
Linearity, Control Effects, and Behavioral Types

Lúıs Caires1 and Jorge A. Pérez2(B)

1 NOVA LINCS and Departamento de Informática, FCT,
Universidade Nova de Lisboa, Lisbon, Portugal

2 University of Groningen & CWI, Amsterdam, The Netherlands
j.a.perez@rug.nl

Abstract. Mainstream programming idioms intensively rely on state
mutation, sharing, and concurrency. Designing type systems for handling
and disciplining such idioms is challenging, due to long known conflicts
between internal non-determinism, linearity, and control effects such as
exceptions. In this paper, we present the first type system that accommo-
dates non-deterministic and abortable behaviors in the setting of session-
based concurrent programs. Remarkably, our type system builds on a
Curry-Howard correspondence with (classical) linear logic conservatively
extended with two dual modalities capturing an additive (co)monad, and
provides a first example of a Curry-Howard interpretation of a realistic
programming language with built-in internal non-determinism. Thanks
to its deep logical foundations, our system elegantly addresses several
well-known tensions between control, linearity, and non-determinism:
globally, it enforces progress and fidelity; locally, it allows the specifica-
tion of non-deterministic and abortable computations. The expressivity
of our system is illustrated by several examples, including a typed encod-
ing of a higher-order functional language with threads, session channels,
non-determinism, and exceptions.

1 Introduction

In this paper, we study a principled, typeful foundation to represent a relevant
class of control effects within a behavioral type system for stateful concurrent
programs. Sophisticated structural type systems have shaped mainstream static
type checking for a long time now, and are fairly complete tools to discipline and
effectively check programs that manipulate pure values. Unfortunately, the same
cannot be said for most mainstream programming idioms, which intensively rely
on state mutation, sharing, and often concurrency, about which “standard” type
systems are quite silent.

Interactive concurrent systems need to manipulate stateful resources, rang-
ing from basic memory references and passive objects (such as files, locks, and
communication channels) to dynamic entities (such as threads or web references)
typically subject to linearity constraints. To extend type-based verification tech-
niques to this challenging setting, substructural type systems, based on various
forms of linearity and affinity, have been increasingly investigated [31,35,45–47],
and start to make their way towards practical adoption. Recent examples include
c© Springer-Verlag GmbH Germany 2017
H. Yang (Ed.): ESOP 2017, LNCS 10201, pp. 229–259, 2017.
DOI: 10.1007/978-3-662-54434-1 9

230 L. Caires and J.A. Pérez

Fig. 1. Two code snippets.

Mozilla’s Rust, but also embeddings of session types in target languages with-
out linear types [32,41]. Some approaches use types to model states (cf. asser-
tions); examples include typestate and several affine, linear, and stateful type
systems, see, e.g., [20,31,33]. In other works, types are used to model behaviors
(cf. processes); examples in this line include session types and usage types such
as, e.g., [27,28,34], often referred to as behavioral types [29].

Linear types are in general very expressive, and the fine-grained specifica-
tions of usage types that they typically support may simultaneously bring a
benefit and a curse. In particular, a still open issue is how to seamlessly com-
bine linearity with many other useful programming mechanisms—a prominent
example being the interaction of linearity with non-determinism and control
effects, such as exceptions and (linear) continuations. The general issue is that
by their very essence control effects (and associated programming language con-
structs) conflict with the linear, stateful usage discipline of values manipulated
by programs, which makes it difficult to statically check programs. For example,
when a communication channel is aborted, any linear values held by a channel
client continuation must be aborted as well (which may not be always possible),
or passed away to some candidate consumer code in scope. Likewise, after an
exception is raised, it is not always clear how to safely discard a continuation
holding linear values, nor how to proceed after the exception is caught. This
situation is already present in non-deterministic programs where subexpressions
may return more than one result, or even no result at all (e.g., “fail”), as in the
non-deterministic monad.

These challenges and conflicts are illustrated by the examples in Fig. 1,
adapted from [46], which we express in an idealized linear functional language.
The Ref function is assumed to return a stateful fresh value r that may either
be initially discarded, or subject to a strictly linear protocol consisting of a
write r x operation followed by a free r operation. We use a common idiom
when programming with usage types, in which an operation f acting on a linear
value a that needs to be used according to a stateful protocol would be called as
a′ = (fa), where a′ refers to the new state of a (which gets “consumed” in the
call (f a)). So, in our examples, failure to call free r′ after r′ = write r x may
result in, say, a memory leak. Now, in Fig. 1(left), if for some reason the call f()
raises an exception, the continuation will be safely aborted, but if f() succeeds
and the call g() raises an exception instead, the resulting behavior would be
ill-defined, as the required execution of free a′ will be discarded. On the other

Linearity, Control Effects, and Behavioral Types 231

Fig. 2. Code snippet for the server example.

hand, consider the slightly different code snippet in Fig. 1(right): even assuming
that f() or g() may raise an exception, there will be no value usage violations,
since both a and b will still be in their initially discardable state at such stage.
A suitable typing discipline should deem the left snippet unsafe but the right
snippet safe, taking into account the interference between control effects and the
linear usage behavior of values in scope.

For a further example, consider the slightly more involved scenario given in
Fig. 2, which involves concurrent communication and explicit exception handling.
Our idealized linear functional language is now assumed to include the ability
to fork threads, and manipulate session typed communication channels. In the
first line of Fig. 2, a thread representing a logging server is forked: the fork
primitive FORK l.e spawns a thread with body e accessing one endpoint of session
channel l, and returns the other endpoint (bound to log) to the caller. The
logging server receives precisely two messages, whose payload is a string, and
closes the connection. Then another concurrent thread is spawned, mocking a
resource allocation service: it receives a resource code, returns the quality of
service constraints, and receives some reservation information bk .

