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Abstract An informal discussion is given on performing an unconstrained maximization or 
solving non-linear equations of statistics by iterative methods with the quadratic 

termination property. It is shown that if a miximized function, e.g. likelihood, is asymptotically 
quadratic, then for asymptotically efficient inference finitely many iterations are needed. 
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In this paper we briefly discuss some applications of modern iteration methods of 

numerical analysis to the problems of mathematical statistics. 
Certain applications of the most basic iteration method ofNEWTON-RAPHSON (or its 

stochastic modification - the scoring method) have been well-known since FISHER, and 

are included in many statistical textbooks (see, e.g., KENDALL and STUART (1961), Sec­

tion 18.31; RAO (1965), Section 5g; ZACKS (1971), Section 5.2). 
Although the NEWTON-RAPHSON method is theoretically very attractive, it may turn 

out to be highly unsuitable in practice, especially when the number of unknown param­

eters, involved in the statistical model under study, is large. 
In order to mitigate some of the computational difficulties, unavoidable in the 

NEWTON-RAPHSON method, various developments of this method are intensively dis­

cussed in the literature on numerical analysis. The most important are the so-called 

quasi-NEWTON methods, and their alternatives, the conjugate gradient methods. 

We intend to demonstrate here that the application of certain stochastic modifica­

tions of this kind of methods will, in general, lead to a statistical inference which is at 

least as efficient as that of the NEWTON method. It should be noted, however, that the 

considerations presented below are highly informal, as they are in fact aimed at showing 

why the above statement should be true, rather then at proving strict mathematical 

results (to be found, in principle, in the enclosed references). 
Returning to FISHER'S ideas let us recall that he has applied the NEWTON-RAPHSON 

method to the classical problem of estimating the unknown parameter fJ involved in 

the distribution Fe, when a sample 

X1, ... ,Xn (1) 

is drawn from a population specified by this distribution function Fe. 
Assuming that the population is of the continuous type and/e is the density of Fe, 

FISHER (1925) used the NEWTON-RAPHSON method for maximizing the loglikelihood 

function 

Ln (8) = Ln (X1, ... ,Xn;fJ) = .l logfe (X;). (2) 
i= 1 
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Attractiveness and universality of the maximum likelihood method is justifiable by the 

existence, under fairly wide conditions, ofa value of(} that renders the loglikelihood (2) 

as large as possible, at least when the sample size n is sufficiently large. Conditions 

under which the maximizing value of(} - the maximum likelihood estimator Bn - is/ n­

consistent are also fairly broad. 
By ../ n-consistency of Bn we mean that the sequence of the distributions 

y j../n(iJ,,- (})}, n= 1,2, ... (3) 

converges to a non-degenerate distribution. 

Moreover, additional conditions guarantee that the limit of (3) is Gaussian with mean 

zero and variance, given by the reciprocal ofFrsHER's information amount lo per single 

observation, that is 

Y j/ n ( Bn - (})} => N (0, lo- 1 ). (4) 

After FISHER, we can therefore call Bn asymptotically efficient. These and some further 

theoretical properties provide the basis for "a quasi-hypnotic attraction the m.l. estimates 
seem to exert" (LECAM (1960), p. 94). 

However in practice complications may arise when one starts to maximize the log­

likelihood (2) by, for instance, looking for roots of the corresponding likelihood equa­

tion 

(0/08 )Ln (X1, ... , Xn; 8) = 0 (5) 

(if there are any for fixed n ), especially if this equation turns out to be highly non­

linear (as frequently happens). 

The additional task of choosing an appropriate root among several of them is also 
difficult. 

Aware of these problems, FISHER (1925) suggested looking for iterative solutions of 

the equation (5) (or the corresponding maximization problem) by the NEWTON method 
defined as iterations 

8;+ 1 = 8}- (o 2~n)- I (oln) , 
ae Bh ae o~ 

Alternatively, observing that 

1 o2Ln 
----~la 

n ae 2 

i= 0, 1, ... , (6) 

(7) 

in probability (under B ), he suggested also the asymptotically equivalent procedure of 
scoring 

ei+ I= (Ji+! (r I) I (OLn) 
n n n IJ B n (}(} I ' 

8,, 
i= 0, 1, ... (8) 

Besides, he pointed out that ifthe starting value e0 is any../ n-consistent estimator for 8 

(for instance, constructed, when it is possible, by using the method of moments), then 

the result of the very first iteration, e;, is an estimator for(} as efficient asymptotically as 
the maximum likelihood estimator Bn. 
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Indeed, FISHER did not worry about the mathematical accuracy of his statements. The 
first careful treatment of the subject containing a further study ofasymptotic properties 
of the estimator B~, is due to LECAM (1956). 

