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ON THE G-COMPACTIFICATION OF PRODUCTS 

JAN DE VRIES 

Let {3G X denote the maximal equivariant compactification ( G-com
pactification) of the G-space X (i.e. a topological space X, completely 
regular and Hausdorff, on which the topological group G acts as a 
continuous transformation group). If G is locally compact and locally 
connected, then we show that {3G(X X Y) = {3GX X {3GY if and only if 
X X Y is what we call G-pseudocompact, provided X and Y satisfy a 
certain non-triviality condition. This result generalizes Glicksberg's 
well-known result about Stone-Cech compactifications of products to the 
case of topological transformation groups. 

1. Introduction. In this paper we prove a generalization to the case 
of topological transformation groups of Glicksberg's well-known result 
about Stone-Cech compactifications of products. Recall, that a topological 
space X is pseudocompact, whenever C( X) = C*( X), i.e. every continuous 
real-valued function on X is bounded. A convenient characterization of 
pseudocompactness of a completely regular Hausdorff space X is that X 
contains no infinite sequence of non-empty open subsets which is locally 
finite. Cf. [4] and, for more about pseudocompactness, [5]. Glicksberg's 
theorem says that if X and Y are infinite completely regular spaces, then 
{J( X X Y) = {JX X /3Y if and only if X X Y is pseudocompact. See [6] 
and also [4] and [10] for short proofs. Adopting the techniques of [4] and 
[10], we were able to prove (terminology will be explained in 1.1 and 2.1 
below): 

THEOREM. Let G be a locally compact, locally connected topological 
Hausdorff group, and Jet X and Y be two G-infinite, completely regular 
Hausdorff G-spaces. Then /3a{X X Y) = /30 X X /30 Y if and only if X X Y 
is G-psuedocompact. 

Before explaining the terminology we wish to point out two shortcom
ings of our result. First, we did not yet succeed in reducing the case of 
infinite products to the case of finite products ( cf. [10]). The second 
remark concerns the condition that X and Y have to be what we call 
G-infinite. It is clear why Glicksberg's theorem has to contain the condi
tion that X and Y are infinite: if either X or Y is finite, then always 
{3( X X Y) = {3X X {3Y without any further condition on X X Y. How
ever, compared with this situation, our "non-triviality condition" in the 
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theorem above is too strong: if either X or Y is not G-infinite, then it is not 
true that /30 ( X X Y) = /30 X X /30 Y without additional conditions. See §5 
below. 

The organization of the paper is as follows. In the remainder of this 
section we present the necessary definitions and preliminary results. In §2 
we shall deal with the concept of G-pseudocompactness. In particular, we 
give some necessary and some sufficient conditions. In §3 the "if' part of 
our theorem is proven, and in §4 the "only ir' part. Finally, in §5 we 
discuss some open questions and present some additional material. In 
particular, we prove that f30 X = {JX if X is pseudocompact and G is a 
topological group such that, as a topological space, G is a k-space. This 
slightly generalizes a result by Smirnov [9]. 

l.l. In this paper, except in 5.5 and 5.7, G will always denote a locally 
compact Hausdorff topological group with unit element e. The neighbour
hood filter of e in G will be denoted by ~· (In general, ~ will denote the 
neighbourhood filter of x in a given topological space.) A G-space (or: a 
topological transformation group with acting group G) is a pair ( X, 'IT) 
consisting of a topological space X and an action 'IT. This means 'IT is a 
continuous mapping from G X X into (in fact, onto) X such that the 
following conditions are fulfilled: 

(i) 'r/ x EX: 'TT(e, x) = x; 
(ii) 'r/ x EX, 'r/(s, t) E G X G: 'TT(S, 'lT(t, x)) = 'TT(st, x). 

Then for every t E G the mapping '11 1: x 1-+ '1T(t, x): X ~ X is a homeomor
phism, and for every x E X the mapping '1Tx: t 1-+ 'TT( t, x): G ~ X is 
continuous. For brevity, we shall write in most cases tx for 'TT(t, x), tA for 
'1T 1[A], Ux for '1Tx[U] and, in general, UA for 'TT[U X A]. Also, we shall 
often write "the G-space X" instead of "the G-space ( X, 'IT)". The 
G-space ( X, 'IT) will be called compact, Hausdorff, etc. whenever X is. 

If ( X, '1T) and ( Y, o) are G-spaces, then a mapping cp: X ~ Y is 
called equivariant whenever <()'11 1 = o1<p for all t E G (i.e. cp(tx) = tcp(x) 
for all t E G, x E X). A morphism of G-spaces is a continuous, equivariant 
mapping cp: ( X, 'IT)~ ( Y, o). A G-compactification of a G-space ( X, 'IT) is 
a morphism of G-spaces <p: ( X, 'IT)~ ( Y, o} such that Y is a compact 
Hausdorff space and <p[X] is dense in Y. If, in addition, cp is an 
embedding of X into Y, then <p is called a proper G-compactification. A 
necessary condition for the existence of a proper G-compactification of 
( X, 'IT) is that X is a Tychonov space. Because of the fact that G is 
assumed to be locally compact, this condition is also sufficient ( cf. [12]). 
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Every G-space ( X, 'IT) has an essentially unique maximal G-compactiflca
tion, denoted by 

<p~X,'IT): ( X, 'IT>- PG ( x, 'lT). 

For convenience, the underlying topological space of PG ( X, 'TT) will be 
denoted by f3GX. The maximal G-compactification of ( X, 'IT) is defined 
by the property that for every G-compactification if;: ( X, 'TT) -+ ( Y, o) 
there exis~s a unique morphism of G-spaces ~: {3G < X, 'IT) -+ ( Y, o) such 
that 1/J = 1/J o <p~X,'IT)" 

x 

y 

If in, this situation, If; happens to be a proper G-compactification, then so 
is <Ji~x,'IT)· So from our remarks above, it follows that every Tychonov 
G-space ( X, 'IT) has a proper maximal G-compactification. From now on, 
we shall assume that all G-spaces ( X, w ), ( Y, o ), etc. are Tychonov spaces. 
Moreover, if ( X, '1'f) is such a G-space, then we shall identify X with its 
image under <Ji~x,'IT) in PGX. Thus, X is an invariant subset of f3cX. 

1.2. If G = { e}, then every mapping between G-spaces is equivariant, 
and the category of all G-spaces and continuous equivariant mappings is 
identical with the category of all topological spaces and continuous 
mappings. In particular, for every G-space X we have f3cX =PX, the 
ordinary Stone-Cech compactification of X. For completeness, we men
tion three other cases where fJGX = {3X: 

(i) G is a discrete group (cf. [11], 7.3. lO(ii)); 
(ii) the action of G on X is trivial, i.e. tx = x for all t E G, x E X; 

(iii) G is a k-space and X is pseudocompact (cf. §5 below). 
In a future paper, we hope to study this problem in more detail. 