The server at channel res is used by client code that first sends a resource
code QU2112, receives a quality of service qss spec, and then calls a conformance
checking operation Check which, crucially, may raise an exception:

LETCheck = λl.λx.SEND(l, “checkin”); if Valid(x) then l else THROW (l) IN ...

All interactions between client and server are meant to be logged, so channel
log is also passed to the Check function together with the quality of service
specification.

The overall expected behavior would be as follows. If Valid() returns true,
then Check succeeds and the client will proceed booking the resource; however, if
Check raises an exception, the continuation will be discarded and the exception
handler invoked. In this case, the continuation of the resource allocation thread
at the other endpoint will also need to be aborted. If the overall ongoing (linear)
session between client and server could be safely discarded at that particular
stage of the protocol, then the overall behavior may be deemed safe, even if the
log could not be safely aborted, since the linear outstanding interaction on the
log endpoint will be performed anyway by the exception handler. Indeed, notice

232 L. Caires and J.A. Pérez

that the log is linearly passed to the exception handler as logc. Again, a suit-
able typing discipline combining effects and linearity should be able to express
the assumptions underlying the reasoning above, and deem the code snippet
safe, under the stated assumptions, but unsafe if the client server session is not
safely abortable exactly before the RECV(f, bk) interaction (cf. Line 2 in Fig. 2).
Moreover, any such typing discipline should also be compatible with internal
non-determinism, in the sense that if the result of Valid() is non-deterministic,
then the resulting computation must be soundly typed for any alternative result,
including the degenerate situation in which no value at all is returned, and the
rest of the computation needs to safely abort, including, in that extreme case,
the exception handler code itself!

The main goal of the paper is to investigate a principled foundation to
express, reason and type-check a wide class of control effects in the context
of a linear behavioral type system. Crucially, our approach builds on prior work
on Curry-Howard correspondences between session types and various fragments
of linear logic; our type system is a conservative extension of a standard sys-
tem of classical linear logic. By approaching a Curry-Howard correspondence
from the programming language perspective (in the spirit of, e.g., [5,6,18]),
we introduce two new dual logical modalities—monadic �A and co-monadic
⊕A—with associated programming constructs and proof reductions. As is often
the case for type systems motivated by Curry-Howard correspondences, our sys-
tem ensures global progress and usage/session protocol fidelity. Moreover, it is
intrinsically compatible with all other logically motivated constructs and meth-
ods introduced in prior/related work, such as behavioral polymorphism [10,48],
logical relations [37], dependent types [42], higher-order code mobility [44], and
multiparty protocols [9,16].

It turns out that our new modalities �A and ⊕A suffice to express general
forms of internal non-determinism, and, importantly, include failure—an explic-
itly typed form of affinity—as a special case. These two modalities can be seen
as an additional pair of linear logic exponentials, and as such obey the basic
monadic/co-monadic laws. However, while the standard linear logic modalities
!A and ?A encapsulate contraction and weakening, �A and ⊕A encapsulate non-
determinism and failure, in a sense to be made precise below. Although related
to the non-deterministic monad and to well-known powerdomain models of non-
determinism [39], a key novelty of our work is the perfect Curry-Howard match
between proof reductions associated to the �A and ⊕A modalities and sensi-
ble operational rules. This correspondence allows us to state cut-elimination,
and to naturally derive key properties with practical impact (e.g., lock freedom,
fidelity, and strong normalization), while supporting natural effectful program-
ming idioms and powerful reasoning techniques (such as logical relations).

We will illustrate through examples how expressive linear usage protocols
involving effects may be compiled down to the basic linear logic system extended
with these two primitives and associated programming constructs. We will
present our basic results and examples for a canonical session-based π-calculus
model realizing a Curry-Howard interpretation of session types as linear logic

Linearity, Control Effects, and Behavioral Types 233

propositions. As is well-known, the π-calculus is a complete foundational model,
able to represent, e.g., general concurrent computation, higher-order data, and
object-oriented features [40]. Hence, our development is carried out in the set-
ting of most higher-level programming languages. In particular, we will use
this process model as target language in a typed encoding of an effectful lin-
ear higher-order functional language with threads, session-typed channels, non-
determinism, and exceptions, allowing us to show typings for the above examples.

Structure of the Paper. Next, Sect. 2 presents our Curry-Howard interpreta-
tion of session types for concurrent processes via examples. Sect. 3 establishes
meta-theoretical results for typed processes: cut elimination (Theorem 3.1),
type preservation (Theorem 3.2), progress (Theorem 3.3). Also, a postponing
result (Theorem 3.5) connects our process model with the (non confluent) non-
determinism typical of process calculi. Sect. 4 encodes λexc (a linear, higher-
order functional language with concurrency and exceptions) into session-typed
processes. λexc is the reference language for the motivating examples above. Theo-
rem 4.1 ensures that our encoding preserves typing; therefore, all results in Sect. 3
will carry over to λexc. In Sect. 5 we discuss related works, and Sect. 6 concludes.

