†Radboud University Nijmegen, P.O. Box 9010, 6500GL Nijmegen, The Netherlands, and CWI

Amsterdam, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands.

Email: h.basold@cs.ru.nl
‡Delft University of Technology, P.O. Box 5015, 2600 GA Delft, The Netherlands.

Email: h.h.hansen@tudelft.nl
§Université Paris Denis Diderot and CNRS, 75205 Paris Cedex 13, France.

Email: Jean-Eric.Pin@liafa.univ-paris-diderot.fr
¶CWI Amsterdam, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands, and Radboud University

Nijmegen, P.O. Box 9010, 6500GL Nijmegen, The Netherlands.

Email: jjmmrutten@gmail.com

Received 4 May 2016; revised 3 April 2017

We present a comparative study of four product operators on weighted languages: (i) the

convolution, (ii) the shuffle, (iii) the infiltration and (iv) the Hadamard product. Exploiting the

fact that the set of weighted languages is a final coalgebra, we use coinduction to prove that

an operator of the classical difference calculus, the Newton transform, generalises from

infinite sequences to weighted languages. We show that the Newton transform is an

isomorphism of rings that transforms the Hadamard product of two weighted languages

into their infiltration product, and we develop various representations for the Newton

transform of a language, together with concrete calculation rules for computing them.

1. Introduction

Formal languages are a well-established formalism for the modelling of the behaviour of

systems, typically represented by automata, cf. Eilenberg (1974). Weighted languages –

aka formal power series (Berstel and Reutenauer 1988) – are a common generalisation

of both formal languages (sets of words) and streams (infinite sequences). Formally, a

weighted language is an assignment from words over an alphabet A to values in a set

k of weights. Such weights can represent various things such as the multiplicity of the

occurrence of a word, or its duration, or probability, etc. In order to be able to add and

multiply, and even subtract such weights, k is typically assumed to be a semiring (e.g., the

Booleans) or a ring (e.g., the integers).

We present a comparative study of four product operators on weighted languages, which

give us four different ways of composing the behaviour of systems. The operators under

study are (i) the convolution, (ii) the shuffle, (iii) the infiltration and (iv) the Hadamard

product, representing, respectively: (i) the concatenation or sequential composition, (ii)

the interleaving without synchronisation, (iii) the interleaving with synchronisation and

(iv) the fully synchronised interleaving of systems. The set of weighted languages, together

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129517000159
Downloaded from https:/www.cambridge.org/core. Centrum Wiskunde & Informatica, on 03 Jul 2017 at 14:34:57, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129517000159
https:/www.cambridge.org/core

H. Basold, H. H. Hansen, J.-E. Pin and J. Rutten 2

with the operation of sum and combined with any of these four product operators, is

a ring itself, assuming that k is a ring. This means that in all four cases, we have a

well-behaved calculus of behaviours.

Main contributions: (1) We show that a classical operator from difference calculus

in mathematics: the Newton transform, generalises from infinite sequences to weighted

languages, and we characterise it in terms of the shuffle product. (2) Next, we show that

the Newton transform is an isomorphism of rings that transforms the Hadamard product

of two weighted languages into an infiltration product. This allows us to switch back and

forth between a fully synchronised composition of behaviours, and a shuffled, partially

synchronised one. (3) We develop various representations for the Newton transform of a

language, together with concrete calculation rules for computing them.

Approach: We exploit the fact that the set of weighted languages is a final coalgebra

(Rutten 2000, 2003b). This allows us to use coinduction as the guiding methodology

for both our definitions and proofs. More specifically, we define our operators in terms

of behavioural differential equations, which yields, for instance, a uniform and thereby

easily comparable presentation of all four product operators. Moreover, we construct

bisimulation relations in order to prove various identities.

As the set of weighted languages over a one-letter alphabet is isomorphic to the set

of streams, it turns out to be convenient to prove our results first for the special case of

streams and then to generalise them to weighted languages.

Related work : The present paper fits in the coalgebraic outlook on systems behaviour,

as in, for instance, Barbosa (2001) and Rutten (2003b). The definition of Newton series for

weighted languages was introduced in Pin and Silva (2014), where Mahler’s theorem (which

is a p-adic version of the classical Stone–Weierstrass theorem) is generalised to weighted

languages. The Newton transform for streams already occurs in Pavlović and Escardó

(1998), where it is called the discrete Taylor transform, but not its characterisation using

the shuffle product, which for streams goes back to Rutten (2005), and which for weighted

languages is new. Related to that, we present elimination rules for certain uses of the

shuffle product, which were known for streams (Rutten 2005) and are new for languages.

The proof that the Newton transform for weighted languages is a ring isomorphism that

exchanges the Hadamard product into the infiltration product, is new. In Lothaire (1997,

Chapter 6), an operation was defined that does the reverse; it follows from our work

that this operation is the inverse of the Newton transform. The infiltration product was

introduced in Chen et al. (1958); as we already mentioned, Lothaire (1997, Chapter

6) studies some of its properties, using a notion of binomial coefficients for words that

generalises the classical notions for numbers. The present paper introduces a new notion of

binomial coefficients for words, which refines the definition of Lothaire (1997, Chapter 6).

This paper is an extended version of the earlier conference paper (Basold et al. 2015).

2. Preliminaries: stream calculus

We present basic facts from coinductive stream calculus (Rutten 2005). In the following,

we assume k to be a ring, unless stated otherwise. Let then the set of streams over k be

given by kω = {σ | σ : N → k }. We define the initial value of a stream σ by σ(0) and

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129517000159
Downloaded from https:/www.cambridge.org/core. Centrum Wiskunde & Informatica, on 03 Jul 2017 at 14:34:57, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129517000159
https:/www.cambridge.org/core

Newton series, coinductively 3

its stream derivative by σ′ = (σ(1), σ(2), σ(3), . . .). In order to conclude that two streams

σ and τ are equal, it suffices to prove σ(n) = τ(n), for all n � 0. Sometimes this can be

proved by induction on the natural number n but, more often than not, we will not have

a succinct description or formula for σ(n) and τ(n), and induction will be of no help.

Instead, we take here a coalgebraic perspective on kω , and most of our proofs will use

the proof principle of coinduction, which is based on the following notion.

A relation R ⊆ kω × kω is a (stream) bisimulation if for all (σ, τ) ∈ R,

σ(0) = τ(0) and (σ′, τ′) ∈ R. (1)

The following theorem is easily proved by induction.

Theorem 2.1 (Coinduction proof principle). If there exists a bisimulation relation con-

taining (σ, τ), then σ = τ.

Coinductive definitions are phrased in terms of stream derivatives and initial values,

and are called stream differential equations; see Rutten (2003b), Rutten (2005), Hansen

et al. (2014) for examples and details.

Definition 2.2 (Basic operators). The following system of stream differential equations

defines our first set of constants and operators, which are explained below:

Derivative Initial value Name

[r]′ = [0] [r](0) = r r ∈ k

X ′ = [1] X(0) = 0

(σ + τ)′ = σ′ + τ′ (σ + τ)(0) = σ(0) + τ(0) sum

(Σi∈Iσi)
′ = Σi∈Iσ

′
i (Σi∈Iσi)(0) =

∑
i∈I σi(0) infinite sum

(−σ)′ = −(σ′) (−σ)(0) = −σ(0) minus

(σ × τ)′ = (σ′ × τ) + ([σ(0)] × τ′) (σ × τ)(0) = σ(0)τ(0) convolution product

(σ−1)′ = −[σ(0)−1] × σ′ × σ−1 (σ−1)(0) = σ(0)−1 convolution inverse

The unique existence of constants and operators satisfying the equations above is

ultimately due to the fact that kω , together with the operations of initial value and stream

derivative, is a final coalgebra.

For r ∈ k, we have the constant stream [r] = (r, 0, 0, 0, . . .) which we often denote again

by r. Then we have the constant stream X = (0, 1, 0, 0, 0, . . .). The sum of two streams

is simply elementwise addition. The infinite sum Σi∈Iσi is defined only when the family

{σi}i∈I is summable, that is, if for all n ∈ N the set {i ∈ I | σi(n) �= 0} is finite. If I = N , we

denote Σi∈Iσi by
∑∞

i=0 σi. Note that (τi × Xi)i is summable for any sequence of streams

(τi)i. Minus is defined only if k is a ring. We give a closed formula for the convolution

product in Proposition 2.14. For now, we just observe that the first terms are given by

σ × τ = (σ(0)τ(0), σ(1)τ(0) + σ(1)τ(0), σ(2)τ(0) + σ(1)τ(1) + σ(0)τ(2), . . .).

In spite of its non-symmetrical definition, convolution product on streams is commutative

(assuming that the product on k is), see Remark 2.6 below. Convolution inverse is defined

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129517000159
Downloaded from https:/www.cambridge.org/core. Centrum Wiskunde & Informatica, on 03 Jul 2017 at 14:34:57, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129517000159
https:/www.cambridge.org/core

H. Basold, H. H. Hansen, J.-E. Pin and J. Rutten 4

for those streams σ for which the initial value σ(0) is invertible. We will often write rσ

for [r] × σ, 1/σ for σ−1 and τ/σ for τ × (1/σ), which – for streams – is equal to (1/σ) × τ.

The following analogue of the fundamental theorem of calculus, tells us how to compute

a stream σ from its initial value σ(0) and derivative σ′.

Theorem 2.3. We have σ = [σ(0)] + (X × σ′), for every σ ∈ kω .