1.3. Let ( X, .,, ) and ( Y, o) be two G-spaces, and let 7' denote the 
action of G on X X Y defined by r'(x, y) := (w 1x, o'y) (or briefly: 
t(x, y) = (tx, ty) for t E G and (x, y) EX X Y). Then we have the 
following commutative diagram: 

XXY 
cpG(XXY,1') 

-+ f3G(XX Y) 

it'~ 
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If in this diagram ~: f30 (X X Y) "'/30 X X /30 Y is a homeomorphism, 
then we shall say that /30 ( X X Y) = /30 X X /30 Y. Notice that it follows 
from 1.2 (ii) above that Glicksberg's theorem gives a necessary and 
sufficient condition for the equality /30 ( X X Y) = /30 X X /30 Y to occur 
for the special case that the actions "' and a (hence 'T) are both trivial. 
Taking into account that "G-infinite" means in this special situation just 
"infinite" (see below), it is clear that our theorem above contains Glicks
berg's result as a special case. 

1.4. Let ( X, "') be a G-space. A real-valued function f on X will be 
called 'TT-uniformly continuous (cf. [9], [12]) whenever the following condi
tions are fulfilled: 

1 °. f is continuous. 
2°. The set {/ o '1Tx}xEX is equicontinuous at e. 

The second condition can also be formulated as follows: 

V'e>03UE~:l/(tx)-/(x)l<e forall(t,x) E UXX. 

The set of all 'TT-uniformly continuous functions on X will be denoted by 
UC ( X, '1T ), and the set of all bounded '17'-uniformly continuous functions 
by UC*( X, '11') (in [12], the notation '1TUC(X) was used). In [12] it was 
shown that UC*( X, '1T) is a closed subalgebra of C*( X) (the bounded 
real-valued continuous function on X), containing the constant functions, 
and that for every G-compactification cp: ( X, "')"' ( Y, a) we have {go cp: 
g E C(Y)} ~ UC*( X, 'TT). In particular, the maximal G-compactification 
cp(x,,,): X"' /30 X is, up to isomorphism of G-spaces, completely char
acterized by the formula 

UC*( X, "') = {g 0 cp(x,.,,): g E C(/30 X)}. 

The following remark is included in order to clarify the relationship 
between UC*( X, '1T) and ordinary uniform continuity. If ( X, GU,) is a 
uniform space, then UC*( X, 621) will denote the set of all ~uniform 
continuous, bounded real-valued functions on X, and GU,* will denote the 
weakest uniformity on X such that UC*( X, GU,*) = UC*( X, GU,). If ( X, 6l1) 
is a uniform space and, in addition, '1T is a continuous action of G on X 
(the topology on X, of course, being induced by GU,) then "' is called 
~bounded (cf. (11}, [12}; in the literature on topological dynamics one 
also calls '1T motion-equicontinuous) whenever { "'x}xex is equicontinuous 
w.r.t. GU, ate, that is, 

V'o:E6l13UE~:(x,tx) Ea forall(t,x) E UXX. 
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Now it is easy to show that the following two statements are equivalent 
for an arbitrary G-space ( X, 'IT) and a uniformity 621, compatible with the 
topology of X: 

(i) the action 'IT is 621 *-bounded; 
(ii) UC*(X, 621) C UC*(X,'IT). 

1.5. Next we wish to point out the relationship between UC*( X, 'IT) 
and the algebra E(X, Ci(G)) of [l]. Let Cc*(G) denote the space of all 
bounded real-valued functions on G endowed with the compact-open 
tepology. Then (Cc*(G), p) is a G-space, where ptf(s) := f(st) for all 
f E Cc*(G), s E G and t E G (cf. [11], 2.1.3). Let Mor~(X, Cc*(G)) denote 
the set of all morphisms of G-spaces from a given G-space ( X, 'TT) to 
(Cc*( G), p ), endowed with the uniform structure and the corresponding 
topology of uniform convergence on X. If f E C*( X), then the mapping 

T/: X ~ f 0 'Tfx: X-+ Cc*( G) 

is continuous and equivariant (cf. [11], 8.1.12), i.e. Tf E Mor~(X, Cc*( G)). 
Conversely, if g E Mor~(X, Cc*(G)), then 

Sg: x ~ g(x)(e): X-+ R 

is an element of C*( X). It is easily verified that T: C*( X) -+ 

Mor~( X, c:( G)) and S: Mor~( X, Cc*( G)) -+ C*( X) are mutually inverse 
isomorphisms of algebras. Moreover, if we endow C*( X) with the topol
ogy of uniform convergence on X, then it is standard to show that T and 
S are both continuous. So c:( X) and Mor~( X, Cc*( G)) are isomorphic as 
topological algebras (consequently, the latter algebra is metrizable, though 
G is not supposed to be compact or even sigma-compact!). Under this 
correspondence, E( X, Cc*( G)) : = T[UC*( X, 'IT)] is easily seen to be the 
set of all those elements g E Mor~(X, Ci(G)) for which g[X] is equicon
tinuous in Cc*( G), that is, for which g[ X] has compact closure in c:( G). 
Using this relationship between UC*(X, 'TT) and E(X, c:(G)), the corre
spondence between {30 X and UC*( X, 'IT) can be reformulated as follows: 
for every element g E E( X, c:( G)) there exists a unique morphism of 
G-spaces g: f30 X-+ Cc*(G) such that g = g 0 'P~x,.,,); moreover, the em
bedding of X into {J0 X is completely characterized by this property (up to 
isomorphism of G-spaces). 

2. G-pseudocompactness and G-infiniteness. 

2.1. A collection ~ of subsets in a G-space ( X, 'TT) will be called 
internally linked whenever there exists U E ~ and there are points x 8 E B 
(BE~) such that Ux8 CB for every BE~-
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A finite (infinite) sequence of mutually disjoint, non-empty open sets 
which is internally linked will be called a finite (infinite) G-dispersion; if 
the sequence of sets is locally finite, then the G-dispersion will be called 
locally finite. Modifying the characterizations of infiniteness and pseudo
compactness of ordinary Tychonov spaces, we obtain the following crucial 
(at least, for this paper) definitions. The G-space ( X, 'IT) will be called 
- G-infinite, whenever it contains an infinite G-dispersion; 
- G-pseudocompact, whenever every locally finite G-dispersion in X is 

finite. 
Clearly, if ( X, .,, ) is not G-infinite or if X is pseudocompact (in the usual 
sense) then X is G-pseudocompact. As to the converse, cf. §5 below. 

2.2. REMARKS. 1°. If G is a discrete group, then every family of 
non-empty subsets of X is internally linked, because { e} E ~- It follows 
that in this case X is G-infinite if and only if X is infinite. Similarly, X is 
G-pseudocompact if and only if X is pseudocompact. (These statements 
are also valid if the action of G on X is trivial.) 

2°. Suppose that the orbit space X/G (=space of equivalence classes 
of the form Gx, x E X, having the quotient topology) contains an infinite 
sequence of mutually disjoint, non-empty open subsets (e.g. because the 
Hausdorff modification of X/G is infinite; in particular, this happens if 
X/G is itself an infinite Hausdorff space: recall that X/G is usually not 
Hausdorff, but it is if G is compact, or if the action of G on X is proper). 
Taking inverse images under the canonical projection X ~ X/G one 
obtains an infinite G-dispersion (the elements of which are even invariant 
under all of G). Hence X is G-infinite. Similarly, if X/G is not pseudo
compact, then X/G contains an infinite sequence of non-empty open sets 
which is locally finite (for this statement, complete regularity of X/G is 
not required, nor its being Hausdorff), hence X contains an infinite 
G-dispersion which is locally finite, i.e. X is not G-pseudocompact. Thus, 
if X is G-pseudocompact, then X/G is pseudocompact. 