2 The Core Language and Its Type System

We base our development on a standard session-typed π-calculus, a core lan-
guage in which general higher-order concurrent programs may be modeled and
analyzed [40]. The (binary) session discipline [27,28] applies to pairs of name
passing processes that communicate through point-to-point channels. In this
setting, interaction between processes always occur in matching pairs: when one
partner sends, the other receives; when one partner offers a selection, the other
chooses; when a partner closes the session, the other must acknowledge—no fur-
ther interactions may occur on the same channel. Sessions are initiated when a
participant invokes a server, which acts as a shared provider, with the capabil-
ity of unboundedly spawning fresh sessions between the invoking client and the
newly created service instance process. A service name may be publicly shared
by any clients in the environment. A session-based system exhibits concurrency
and parallelism because many sessions may be executing simultaneously and
independently. No races in communications within a session (or even between
different sessions) can occur. Both session and server names may be passed
around in communications. Session channels are subject to a linear usage disci-
pline, conforming to a specific state dependent protocol, while server channels
can be freely shared, and used by an arbitrary number of concurrent clients that
can call on them for spawning new session instances.

Next we gradually introduce the ingredients of our typed process model (syn-
tax, semantics, session types and their linear logic interpretation), which are sum-
marized in Fig. 3. This presentation allows us to better motivate and describe
the key novelty in this paper—the(dual) types for non-deterministic behaviors
in sessions.

234 L. Caires and J.A. Pérez

Caires and Pfenning [11] introduced a type system for π-calculus processes
that corresponds to a linear logic proof system, revealing the first Curry-Howard
interpretation of session types as linear logic propositions. Unlike traditional
session type systems, Curry-Howard interpretations of behavioral types ensure
global progress (i.e., well-typed processes never get stuck), livelock-freedom, and
confluence (up to ≡), and may be developed within intuitionistic [11,13] or
classical linear logic [13,48], with certain subtle differences in expressiveness.
Our system extends the presentation Σ2 of classical linear logic [1] with mix
principles and, crucially, with new exponential modalities ⊕A and �A, which
will be interpreted as (dual) types for non-deterministic sessions.

Definition 2.1 (Types). Types (A,B,C) are given by

A,B :: = ⊥ | 1 | !A | ?A | A ⊗ B | A � B | A ⊕ B | A � B | ⊕A | �A

In examples we will also assume given some basic (data) types (e.g., naturals,
strings, etc.), but will not elaborate the nature of such basic types (see, e.g., [42]).
Despite notational similarity, there is no ambiguity between our new (unary)
modalities ⊕A and �A and standard linear logic (binary) operators for additive
disjunction and conjunction.

For any type A, we define its dual A, where (·) corresponds to linear logic
negation (·)⊥, following standard de Morgan-like laws. Intuitively, the type of a
session endpoint is the dual of the type of the opposite endpoint.

Definition 2.2 (Duality). The duality relation on types is given by:

1 = ⊥ !A =?A A ⊗ B = A � B A ⊕ B = A � B ⊕A = �A

⊥ = 1 ?A = !A A � B = A ⊗ B A � B = A ⊕ B �A = ⊕A

Typing judgments have the form P � Δ;Θ, where P is a program term, Δ is the
linear context and Θ is the unrestricted context, along the lines of DILL [4] and
Σ2 [1]. Both contexts are assignments of types to (channel) names x, y, z,
We write ‘·’ to denote empty typing environments. After erasing the term P ,
our judgment corresponds exactly to a logical sequent in the classical linear
logic Σ2 of [1]. Remarkably, this formulation naturally supports a Curry-Howard
interpretation for the exponentials !A and ?A in terms of standard (π-calculus)
semantics for lazy replication [11,13].

2.1 Reduction Semantics

The operational semantics of our session calculus is defined by a relation of
reduction (denoted P → Q) that expresses dynamic evolution, and a relation of
structural congruence (denoted P ≡ Q), which equates processes with the same
spatial (or static) structure. This semantics exhibits a precise correspondence
with cut elimination at the logic level. While most cut-reduction steps directly
correspond to process reductions, other cut-reduction steps are better expressed

Linearity, Control Effects, and Behavioral Types 235

in the process world as structural congruence principles or as behavioral equiv-
alences; this applies similarly to the so-called commuting conversions, which are
known to capture typed behavioral equivalences [37].

To describe reductions and conversions on proof trees (which correspond to
typing derivations), we introduce a simple algebraic notation. For each typing
rule (T*) with k premises d1, . . . , dk we denote by T*(p1, p2, . . .) the deriva-
tion obtained by applying rule (T*) to the derivations p1, . . . , pk. If the proof
rule binds names x̃ in the conclusion (as in, e.g., cut), we would then write
T*(x̃)(p1, p2, . . .) to make this binding explicit.

2.2 Basic Typing Rules, Congruence Rules, and Reduction Rules

The parallel composition of processes is typed in our system by rules correspond-
ing to the cut and mix principles (dependent and independent composition,
respectively).

P � Δ;Θ Q � Δ′;Θ
P | Q � Δ,Δ′;Θ

(T |)
P � Δ,x:A;Θ Q � Δ′, x:A;Θ

(νx)(P | Q) � Δ,Δ′;Θ
(Tcut)

0 �;Θ
(T·)

The mix rule (T |) types the composition of two processes that do not share
linear names; P and Q run in parallel but do not interact. The cut rule (Tcut)
types the composition of P and Q while establishing a binary session between
them using a single linear channel x; each process holds one of the two (dual)
endpoints x of a session of type A and A. This channel is kept private to the
composition by the restriction operator (νx)(...) so that the newly established
session will not be affected by interferences. Rule (T·) allows the inactive process
0 to be introduced. Neutrality of 0 is expressed by the conversion T|(T·,D) ∼= D
at the level of proofs, which corresponds exactly to the usual structural con-
gruence principle 0 | P ≡ P (we consider here a conversion, not a computa-
tional reduction, since it does not involve any process interaction). We take
process terms up to basic structural congruence principles, namely we assume
that − | − is commutative and associative with unit 0, etc. This way, e.g., P | Q
and Q | P denote the same process, i.e., the (unique) parallel composition of P
and Q. Thus, Rule (Tcut) is symmetric w.r.t. its premises: if Tcut(D1,D2) is a
derivation then Tcut(D2,D1) is the same derivation; we then also consider the
conversion Tcut(D1,D2) ∼= Tcut(D2,D1).