We will also use coinduction-up-to, cf. Rutten (2005), Rot et al. (2013), a strengthening

of the coinduction proof principle based on the following notion. A relation R ⊆ kω × kω

is a (stream) bisimulation-up-to if, for all (σ, τ) ∈ R,

σ(0) = τ(0) and (σ′, τ′) ∈ R̄, (2)

where R̄ is the smallest reflexive relation on kω that contains R and is closed under the

element-wise application of the operators in Definition 2.2. For instance, if (α, β), (γ, δ) ∈ R̄,

then (α + γ, β + δ) ∈ R̄, etc.

Theorem 2.4 (Coinduction-up-to). If R is a bisimulation-up-to and (σ, τ) ∈ R, then σ = τ.

Proof. One shows with a straightforward induction on the definition of R̄ that if R

is a bisimulation-up-to, then R̄ is a bisimulation. Now apply Theorem 2.1. This fact

follows also from more general results. Namely, our notion of bisimulation-up-to is an

instance of bisimulation-up-to-context, see e.g. Rot (2015, Section. 4.4.2) or Bartels (2004,

Corollary 4.4.9), which follows from the fact that the operations in Definition 2.2 are

defined in the so-called GSOS format, see also Hansen et al. (2014).

Using coinduction (up-to), one can prove the following.

Proposition 2.5 (Semiring of streams – with convolution product). If k is a semiring,

then the set of streams with sum and convolution product forms a semiring as well:

(kω, +, [0], ×, [1]). If k is a (commutative) ring, then so is kω .

Proof. We prove only a few ring identities in detail. The others are proved basically in

the same way, by using both sides of the identity in question to give a relation and prove

that this relation is a bismulation (up-to). For the purpose of demonstration, we will prove

all necessary identities that lead up to commutativity of the convolution product.

— Associativity of +. We define a relation R by

R := {((σ + τ) + γ, σ + (τ + γ) | σ, τ, γ ∈ kω}

and show that it is a bisimulation. So let ((σ + τ) + γ, σ + (τ+ γ) ∈ R, we need to show

that equation (1) is fulfilled. First, ((σ + τ) + γ)(0) = (σ + (τ + γ))(0) follows directly

from associativity + in k. Second, by spelling out the definitions, we have

((σ + τ) + γ)′ = (σ + τ)′ + γ′

= (σ′ + τ′) + γ′

R σ′ + (τ′ + γ′)

= σ′ + (τ + γ)′

= (σ + (τ + γ))′.

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129517000159
Downloaded from https:/www.cambridge.org/core. Centrum Wiskunde & Informatica, on 03 Jul 2017 at 14:34:57, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129517000159
https:/www.cambridge.org/core

Newton series, coinductively 5

Thus, by Theorem 2.1, all pairs in R are equal and so stream addition is associative.

— Commutativity of + is proved in the same way.

— Convolution distributes from the right over addition: (σ + τ) × γ = σ × γ + τ × γ. This

is the first time we actually use a bisimulation up-to. We define

R := {((σ + τ) × γ, σ × γ + τ × γ) | σ, τ, γ ∈ kω}

and show that R is a bisimulation up-to. For the initial value, this is just distributivity
of the ring k. To prove the case for the derivative, we reason as follows:

((σ + τ) × γ)′ = (σ + τ)′ × γ + [(σ + τ)(0)] × γ′ (def. ×)

= (σ′ + τ′) × γ + [σ(0) + τ(0)] × γ′ (def. +)

R̄ (σ′ × γ + τ′ × γ) + [σ(0) + τ(0)] × γ′

(up-to in context (−) + [σ(0) + τ(0)] × γ′)

R̄ (σ′ × γ + τ′ × γ) + ([σ(0)] × γ′ + [τ(0)] × γ′)

(up-to in context (σ′ × γ + τ′ × γ) + (−))

= (σ′ × γ + [σ(0)] × γ′) + (τ′ × γ + [τ(0)] × γ′) (assoc. and commut. +)

= (σ × γ)′ + (τ × γ)′ (def. ×)

Thus, R is a bisimulation up-to and distributivity follows from Theorem 2.4.

— The other semiring identities are proved in a similar way.

To show that kω is a ring if k is, we show that R := {(σ + (−σ), [0]) | σ ∈ kω} is a

bisimulation. For the initial value, (σ + (−σ))(0) = 0 follows from the inverse in k.

The derivative case is also dealt with easily ((σ+(−σ))′, [0]′) = (σ′ +(−σ′), [0]) ∈ R. Hence,

R is a bisimulation and −σ is the inverse for σ.

Before we continue to prove commutativity of the convolution product, note that

the definition of × is asymmetric. This makes it hard to prove commutativity, which is

symmetric in the arguments. However, we can use Theorem 2.3 together with distributivity

and associativity of × to obtain

(σ × τ)′ = σ′ × τ + σ(0) × τ′

= σ′ × (τ(0) + X × τ′) + σ(0) × τ′

= σ′ × τ(0) + σ′ × X × τ′ + σ(0) × τ′

= σ′ × τ(0) + σ(0) × τ′ + σ′ × X × τ′.

(3)

This is almost symmetric in σ and τ and will make the following proof much easier.

We use the obvious relation to prove commutativity:

R := {(σ × τ, τ × σ) | σ, τ ∈ kω} .

Again, the case for the initial value follows from commutativity in k. For the derivatives,
we have

(σ × τ)′ = σ′ × τ(0) + σ(0) × τ′ + σ′ × X × τ′

R̄ τ(0) × σ′ + τ′ × σ(0) + τ′ × X × σ′

= τ′ × σ(0) + τ(0) × σ′ + τ′ × X × σ′

= (τ × σ)′

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129517000159
Downloaded from https:/www.cambridge.org/core. Centrum Wiskunde & Informatica, on 03 Jul 2017 at 14:34:57, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129517000159
https:/www.cambridge.org/core

H. Basold, H. H. Hansen, J.-E. Pin and J. Rutten 6

and so R is a bisimulation up-to. Hence, commutativity follows from

Theorem 2.4.

Remark 2.6. The reason we define convolution product as in Definition 2.2 (instead of

with the almost symmetric definition in (3)) is that the shape of this equation generalises

straightforwardly to a definition of the convolution product on weighted languages, in

Definition 7.2, and this product is not commutative.

We note that if k has an additive inverse, then we can give a truly symmetric definition

of the convolution product on streams by using σ(0) = σ − X × σ′:

(σ × τ)′ = σ′ × τ + σ(0) × τ′

= σ′ × τ + (σ − X × σ′) × τ′

= σ′ × τ + σ × τ′ − X × σ′ × τ′.

�
Polynomial and rational streams are defined as usual, cf. Rutten (2003b).

Definition 2.7 (Polynomial, rational streams). We call a stream σ ∈ kω polynomial if it is

of the form σ = a0 + a1X + a2X
2 + · · · + anX

n, for n � 0 and ai ∈ k. We call σ rational if

it is of the form

σ =
a0 + a1X + a2X

2 + · · · + anX
n

b0 + b1X + b2X2 + · · · + bmXm

with n, m � 0, ai, bj ∈ k and b0 is invertible.

Example 2.8. Here are a few concrete examples of streams (over the natural numbers):

1 + 2X + 3X2 = (1, 2, 3, 0, 0, 0, . . .),

1

1 − 2X
= (20, 21, 22, . . .),

1

(1 − X)2
= (1, 2, 3, . . .),

X

1 − X − X2
= (0, 1, 1, 2, 3, 5, 8, . . .).

We note that convolution product behaves naturally, as in the following example:

(1 + 2X2) × (3 − X) = 3 − X + 6X2 − 2X3.
�

Remark 2.9. The relation of the stream derivative to the analytic derivative (of polyno-

mials) is nicely illustrated by the identities(
Xn+1

)′
= Xn and (X × σ)′ = σ,

where σ ∈ kω and k is a semiring. The first identity follows from the second, which in

turn follows easily from Definition 2.2 and Proposition 2.5:

(X × σ)′ = (X ′ × σ) + ([0] × σ′)

= ([1] × σ) + ([0] × σ′)

= σ

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129517000159
Downloaded from https:/www.cambridge.org/core. Centrum Wiskunde & Informatica, on 03 Jul 2017 at 14:34:57, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129517000159
https:/www.cambridge.org/core

Newton series, coinductively 7

The following rule, which is immediate by Theorem 2.3 and the second identity above, is

(surprisingly) helpful when computing derivatives of fractions: for all σ ∈ kω ,

σ′ = (σ − σ(0))′.

These identities allow us to obtain, for instance,(
1

1 − X − X2

)′
=

(
1

1 − X − X2
− 1

)′

=

(
1

1 − X − X2
− 1 − X − X2

1 − X − X2

)′

=

(
X + X2

1 − X − X2

)′

=

(
X × 1 + X

1 − X − X2

)′

=
1 + X

1 − X − X2
�

We shall be using yet another operation on streams.

Definition 2.10 (Stream composition). We define the composition of streams by the

following stream differential equation:

Derivative Initial value Name

(σ ◦ τ)′ = τ′ × (σ′ ◦ τ) (σ ◦ τ)(0) = σ(0) Stream composition

The first terms of σ ◦ τ are

σ ◦ τ = (σ(0), τ(1)σ(1), τ(2)σ(1) + τ(1)τ(1)σ(2), . . .)

Composition enjoys the following properties.

Proposition 2.11 (Properties of composition). For all r ∈ k and all ρ, σ, τ ∈ kω , we have

[r] ◦ τ = [r], (ρ + σ) ◦ τ = (ρ ◦ τ) + (σ ◦ τ),

σ−1 ◦ τ = (σ ◦ τ)−1 (ρ × σ) ◦ τ = (ρ ◦ τ) × (σ ◦ τ),

and similarly for the infinite sum. Moreover, for all τ with τ(0) = 0, we have

X ◦ τ = τ.