3°. Suppose X/G consists of one point and for some (hence for every) 
point x in X the mapping .,,x: t ~ tx: G ~ X is open (thus, X ~ G/H, 
where H : = { t E G: tx = x} ). In this case X is G-infinite if and only if X is 
not compact. (Suppose X is not compact. Let U E ~be compact. Con
struct by induction a sequence {x;};EN in X such that, for every n EN, 
Xn+I '$. u7=l Uxi. Let v E ~be open, v- 1v ~ U; then Vxi is open in x, 
hence {Vx;};eN is an infinite G-dispersion. Conversely, suppose that X is 
compact and that {Bn}neN is an infinite G-dispersion in X. We may 
assume that, for every n E N, Bn = Uyn with Yn E X and U E ~. U open 
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and u- 1 = U. The sequence {Yn}neN has an accumulation point z E X. 
Then Yn E Uz for infinitely many values of n, contradicting the disjoint
ness of the sequence {Uyn}neN·) Similarly, in this case X is G-pseudocom
pact if and only if X is compact. (In the above proof, replace V by open 
W E ~such that W- 1 = Wand W 2 C V.) 

Observe that this example shows that the converse of the final remark 
in 2° above is not generally true (X/G is pseudocompact, but one can 
have X not compact). 

4 °. According to the definition, a G-space ( X, '1T) is G-pseudocom
pact whenever every sequence of mutually disjoint open sets which is 
internally linked and locally finite is finite. In this definition, disjointness 
can be omitted. 

Indeed, let {Bn}neN be an infinite sequence of non-empty open sets, 
internally linked and locally finite. Then there exists U E ~. U compact, 
and for every n E N there is xn E Bn such that Uxn C Bn. As Uxn is 
compact and { BJ;eN is locally finite, there exists an open neighbourhood 
B~ of Uxn such that B~ C Bn, and B~ meets only finitely many of the sets 
B;. Selecting from the sequence {B~}neN a disjoint subsequence, one 
obtains an infinite, locally finite G-dispersion. Thus, ( X, 'IT) is G-pseudo
compact if and only if every sequence of open sets which is internally linked 
and locally finite is finite. 

2.3. Before stating a (simple, yet crucial) result about the connection 
between 'IT-uniformly continuous functions on a G-space ( X, '1T) and 
G-pseudocompactness of ( X, 'IT), we recall from [12] a method of trans
forming elements of C*( X) into elements of UC* ( X, 7T). Let f E C*( X), 
f > 0, and let II /II : = sup{/( x ): x E X}. Let U E ~ be compact and 
select a left-uniformly continuous function ip: G ~ [0,11/111 such that 
<p(e) = 0 and <p(t) = 11/11 for all t E G\U. If we put 

f u ( x ) : = inf { 'P ( t ) + f ( tx) }, 
tEG 

x EX, 

then it turns out that/u E UC*( X, 'TT). Moreover, 0 -s;ju -s;j on X and, 
in addition, we have for all x E X, 

ju(x) = inf {qi(t) + /(tx)}. 
tEU 

Jn particular, if x EX is such that f(tx) = f(x) for every t E U, then 
clearly fu(x) = f(x). 
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2.4. PROPOSITION. Let { Bn}nEN be an infinite, locally finite G-dispersion 

in X, and let {an}nEN be a sequence of real numbers in the interval [O, l]. 
Then there exists f E UC*( X, 'TT) such that f > 0, f[Bn] <;;; [O, an] 

and r [an] n Bn =I= 0 for every n EN, whereas f(x) = 0 for all x E 

X\ U~=IBn. 

Proof. There exist U E Clf.:, U compact, and xn E Bn ( n E N) such 

that Uxn <;;; Bn. For every n EN, Uxn is a compact subset of the Tychonov 

space X, so there exists gn E C*(X) such that gn[X] <;;; [O, an], gn(x) =an 

for all x E Uxn and gn(x) = 0 for all x E X\Bn. As { Bn}nEN is locally 
finite, g := :L~=I gn is a bounded, continuous funcction. Choosing cp 

according to the specification of 2.3 above, we can form the function gu, 

which belongs to UC*( X, 'TT). Using the properties of this construction, 
mentioned in 2.3, it is easy to verify that gu satisfies the conditions 

specified in our Proposition. D 

In our next Proposition we relate the property of being G-pseudocom
pact with boundedness properties of 'TT-uniformly continuous functions on 
a G-space ( X, 'TT). For the problem, whether of (ii)~ (i) or not, we refer 

to §5. 

2.5. PROPOSITION. Consider the following properties for a G-space 

( x, 7r). 
(i) Every f E UC*( X, 'TT) has a maximum and a minimum on X, i.e. 

sup/[X] Ef[X] andinf f[X] E/[X]; 
(ii) X is G-pseudocompact; 

(iii) X is totally bounded ( = precompact) in every uniformity GLI, which 

has the property that the action 'TT is 13/.lrbounded; 

(iv) UC ( X, 'TT)= UC*( X, 'TT), that is, every 'TT-uniformly continuous 

function on X is bounded. 

Then (i) => (ii) ~ (iii) =>(iv) and (iv) ;<> (iii). 

Proof. (i) =>(ii): Suppose X is not G-pseudocompact. Then we can 
apply Proposition 2.4 with an= I - l/n in order to obtain f E 
UC*( X, 7T) which has no maximum on X. 

(ii) =>(iii): Suppose GLI, is a uniformity for X such that the action 'TT is 
13/.Jrbounded, but X is not totally bounded w.r.t. GL!,_ So there exists a E GLI, 

and a sequence {xn}nEN in X such that, for all n EN, xn+I ft. u7= 1 a[xJ 
Let /3 E till,, {3 4 <;;; a and 13- 1 = /3, and let U E ~be such, that ( x, tx) E f3 
for all (t, x) E U X X, i.e. Ux <;;; /3[x] for all x EX. Then {/3[xn]}nEN is 
a locally finite G-dispersion, and therefore, X is not G-pseudocompact. 
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(iii) ~(ii): Suppose X is not G-pseudocompact, and let { B,,},,EN be a 
locally finite G-dispersion. Let U E ~ be such that for every n E N there 
exists x,, E B,, with Ux,, kB,,. Let VE CV,, and WE~ be such that 
V2 k U, W 2 kV, W- 1 = W, and W compact, put D := X\ U::'=i Wx,, 
and a:= U::'= 1(B,, X B,,) U (DX D). Local finiteness of {Wx,,}nEN im
plies that D is open in X. Hence, if Gl1 is a uniformity for X, then the 
uniformity Gli', generated by Gl1 U {a} is also a uniformity for X. Also, if.,, 
is 621-bounded, then .,, is also %,'-bounded (indeed, if x E Vx,,, then 
Wx k V 2x,, k Ux,, k Bn, hence Wx k a[x]; if x t1. U::'=i Vxn, then Wx 
n Wxn = 0 for all n, i.e. Wx k D, hence Wx k a[x]). Since Bn = a[xn], 
X is not totally bounded w.r.t. %,'. Thus, starting with a uniformity%, for 
X such that.,, is 621-bounded, we end up with a uniformity%,' for X such 
that.,, is %,'-bounded, but Xis not totally bounded w.r.t. %,'. 