Session Send and Receive. Session-typed processes communicate by sending
and receiving messages according to some session discipline. The message pay-
load can be a value of some primitive data type or a session channel; we focus
here on the general case of session passing (delegation). Type A ⊗ B is the type
of a session that first sends a session of type A and then continues as a session of
type B. As such, it corresponds to the session type !A.B of [27]. Dually, A � B
is the type of a session that first receives a session of type A and then continues
as a session of type B; it thus corresponds to the session type ?A.B. Hence, the

236 L. Caires and J.A. Pérez

session type ?A.B corresponds to the linear type A � B. We have the following
typing rules for send A ⊗ B and receive A � B.

P � Δ, y:A;Θ Q � Δ′, x:B;Θ
x(y).(P | Q) � Δ,Δ′, x:A ⊗ B;Θ

(T⊗)
R � Γ, y:C, x:D;Θ

x(y).R � Γ, x:C � D;Θ
(T�)

An output process is then of the form x(y).M , where y is a freshly created
name. The behavior of such an output process is to send session y on x and then
proceed as defined by M . In our typed language, the output continuation M has
the form P | Q, where P defines the behavior of the session y being sent and Q
the behavior of the continuation session on x. An input process is of the form
x(y).R, a process that receives on session x a session n, passed in parameter y,
and then proceeds as specified by R. The continuation R will use the received
session but also any other open sessions (including x). Notice that y is bound
both in x(y).M and in x(y).R, and so only fresh names can be sent in output
processes; this corresponds to the internal mobility discipline [7], without loss
of expressiveness. The associated principal cut reduction corresponds to process
communication, where C = A, D = B, expressed by

Tcut(x)(T⊗(y)(D1,D2),T�(y)(D3)) → Tcut(x)(Tcut(y)(D1,D3),D2)

This reduction exactly captures (bound output) communication in the
π-calculus

(νx)(x(y).M | x(y).R) → (νx)(νy)(M | R)

where we write M ≡ P | Q. Although − | − is commutative there is no ambiguity
in Rule (T⊗): P and Q are the split of M typed by P � Δ, y:A;Θ and Q �
Δ′, x:B;Θ, respectively, and Δ and Δ′ are the split of the linear context in the
conclusion. The multiplicative units ⊥ and 1 type session termination actions as
seen from each endpoint; no partner can further use a closed session.

x.close � x:1;Θ
(T1)

P � Δ;Θ
x.close;P � x:⊥,Δ;Θ

(T⊥)

The associated principal cut reduction corresponds to session termination, which
we define at the level of processes and proof trees respectively by the rules

(νx)(x.close | x.close;P) → P Tcut(x)(T1,T⊥(D)) → D

Types 1 and ⊥ correspond to the single type end in usual session types, and
usually have a silent interpretation. In the presence of mix principles, as we
consider here, propositions ⊥ � 1 and 1 � ⊥ are valid. Considering ⊥ = 1, we
could define a single type ‘•’ as standing for “both” 1 or ⊥, where • = •. (Recall
that A � B � A � B.)

Linearity, Control Effects, and Behavioral Types 237

Session Offer and Choice. The linear type A ⊕ B types a session that first
chooses (from the dual partner menu) either “left” or “right”, and then continues
as a session of type A or B, depending on the choice. This type is the binary
version of the session type ⊕i∈I{li:Ai} (labeled internal choice). The linear type
A�B types a session that first offers both “left” or “right” menu options and
then continues as a session of type A or B, depending on the choice made by
the partner. Thus, A�B is the binary version of the session type �i∈I{li:Ai}
(labeled external choice). Offers and choices are typed by the additive linear
conjunction and disjunction � and ⊕, as defined by the rules:

R � Δ,x:A;Θ
x.inl;R � Δ,x:A ⊕ B;Θ

(T⊕1)
R � Δ,x:B;Θ

x.inr;R � Δ,x:A ⊕ B;Θ
(T⊕2)

P � Δ,x:A;Θ Q � Δ,x:B;Θ
x.case(P,Q) � Δ,x:A � B;Θ

(T�)

The associated principal cut reductions correspond to the process and proof
reductions

(νx)(x.case(P,Q) | x.inl;R) → (νx)(P | R)
(νx)(x.case(P,Q) | x.inr;R) → (νx)(Q | R)
Tcut(x)(T�(D1,D2),T⊕1(D3)) → Tcut(x)(D1,D3)
Tcut(x)(T�(D1,D2),T⊕2(D3)) → Tcut(x)(D2,D3)

In examples we may consider n-ary labeled sums, close to usual session types
constructs:

R � Δ,x:A;Θ
x.li;R � Δ,x: ⊕i∈I {li : Ai};Θ

Pi � Δ,x:Ai;Θ (all i ∈ I)
x.casei∈I(li.Pi) � Δ,x: �i∈I {li : Ai};Θ

with associated principal cut reduction expressed by

(νx)(x.casei∈I(li.Pi) | x.li;R) → (νx)(Pi | R)