Later, LECAM (1960) extended his studies to a considerably more general class* of 
experiments than those generated by independent identically distributed (i.i.d.) 
observations: 
the function Ln (X1, ... , Xn; B) was treated as a general loglikelihood function and not 
necessarily that of the i.i.d. observations (as in (2)). He observed that for sufficiently 
large n the Taylor expansion of Ln involves significant terms which are related to the 
first and second order derivatives of Ln only, as all other terms become asymptotically 
negligible when n-+ oo. That is, 

where 
Ln (B + h//n)-Ln(8) =Mn (B)- ~h 2 le + Op(l) 

1 iJLn 
lln (8) = T-+ Op(l) 

yn ae 

(9) 

(10) 

and le is the stochastic limit of the second derivative of (1/ n )Ln with opposite sign (recall 
(7)), while Op (1) in (9) and (10) (or anywhere below) stands for those terms which are 
asymptotically negligible in the sense that they tend to 0 stochastically as n-+ ro. Thus 
lln can be sought** as a principal part of n- 1!2(a/aB )Ln. 

Further, under fairly wide conditions the random variable lln ( 8) is asymptotically 
normal: 

.. St(lln (B )) =N(O, le) (11) 

and asymptotically differentiable in the sense, that if Bn° is any../ n-consistent estimator 
for 8, then 

(12) 

Note that in the case of i.i.d. observations (11) is a simple consequence of the central 
limit theorem and the well-known fact that 

1 (aLn )2 

~ E aB =le. 

* Deviating from the i.i.d. case, one often encounters situations in which the formulae (9)-(11) 
below hold with some differential an> 0 such that an--+ 0, different from 1// n. and this is taken 
into account in the later works of LECAM (1969), (1974). 
It should be noted also, that in the case of a vector-valued parameter B the normalization of 
each component by Jn (to be discussed below) often fails: these components even may have 
different rates of convergence. and then the normalization by some positive definite matrix 
with a vanishing (as n-+ oo) norm is needed (see !BRAG IMOV and HAs'MINSKII ( 1981) where an 
excellent treatment of estimating problems can be found, in the spirit of LECAM). 

** In the theory ofi.i.d. observations l:>.n is usually taken to be equal to the first term on the right­
hand side of(lO). In more complicated situations, however. it often happens that n - 1f2(a/aB)Ln 
cannot be obtained explicitly, or it is too complicated to be used in practice. while its principal 
part, !:>.., can be chosen among asymptotically equivalent candidates as simple and smooth as 
possible to ensure, in particular, asymptotic relations of type (12). 
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(In general this last equation holds only asymptotically when n--> oo ). 

Equation (12) also has a natural interpretation in terms of the derivatives of Ln. 
The equations (11) and (12) have a very important consequence. 

Proposition 1 
If (11) and (12) hold, the estimator 

8n1 = 8n° + )n fe1 1.6.n(8n°) (13) 

is asymptotically normal: 

(14) 

Note the similarity of (13) and (8) with i = 0, and also the coincidence of the right-hand 
sides of (4) and (14). 

The proof is very simple: By (12) and (13), 

,/n(8n1 - 8) =Jn(8n°- 8) +Ie1 1 [.6.n (8)-Ie,/n(8n° - 8)] +Op (1). 

If we now replace 8n° in 101 1 by 8 (this is justifiable if le is continuous in 8 ), then 

Hence (14) is an immediate consequence of (11). 
According to this proposition the estimator 8n1 has the same asymptotic properties as 

the maximum likelihood estimator. In other words, instead oflooking for the maximum 
likelihood estimators Bn one can use without loss of efficiency (at least for samples of 
large size n) the following two-step* procedure: 
(i) construct a preliminary estimator 8n° of 8 satisfying ,/ n-consistency, and then 
(ii) defining for the particular problem under study t:,.n ( 8) and le from a corresponding 

likelihood function Ln ( 8 ), construct 8/ as indicated in (13 ). 

It should be noted that, in principle, this alternative procedure "applies also to cases that 
certain authors may deem pathological - cases in which m.l. estimates do not behave or do 
not exist. This is somewhat irrelevant. What is relevant is that statistical life is plagued 
with situations involving dependent variables or other more or less complicated situations 
in which it seems to be a waste of time to try to prove that m.l. estimates do behave. Even in 
cases in which the m.l. estimates are asymptotically well behaved it may be preferable not 
to use them" (LECAM (1960), Appendix II). 