(iii) ~(iv): If%, is the weakest uniformity in X making every member 
of UC ( X, .,, ) uniformly continuous, then %, generates the topology of X 
(UC ( X, .,, > separates points and closed subsets of X because UC*( X, .,, ) 
does: cf. 1.4). Moreover, it is easily checked that .,, is 621-bounded. Since 
every uniformly continuous function on a precompact uniform space is 
bounded, the result follows. 

(iv) 'r'> (iii): Consider the following example. Let X be the orbit of a 
given point in the irrational flow on the torus. Then X is dense in the 
torus, but not pseudocompact. We show that X is not R-pseudocompact 
(R is the acting group!). In the following way one can construct an 
infinite, locally finite R-dispersion in X. Representing the torus by (R/Z) 2, 

construct a disjoint sequence of rectangular open sets in the torus, each 
with one side of a given length (say, 1h) parallel to the direction of the 
chosen orbit X in the torus, and converging to a segment in the torus 
which does not belong to X. Since X is dense in the torus, the trace of this 
sequence in X is an infinite sequence of non-empty open sets in X which is 
clearly a locally finite R-dispersion in X. So ( X, .,, ) is not R-pseudocom
pact. 

However, let f E UC ( X, .,, ) . We show that f is bounded. Let x 0 E X. 
Since ( X, .,, ) is almost periodic, there exists a relatively dense subset P in 
R such that 

(1) lf(x0 + t) - f(x 0 ) I< 1 

for all t E P. (Here we view X as the set R with a topology which differs 
from the usual one, the action of R on X being given by 'TT( t, x) : = x + t 

for x EX, t ER.) That P is relatively dense in R means there exists a 
number I > 0 such that R = P + [O, /]. Since f E UC ( X, 7T), there is 
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o > 0 such that 

(2) lf(x + s) - f(x) I< 1 forallx EX, s ER, lsl< o. 
For every u E [O, /] there is a sequence 0 = u0 < u1 < · · · < uk = u, 
where k :S [21/o] + 1 =:k0 , and lu;+ 1 - u;I< o for i = 0, 1, .. . ,k - 1. 
Consequently, (2) implies that 

k-1 

(3) lf(x + u) - f(x) l:S ~ lf(x + U;+ 1) - f(x + u;) I< k :S k 0 
i=O 

for every x E X and u E [O, /]. However, for every s E R there are t E P 
and u E [O, !] with s = t + u, hence by (1) and (3): 

lf(x0 + s) - f(x 0 ) l:Sl/(xo + t + u) - f(x 0 + t) I 

+l/(xo + t)- f(xo)l<k0 + 1. 

This implies that/is bounded on X = {x0 + s: s ER}. D 

2.6. PROPOSITION. If <p: ( X, 'TT)~ ( Y, a) is a morphism of G-spaces 
and X is G-pseudocompact, then so is Y. 

Proof. Obvious. D 

2.7. PROPOSITION. If ( X, 'IT) and ( Y, a) are G-spaces, X is G-pseudo
compact and Y is compact, then ( X X Y, 7) is G-pseudocompact ( 7 as in 
1.3). 

Proof. Using 2.5 (i) ~(ii) and the lemma below, the proof can easily 
be given along the lines of [4], 3.4. D 

2.8. LEMMA. Let ( X, 'IT) be an arbitrary G-space and let ( Y, a) be a 
compact G-space. Define,for f E UC*( X X Y, 7), 

F( x) : = inf f ( x, y), x E X. 
yEY 

Then FE UC*( X, ?T). 

Proof. It is standard to show that F E C*( X) ( cf. for instance Lemma 
' 1.1 in [4]), and it is straightforward to verify that FE UC*( X, 'IT). D 

3. Proof of necessity in the main theorem. In this section we 
suppose G to be a locally connected locally compact Hausdorff topological 
group. In addition, ( X, 'IT) and ( Y, a) are G-spaces, and ( X X Y, 7) is 
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their product. We shall prove in this section: 

3.1. THEOREM. If /3G( x x Y) = /3GX x /3GY then either one of the 
G-spaces X or Y is not G-infinite, or X X Y is G-pseudocompact. 

The proof is basically the same as the proof of necessity in Glicks
berg's theorem as given by Frolik in [4], additional complications being 
caused by the fact that we need sequences of open sets which are internally 
linked, whereas in [4] the open sets are only required to be non-empty. We 
start with the following lemma. 

3.2. LEMMA. Suppose 

/JG( X X Y) = /3GX X /3GY. 

If f E UC*( X X Y, T) then for every e > 0 there exists VE CV:, such that 

If( tx, sy) - f( x, y) I< e for all ( x, y) E X X Y and ( t, s) E V X V. 

REMARK. The definition of T-uniform continuity includes only the 
above inequality with s = t. 

Proof. According to 1.4 the assumption implies that f has a continu
ous extension J to f3cX X f3cY. Then each point ( x, y) E f3cX X f3cY has 
a neighbourhood W1 X W2 such that lf(x', y') - f(x, y) I< e/4 for 
(x', y') E W1 X W2. Moreover, there are VE~ and neighbourhoods W{ 
of x and w2 of y such that VW{ k WI and vw2 k Wz. In particular, 

lf(tx', sy') - f(x', y') I 

~If (tx', sy') - ](x, y) I +j](x', y') - f (x, Y) I < e/2 

for (x', y') E W{ X W2 and (t, s) E V X V. Now a compactness argu
ment completes the proof. D 

3.3. LEMMA. Suppose /3G(X X Y) = f3cX X f3cY, and let {W,.},,EN be a 
G-dispersion in X X Y which is locally finite. Then there exists U E CV:,, U 
compact, and for every n E N there exist a point (an, b,,) E W,. and open 
sets An in X, Bn in Y such that 

U(an, bn) ~ Uan X Ubn ~An X Bn k W,.. 
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Proof. It is sufficient to find compact U E '¥.,and points (an, bn) E W,, 
(n EN) such that Uan X Ubn (;;; W,,: compactness then guarantees the 
existence of open sets An and Bn such that Uan X Ubn ~An X Bn (;;; W,,. 