Example 2.3 (Movie Server (1)). Consider a toy scenario involving a movie
server and some clients. We first model a single session (on channel s) estab-
lished between client Alice(s) and server instance SBody(s). The server session
offers two options: “buy movie” (inl), and “preview trailer” (inr). Alice selects
the “preview” option from the server menu, and plays the corresponding proto-
col. Consider now the following terms:

SBody(s) � s.case(s(title).s(card).s〈movie〉.s.close, s(title).s〈trailer〉.s.close)
Alice(s) � s.inr; s〈“mullholanddrive”〉.s(preview).s.close;0

System1 � (νs)(SBody(s) | Alice(s))

Assume some given basic types for movie titles (T), credit card data (C) and
movie files M , which are self-dual (since they do not type communication

238 L. Caires and J.A. Pérez

capabilities but values of basic types). We can then provide the following types
and derivable type assignments for the various system components as follows:

SBT � (T � C � M ⊗ 1) � (T � M ⊗ 1)
SBody(s) � s : SBT ; · Alice(s) � s : SBT ; ·

We would then have System1 � · ; ·. While the type of the server endpoint is
SBT , the type of a client endpoint would be SBT = (T ⊗ C ⊗ M � ⊥) ⊕
(T ⊗ M � ⊥). �

Shared Service Definition and Invocation. Shared service definition and
invocation are typed by the linear logic exponentials ! and ?. Type !A types
a shared channel that persistently offers a replicated service which whenever
invoked spawns a fresh session of type A (from the server’s perspective). Dually,
type ?A types a shared channel on which requests to a persistently replicated
service of type A can be unboundedly issued (from the client’s perspective). We
consider the following typing rules:

P � Δ;x:A,Θ

P � Δ,x:?A;Θ
(T?)

Q � y:A;Θ
!x(y).Q � x:!A;Θ

(T!)
P � Δ, y:A;x:A,Θ

x?(y).P � Δ;x:A,Θ
(Tcopy)

The associated principal cut reduction corresponds to shared service invocation

(νx)(!x(y).Q | x?(y).P) → (νx)(!x(y).Q | (νy)(P | Q))

This operational interpretation of the rules for !A and ?A (cf. [1,4,38], imple-
menting “lazy” contraction) exactly coincides with the usual interpretation of
lazy replication. Notice that Rule (T?) is silent on the term assignment: it imple-
ments a bookkeeping device to move the typed channel x :?A to the unrestricted
context, and does not induce a computational effect (e.g., as exchange is also
implicitly handled).

As our typing judgments have two different regions, linear and exponential,
two cut rules are required [4], one for cutting a linear (session) channel in the lin-
ear context (Rule (Tcut), already presented in Sect. 2.2), and the following rule,
for cutting an unrestricted (shared) channel in the exponential context [4,38]:

P � y:A;Θ Q � Δ;x:A,Θ

(νx)(!x(y).P | Q) � Δ;Θ
(Tcut?)

For typing “source programs” only the linear Rule (Tcut) is required, but
Rule (Tcut?) is required for cut-elimination; hence, Rule (Tcut?) is a “runtime”
typing rule. The principal reduction above is expressed at the level of proofs by

Tcut(x)(T!(y)(D1),Tcopy(y)(D2)) → Tcut?(xy)(D1,Tcut(y)(D1,D2))

Example 2.4 (Movie Server (2)). We illustrate the usage of !A and ?A types
using a shared movie server, which may answer requests from an unbounded
number of clients; here we use just two concurrent clients, SAlice and SBob.
Alice still selects the “preview trailer” option as in Example 2.3, but Bob selects
the “buy movie” option. Recall the definitions of processes SBody(s) and Alice(s)
and type SBT from Example 2.3.

Linearity, Control Effects, and Behavioral Types 239

MOVIES (srv) � !srv(s).SBody(s)

Bob(s) � s.inl; s(“inception”).s(bobscard).s(mpeg).s.close;0

SAlice(srv) � srv(s).Alice(s) SBob(srv) � srv(s).Bob(s)

System2 � (νsrv)(MOVIES (srv) | SAlice(srv) | SBob(srv))

The following typing judgments are derivable:

MOVIES (srv) � srv : !SBT ; · SAlice(srv) � · ; srv : SBT
SBob(srv) � · ; srv : SBT Alice(srv) | Bob(srv) � srv : ?SBT ; ·

We can obtain System2 � ·; · as follows: we first use the (mix) Rule (T |) to
compose the two clients; then, Rule (T?) is used to merge the shared endpoints
under the explicit type ?SBT ; finally, the clients are composed with the server
using Rule (Tcut). �

Identity. We interpret the identity axiom by the forwarder process [x ↔ y]
[12,48], which denotes a bidirectional (linear) link between sessions x and y, giv-
ing a logical justification to a known concept in π-calculi (cf. [24]). The forwarder
at type A is typed

[x↔y] � x:A, y:A;Θ (Tid)

The associated cut reduction (νx)(P | [x↔y]) → P{y/x} (where y is not free in
P) is akin to the application of an explicit substitution. It is known since [30] that
linear forwarders can simulate substitution in the sense of the above reduction
rule. We also introduce [x ↔ y] ≡ [y ↔ x] as a structural congruence axiom,
as a direct consequence of (implicit) exchange in the typing context. While a
well-typed copycat process FA without forwarder links can be easily constructed
for any concrete type A by η-expansion (see [13]) the primitive forwarder is
important when considering polymorphism [10]. It also allows us to represent
the “free” output construct x〈y〉.P (where y is a free channel name in scope) by
x(z).([y↔z] | P) (cf. [7]).