Proof. All identities follow by coinduction up-to (Theorem 2.4). We give a proof for

the identity (ρ + σ) ◦ τ = (ρ ◦ τ) + (σ ◦ τ) by showing that the following relation is a

bisimulation-up-to:

R = { ((ρ + σ) ◦ τ, (ρ ◦ τ) + (σ ◦ τ)) | ρ, σ, τ ∈ kω, τ(0) = 0 }.

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129517000159
Downloaded from https:/www.cambridge.org/core. Centrum Wiskunde & Informatica, on 03 Jul 2017 at 14:34:57, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129517000159
https:/www.cambridge.org/core

H. Basold, H. H. Hansen, J.-E. Pin and J. Rutten 8

We easily obtain ((ρ + σ) ◦ τ)(0) = ((ρ ◦ τ) + (σ ◦ τ))(0) from the definitions of + and ◦.

For the derivative, we have

((ρ + σ) ◦ τ)′ = τ′ × ((ρ + σ)′ ◦ τ) Def. ◦
= τ′ × ((ρ′ + σ′) ◦ τ) Def. +

R̄ τ′ × (ρ′ ◦ τ + σ′ ◦ τ) Up-to in context τ′ × (−)

= τ′ × (ρ′ ◦ τ) + τ′ × (σ′ ◦ τ) × distributes over +

= ((ρ ◦ τ) + (σ ◦ τ))′ Def. of ◦ and + .

Hence, R is a bisimulation up-to. The other identities are proved similarly.

Proposition 2.11 shows that composing with τ distributes over sum, product and inverse,

and on the ‘atomic’ streams, it acts as identity on [r], but it replaces X with τ when

τ(0) = 0. As a consequence, for rational σ, τ with τ(0) = 0, the composition σ ◦ τ is

obtained by replacing every X in σ with τ.

Example 2.12. From Proposition 2.11, we obtain

X

1 − X − X2
◦ X

1 + X
=

X(1 + X)

1 + X − X2

�

Defining σ(0) = σ and σ(n+1) = (σ(n))′, for any stream σ ∈ kω , we have σ(n)(0) = σ(n).

Thus, σ = (σ(0), σ(1), σ(2), . . .) = (σ(0)(0), σ(1)(0), σ(2)(0), . . .). Hence, every stream is equal

to the stream of its Taylor coefficients (with respect to stream derivation). There is also

the corresponding notion of Taylor series for streams. The Taylor series of a stream σ is

defined as the infinite sum
∞∑
i=0

[σ(i)(0)] × Xi

According to Definition 2.2, the infinite sum is well defined, since for all n ∈ N , the set

{i ∈ N | ([σ(i)] × Xi)(n) �= 0} = {n} is finite. We can now state the corresponding Taylor

series representation for streams.

Theorem 2.13 (Taylor series). For every σ ∈ kω ,

σ =

∞∑
i=0

[σ(i)(0)] × Xi =

∞∑
i=0

[σ(i)] × Xi.

For some of the operations on streams, we have explicit formulae for the nth Taylor

coefficient, that is, for their value in n.

Proposition 2.14. For all σ, τ ∈ kω , for all n � 0,

(σ + τ)(n) = σ(n) + τ(n), (−σ)(n) = −σ(n), (σ × τ)(n) =

n∑
k=0

σ(k)τ(n − k).

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129517000159
Downloaded from https:/www.cambridge.org/core. Centrum Wiskunde & Informatica, on 03 Jul 2017 at 14:34:57, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129517000159
https:/www.cambridge.org/core

Newton series, coinductively 9

3. Four product operators

In addition to convolution product, we shall discuss also the following product operators

(repeating below the definitions of convolution product and inverse).

Definition 3.1 (Product operators). We define four product operators by the following

system of stream differential equations:

Derivative Initial value Name

(σ × τ)′ = (σ′ × τ) + (σ(0) × τ′) (σ × τ)(0) = σ(0)τ(0) convolution

(σ ⊗ τ)′ = (σ′ ⊗ τ) + (σ ⊗ τ′) (σ ⊗ τ)(0) = σ(0)τ(0) shuffle

(σ � τ)′ = σ′ � τ′ (σ � τ)(0) = σ(0)τ(0) Hadamard

(σ ↑ τ)′ = (σ′ ↑ τ) + (σ ↑ τ′) + (σ′ ↑ τ′) (σ ↑ τ)(0) = σ(0)τ(0) infiltration

For streams σ with invertible initial value σ(0), we can define both convolution and shuffle

inverse, as follows:

Derivative Initial value Name

(σ−1)′ = −[σ(0)−1] × σ′ × σ−1 (σ−1)(0) = σ(0)−1 convolution inverse

(σ−1)′ = −σ′ ⊗ σ−1 ⊗ σ−1 (σ−1)(0) = σ(0)−1 shuffle inverse

(We will not need the inverse of the other two products.) Convolution and Hadamard

product are standard operators in mathematics. Shuffle and infiltration product are, for

streams, less well-known, and are better explained and understood when generalised

to weighted languages, which we shall do in Section 7. Closed forms for shuffle and

Hadamard are given in Proposition 3.3 below. In the present section and the next, we

shall relate convolution product and Hadamard product to, respectively, shuffle product

and infiltration product, using the so-called Laplace and Newton transforms.

Example 3.2. Here are a few simple examples of streams (over the natural numbers),

illustrating the differences between these four products.

1

1 − X
× 1

1 − X
=

1

(1 − X)2
= (1, 2, 3, . . .)

1

1 − X
⊗ 1

1 − X
=

1

1 − 2X
= (20, 21, 22, . . .)

1

1 − X
� 1

1 − X
=

1

1 − X
1

1 − X
↑ 1

1 − X
=

1

1 − 3X
= (30, 31, 32, . . .)

(1 − X)−1 = (0!, 1!, 2!, . . .) (4)

�
We have the following closed formulae for the shuffle and Hadamard product. Recall

Proposition 2.14 for the closed form of convolution product. In Proposition 4.6 below, we

derive a closed formula for the infiltration product as well.

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129517000159
Downloaded from https:/www.cambridge.org/core. Centrum Wiskunde & Informatica, on 03 Jul 2017 at 14:34:57, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129517000159
https:/www.cambridge.org/core

H. Basold, H. H. Hansen, J.-E. Pin and J. Rutten 10

Proposition 3.3.

(σ ⊗ τ)(n) =

n∑
i=0

(
n

i

)
σ(i)τ(n − i), (5)

(σ � τ)(n) = σ(n)τ(n). (6)

Next, we consider the set of streams kω together with sum and, respectively, each of

the four product operators.

Proposition 3.4 (Four (semi)rings of streams). If k is a (semi)ring, then each of the four

product operators defines a corresponding (semi)ring structure on kω , as follows:

Rc = (kω, +, [0], ×, [1]), Rs = (kω, +, [0], ⊗, [1]),

RH = (kω, +, [0], �, ones), Ri = (kω, +, [0], ↑, [1]),

where ones denotes (1, 1, 1, . . .).

Proof. A proof is easy by coinduction-up-to, once we have adapted Theorem 2.4 by

requiring R̄ to be also closed under element-wise application of the product operators

above. This is possible, as the multiplication operators again fit the GSOS format (Hansen

et al. 2014). The arguments are then very similar to the ones used in the proof of

Proposition 2.5.

For the case k = R, it was shown in Pavlović and Escardó (1998) and Rutten (2005,

Theorem 10.1) that there is a ring isomorphism between Rc and Rs. This result can be

slightly generalised to the case where k is any field of characteristic 0.

Theorem 3.5 (Laplace for streams). Let the Laplace transform Λ : kω → kω be given by

the following stream differential equation:

Derivative Initial value Name

(Λ(σ))′ = Λ(d/dX(σ)) Λ(σ)(0) = σ(0) Laplace

where d/dX(σ) = (X ⊗ σ′)′ = (σ(1), 2σ(2), 3σ(3), . . .). Then, Λ : Rc → Rs is a homo-

morphism of rings; notably, for all σ, τ ∈ kω , Λ(σ × τ) = Λ(σ) ⊗ Λ(τ). If k is a field of

characteristic 0, then Λ is bijective and hence an isomorphism of rings.

The Laplace transform is also known as the Laplace–Carson transform, cf. Bergeron

et al. (1998, p. 350) and Comtet (1974, p. 48).

Proof. For a sketch of the proof of Theorem 3.5, note that

Λ(σ) = (0!σ(0), 1!σ(1), 2!σ(2), . . .)

as one can readily prove. Note that here the natural number n denotes the element

1 + · · · + 1 (n times) in k. It follows that Λ is bijective, with inverse

Λ−1(σ) =

(
σ(0)

0!
,
σ(1)

1!
,
σ(2)

2!
, . . .

)
,

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129517000159
Downloaded from https:/www.cambridge.org/core. Centrum Wiskunde & Informatica, on 03 Jul 2017 at 14:34:57, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129517000159
https:/www.cambridge.org/core

Newton series, coinductively 11

where the assumption that k has characteristic 0 ensures that n! �= 0, for all n � 0.