According to Proposition 2.4 there exists f E UC*( X X Y, T) such 
that/( z) = 0 for all z E x x Y\ u:i= I w,, and such that for every n E N 
there is a point (an, bn) E W,, with /(an, bn) = 1. In view of Lemma 3.2 
there is U E '¥.,, U compact and connected, such that /(tan, sbn) > i for 
all n EN and (t, s) E U X U. This implies that for every n EN, 

co 

Uan X Ubn (;;; LJ Wk. 
k=I 

However, the sets Wk are mutually disjoint and open, Uan X Ubn n W,, -=I= 

0, and U, hence Uan X Ubn, is connected. Therefore, Uan X Ubn (;;; W,, 
for every n EN. 0 

3.4. LEMMA (cf. [4]; 1.2). Suppose /JG(X X Y) = /30 X X f3cY, X X Y 
is not G-pseudocompact, and, in addition, the spaces X and Y are both 
G-infinite. Then there exists a locally finite G-dispersion { Pn X Qn}neN in 
X X Y such that the sequences {Pn}neN and {Qn}neN are disjoint (hence 
G-dispersions in X and Y, respectively). 

Proof. We consider two cases. First, assume one of the G-spaces, say 
( X,.,, ), is not G-pseudocompact. Then in X there exists a locally finite 
G-dispersion { Pn}neN· By assumption, Y is G-infinite, so in Y there exists 
a G-dispersion { Qn}neN· Then { Pn X Qn}neN is easily seen to be a 
G-dispersion in X X Y which is locally finite. Next, suppose that both X 
and Y are G-pseudocompact. Since X X Y is not G-pseudocompact, there 
exists a locally finite G-dispersion {W,,}neN in X X Y. Choose U E '¥.,, 
(an, bn) E W,. and An(;;; X, Bn (;;; Yaccording to Lemma 3.3. In particular, 
we have for every n E N: 

(1) U(an, bn) (;;;An X Bn (;;; W,,. 

The sequence {An X Bn}neN is locally finite as well, hence every compact 
subset K of X X Y has an open neighbourhood 0 such that 

(2) 0 n (An X Bn) = 0 for almost all n EN. 

Now we claim the following: for every sequence {n;};eN in N and for 
every x EX there exists a neighbourhood W of Ux in X such that 
W n An; = 0 for infinitely many values of i E N. For assume the con
trary. Then there are a sequence { n;};eN in Nanda point x EX such that 
every neighbourhood of Ux meets An; for almost all i EN. By (1) the 
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sequence { Bn.heN is internally linked. Hence by 2.2(4°), as Yis G-pseudo-
' compact, there exists y E Y such that every neighbourhood of y meets 

infinitely many of the sets Bn,· Consequently, every neighbourhood of the 
compact set Ux X { y} in X X Y meets infinitely many of the sets 
An1 X Bn,• contradicting (2). This proves our claim. 

By induction one can now show, using our claim, that there exists a 
sequence {nJ;eN in N and mutually disjoint open sets P; such that 

(i EN). 

Similar reasoning shows the existence of a subsequence { kj}JeN of { n;heN 
such that there are mutually disjoint open sets Q J with 

(j EN). 

Now it is clear that the sequence {Pk1 X QJ}JeN meets the requirements of 
our lemma. D 

3.5. Proof of Theorem 3.1. This proof can now be given completely 
similar to the proof of the implication (3) ~ (1) in Theorem 2.1 of [4]. For 
completeness, we repeat it here, adapted to the present situation. Suppose 
/3G(X X Y) = /3GX X /3GY and X X Yis not pseudocompact. Then one of 
the spaces X or Y is not G-infinite. For if they are both G-infinite, then 
there exists a locally finite G-dispersion { Pn X Qn}neN according to Lemma 
3.4. By Proposition 2.4 there exists/ E UC*( X X Y, T) such that/(x, y) 
= 0 for (x, y) EX X Y\ U':=t Pn X Qn, and for every n EN there is 
(Pn• qn) E Pn X Qn withf(pn, qn) = 1. Then/ has a continuous extension 
J to f3GX X /3GY, and for e = ~ there is a finite covering of /30 X X /30 Y 
with open rectangles, on each of which J varies less than e. Hence there is 
such an open rectangle, say A X B, which contains infinitely many of the 
points (pn, qn). However, if (Pn• qn) EA X Band (pk, qk) EA X B with 
n -+. k, then also (pn, qk) EA X B, hence 

/(pn, qk) > f(Pn• qn) - e = 1/2. 

However, since the sets { P;};eN are mutually disjoint, as are the sets 
{Q;};eN• we have (Pn• qk) €£ U~ 1 P; X Q;, which implies f(Pn• qk) = 0. 
This contradiction concludes the proof. D 

3.6. The following examples show that some additional condition (e.g. 
that X and Y are both G-infinite) is needed in order to be sure that 
/30 ( X X Y) = /3GX X /3GY implies X X Y is G-pseudocompact. 
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l 0 • If G is discrete, then /3GZ = /3Z for all Tychonov G-spaces Z. If X 
is not G-infinite, then X is finite, and then for every Tychonov G-space Y 
we have 

In particular, if Y is not pseudocompact, then X X Y is not pseudocom
pact, hence not G-pseudocompact. 

2°. Let G be compact, Yan arbitrary Tychonov space which is not 
pseudocompact, and consider the G-spaces ( G, µ,) and ( Y, a), where 
µ1s := ts and a 1y := y fort E G, s E Gandy E Y. Then it can be shown 
that f3c( G X Y) = G X fiY (cf. [11], 4.4.13 (iv)), and consequently, that 
f3c( G X Y) = f3cG X ficY. However, G X Y is not pseudocompact and 
since the action of G on Y is trivial, it follows that G X Y is not 
G-pseudocompact. This is in accordance with the fact that ( G, µ) is in 
this case not G-infinite (cf. 2.2(3°) with X = G). 

More about this additional condition can be found in §5 below. 

4. Proof of sufficiency in the main theorem. In this section G is a 
locally compact Hausdorff topological group, not necessarily locally con
nected. Again, ( X, 'lT) and ( Y, a) are G-spaces and ( X X Y, T) is their 
product. In this section we shall prove: 

4.1. THEOREM. If X X Y is G-pseudocompact, then /3c(X X Y) = f3cX 
X f3cY. 

Again, the proof was inspired by [4] and [10]. However, a serious 
obstruction to a straightforward application of the methods used there 
was caused by the fact that in general for f E UC*( X X Y, T) it is not 
true that for every y E Y the function x ~ f( x, y) belongs to UC* ( X, 'lT) 
(for an example, cf. 5.2 below); compare this with Lemma 3.2 above. We 
avoid this difficulty, or rather, we prove it (in an implicit way) for the case 
that X X Y is G-pseudocompact, by means of the trick, introduced in 4.3 
below. 

First, we need a modification of Lemma 1.3 of [4]; cf. also Lemma in 
[6]. Due to a possibly weaker hypothesis (cf. §5 below) we have to 
consider T-uniforrnly continuous functions instead of functions which are 
just continuous. The proof is basically the same as in [4], but we have to 
be careful in connection with internal connectedness of sequences of open 
sets. 
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4.2. LEMMA. Let X X Y be G-pseudocompact and let f E 
UC*( X X Y, 7' ). Then the family of all functions x H- f(x, y): X - R with 
y E Y is equicontinuous on X, that is, 

'V x 0 E XV' e > 0 3 WE~: l/(x, y) - f(x 0 , y) I< e o. 

for all (x, y) E W X Y. 