2.3 Non-determinism and Failure

The developments of this paper focus on the challenge of expressing fundamental
primitives for non-deterministic behavior—including the special important case
of abortable behavior—in the setting of our Curry-Howard correspondence for
session types.

It is often believed that a Curry-Howard interpretation of a programming
language is hard to reconcile with true (so-called internal) non-determinism in
computation, since reduction steps should express at most behavioral equiva-
lences on processes, via proof identities, which are inherently confluent from an
operational viewpoint. However, it is clear, at least from work on denotational
semantics and functional programming, that non-determinism can be handled
equationally by working on the powerdomain of computation results. In the

240 L. Caires and J.A. Pérez

logical setting, developments on differential linear logic [22] also require the inter-
pretation domain for proofs to be closed under a (formal) notion of “sum”, which
could be interpreted as non-deterministic choice. Although partially inspired by
such approaches, our proposal picks a fairly different road, which turns out to
lead to the first example of a Curry-Howard interpretation of a realistic pro-
gramming language with built-in internal non-determinism.

It is well-known after Girard that the linear logic exponential modalities
!A and ?A, which have been used above to model the type of shared channel
names, are not uniquely defined by their standard proof rules: not surprisingly,
if one adds additional operators defined by the same rules, we obtain indepen-
dent monad/comonad pairs. We exploit this fact to our advantage, noting that it
allows us to modularly add new “exponential” modalities to the base logical sys-
tem, defined by identical proof rules (in Girard’s original formulation), without
semantically interfering with the existing ones. Any such pair of connectives (say,
�A and ⊕A) will yield a dual monad/comonad pair defined by the fundamental
principles (in a simplified form):

� Δ,A

� Δ,�A

� �Δ,A

� �Δ,⊕A

For the usual modalities !A and ?A, additional specific rules for ?A define the
intended semantics of the linear logic exponentials, which encapsulate the struc-
tural principles of weakening and contraction:

� Δ

� Δ, ?A
� Δ, ?A, ?A

� Δ, ?A

These observations suggest a logically justified methodology for adding new
monadic operators to the basic linear logic framework, by means of indepen-
dent monad/comonad pairs in which the monad semantics is defined by specific
additional logical principles. We develop our type system on top of (classical)
linear logic, conservatively extended with two operators capturing a (co)monad
defined by (a refined version of the) following principles, which can be verified
to be sound for an (additive) monad �− and comonad ⊕−.

� Δ,A

� Δ,�A

� �Δ,A

� �Δ,⊕A

�
� �A

� �Δ � �Δ

� �Δ

The resulting proof (and type) system provides a Curry-Howard interpretation
of a realistic programming language with built-in internal non-determinism and
failure.

Getting back to the presentation of our type system, we capture non-
deterministic behavior in the type structure by operators �A and ⊕A related
by duality (�A = ⊕A) and defined by the following rules:

P � Δ,x:A;Θ
x.some;P � Δ,x:�A;Θ

(T�
x
d)

x.none � x:�A;Θ
(T�

x)

P �w:�Δ,x:A;Θ
x.somew;P � w:�Δ,x:⊕A;Θ

(T⊕x
w)

P � �Δ;Θ Q ��Δ;Θ
P ⊕ Q � �Δ;Θ

(T�)

Linearity, Control Effects, and Behavioral Types 241

Intuitively, �A is the type of a session that may produce a behavior of type A:
this potential is made concrete in Rule (T�

x
d) where the behavior x :A is indeed

available (some), whereas Rule (T�
x) describes the case in which x : A is not

available (none). Dually, the type ⊕A is the type of a session that may consume
a behavior of type A. Rule (T⊕x

w) accounts for the possibility of not being able
to consume an A by considering sessions different from x as potentially not
available (i.e., abortable - cf. w:�Δ in the rule, where w denotes a sequence
w1, . . . , wn of names). Rule (T�) expresses non-deterministic choice. While it
may be seem to correspond to a formal sum of proofs (cf. [22]), in our case it
corresponds exactly to non-deterministic choice P ⊕ Q of processes1, and can
only be used inside the monad �A. The principal cut reductions are:

Tcut(x)(T�
x
d(D1),T⊕x

w(D2)) → Tcut(x)(D1,D2)
Tcut(x)(T�

x,T⊕x
w(D2)) → T | (T�

w1 , · · · ,T�
wi)

At the level of the process interpretation, these reduction rules are expressed by

(νx)(x.some;P | x.somew;Q) → (νx)(P | Q)
(νx)(x.none | x.somew;Q) → w1.none | · · · | wn.none

Notice how the reduction for none safely discards the continuation Q. We also
consider the following proof conversion (and corresponding process congruence)
that expresses the distribution of parallel composition over internal choice:

Tcut(x)(T�(D1,D2),D3) ≡ T�(Tcut(x)(D1,D3),Tcut(x)(D2,D3))
(νx)(P | (Q ⊕ R)) ≡ (νx)(P | Q) ⊕ (νx)(P | R)

Notice that, in principle, the two computational reduction rules above could
be formally used to express the reduction rules for the “sharing” exponentials
(cf. [48]) in presentations of linear logic with explicit weakening and dereliction
rules, instead of the DILL-style presentation we have adopted here. Indeed, we
prefer the DILL-style presentation as it more tightly express the behavior of
sharing present in traditional session types. On the other hand, together with the
conversion principle just shown, the primitives and reduction rules just presented
turn out to be quite adequate to express the behavior of non-determinism and
failure.

Before closing the section, we discuss examples that use ⊕A and �A types.