Coalgebraically, Λ arises as the unique final coalgebra homomorphism between two

different coalgebra structures on kω:

kω

〈(−)(0), d/dX〉

��

Λ �� kω

〈(−)(0), (−)′〉

��
k × kω

1×Λ �� k × kω

On the right, we have the standard (final) coalgebra structure on streams, given by

σ �→ (σ(0), σ′), whereas on the left, the operator d/dX is used instead of stream

derivative σ �→ (σ(0), d/dX(σ)). The commutativity of the diagram above is precisely

expressed by the stream differential equation defining Λ above. It is this definition, in

terms of stream derivatives, that enables us to give an easy proof of Theorem 3.5, by

coinduction-up-to. Since one can easily show that also Λ−1 is a homomorphism, it follows

that both coalgebras above are isomorphic (and, as a consequence, both are final). The

inverse Λ−1 can therefore be defined coinductively by

(Λ−1(σ))(0) = σ(0) and d/dX(Λ−1(σ)) = Λ−1(σ′).

Alternatively, Λ−1 can be defined inductively by

(Λ−1(σ))(0) = σ(0) and (Λ−1(σ))(n + 1) =
1

n + 1
Λ−1(σ′))(n).

As we shall see, there exists also a ring isomorphism between RH and Ri. It will be

given by the Newton transform, which we will consider next.

4. Newton transform

Assuming that k is a ring, let the difference operator on a stream σ ∈ kω be defined by

Δσ = σ′ − σ = (σ(1) − σ(0), σ(2) − σ(1), σ(3) − σ(2), . . .).

Definition 4.1 (Newton transform). We define the Newton transform N : kω → kω by the

following stream differential equation:

Derivative Initial value Name

(N (σ))′ = N (Δσ) N (σ)(0) = σ(0) Newton transform

It follows that N (σ) = ((Δ0σ)(0), (Δ1σ)(0), (Δ2σ)(0), . . .), where Δ0σ = σ and Δn+1σ =

Δ(Δnσ). We call N (σ) the stream of the Newton coefficients of σ. Coalgebraically, N arises

as the unique mediating homomorphism – in fact, as we shall see below, an isomorphism

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129517000159
Downloaded from https:/www.cambridge.org/core. Centrum Wiskunde & Informatica, on 03 Jul 2017 at 14:34:57, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129517000159
https:/www.cambridge.org/core

H. Basold, H. H. Hansen, J.-E. Pin and J. Rutten 12

– between the following two coalgebras:

kω

〈(−)(0),Δ〉

��

N �� kω

〈(−)(0), (−)′〉

��
k × kω

1×N �� k × kω

On the right, we have as before the standard (final) coalgebra structure on streams,

whereas on the left, the difference operator is used instead: σ �→ (σ(0), Δσ). We note that

the term Newton transform is used in mathematical analysis (Burns and Palmore 1989)

for an operational method for the transformation of differentiable functions. In Pavlović

and Escardó (1998), where the diagram above is discussed, our present Newton transform

N is called the discrete Taylor transformation.

The fact that N is bijective follows from Theorem 4.3 below, which characterises N in

terms of the shuffle product. Its proof uses the following lemma.

Lemma 4.2. We have
1

1 − X
⊗ 1

1 + X
= 1.

Proof. Noting that 1
1−X

= (1, 1, 1, . . .) and 1
1+X

= (1,−1, 1,−1, 1,−1, . . .), the lemma is

immediate by Equation (5). Alternatively, a proof by coinduction-up-to is straightforward.

And last, the lemma is a special instance of Theorem 5.1.

Note that this formula combines the convolution inverse with the shuffle product. The

function N , and its inverse, can be characterised by the following formulae.

Theorem 4.3 (Rutten 2005). The function N is bijective and satisfies, for all σ ∈ kω ,

N (σ) =
1

1 + X
⊗ σ, N−1(σ) =

1

1 − X
⊗ σ.

Proof. We show that

R =

{(
N (σ),

1

1 + X
⊗ σ

) ∣∣∣∣ σ ∈ kω
}

is a bisimulation. So let σ ∈ kω be any stream. We have N (σ)(0) = (1
1+X

⊗ σ)(0), since(
1

1+X

)
(0) = 1. As for the derivatives, we first note that(

1

1 + X
⊗ σ

)′
=

(
− 1

1 + X
⊗ σ

)
+

(
1

1 + X
⊗ σ′

)

=
1

1 + X
⊗ (σ′ − σ)

=
1

1 + X
⊗ Δσ.

Hence, (N (σ))′ = N (Δσ) R
(

1
1+X

⊗ Δσ
)

=
(

1
1+X

⊗ σ
)′

. It follows that R is a bisimulation,

and the first identity holds by coinduction. It follows from Lemma 4.2 that N−1(N (σ)) = σ

and N (N−1(σ)) = σ.

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129517000159
Downloaded from https:/www.cambridge.org/core. Centrum Wiskunde & Informatica, on 03 Jul 2017 at 14:34:57, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129517000159
https:/www.cambridge.org/core

Newton series, coinductively 13

At this point, we observe the following structural parallel between the Laplace transform

from Theorem 3.5 and the Newton transform: For all σ ∈ kω ,

Λ(σ) = (1 − X)−1 � σ, (7)

N (σ) = (1 + X)−1 ⊗ σ. (8)

Equation (7) is immediate by recalling from Equation (4) that (1 −X)−1 = (0!, 1!, 2!, . . .).

Equation (8) is Theorem 4.3.

The Newton transform is also an isomorphism of rings, as follows.

Theorem 4.4 (Newton transform as ring isomorphism). The map N : RH → Ri is an

isomorphism of rings; notably, N (σ � τ) = N (σ) ↑ N (τ), for all σ, τ ∈ kω .

Proof. We have that N ([0]) = [0] and that N (ones) = [1]. The identity N (−σ) =

−N (σ) follows using the ring identities for Rs. Using the ring properties and the fact that

N (σ)′ = N (Δσ) as we saw in the proof of Theorem 4.3, one easily proves that

{(N (σ + τ), N (σ) + N (τ)) | σ, τ ∈ kω} ∪ {(N (σ � τ), N (σ) ↑ N (τ)) | σ, τ ∈ kω}

is a bisimulation-up-to, and the result follows from Theorem 2.4. To illustrate, we compute

derivatives of the pairs involving Hadamard and infiltration product:

N (σ � τ)′ = N (Δ(σ � τ))

= N (σ′ � τ′) − N (σ � τ)

(N (σ) ↑ N (τ))′ = N (σ)′ ↑ N (τ) + N (σ) ↑ N (τ)′ + N (σ)′ ↑ N (τ)′

= N (Δσ) ↑ N (τ) + N (σ) ↑ N (Δτ) + N (Δσ) ↑ N (Δτ)

= (N (σ′) − N (σ)) ↑ N (τ) + N (σ) ↑ (N (τ′) − N (τ))

+ (N (σ′) − N (σ)) ↑ (N (τ′) − N (τ))

= N (σ′) ↑ N (τ) − N (σ) ↑ N (τ) + N (σ) ↑ N (τ′) − N (σ) ↑ N (τ)

+ N (σ′) ↑ N (τ′) − N (σ′) ↑ N (τ) − N (σ′) ↑ N (τ) + N (σ) ↑ N (τ)

= N (σ′) ↑ N (τ′) − N (σ) ↑ N (τ)

Expanding the formulae in Theorem 4.3 and applying Proposition 3.3, we obtain the

following closed formulae.

Proposition 4.5. For all σ ∈ kω and n � 0,

N (σ)(n) =

n∑
i=0

(
n

i

)
(−1)n−iσ(i), N−1(σ)(n) =

n∑
i=0

(
n

i

)
σ(i).

From these, we can derive the announced closed formula for the infiltration product.

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129517000159
Downloaded from https:/www.cambridge.org/core. Centrum Wiskunde & Informatica, on 03 Jul 2017 at 14:34:57, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129517000159
https:/www.cambridge.org/core

H. Basold, H. H. Hansen, J.-E. Pin and J. Rutten 14

Proposition 4.6. For all σ, τ ∈ kω ,

(σ ↑ τ)(n) =

n∑
i=0

(
n

i

)
(−1)n−i

⎛
⎝ i∑

j=0

(
i

j

)
σ(j)

⎞
⎠ (

i∑
l=0

(
i

l

)
τ(l)

)
.

Proof. By Theorems 4.3 and 4.4, we have

σ ↑ τ = N (N−1(σ ↑ τ)) = N (N−1(σ) � N−1(τ)).

The proposition follows using Equation (6) and the two identities from Proposition 4.5.

5. Calculating Newton coefficients

The Newton coefficients of a stream can be computed using the following theorem (Rutten

2005, Theorem 10.2(68)). Note that the right-hand side of Equation (9) no longer contains

the shuffle product.

Theorem 5.1 (Shuffle product elimination). For all σ ∈ kω , r ∈ k,

1

1 − rX
⊗ σ =

1

1 − rX
×

(
σ ◦ X

1 − rX

)
. (9)

Let us calculate the Newton transform for a few interesting examples.

Example 5.2. For the Fibonacci numbers

X

1 − X − X2
= (0, 1, 1, 2, 3, 5, 8, . . .),

we have

N
(

X

1 − X − X2

)
Theorem 4.3

=
1

1 + X
⊗ X

1 − X − X2

Theorem 5.1
=

1

1 + X
×

(
X

1 − X − X2
◦ X

1 + X

)

=
1

1 + X
×

(
X

1+X

1 − X
1+X

− (X
1+X

)2

)

=
X

1 + X − X2
.

For r ∈ k, the stream of powers of r is transformed as follows:

N (1, r, r2, . . .) = N
(

1

1 − rX

)
Theorem 4.3

=
1

1 + X
⊗ 1

1 − rX

Theorem 5.1
=

1

1 + X
×

(
1

1 − rX
◦ X

1 + X

)

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129517000159
Downloaded from https:/www.cambridge.org/core. Centrum Wiskunde & Informatica, on 03 Jul 2017 at 14:34:57, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129517000159
https:/www.cambridge.org/core

Newton series, coinductively 15

=
1

1 − (r − 1)X

= (1, (r − 1), (r − 1)2, . . .).