Proof. Suppose the contrary. Then there exists x 0 EX such that for 
some e > 0 we have 

'V WE~ 3(x, y) E WX Y: lf(x, y) - /(x0 , y) I> 5e. 
0 • 

Now by induction it follows that there exist points (xn, Yn) E X X Y and 
open neighbourhoods W,, X v;, of (xn, Yn), w: X Vn of (x0 , Yn) in X X Y 
such that: 

(1) 

(2) 

(3) 

{ l/(x', y') - f(xn, Yn) I< ie 

lf(x", y") - /(xo, Yn) I< ie 

W,, s w,;_ 1 and 

for (x' y') E W X V · 
' n n' 

for (x" y") E W' X V · 
' n n' 

(compare with the proof of Lemma 1.3 in [4]). Since/ E UC*( X X Y, T) 
there exists U0 E 'V., such that U0 is compact, u0- 1 = U0 and 

lf(tx,ty)-J(x,y)l<ie foralltEU0 ,(x,y) EXX Y. 

This implies, together with (1), that for every n EN: 

(I)* {lf(x', y') - f(xn, yJ I< e 
lf(x", y") - /(xo, yJ I< e 

for (x', y') E U0(W,, X VJ, 

for (x", y") E U0(w: X VJ. 

The sequence {U0(W,, X V,,)}nEN is clearly internally linked and consists 
of non-empty open sets, so in view of 2.2( 4 °) it is not locally finite. Hence 
there exists a point ( x, j) in X X Y such that 

(4) 'v' 0 E ~x.f): On U0(W,, X V,,) =t= 0 

for infinitely many values of n E N. 

As the mapping f is continuous, there exists an open neighbourhood of 
( x, jl) of the form A X B, A open in X and B open in Y, such that 

(5) lf(x, y) - J(x, y) I< e for (x, y) EA X B. 

Since lfo(x, y) is compact, it can be covered by finitely many sets of the 
form t(A X B) with t E U0 . Their union contains a neighbourhood of 
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U0('x, y) of the form U00 with 0 E ~x,y)' By (4) and the pigeon-hole 
principle, there exists t0 E U such that 

(A X B) n t0(W,, X VJ# 0 for infinitely many values of n EN. 

Let i and j be two of the values of n in N, j > i, for which this is valid. 
Then 

3x E JV;,y E V:'.(t0x,t0y) EA X B, 

3x' E Wj,y' E »J'.(t0 x', t0 y') EA X B. 

However, Wj ~ UJ-i ~ W(, becausej - 1 2: i. It follows that x' E W(, so 
that (x', y') E W( X V;- This implies that 

t 0(x', y) E U0(W;' XV;) n (AX B). 

We infer from this, that the neighbourhood 0 : = A X B of ( .X, .Y) has the 
property, that 

(6) On U0(W( x V;) # 0. 

Observe that (6) holds for those values i of n in N for which (4) holds with 
0 =A X B. Suppose i is such a value. Then for some point (x', y') E 
(A XB) n U0(JV;X V;),wehaveby(5),(l)*and(3): 

lf(xo, Y;) - f(x, .Y) 12=1/(xo, y;) - f(x;, y;) I 

-lf(x;, Y;) - f(x', y') I -1/(x', y') - f(x, .Y) I 
> 3e. 

On the other hand, we have by (6) and (l)* for some point (x", y") E 0 
n U0(W;' x V;): 

l/(x, .Y) - f(xo, Y;) l:s;l/(x, .Y) - f(x", y") I 
+lf(x", y") - J(x0 , y;) I< 2e. 

This contradiction proves our lemma. 0 

4.3. In order to prove that /3c( X X Y) = f3cX X f3cY it is, by 1.5, 
sufficient (and necessary) to prove that every g EE( X X Y, Cc*( G)) can 
be extended to a continuous equivariant mapping g: f3cX X f3cY-+ Ct( G). 
The idea is first to extend the mapping x ~ g( x, - )(- ): X-+ Cc*( Y X G) 
to a mapping g: f3cX-+ Cc*( Y X G), and then to extend in a similar way 
the mappingy ~ g(-)(y, -): Y-+ Cc*(f3cX X G) to f3cY· In order to do 
so, we have to define a continuous action of G on Cc*( Y X G). 
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4.4. Define €: G X Cc*( Y X G) - Cc*( Y X G) by the rule 

€(t, /)(y, s) := f(r 1y, st) 

for (t, /) E G X c:(Y X G) and (y, s) E Y X G. It is easily seen that 
€ef = f and €s~rf = €srf for all s, t E G and f E C,~(Y X G). In addition, 
using the inequality 

1€,f(y, s) - €r0 fo(Y, s) l=lf(r 1y, st) - /0(t01y, st0 ) I 

<lf(r 1y, st) - f0(t- 1y, st) I +lf0(t- 1y, st) - f0(t01y, st0 ) I 

and a straightforward compactness argument, one may show that € is 
continuous (in fact, the proof is very similar to the proof of the conti
nuity of the action p of G on c:(G); cf. [11], 2.1.3). Consequently, 
(Cc*(Y X G), €)is a G-space. 

4.5. Proof of Theorem 4.1. In the following lemmas let g: X X Y -
Cc*( G) be a continuous, equivariant mapping such that g[ X X Y] is 
relatively compact in Cc*( G), or what amounts to the same because G is 
locally compact, such that g[ X X Y] is an equicontinuous set of functions 
on G. For x E X and ( y, t) E Y X G we set 

g(x )(y, t) : = g(x, y )(t ). 

4.6. LEMMA. For every x EX, g(x) is a continuous, bounded real-val
ued function on Y X G, and g: X - Cc*( Y X G) is continuous and equi
variant w.r.t. the action€ of G on Cc*(Y X G). 

Proof. Of course, boundedness of g( x) on Y X G is trivial. In addi
tion, once one has shown that g(x) E Cc*(Y X G), a straightforward 
calculation shows that g: X - Cc*( Y X G) is equivariant. So it remains to 
prove the continuity statements. (At first glance one might be tempted to 
apply [3], Theorem 5.3: our lemma would be an immediate consequence 
of the homeomorphism of Cc(X X Y, CcCG,R)) with Cc(X X Y X G,R) 
and of Cc( X X Y X G, R) with CcC X, Ci Y X G, R) ). However, the latter 
homeomorphism requires either that Y X G is locally compact or that 
X X Y X G is a k-space, and therefore we cannot apply this theorem. We 
shall indicate a direct proof using equicontinuity of g[X X Y].) 