Example 2.5 (Movie Server (3)). Getting back to our movie server scenario
we illustrate how to model a system with a client Randy(s) that non-
deterministically decides between either buying a movie or just seeing its trailer.
Recalling process definitions for SBody(s), Alice(s), and Bob(s) from Exam-
ples 2.3 and 2.4, we would have:

Randy(s) � s.some;Alice(s) ⊕ s.some;Bob(s)

USystem � (νs)(s.some∅;SBody(s) | Randy(s))

1 We use ⊕ for denoting internal non-determinism in processes since this is rather
standard; indeed, this notation goes back at least to De Nicola and Hennessy [19].

242 L. Caires and J.A. Pérez

where the suitable types and type assignments are now given by

Randy(s) � s : �SBT ; · s.some∅;SBody(s) � s : ⊕SBT ; ·

Process Randy(s) is typed by using Rule (T�
s
d) on each individual client; then,

using Rule (T�) one would obtain a typed non-deterministic choice between
them. The server is typed using Rule (T⊕s

w) with w = ∅, for there are no
sessions (besides s) in the linear context (recall that SBody(s) � s : SBT ; ·).
This way, we derive USystem � · ; ·. �

Interestingly, the non-deterministic choices enabled at the level of types by
�A and ⊕A (and at the process level by ⊕) are completely orthogonal to the
usual deterministic choices enabled by labeled internal and external choices. The
following example illustrates the pleasant interaction between deterministic and
non-deterministic choices:

Example 2.6 (Movie Server (4)). Consider now a variant of the movie server
that logs the request made by the client on a log service l of (boolean) type
B = 1 ⊕ 1. We extend the process SBody(s) from Example 2.3 as follows:

SBodyL(s) � s.case(s(title).s(card).s〈movie〉.s.close | l.inl; l.close,
s(title).s〈trailer〉.s.close | l.inr; l.close)

We may provide a typing SBodyL(s) � s:SBT , l:B ; · which cannot be composed
with the non-deterministic client Randy(s) from Example 2.5. However, process

s.somel; l.some;SBodyL(s)

may now be composed with client process Randy(s) as

ULSystem � (νs)(s.some; l.some;SBodyL(s) | Randy(s))

Now we may derive: l.some;SBodyL(s) � s:SBT , l:�B ; · and

s.somel; l.some;SBodyL(s) � s: ⊕ SBT , l:�B ; · ULSystem � l:�B ; ·

Writing P ⇒ Q to denote the reflexive-transitive closure of P → Q, we obtain
the reduction sequence ULSystem ⇒ (l.inr; l.close ⊕ l.inl; l.close).

Notice that the visible behavior of log channel l in ULSystem must be given
the non-deterministic type �B: there is no typing ULSystem � l:B, since the
resulting interaction is essentially non-deterministic. �

In our system, the ability of representing (internal) non-determinism is intrin-
sically tied to that of describing, in a completely logically motivated manner,
abortable behaviors as typical of programming constructs such as exceptions
and compensations [23]. Our following example illustrates this distinctive aspect
of our model.

Linearity, Control Effects, and Behavioral Types 243

Example 2.7 (Movie Server (5)). To consider the possibility of modeling failure,
we introduce the code for a “faulty” client, that non-deterministically behaves
like Bob(s) (cf. Example 2.4) or does not produce any behavior at all. Consider
the non-deterministic server SBodyNDL(s) from Example 2.6; we may now have:

Buzz (s) � s.some;Bob(s) ⊕ s.none Buzz (s) � s : �SBT ; ·
(νs)(SBodyNDL(s) | Buzz (s)) � l:�B ; ·

Notice how failure of sub-computations propagates inside the monad �− , encap-
sulated in a hereditarily safe way. Here, we have the reduction sequence

(νs)(SBodyNDL(s) | Buzz (s)) ⇒ (l.none ⊕ l.inl; l.close)

reflecting that the composed system either aborts or chooses l.inl on the log. �
We now illustrate how systems encapsulating non-deterministic behavior can

nevertheless be given a globally deterministic type, thus showing that internal
non-determinism and failure are not visible as long as they are typed by “plain”
deterministic types.

Example 2.8. Consider the following processes and typings:

Some(y) � y.some; y.inl; y.close ⊕ y.some; y.inr; y.close
Prod � x(y).(Some(y) | x.close; b〈“done”〉.b.close)
Cons � x(u).(u.some;u.case(u.close;0, u.close;0) | x.close)
Blob � (νx)(Prod | Cons)
Some(y) � y : �B Prod � x : (�B) ⊗ ⊥, b : Str ⊗ 1 Cons � x:(⊕B) � 1

Notice that the although the producer process Prod sends a non-deterministic
boolean to the consumer process Cons, the type of the composed system Blob
is b : Str ⊗ 1, a deterministic type. In fact, we may easily verify that Blob ⇒
b〈“done”〉.b.close. �

Figure 3 summarizes our process language, and associated reduction and
structural congruence relations. The main properties of our system will be estab-
lished next.

3 Main Results

We collect in this section main sanity results for our non-deterministic linear
logic-based type system for session process behavior. First, our system enjoys
the cut-elimination property. Cut elimination may be derived given a suitable
congruence ∼=s on processes consisting of reduction (computational conversions),
structural congruence (structural conversions), and some key commuting conver-
sions (cf. [11,13,37]).

Theorem 3.1 (Cut Elimination). If P � Δ;Θ then there is a process Q such
that P ∼=s Q and Q � Δ;Θ is derivable without using rules (Tcut) and (Tcut?).

244 L. Caires and J.A. Pérez

Fig. 3. The process language.