That seems to be why the just cited "author is firmly convinced that a recourse to 
maximum likelihood is justifiable only when one is dealing with families of distributions 
that are extremely regular. The cases in which m.l. estimates are easily obtainable and 
have been proved to have good properties are extremely restricted. One of the purposes of 

* Obviously this procedure can be used iteratively by continuing as in (8). That is why FISHER 
called the method of estimation by formula (8) the scoring method (the word scoring is used here 
to stress that the procedure scores iteratively the corrections). 
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this paper (LE CAM (1960)) is precisely to deemphasize the role of m.I. estimates". 

"The drawback in having a liberal amount of flexibility in the choice of the estimates is 

that one is likely to have to choose between radically different formulas which al! lead to 

the same asymptotic properties. From a practical point of view, it should be emphasized 

that a purely asymptotic theory does not say anything about a particular problem. The stan­

dard practice of letting a parameter tend to infinity is a mathematical device which leads to 
fairly simple theorems ... " 

The reason for such an extensive quotation should become clear below, for we shall 

now follow "the standard practice of letting the sample size n tend to infinity'', and define 

alternative procedures of estimation which lead to the same asymptotic properties as 

that ofm.l. ofNEWTON-RAPHSON (scoring). Also, the procedures defined below can in 

fact be utilized under the same circumstances as the two-step procedure mentioned 

above, so that the reasonings of LECAM concerning the latter procedure could in prin­

ciple be applied to the case we shall discuss. 
Observe meanwhile that the considerations which are followed above can be easily 

extended to the s vector-valued parameter case when ll.n ( ()) is ans vector-valued rand­

om variable and le is a positive definite (s x s )-matrix. 

In this case the application of formula (13) (or the iterative procedures of type (6) and 

(8)) requires the inversion of (s x s )-matrices. This may be difficult, when the number of 

unknown parameters, s, is large. 
It is natural to try also other methods of unconstrained maximization (or solving 

essentially nonlinear system of corresponding equations) provided by modern numer­
ical analysis. 

The justification of nearly all such methods is based on the presumption that the 

maximized quantity, in a neighborhood ofa maximum point, can be well approximated 

by a quadratic function. Thus a number of methods are advanced in numerical analysis 

which efficiently maximize quadratic functions, in the hope that they do perform well 

on more general functions at least in a neighborhood of a maximum point. This motiva­

tion leads in the first place to the derivation of NEWTON'S method which gives the 

maximum of a quadratic function*, c+ b r x - ~x r Ax say, after the very first iteration, 

x 1 =A- 1 b, for any initial value x 0• 

Also, the extension of the classical NEWTON method mentioned in the beginning of 

this paper, such as the quasi-NEWTON methods and conjugate gradient methods, pos­

sess a special property with respect to quadratic functions: the maximum is found in at 

most s iterations where s is the number of unknowns. Therefore, it is often said that 

these methods possess the property of quadratic termination. 

On the orher hand, in view of the asymptotic relation (9) the function Ln can be 

regarded as "asymptotically quadratic". 

* As for the maximization of a general function, the nice feature ofNEWTON's method consists in 
the fact that when the iterations do converge, the rate of convergence is quadratic. However, 
NEWTON'S iterations often fail to converge - when the results are far from a maximum point diffi­
culties may arise. Nevertheless, the attraction of the quadratic convergence, in a neighborhood 
of a maximum, keeps all methods as close to NEWTON's iterations as possible, only introducing 
modifications to gain more reliability. 
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Basically, this determines the fine asymptotic properties of the first iteration in (6) (or 

(8)) as an estimator of(), specifically, the property determined by (14). Realizing these 

facts one should come to the conjecture that the quadratic termination property of a 

utilized method ought to guarantee the same asymptotic properties for the result of at 

most s iterations treated as the estimator for (). 

An attempt in this direction is made in BEINICKE and DZHAPARIDZE (1982), where our 

conjecture is confirmed for the special method ofDAV!DON-FLETCHER-POWELL (DFP), 

which is one of a family of quasi-NEWTON methods. 
The concept of a quasi-NEWTON method for the solution of the system (5), with (a/ae) 

to be understood now as the gradient vector (or for the maximization of Ln ( B) ), consists 

of an algorithm which proceeds as follows. Choosing the initial value (any./ n-consistent 

estimator for()) Bn° beforehand, along with a symmetric positive definite matrix H~ (for 

instance, H~ can be chosen as the s x s unit matrix), at iteration}, define 

BJ+I gJ 1 JfliA (BJ) 
n = n + In an n.u.n n (15) 

where a; is determined by an exact line search, that is, it is a scalar determined as the 
value a that maximizes the function 

Neglecting again the omitted terms in (9) and replacing leJ, by a consistent estimator In* 
for lo (by fe,9, say), we get 

T . . . 
j An(B;/)Hi:ln (Bn') 

a,,= T · · · · (16) 
An (B;/)H;{I: Hill,, (B;/) 

(AI denotes the transpose of A,,). 