Consider x 0 EX, y0 E Y and t0 E G. Then for all x EX and (y, t) 
E YX Gwehave 

(7) lg(x)(y, t) - g(xoHYo· to) l=lg(x, Y )(t) - g(xo, Yo)( to) I 

<lg(x, y)(t) - g(x, y)(t0 ) I +lg(x, y)(t0 ) - g(x0 , y0 )(t0 ) I· 
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Let e > 0. By equicontinuity of g[ X X Y], there exists a neighbourhood 

W of t0 in G such that 

(8) lg(x, y )(t) - g(x, y )(t0 ) I< e/2 

for all (x, y) EX X Y and all t E W. Moreover, continuity of g implies 

there are neighbourhoods U of x 0 and V of Yo such that 

lg(x, y)(t0 ) - g(x0 , y0 )(t0 ) I< e/2 

for all (x, y) E U X V. Hence 

(9) 

for all x E U and all (y, t) E V X W. In particular, putting x = x 0 in (9) 

yields continuity of g(x0 ) on Y X G for arbitrary x 0 E G. Now in order 

to prove that g: X ~ Cc*(Y X G) is continuous, use (9) and a standard 

compactness argument to show that for given compact sets K 1 in Y and 

K 2 in Gone has 

lg(x)(y, t) - g(x0 )(y, t) i< 2e 

for all (y, t) E K 1 X K2 and for all x in a suitable neighbourhood of x 0 • 

Hence g is continuous. D 

4.7. LEMMA. The set g[X] is pointwise bounded and equicontinuous on 

Y X G, hence it has compact closure in Cc*(Y X G). 

Proof. Putting x 0 = x in (7) we obtain 

lg(x)(y, t) - g(x)(y0 , t0 ) l~lg(x, y)(t) - g(x, y)(t0 ) I 

+lg(x, Y )(to) - g(x, Yo)(to) I· 

Taking into account equicontinuity of g[X X Y] as expressed by (8), it is 

sufficient to prove that there exists a neighbourhood V of y0 such that 

(10) lg(x, y)(t0 ) - g(x, y0 )(t0 ) I< e/2 

for all x E X and ally E V. To this end, consider the continuous mapping 

F: (x, y) ~ g(x, y )(t0 ): X X Y ~ R. 

Then for all (x, y) EX X Y and t E G we have, in view of equivariance 

of g: 

I F( tx, ty) - F( x, y) I= I g( tx, ty) ( t 0 ) - g( x, y) ( t 0 ) I 

=ig(x, y)(t0 t) - g(x, y)(t0 ) I· 
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Thus, equicontinuity of g[ X X Y] implies that for every 8 > 0 we have 
I F(tx, ty) - F(x, y) I< 8 for all (x, y) EX X Y and all t in a suitable 
neighbourhood of e in G. Stated otherwise, FE UC*( X X Y, T), and we 
may apply Lemma 4.2 to F. Hence there exists a neighbourhood V of y0 

such that 

I F(x, Y) - F(x, y0 ) i< e/2 

for all x E X, y E V. But this is exactly what we need in ( 10). Hence g[ X] 
is equicontinuous. As g[X] is also pointwise bounded (this follows from 
the fact that g[X X Y] is pointwise bounded on G), Ascoli's theorem 
implies that g[X] is relatively compact in Cc*(Y X G). D 

4.8. Proof of Theorem 4.1 (continued). Note that g[X] is an invariant 
subset of Cc*(Y X G) because g: X--+ Cc*(Y X G) is equivariant. Hence 
the closure Z of g[ X] is invariant as well. Thus, Z is a compact (by 4. 7) 
G-space, and g: X --+ Z is a continuous morphism of G-spaces. 
This implies that there exists a morphism of G-spaces g: {3GX--+ Z ~ 
Cc*( Y X G) which extends g. Putting 

g(x, y)(t) := g(x)(y, t) 

for (x, y) E /3GX X Y and t E G, it is clear that we obtain for every 
(x, y) E /3GX X Yan element g(x, y) of C*(G). Thus, we have a func
tion g: /3GX X Y--+ C*( G) which obviously extends the original function 
g: X X Y--+ C*(G). 

4.9. LEMMA. The mapping g: f3GX X Y--+ Cc*( G) is continuous, equi
variant, and g[f3GX X Y] has a compact closure in Cc*( G). 

Proof. Consider (x0 , y0 ) E /3GX X Y, e > 0 and a compact subset K 
of G. We have to prove that there exist neighbourhoods U of x 0 and Vof 
Yo such that 

lg(x, y)(t) - g(x0 , y0 )(t) i< e 

for all (x, y) E U X V and t EK. First, observe that by the triangle 
inequality we have for all (x, y) E f30 X X Y and t E G: 

(11) lg(x, y)(t) - g(x0 , y0 )(t) l~lg{x)(y, t) - g(x)(y0 , t) I 

+ig(x)(yo, t) - g(xo)(Yo, t) I. 
Consider the first term of the right-hand side of (11). Observe that 
g[f3GX] is equal to the closure of g[ X] in Cc*( Y X G), and as g[ X] is 
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equicontinuous, g[,80 X] is equicontinuous on Y X G (cf. 4.7) (note that 
equicontinuity of g[,80 X] does not follow from its compactness as Y X G 

is not locally compact). Hence for every t' EK there exists a neighbour
hood U' of t' in G and a neighbourhood V' of Yo in Y such that 

lg(x)(y, t) - g(x)(y0 , t') I< e/4 

for all x E ,80 X, y E V' and t E U'. Using compactness of K this implies 
that there exists V E cv;,0 such that 

lg(x)(y, t) - g(x)(y0 , t) I< e/2 

for all x E {30 X and y E V. As to the second term of the right-hand side 
of (11), due to continuity of g: /30 X-+ CcCY X G) there exists a 
neighbourhood U of x 0 in P0 X such that this term is at most e/2 for all 
x E U and t E K (notice that {Yo} X K is a compact subset of Y X G). 
This concludes the proof that g: f30 X X Y-+ c:( G) is continuous. 

Now continuity of g implies that g[f30 X X Y] is included in the 
closure of g[ X X Y] = g[ X X Y] in Cc*( G), which is compact. Hence 
g[,80 X X Y] has compact closure in C:'( G). Finally, for all t E G and 
(x, y) EX X Ywe have 

g(t(x, y)) = g(t(x, y)) = p1g(x, y) = p'g(x, y). 

Stated otherwise, the continuous mappings (x, y) ~ g(t(x, y)) and (x, y) 
1-+ p'g( x, y) from /30 X X Y into Cc*( G) are equal to each other on the 
dense subset X X Y of /30 X X Y. Hence they are equal on all of Po X X Y. 

Thus, g is equivariant. D 

4.10. Proof of Theorem 4.1 (continued). We have shown in 4.5 through 
4.9 that an arbitrary element g of E( X X Y, Cc*( G)) has a (unique, 
as X X Y is dense in f30 X X Y) extension to an element g of 
E(/30 X X Y, Cc*( G)), provided X X Y is G-pseudocompact. However, in 
that case Y is G-pseudocompact by Proposition 2.6, hence f30 X X Y is G
pseudocompact by 2.7. Consequently, we may apply a similar pro
cedure to g, obtaining an equivariant continuous mapping g: Po X X 
/30 Y-+ Cc*( G) which extends g, hence g also. D 

5. Some open problems. There are two major open problems, the 
solutions of which are required for a completely satisfying answer to the 
question of when /30 (X X Y) equals /30 X X f3cY. 