Similarly, we can calculate the transform of the stream that alternates between 0 and 1:

N (0, 1, 0, 1, 0, 1, . . .) = N
(

X

1 − X2

)
Theorem 4.3

=
1

1 + X
⊗ X

1 − X2

Theorem 5.1
=

1

1 + X
×

(
X

1 − X2
◦ X

1 + X

)

=
X

1 + 2X

= (0,−2, 22,−23, . . .).

�
It is immediate by Theorems 4.3 and 5.1 and Example 2.12 that the Newton transform

preserves rationality.

Corollary 5.3. A stream σ ∈ kω is rational iff its Newton transform N (σ) is rational.

Example 5.4. There are also non-rational streams to which we can apply the method

above. The stream φ = (0!, 1!, 2!, . . .) of the factorial numbers can be expressed as

φ = (1 − X)−1. It can also be written as a continued fraction (all in stream calculus, see

Rutten (2003a)):

φ =
1

1 − X −
12X2

1 − 3X −
22X2

1 − 5X −
32X2

. . .

Calculating with infinite patience, we find

N (0!, 1!, 2!, . . .) = N (φ)

Theorem 4.3
=

1

1 + X
⊗ φ

Theorem 5.1
=

1

1 + X
× (φ ◦ X

1 + X
)

=
1

1 + X
×

1

1 − X
1+X

−
12

(
X

1+X

)2

1 − 3
(

X
1+X

)
−

22
(

X
1+X

)2

1 − 5
(

X
1+X

)
−

32
(

X
1+X

)2

. . .

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129517000159
Downloaded from https:/www.cambridge.org/core. Centrum Wiskunde & Informatica, on 03 Jul 2017 at 14:34:57, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129517000159
https:/www.cambridge.org/core

H. Basold, H. H. Hansen, J.-E. Pin and J. Rutten 16

=
1

1 −
12X2

1 − 2X −
22X2

1 − 4X −
32X2

. . .
= (1, 0, 1, 2, 9, 44, 265, 1854, . . .).

The value of N (φ)(k) is the number of derangements†. As an aside, let us remark that the

above computation can also be nicely described in terms of a simple transformation on

infinite weighted stream automata (again, in the style of Rutten (2003a)).

There is also the following closed formula for the stream of derangements:

N (φ) = N ((1 − X)−1)

Theorem 4.3
=

1

1 + X
⊗ (1 − X)−1

Theorem 5.1
=

1

1 + X
×

(
(1 − X)−1 ◦ X

1 + X

)

=
1

1 + X
×

(
1

1 + X

)−1

.

Note that the latter expression combines convolution inverse, convolution product and

shuffle inverse. �

6. Newton series

Theorem 4.3 tells us how to compute for a given stream σ the stream of its Newton

coefficients N (σ), using the shuffle product. Conversely, the following Newton series

representation tells us how to express a stream σ in terms of its Newton coefficients.

Theorem 6.1 (Newton series for streams). For all σ ∈ kω , n � 0,

σ(n) =

n∑
i=0

(Δiσ)(0)

(
n

i

)
.

Proof.

σ(n)
Theorem 4.3

=

(
1

1 − X
⊗ N (σ)

)
(n)

Proposition 2.14, (5)
=

n∑
i=0

(Δiσ)(0)

(
n

i

)
.

† See Sloane’s On-Line Encyclopedia of Integer Sequences, http://oeis.org/A000166A000166.

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129517000159
Downloaded from https:/www.cambridge.org/core. Centrum Wiskunde & Informatica, on 03 Jul 2017 at 14:34:57, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129517000159
https:/www.cambridge.org/core

Newton series, coinductively 17

Using
(
n
i

)
= n!/i!(n− i)! and writing ni = n(n−1)(n−2) · · · (n− i+1) (not to be confused

with our notation for the shuffle inverse), Newton series can be also denoted as

σ(n) =

n∑
i=0

(Δiσ)(0)

i!
ni,

thus emphasising the structural analogy with Taylor series, cf. Graham et al. (1994,

Equation (5.45)).

Combining Theorem 4.3 with Theorem 5.1 leads to yet another, and less familar

expansion theorem (see Scheid (1968) for a finitary version thereof).

Theorem 6.2 (Euler expansion for streams). For all σ ∈ kω ,

σ =

∞∑
i=0

(Δiσ)(0) × Xi

(1 − X)i+1
.

Proof. The proof below is a minor variation of that of Rutten (2005, Theorem11.1):

σ
Theorem 4.3

=
1

1 − X
⊗ N (σ)

Theorem 2.13
=

1

1 − X
⊗

(∞∑
i=0

(Δiσ)(0) × Xi

)

=

∞∑
i=0

(Δiσ)(0) ×
(

1

1 − X
⊗ Xi

)

Theorem 5.1
=

∞∑
i=0

(Δiσ)(0) × Xi

(1 − X)i+1
,

where in the last but one equality, we use the fact that r × τ = r ⊗ τ, for all r ∈ k and

τ ∈ kω , together with the ring properties of Rs.

Example 6.3. Theorem 6.2 leads, for instance, to an easy derivation of a rational expression

for the stream of cubes, namely

(13, 23, 33, . . .) =
1 + 4X + X2

(1 − X)4
.

To this end, let ones = (1, 1, 1, . . .) and nat = (1, 2, 3, . . .). We shall write σ〈0〉 = ones and

σ〈n+1〉 = σ〈n〉 � σ. First, we note that nat′ = nat + ones. Using this together with the ring

properties of RH , we can compute the respective values of Δn(nat〈3〉):

Δ0(nat〈3〉) = nat〈3〉

Δ1(nat〈3〉) = 3nat〈2〉 + 3nat + ones

Δ2(nat〈3〉) = 6nat + 6ones

Δ3(nat〈3〉) = 6ones

Δ4+i(nat〈3〉) = 0.

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129517000159
Downloaded from https:/www.cambridge.org/core. Centrum Wiskunde & Informatica, on 03 Jul 2017 at 14:34:57, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129517000159
https:/www.cambridge.org/core

H. Basold, H. H. Hansen, J.-E. Pin and J. Rutten 18

By Theorem 6.2, we obtain the following rational expression:

nat〈3〉 =
1

1 − X
+

7X

(1 − X)2
+

12X2

(1 − X)3
+

6X3

(1 − X)4

=
1 + 4X + X2

(1 − X)4
.

More generally, one can prove by induction that, for all n � 1 and for all i > n,

Δi
(
nat〈n〉

)
= 0

and that, cf. Niqui and Rutten (2011),

nat〈n〉 =

∑n−1
m=0 A(n, m) × Xm

1 − Xn+1
.

Here, A(n, m) are the so-called Eulerian numbers, which are defined, for every n � 0 and

0 � m � n − 1, by the following recurrence relation:

A(n, m) = (n − m)A(n − 1, m − 1) + (m + 1)A(n − 1, m). �

7. Weighted languages

Let k again be a ring or semiring and let A be a set. We consider the elements of A as

letters and call A the alphabet. Let A∗ denote the set of all finite sequences or words over

A. We define the set of languages over A with weights in k by

kA
∗
= {σ | σ : A∗ → k }.

Weighted languages are also known as formal power series (over A with coefficients in

k), cf. Berstel and Reutenauer (1988). If k is the Boolean semiring {0, 1}, then weighted

languages are just sets of words. If k is arbitrary again, but we restrict our alphabet to a

singleton set A = {X}, then kA
∗
is isomorphic to kω , the set of streams with values in k. In

other words, by moving from a one-letter alphabet to an arbitrary one, streams generalise

to weighted languages.

From a coalgebraic perspective, much about streams holds for weighted languages as

well, and typically with an almost identical formulation. This structural similarity between

streams and weighted languages is due to the fact that weighted languages carry a final

coalgebra structure that is very similar to that of streams, as follows. We define the initial

value of a (weighted) language σ by σ(ε), that is, σ applied to the empty word ε. Next, we

define for every a ∈ A the a-derivative of σ by σa(w) = σ(aw), for every w ∈ A∗. Initial

value and derivatives together define a final coalgebra structure on weighted languages,

given by

kA
∗ → k × (kA

∗
)A σ �→ (σ(ε), (σa)a∈A)),

where (kA
∗
)A = {f | f : A → kA

∗ }. For the case that A = {X}, the coalgebra structure on

the set of streams is a special case of the one above, since under the isomorphism between

kA
∗

and kω , we have that σ(ε) corresponds to σ(0), and σX corresponds to σ′.

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129517000159
Downloaded from https:/www.cambridge.org/core. Centrum Wiskunde & Informatica, on 03 Jul 2017 at 14:34:57, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129517000159
https:/www.cambridge.org/core

Newton series, coinductively 19

We can now summarise the remainder of this paper, roughly and succinctly, as follows:

if we replace in the previous sections σ(0) by σ(ε), and σ′ by σa (for a ∈ A), everywhere,

then most of the previous definitions and properties for streams generalise to weighted

languages. Notably, we will again have a set of basic operators for weighted languages,

four different product operators, four corresponding ring structures and the Newton

transform between the rings of Hadamard and infiltration product. (An exception to this

optimistic program of translation sketched above, however, is the Laplace transform: there

does not seem to exist an obvious generalisation of the Laplace transform for streams

– transforming the convolution product into the shuffle product – to the corresponding

rings of weighted languages.)