As for the matrices H~, j = 1, 2, ... in (15) and (16), they must possess the property 

(17) 

where r/ = /n(B,{+ 1 - B/), qi,= - [An (B/+ 1 ) - An (B;/)]. 

The following specific choice of the matrices H!,,J = 1, 2, ... ,satisfying (17) determines 
the DFP method (see, e.g. ORTEGA and RHEINHOLDT (1979)); 

)( j)T Hj j(Hj j)T 
sJ+ I= Hj !::_!i___ _ nqn ,,q,, 

" n + (ri)rq; (q!,)THiqi · (18) 

Theorem I now shows the ability ofa stochastic modification of the DFP method to pro­
duce asymptotically efficient estimators: 

Theorem 1 

If (J lJ and (J 2) are satisfied, then the estimator e; defined by ( 15), (16) and (J 8) (s being 
the number of unknowns) is asymptotically normal; more specifically, 

(19) 
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In addition, H~ is a consistent estimator for the inverse of FISHER'S information matrix 
le per single observation. 

The proof of this result can be found in BEINICKE and DzHAPARIDZE (1982). Note that 

the considerations of this paper are based on the definition (18) of the matrices ~, 

} = 1, 2, ... , while, in general, results of D1xoN (1972) allow extensions to the full 

BROYDEN family (see, e.g. BRODLIE (1977)). 

Following considerations similar to those ofBEINICKE and DZHAPARIDZE (1982), the 

former author has shown in his Ph.D. thesis at Tbili.si State University (1979) that the 

conjugate gradient method, appropriately modified, leads to an analoguous result. 

Specifically, the following theorem holds. 

Theorem 2 

Define the stochastic modification of the conjugate gradient iterations: 

where 

/!,.. (e1+l)TJ* 1 
0 (B 0) / +I (B 1 + J) /3 1 1 /3 1 n n n Pn 

Pn=l:in n ,Pn =6.n n - nPn, n= (p')TJ* 1 
n nPn 

Then under the conditions of Theorem 1 the estimator B; has property (19). 

In conclusion, we briefly remark on further statistical applications. The first remark is 

concerned with certain situations in which the distribution of observations (1) is not (or 

rather cannot be) fully defined, none the less some of its characteristics are known to 

involve parameters e about which certain inference has to be drawn. [To exemplify 

such situations we mention two problems of inference on a parameter of 

(i) a (deterministic) signal masked with (random) noise of an unspecified distribution, 

(ii) a spectrum of a (wide sense) stationary time series]. 

Aiming at solving, specifically, estimation problems, one cannot now base one's 

inference on the corresponding loglikelihood Ln ( B), and so extend directly the above 

reasoning to these circumstances. In many applications, however, other criterion func­

tions can be sought which are, essentially, free from any kind ofnuisance quantities and 

thus depend only on B (and on observations). Of course, this function, say Un ( B) = 
Un (X1, ... , Xn; 8), has to be chosen so as to guarantee the sensibility of the estimator fore 

defined as the value of B that maximizes (or minimizes) Un ( 8). (As an illustrative 

example of this kind of practice, the utilization in various settings of the least squares 

method should be mentioned; see, e.g., JENNRICH (1969) on non-linear regression, or 

KoHN (1978), DZHAPARIDZE and YAGLOM (1982) on time series analysis). 

The demands on Un ( 8) made above are usually met by requiring of its asymptotical 
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differentiability in the sense that for the difference U11 ( e + h/-/ n) - Un ( B) there exists a 
(multivariate) relation analoguous to (9) with some (s vector-valued) random variable 
!1 11 (B) and positive definite matrix le. Moreover, these quantities are usually related as 
in (12). Often the asymptotic normality of !:1 11 (B) can also be shown, although the co­
variance matrix We appearing in the limiting distribution may in general differ from le. 

It might be clear now that under these circumstances the considerations followed 
above remain valid for U11 ( e) in place of the likelihood function L11 ( e), although in the 
conclusions (namely in (14) and (19)) le- 1 has to be replaced by lri 1 Wele- 1 T (BEINICKE 

and DZHAPARIDZE (1982)). 
Observe, finally, that the result H(, __,.le- 1 (stochastically), stated in Theorem 1, can be 

used in constructing test statistics for certain tests-of-fit based on x 2-distributions. 
Indeed structurally these kinds of test statistics may be described as quadratic forms in 
random variables, generated by the inverses of their limiting covariance matrices. 
Under condition (11), for instance, the statistics 

a;,(Bo)le~ 1 An(Bo)"" 1:1;,(Bo)H(,A,,(Bo) 

can be used for testing the hypothesis: () = 80 • 
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