5.1. The first problem concerns the additional condition which is 
needed in order to prove that /30 (X X Y) = f3cX X f30 Y implies G-pseu
docompactness of X X Y. In the classical case this condition ( X and Y 
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both infinite) is required because for X (or Y) finite one has always 
/3( X X Y) = f3X X /3Y. In the case of a non-trivial, non-discrete group G 
the situation is different. Although some additional condition is required 
(cf. 3.6 above), the situation would be more satisfying when the condition 
of G-infiniteness which we employed would be sufficiently weak in order 
to prove the following result: if one of the spaces X or Y is not G-infinite, 
then f3c( X X Y) = f3c X X f3c Y. The following example shows that this 
statement is not generally true. 

5.2. EXAMPLE. Let G: = R. We give an example of two R-spaces 
( X, 7T) and ( Y, a) such that X is not R-infinite, X is compact, and 
nevertheless /3R(XX Y) =l=/3RXX /3RY. Let X=:S1, Y:= Rand con
sider the following actions of Ron X and Y, respectively: 

TT(t,x):= x+t(modl) fortER,xE[O,l), 
a( t, r) : = r + t for t E R, r E Y = R, 

where S 1 is represented as R/Z or, which amounts to the same, as the 
interval [O, I] with the endpoints identified. If /3 R( X X Y) were equal to 
/3RX X /3RY, then for every f E UC*( X X Y, T) and every e > 0 there 
would exist (cf. Lemma 3.2) 8 > 0 such that 

(1) lf(t + x (mod 1), s + r) - f(x, r) i< e 

for all x E [O, 1), r E R and s, t E R with Is i< 8 and It I< 8. Consider f: 
X X Y --. R defined by 

f(x,r) := arctan(rsin27r(r-x)), x E[O,l),rER. 

Then by uniform continuity of arctan on R, for every e > 0 there exists 
o > 0 such that for all t ER and (x, r) E [O, 1) X R we have 

lf(t + x (mod 1), t + r) - f(x, r) I 
=jarctan((r + t)sin2TT(r - x)) - arctan(rsin27r(r - x)) i< e, 

provided It sin 2'1T(r - x) i< 8. Hence f E UC*( X X Y, T ). 

On the other hand, puttingx := 0, r := n EN, t := 0 and s := l/n 
in (1) we obtain for all n EN: 

jt( 0, * + n) - f(O, n)J = arctan( * + n )sin27T( n + *) 
( 1 ) 2'7T n-co 

= arctan ;; + n sin -;:; --. arctan 2 'IT =I= 0. 

From this it follows that (1) cannot hold for all suitably smalls and t and 
all r E R and x E [ 0, 1 ). 
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5.3. Problem. Is there a "non-triviality condition" (C) for G-spaces, 
expressible in topological properties of the space and the actions, such 
that the following is true for all G-spaces X and Y: 

(i) If {3G( X X Y) = f3GX X /3GY and X and Y have (C), then X X Y 
is G-pseudocompact. 

(ii) If one of the G-spaces X or Y does not have ( C) then /3c( X X Y) 

= f3cX X f3GY. 

5.4. Another way to fill the gap, indicated in 5.1, is to replace the 
condition of G-pseudocompactness by a stronger property and try to 
prove that {3G(X X Y) = f3GX X f3cY implies this stronger property for 
X X Y under the additjonal hypothesis that X and Y are both infinite. A 
natural candidate for this "stronger property" would be ordinary pseudo
compactness. In that case, §4 above could be replaced by the following 
sequence of statements: 

5.5. LEMMA. Assume G is a topological group which is, as a topological 

space, merely a k-space, and let ( X, 'lT) be a G-space ( X a Tychonov space). 

If X is pseudocompact, then f3cX = {3X, the ordinary Stone-Cech compacti

fication of X. 

Proof. For every t E G the mapping 11' 1: X ~ X extends to a continu
ous mapping 1i1: f3X ~ f3X. In this way we obtain a mapping if: G X f3X 

~ f3X which is easily seen to have the properties of an action, except 
possibly continuity. We show that ii is continuous if X is pseudocompact. 

Let K be a compact subset of G and 'lT K : = 'lT IKx x· Then 'lT K: K X X ~ 
X is continuous, hence it has a continuous extension ii K: {3( K X X) ~ fJ X. 

However, K X X is pseudocompact, hence by Glicksberg's theorem, 
f3(K X X) = fJK X f3X = K X f3X. Thus, 7TK has a continuous extension 
iiK: K X fJX ~ fJX. Since for every t EK the continuous mappings ii{ and 
ii 1 are equal on X, they are equal on f3X, that is, ifK = 1TIKx.ex· Conse
quently, ?TIKx.ex is continuous for every compact subset K of G. It follows 
that the restriction of ?T to an arbitrary compact subset G X {3X is 
continuous. As G X /3X is a k-space, this implies 1i is continuous. 

This shows ( f3X, ii) is a G-space. Now it is easily seen that this is the 
maximal G-compactification of X. This proves our lemina. O 

5.6. REMARK. The result of Lemma 5.5 is stated without proof for 
locally compact groups G in [9]. 
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5.7. COROLLARY. Let G be as in 5.5 and let < x, 'lT) and < Y, (J) be 
Tychonov G-spaces such that X X Y is pseudocompact. Then f3c( X X Y) = 
f3cX X f3cY. 

Proof. For Z = X, Z = Y or Z = X X Y, we have f3cZ = {3Z by 
Lemma 5.5. Now apply Glicksberg's theorem. D 

The observations above lead to the following 

5.8. Problem. Let G be a locally compact group, G not discrete. Is it 
true that every G-pseudocompact G-space X is pseudocompact? I believe 
the answer is no, even if G is locally connected and compact, but I was not 
able to find a counterexample. 

5.9. The answer to the previous problem would be "yes" if the 
following version of Lemma 5.5 were true: if G is locally compact 
Hausdorff and < X, 'lT) is G-pseudocornpact, then f3cX = {3X (use 4.1 
above and necessity of Glicksberg's result for a G-space of the form 
X X Z, X being G-pseudocompact and Z infinite, compact, having trivial 
action). Observe that f3aX = {3X if and only if UC*< X, 'lT) = C*( X), i.e. 
every bounded continuous function on X is 'lT-uniformly continuous. Thus, 
our next problem reduces to a question, studied among others in [2], if one 
considers the G-space < G, µ) ( µ1s = ts ). 

5.10. Problem. Find necessary and sufficient conditions for a G-space 
< X, 'lT) in order that f3cX = f3X. In particular, is G-pseudocompactness 
sufficient? 

5.11. REMARK. Necessity in the preceding problem is related to the 
implication (ii) => (i) in 2.5. Indeed, suppose there exists a G-space ( X, 'TT) 
such that X is G-pseudocompact, X is not pseudocompact, but f3c X = /3 X. 
Then there exists f E C*( X) which has not a maximum or a minimum on 
X. Since C*( X) = UC*< X, 'lT), such an example would show that (ii) """ (i) 
in Proposition 2.5. 

Note added in proof. Recently the answer to Problem 5.8 turned out to 
be "yes". This solves a number of other problems in this section (not 
5.3!). It also follows, that our main theorem holds for infinite products as 
well. 
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