Let us now be more precise and discuss all of this in some detail. For a start, there is

again the proof principle of coinduction, now for weighted languages.

A relation R ⊆ kA
∗ × kA

∗
is a (language) bisimulation if for all (σ, τ) ∈ R:

σ(ε) = τ(ε) and (σa, τa) ∈ R, for all a ∈ A. (10)

We have the following coinduction proof principle, similar to Theorem 2.1:

Theorem 7.1 (Coinduction for languages). If there exists a (language) bisimulation relation

containing (σ, τ), then σ = τ.

Coinductive definitions are given again by differential equations, now called behavioural

differential equations (Rutten 2003b, 2005).

Definition 7.2 (Basic operators for languages). The following system of behavioural differ-

ential equations defines the basic constants and operators for languages:

Derivative Initial value Name

[r]a = [0] [r](ε) = r r ∈ k

ba = [0] b(ε) = 0 b ∈ A, b �= a

ba = [1] b(ε) = 0 b ∈ A, b = a

(σ + τ)a = (σa + τa) (σ + τ)(ε) = σ(ε) + τ(ε) sum

(Σi∈Iσi)a = Σi∈I (σi)a (Σi∈Iσi)(ε) =
∑

i∈I σi(ε) infinite sum

(−σ)a = −(σa) (−σ)(ε) = −σ(ε) minus

(σ × τ)a = (σa × τ) + ([σ(ε)] × τa) (σ × τ)(ε) = σ(ε)τ(ε) convolution product

(σ−1)a = −[σ(ε)−1] × σa × σ−1 (σ−1)(ε) = σ(ε)−1 convolution inverse

The convolution inverse is again defined only for σ with σ(ε) invertible in k. We will

write a both for an element of A and for the corresponding constant weighted language.

We shall often use shorthands like ab = a × b, where the context will determine whether

a word or a language is intended. Also, we will sometimes write A for Σa∈Aa. The infinite

sum Σi∈Iσi is, again, only defined if the family {σi}i∈I is summable, i.e., if for all w ∈ A∗

the set {i ∈ I | σi(w) �= 0} is finite. As before, we shall often write 1/σ for σ−1. Note

that convolution product is weighted concatenation and is no longer commutative. As a

consequence, τ/σ is now generally ambiguous as it could mean either τ × σ−1 or σ−1 × τ.

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129517000159
Downloaded from https:/www.cambridge.org/core. Centrum Wiskunde & Informatica, on 03 Jul 2017 at 14:34:57, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129517000159
https:/www.cambridge.org/core

H. Basold, H. H. Hansen, J.-E. Pin and J. Rutten 20

Only when the latter are equal, we shall sometimes write τ/σ. An example is A/(1 − A),

which is A+, the set of all non-empty words.

Theorem 7.3 (Fundamental theorem, for languages). For every σ ∈ kA
∗
,

σ = σ(ε) +
∑
a∈A

a × σa

(cf. Conway 1971; Rutten 2003b).

We can now extend Theorem 2.4 to languages. Given a relation R on kA
∗
, we denote by

R̄ the smallest reflexive relation on kA
∗

that contains R and is closed under the element-

wise application of the operators in Definition 7.2. For instance, if (α, β), (γ, δ) ∈ R̄, then

(α+γ, β+δ) ∈ R̄, etc. A relation R ⊆ kA
∗ ×kA

∗
is a (weighted language) bisimulation-up-to

if for all (σ, τ) ∈ R:

σ(ε) = τ(ε) and for all a ∈ A, (σa, τa) ∈ R̄. (11)

Theorem 7.4 (Coinduction-up-to for languages). If (σ, τ) ∈ R for some bisimulation-up-to,

then σ = τ.

Composition of languages is defined by the following differential equation:

Derivative Initial value Name

(σ ◦ τ)a = τa × (σa ◦ τ) (σ ◦ τ)(ε) = σ(ε) composition

Language composition σ ◦ τ has similar distribution properties as stream composition.

Proposition 7.5 (Composition of languages). For all r ∈ k and all ρ, σ, τ ∈ kA
∗
, we have

[r] ◦ τ = [r], (ρ + σ) ◦ τ = (ρ ◦ τ) + (σ ◦ τ),

a ◦ τ = a × τa, (ρ × σ) ◦ τ = (ρ ◦ τ) × (σ ◦ τ),

σ−1 ◦ τ = (σ ◦ τ)−1.

For τ ∈ kA
∗

with τ(ε) = 0, we have A ◦ τ = τ.

Definition 7.6 (Polynomial, rational languages). We call σ ∈ kA
∗

polynomial if it can be

constructed using constants (r ∈ k and a ∈ A) and the operations of finite sum and

convolution product. We call σ ∈ kA
∗
rational if it can be constructed using constants and

the operations of finite sum, convolution product and convolution inverse.

As a consequence of Proposition 7.5, for every rational σ, σ ◦ τ is obtained by replacing

every occurrence of a in σ by a × τa, for every a ∈ A.

Defining σε = σ and σwa = (σw)a, for any language σ ∈ kA
∗
, we have σw(ε) = σ(w). This

leads to a Taylor series representation for languages.

Theorem 7.7 (Taylor series, for languages). For every σ ∈ kA
∗
,

σ =
∑
w∈A∗

σw(ε) × w =
∑
w∈A∗

σ(w) × w.

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129517000159
Downloaded from https:/www.cambridge.org/core. Centrum Wiskunde & Informatica, on 03 Jul 2017 at 14:34:57, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129517000159
https:/www.cambridge.org/core

Newton series, coinductively 21

Example 7.8. Here are a few concrete examples of weighted languages:

1

1 − A
=

∑
w∈A∗

w = A∗

1

1 + A
=

∑
w∈A∗

(−1)|w| × w,
1

1 − 2ab
=

∑
i�0

2i × (ab)i.

�

8. Four rings of weighted languages

The definitions of the four product operators for streams generalise straightforwardly to

languages, giving rise to four different ring structures on languages.

Definition 8.1 (Product operators for languages). We define four product operators by the

following system of behavioural differential equations:

Derivative Initial value Name

(σ × τ)a = (σa × τ) + ([σ(ε)] × τa) (σ × τ)(ε) = σ(ε)τ(ε) convolution

(σ ⊗ τ)a = (σa ⊗ τ) + (σ ⊗ τa) (σ ⊗ τ)(ε) = σ(ε)τ(ε) shuffle

(σ � τ)a = σa � τa (σ � τ)(ε) = σ(ε)τ(ε) Hadamard

(σ ↑ τ)a = (σa ↑ τ) + (σ ↑ τa) + (σa ↑ τa) (σ ↑ τ)(ε) = σ(ε)τ(ε) infiltration

For languages σ with invertible initial value σ(ε), we can define both convolution and

shuffle inverse, as follows:

Derivative Initial value Name

(σ−1)a = −[σ(0)−1] × σa × σ−1 (σ−1)(0) = σ(0)−1 convolution inverse

(σ−1)a = −σa ⊗ σ−1 ⊗ σ−1 (σ−1)(0) = σ(0)−1 shuffle inverse

Convolution product is concatenation of (weighted) languages and Hadamard product

is the fully synchronised product, which corresponds to the intersection of weighted

languages. The shuffle product generalises the definition of the shuffle operator on classical

languages (over the Boolean semiring), and can be, equivalently, defined by induction.

The following definition is from Lothaire (1997, p.126) (where shuffle product is denoted

by the symbol ◦): for all v, w ∈ A∗, σ, τ ∈ kA
∗
,

v ⊗ ε = ε ⊗ v = v,

va ⊗ wb = (v ⊗ wb)a + (va ⊗ w)b, (12)

σ ⊗ τ =
∑

v,w∈A∗

σ(v) × τ(w) × (v ⊗ w). (13)

The infiltration product, originally introduced in Chen et al. (1958), can be considered

as a variation on the shuffle product that not only interleaves words but also synchronises

them on identical letters. In the differential equation for the infiltration product above,

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129517000159
Downloaded from https:/www.cambridge.org/core. Centrum Wiskunde & Informatica, on 03 Jul 2017 at 14:34:57, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129517000159
https:/www.cambridge.org/core

H. Basold, H. H. Hansen, J.-E. Pin and J. Rutten 22

this is apparent from the presence of the additional term σa ↑ τa. There is also an inductive

definition of the infiltration product, in Lothaire (1997, p.128). It is a variant of Equation

(12) above that for the case that a = b looks like

va ↑ wa = (v ↑ wa)a + (va ↑ w)a + (v ↑ w)a.

However, we shall be using the coinductive definitions, as these allow us to give proofs

by coinduction.

Example 8.2. Here are a few simple examples of weighted languages, illustrating the

differences between these four products. Recall that 1/1−A = A∗, that is, (1/1−A)(w) = 1,

for all w ∈ A∗. Indicating the length of a word w ∈ A∗ by |w|, we have the following

identities: (
1

1 − A
× 1

1 − A

)
(w) = |w| + 1,

(
1

1 − A
⊗ 1

1 − A

)
(w) = 2|w|

1

1 − A
� 1

1 − A
=

1

1 − A
,

(
1

1 − A
↑ 1

1 − A

)
(w) = 3|w|

(
(1 − A)−1

)
(w) = |w|! (14)

If we restrict the above identities to streams, that is, if the alphabet A = {X}, then we

obtain the identities on streams from Example 3.2. �

Next, we consider the set of weighted languages together with sum and each of the four

product operators.

Proposition 8.3 (Four rings of weighted languages). If k is a ring, then each of the four

product operators defines a corresponding ring structure on kA
∗
, as follows:

Lc =
(
kA

∗
, +, [0], ×, [1]

)
, Ls =

(
kA

∗
, +, [0], ⊗, [1]

)
LH =

(
kA

∗
, +, [0], �,

1

1 − A

)
, Li =

(
kA

∗
, +, [0], ↑, [1]

)
.

Proof. A proof is again straightforward by coinduction-up-to, once we have adapted

Theorem 7.4 by requiring R̄ to be also closed under the element-wise application of all

four product operators above.

We conclude the present section with closed formulae for the Taylor coefficients of the

above product operators, thus generalising Propositions 2.14 and 3.3 to languages. We

first introduce the following notion.

Definition 8.4 (Binomial coefficients on words). For all u, v, w ∈ A∗, we define
(
w
u|v
)

as the

number of different ways in which u can be taken out of w as a subword, leaving v; or

equivalently – and more formally – as the number of ways in which w can be obtained

by shuffling u and v; that is, (
w

u | v

)
= (u ⊗ v)(w). (15)

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129517000159
Downloaded from https:/www.cambridge.org/core. Centrum Wiskunde & Informatica, on 03 Jul 2017 at 14:34:57, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129517000159
https:/www.cambridge.org/core

Newton series, coinductively 23

The above definition generalises the notion of binomial coefficient for words from

(Lothaire 1997, p.121), where one defines
(
w
u

)
as the number of ways in which u can

be taken as a subword of w. The two notions of binomial coefficient are related by the

following formula: (
w

u

)
=

∑
v∈A∗

(
w

u | v

)
. (16)

As an immediate consequence of the defining Equation (15), we find the following

recurrence.

Proposition 8.5. For all a ∈ A and u, v, w ∈ A∗,(
aw

u | v

)
=

(
w

ua | v

)
+

(
w

u | va

)
. (17)

Proof. We have (
aw

u | v

)
= (u ⊗ v)(aw)

= (u ⊗ v)a(w)
Definition 8.1

= (ua ⊗ v)(w) + (u ⊗ va)(w)

(15)
=

(
w

ua | v

)
+

(
w

u | va

)
,

proving the required identity.

Note that for the case of streams, Equation (17) gives us Pascal’s formula for classical

binomial coefficients (by taking a = X, w = Xn, u = Xk and v = Xn+1−k):(
n + 1

k

)
=

(
n

k − 1

)
+

(
n

k

)
.

Proposition 8.6 gives another property, the easy proof of which illustrates the con-

venience of the new definition of binomial coeficient. (It is also given in Lothaire (1997,

Proposition 6.3.13), where 1/1 − A is written as A∗ and convolution product as ◦.)

Proposition 8.6. For all u, w ∈ A∗,(
u ⊗ 1

1 − A

)
(w) =

(
w

u

)
.

Proof. (
u ⊗ 1

1 − A

)
(w) =

(
u ⊗

∑
v∈A∗

v

)
(w) =

∑
v∈A∗

(u ⊗ v) (w)

=
∑
v∈A∗

(
w

u | v

)
=

(
w

u

)
.

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129517000159
Downloaded from https:/www.cambridge.org/core. Centrum Wiskunde & Informatica, on 03 Jul 2017 at 14:34:57, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129517000159
https:/www.cambridge.org/core

H. Basold, H. H. Hansen, J.-E. Pin and J. Rutten 24

Example 8.7. We have(
abab

ab

)
=

(
abab

ab | ab

)
+

(
abab

ab | ba

)
= 2 + 1 = 3.

�

We have the following closed formulae for three of our product operators.

Proposition 8.8. For all σ, τ ∈ kA
∗
, w ∈ A∗,

(σ × τ)(w) =
∑

u,v∈A∗ s.t. u·v=w

σ(u)τ(v),

(σ ⊗ τ)(w) =
∑
u,v∈A∗

(
w

u | v

)
σ(u)τ(v), (18)

(σ � τ)(w) = σ(w)τ(w). (19)

A closed formula for the infiltration product can be derived later, once we have introduced

the Newton transform for weighted languages.

9. Newton transform for languages

Assuming again that k is a ring, we define the difference operator (with respect to a ∈ A)

by

(Δaσ)(w) = σa(w) − σ(w) = σ(aw) − σ(w), (20)

for all σ ∈ kA
∗

and w ∈ A∗.

Definition 9.1 (Newton transform for languages). We define the Newton transform N :

kA
∗ → kA

∗
by the following behavioural differential equation:

Derivative Initial value Name

(N (σ))a = N (Δaσ) N (σ)(ε) = σ(ε) Newton transform

(using again the symbol N , now for weighted languages instead of streams). �

It follows that N (σ)(w) = (Δwσ) (ε), for all w ∈ A∗, where we define

Δεσ = σ and Δwaσ = Δa(Δwσ).

We point out that our definition in Equation (20) of Δa is based on left derivative whereas

the definition in Pin and Silva (2014) is based on right derivative, and uses the inductive

definition Δawσ = Δa(Δwσ).

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129517000159
Downloaded from https:/www.cambridge.org/core. Centrum Wiskunde & Informatica, on 03 Jul 2017 at 14:34:57, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129517000159
https:/www.cambridge.org/core

Newton series, coinductively 25

Coalgebraically, N arises again as a unique mediating isomorphism between two final

coalgebras:

kA
∗

σ �→(σ(ε),(Δaσ)a∈A)

��

N �� kA
∗

σ �→(σ(ε),(σa)a∈A)

��
k × (kA

∗
)A

1×N �� k × (kA
∗
)A

On the right, we have the standard (final) coalgebra structure on weighted languages,

given by σ �→ (σ(ε), (σa)a∈A), whereas on the left, the difference operator is used instead of

the stream derivative σ �→ (σ(ε), (Δaσ)a∈A).

Theorem 9.2. The function N is bijective and satisfies, for all σ ∈ kA
∗
,

N (σ) =
1

1 + A
⊗ σ, N−1(σ) =

1

1 − A
⊗ σ.

Note again that these formulae combine the convolution inverse with the shuffle product.

Proof. By coinduction-up-to for languages (Theorem 7.4) and the fact that

1

1 − A
⊗ 1

1 + A
= 1.

This identity is easily proved by coinduction, but is also an instance of Theorem 9.4.

The Newton transform is again an isomorphism of rings.

Theorem 9.3 (Newton transform as ring isomorphism for languages). The Newton trans-

form N : LH → Li is an isomorphism of rings; notably, we have for all σ, τ ∈ kω ,

N (σ � τ) = N (σ) ↑ N (τ).

Noting that N (1
1−A

) = [1], a proof of the theorem by coinduction-up to is straightfor-

ward. Part of this theorem is already known in the literature: Lothaire (1997, Theorem

6.3.18) expresses (for the case that k = Z) that 1
1−A

⊗ (−) transforms the infiltration

product of two words into a Hadamard product.

Propositions 4.5 and 4.6 for streams straightforwardly generalise to weighted languages.

Also, Theorem 5.1 generalises to weighted languages, as follows.

Theorem 9.4 (Shuffle product elimination for languages). For all σ ∈ kA
∗
, r ∈ k,

1

1 − (r × A)
⊗ σ =

1

1 − (r × A)
×

(
σ ◦ A

1 − (r × A)

)
. (21)

Proof. One readily shows that the relation{ 〈
1

1 − (r × A)
⊗ σ ,

1

1 − (r × A)
×

(
σ ◦ A

1 − (r × A)

)〉 ∣∣∣∣ r ∈ k, σ ∈ kA
∗
}

is a bisimulation-up-to. The theorem then follows by Theorem 7.4.

Corollary 9.5. For all σ ∈ kA
∗
, σ is rational iff N (σ) is rational. For all σ, τ ∈ kA

∗
, if both

N (σ) and N (τ) are polynomial resp. rational, then so is N (σ � τ).

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129517000159
Downloaded from https:/www.cambridge.org/core. Centrum Wiskunde & Informatica, on 03 Jul 2017 at 14:34:57, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129517000159
https:/www.cambridge.org/core

H. Basold, H. H. Hansen, J.-E. Pin and J. Rutten 26

Example 9.6. We illustrate the use of Theorem 9.4 in the calculation of the Newton

transform with an example stemming from Pin and Silva (2014, Example 2.1).

This example is concerned with defining a map β that assigns to a bitstring its value

as binary number. To this end, let the alphabet be A = {0̂, 1̂}, where we use the little

festive hats to distinguish the alphabet symbols 0̂, 1̂ ∈ A from the values 0, 1 ∈ k. Since

our definition of Δw is based on left derivative, our bitstrings have the least significant bit

left whereas in Pin and Silva (2014, Example 2.1) bitstrings are read with most significant

bit left.

We define β ∈ kA
∗

by the following behavioural differential equation:

β(ε) = 0, β0̂ = 2 × β, β1̂ = (2 × β) +
1

1 − A
,

where 2 = 1 + 1. Using Theorem 7.3, we can substitute the right-hand side expressions

for the derivatives above and solve for β to obtain the following expression (using that

A = 0̂ + 1̂):

β =
1

1 − 2A
× 1̂ × 1

1 − A
.

We have, for instance, that

β(0̂1̂1̂) = β0̂1̂1̂(ε) =

(
(8 × β) +

6

1 − A

)
(ε) = 6.

Applying the Newton transform, we find that N (β) = 1
1−A

× 1̂:

N (β)
Theorem 9.2

=
1

1 + A
⊗ β

Theorem 9.4
=

1

1 + A
×

(
β ◦ A

1 + A

)

=
1

1 + A
×

((
1

1 − 2A
× 1̂ × 1

1 − A

)
◦ A

1 + A

)
Proposition 7.5

=
1

1 + A
×

(
1

1 − 2A
◦ A

1 + A

)
×

(
1̂ ◦ A

1 + A

)
×

(
1

1 − A
◦ A

1 + A

)

Proposition 7.5
=

1

1 + A
×

(
1

1 − 2 A
1+A

)
×

(
1̂ × 1

1 + A

)
×

(
1

1 − A
1+A

)

=
1

1 − A
× 1̂.

Thus, N (β)(w) = 1, for all w ending in 1̂. �

10. Newton series for languages

Theorem 6.1 generalises to weighted languages as follows.

Theorem 10.1 (Newton series for languages). For all σ ∈ kA
∗
, w ∈ A∗,

σ(w) =
∑
u

(
w

u

)
(Δuσ)(ε).

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129517000159
Downloaded from https:/www.cambridge.org/core. Centrum Wiskunde & Informatica, on 03 Jul 2017 at 14:34:57, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129517000159
https:/www.cambridge.org/core

Newton series, coinductively 27

Proof.

σ(w) = (1 ⊗ σ)(w)

=

(
1

1 − A
⊗ 1

1 + A
⊗ σ

)
(w)

=

(
1

1 − A
⊗ N (σ)

)
(w)

(18)
=

∑
u,v

(
w

u | v

) (
1

1 − A

)
(v) · N (σ)(u)

=
∑
u,v

(
w

u | v

)
(Δuσ)(ε)

(16)
=

∑
u

(
w

u

)
(Δuσ)(ε).

Also, Theorem 6.2 generalises to weighted languages.

Theorem 10.2 (Euler expansion for languages). For all σ ∈ kA
∗
,

σ =
∑

a1···an∈A∗

(Δa1···anσ)(ε) × 1

1 − A
× a1 × 1

1 − A
× · · · × an × 1

1 − A
,

where we understand this sum to include σ(ε) × 1
1−A

, corresponding to ε ∈ A∗.

Proof.

σ
Theorem 9.2

=
1

1 − A
⊗ N (σ)

Theorem 7.3
=

1

1 − A
⊗

(∑
w∈A∗

N (σ)w(ε) × w

)

Def. N
=

1

1 − A
⊗

(∑
w∈A∗

(Δwσ)(ε) × w

)

=
∑
w∈A∗

(Δwσ)(ε) ×
(

1

1 − A
⊗ w

)

Theorem 9.4
=

∑
w∈A∗

(Δwσ)(ε) × 1

1 − A
×

(
w ◦ A

1 − A

)

Proposition 7.5
=

∑
a1···an∈A∗

(Δa1···anσ)(ε) × 1

1 − A
× a1 × 1

1 − A
× · · · × an × 1

1 − A
.

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129517000159
Downloaded from https:/www.cambridge.org/core. Centrum Wiskunde & Informatica, on 03 Jul 2017 at 14:34:57, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129517000159
https:/www.cambridge.org/core

H. Basold, H. H. Hansen, J.-E. Pin and J. Rutten 28

11. Discussion

All our definitions are coinductive, given by behavioural differential equations, allowing

all our proofs to be coinductive as well, that is, based on constructions of bisimulation

(up-to) relations. This makes all proofs uniform and transparent. Moreover, coinductive

proofs can be easily automated and often lead to efficient algorithms, for instance, as

in Bonchi and Pous (2015). There are several topics for further research: (i) Theorems

10.1 and 10.2 are pretty but are they also useful? We should like to investigate possible

applications. (ii) The infiltration product deserves further study (including its restriction

to streams, which seems to be new). It is reminiscent of certain versions of synchronised

merge in process algebra (cf. Bergstra and Klop 1984), but it does not seem to have

ever been studied there. (iii) Theorem 9.2 characterises the Newton transform in terms of

the shuffle product, from which many subsequent results follow. Recently, in Pin (2015),

Newton series have been defined for functions from words to words. We are interested in

seeing whether our present approach could be extended to those as well. (iv) Behavioural

differential equations give rise to weighted automata (by what could be called the ‘splitting’

of derivatives into their summands, cf. Hansen et al. (2014)). We should like to investigate

whether our representation results for Newton series could be made relevant for weighted

automata as well. (v) Our new Definition 8.4 of binomial coefficients for words, which

seems to offer a precise generalisation of the standard notion for numbers, and, e.g.,

Pascal’s formula, deserves further study.

We thank the anonymous referees for their constructive comments, and Joost Winter

for pointing out a minor mistake in the conference version. H. Basold was supported

by project 612.001.021 of the Netherlands Organisation for Scientific Research (NWO).

H. H. Hansen was supported by Veni grant 639.021.231 of the Netherlands Organisation

for Scientific Research (NWO). J.-E. Pin was supported by the European Research Council

(ERC) under the European Union’s Horizon 2020 research and innovation programme

(grant agreement No 670624).

References

Barbosa, L. (2001). Components as Coalgebras. PhD thesis, Universidade do Minho, Braga, Portugal.

Bartels, F. (2004). On Generalised Coinduction and Probabilistic Specification Formats. PhD thesis,

Vrije Universiteit, Amsterdam.

Basold, H., Hansen, H.H., Pin, J.-E. and Rutten, J.J.M.M. (2015). Newton series, coinductively. In:

Leucker, M., Rueda, C. and Valencia, F.D. (eds.) Theoretical Aspects of Computing – ICTAC

2015, Lecture Notes in Computer Science, vol. 9399, Springer, 91–109.

Bergeron, F., Labelle, G. and Leroux, P. (1998). Combinatorial Species and Tree-like Structures,

Encyclopedia of Mathematics and its Applications, vol. 67. Cambridge University Press.

Bergstra, J. and Klop, J.W. (1984). Process algebra for synchronous communication. Information

and Control 60 (1) 109–137.

Berstel, J. and Reutenauer, C. (1988). Rational Series and their Languages, EATCS Monographs on

Theoretical Computer Science, vol. 12, Springer-Verlag.

Bonchi, F. and Pous, D. (2015). Hacking nondeterminism with induction and coinduction.

Communications of the ACM 58 (2) 87–95.

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129517000159
Downloaded from https:/www.cambridge.org/core. Centrum Wiskunde & Informatica, on 03 Jul 2017 at 14:34:57, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129517000159
https:/www.cambridge.org/core

Newton series, coinductively 29

Burns, S.A. and Palmore, J.I. (1989). The newton transform: An operational method for constructing

integral of dynamical systems. Physica D: Nonlinear Phenomena 37 (13) 83–90. ISSN 0167-2789.

Chen, K., Fox, R. and Lyndon, R. (1958). Free differential calculus, IV – The quotient groups of

the lower series. Annals of Mathemathics. Second Series 68 (1) 81–95.

Comtet, L. (1974). Advanced Combinatorics, D. Reidel Publishing Company.

Conway, J.H. (1971). Regular Algebra and Finite Machines, Chapman and Hall.

Eilenberg, S. (1974). Automata, Languages and Machines (Vol. A). Pure and Applied Mathematics.

Academic Press.

Graham, R.L., Knuth, D.E. and Patashnik, O. (1994). Concrete Mathematics, 2nd edition, Addison-

Wesley.

Hansen, H.H., Kupke, C. and Rutten, J.J.M.M. (2014). Stream differential equations: Specification

formats and solution methods. Report FM-1404, CWI. Available at: www.cwi.nl.

Lothaire, M. (1997). Combinatorics on Words, Cambridge Mathematical Library, Cambridge

University Press.

Niqui, M. and Rutten, J.J.M.M. (2011). A proof of Moessner’s theorem by coinduction. Higher-Order

and Symbolic Computation 24 (3) 191–206.

Pavlović, D. and Escardó, M. (1998). Calculus in coinductive form. In: Proceedings of the 13th

Annual IEEE Symposium on Logic in Computer Science, IEEE Computer Society Press, 408–417.

Pin, J.-E. (2015). Newton’s forward difference equation for functions from words to words. In:

Proceedings of the Evolving Computability – 11th Conference on Computability in Europe, CiE 2015,

Bucharest, Romania, 71–82. Available at: http://dx.doi.org/10.1007/978-3-319-20028-6 8.

Pin, J.E. and Silva, P.V. (2014). A noncommutative extension of Mahler’s theorem on interpolation

series. European Journal of Combinatorics 36 564–578.

Rot, J. (2015). Enhanced Coinduction. Phd, University Leiden, Leiden.

Rot, J., Bonsangue, M.M. and Rutten, J.J.M.M. (2013). Coalgebraic bisimulation-up-to. In:

SOFSEM, Lecture Notes in Computer Science, vol. 7741, Springer, 369–381.

Rutten, J.J.M.M. (2000). Universal coalgebra: A theory of systems. Theoretical Computer Science

249 (1) 3–80.

Rutten, J.J.M.M. (2003a). Coinductive counting with weighted automata. Journal of Automata,

Languages and Combinatorics 8 (2) 319–352.

Rutten, J.J.M.M. (2003b). Behavioural differential equations: A coinductive calculus of streams,

automata, and power series. Theoretical Computer Science 308 (1) 1–53.

Rutten, J.J.M.M. (2005). A coinductive calculus of streams. Mathematical Structures in Computer

Science 15 93–147.

Scheid, F. (1968). Theory and Problems of Numerical Analysis (Schaum’s outline series), McGraw-

Hill.

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129517000159
Downloaded from https:/www.cambridge.org/core. Centrum Wiskunde & Informatica, on 03 Jul 2017 at 14:34:57, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129517000159
https:/www.cambridge.org/core