The proof is an extension of the proof for classical linear logic with mix, but
considering the new reductions and conversions introduced above for revealing
and reducing principal cuts involving the �A and ⊕A modalities.

Then, we may state type safety, witnessed by theorems of type preserva-
tion and global progress for closed systems. Type preservation states that the
observable interface of a system is invariant under reduction.

Theorem 3.2 (Type Preservation). If P � Δ;Θ and P → Q then Q � Δ;Θ.

Proof. (Sketch) By induction on typing derivations, and case analysis on reduc-
tion steps. In each case, the result easily follows, given that reductions come
from well-defined proof conversions, which by construction preserve typing. �

Unlike standard type systems for session types, our logical interpretation
satisfies global progress, meaning that well-typed processes never get stuck on
pending linear communications. More precisely, we say that a process P is live,
noted live(P), if and only if P ≡ C[π.Q] where C[−] is a static context (e.g.
a process term context in which the hole is not behind an action prefix, but
only under parallel composition − | −, name restriction (νx)−, or sum − ⊕ −
operators) and π.Q is not a replicated process (i.e., π is a session input, output,
offer, choice, or non-deterministic action). We then have:

Theorem 3.3 (Progress). If P � ;Θ and live(P) then there is Q such that
P → Q.

Linearity, Control Effects, and Behavioral Types 245

Proof. (Sketch) By induction on the typing derivation. Our proof relies on a
contextual progress lemma, which uses a labeled transition system for processes,
compatible with reduction (cf. [13]). This lemma yields a more general progress
property for processes with free linear channels that transition by means of
immediate external interactions. It extends Lemma 4.3 in [13] (which holds for
a language without non-determinism) as follows: If P � Δ;Θ and live(P) then
either (1) there is Q such that P → Q or (2) there are Pi (i = 1..n) such that
P ≡ ⊕Pi and for all Pi there exist Qi and α such that Pi

α→ Qi. The proof of
this extended lemma is by induction on derivations. �

We now discuss additional results that clarify some key features of the our type
system. We say that a process P is prime if it is not structurally congruent to a
process of the form Q ⊕ R with non-trivial (i.e., equivalent to 0) Q and R. We
can then prove:

Proposition 3.4. Let P � Δ;Θ where types in Δ;Θ are deterministic (do not
contain �A or ⊕A types at the top level), and let P ⇒ Q �→. Then Q is prime.

Proof. (Sketch) By induction on the typing derivation. �

Based on a logical system in which reduction matches cut-elimination, it turns
out that typing in our system enforces confluence and also strong normalization.
These results can be established using (linear) logical relations, as developed
in [37]. Intuitively, confluence holds because non-determinism is captured equa-
tionally without losing information, by means of delaying choice in processes
P ⊕Q, which express sets of alternative states. Still, it is interesting to relate our
system with standard process calculi which explicitly commit non-deterministic
states into alternative components. For that purpose, we investigate the exten-
sion of the reduction relation in Fig. 3 with non-confluent rules for internal choice,
standard in process calculi but clearly incompatible with any Curry-Howard
interpretation, namely P ⊕Q → P and P ⊕Q → Q. We denote by P →c Q (and
P ⇒c Q) the extended reduction relation, which can be proven to still satisfy
preservation and progress in the sense of Theorems 3.2 and 3.3. We may then
show the following property, expressing postponing of internal non-deterministic
collapse of non-deterministic states into prime states.

Theorem 3.5 (Postponing). Let P � Δ;Θ. We have

1. If P ⇒ P1⊕. . .⊕Pn �→ with Pi prime for all i, then P ⇒c Pi for all 0 < i ≤ n.
2. Let C = {Pi | P ⇒c Pi �→c and Pi is prime }. Then C is finite up to ≡, with

#C = n, and for all 0 < i ≤ n, P ⇒ P1 ⊕ . . . ⊕ Pn →c Pi.

Proof. 1. Trivial by definition. 2. By induction on the reduction sequence, using
the fact that we may commute ⇒ reduction steps backwards with ⇒c reduction
steps. �

Theorem 3.5(2) shows that no information is lost by ⇒ with respect to the
(standard) non-deterministic (and non-confluent) semantics of internal choice

246 L. Caires and J.A. Pérez

P ⊕ Q expressed by ⇒c. We may therefore tightly relate our system, based on
a logically motivated reduction relation, with a standard non-confluent reduc-
tion relation including rules for internal choice, in the sense that the former
precisely captures the multiset of observable alternatives defined by the latter,
while preserving compositional and equational reasoning about system behavior
as expected from a Curry-Howard interpretation.

4 Higher-Order Concurrency, Non Determinism, and
Exceptions

We illustrate the expressive power of our typed process model by embedding λexc,
a linear higher-order functional, concurrent programming language with concur-
rency, non-determinism—including failure—, and exceptions. Defined by a typed
compositional encoding, this embedding allows us to showcase the generality of
our developments and the relevance of our Curry-Howard correspondence in a
broader setting; it will also enable us to give a rigorous footing to our motivating
examples (cf. Figs. 1 and 2).

The Target Calculus. λexc is a typed call-by-value functional calculus, defined
by the grammar below. We use e, e′, . . . to range over expressions; v, v′, . . . to
range over values; x, y, z, . . . to range over variables; c, c′, . . . to range over chan-
nels, and T,U,A,B to range over types. The syntax of values, expressions, and
types (T) is as follows:

v :: = x | ∗ | λz.e | 〈〈v〉〉
e :: = v | (f x) | LET a = e1 IN e2

| TRY e1 CATCH z. e2 | THROW z
| LIFT e | SOME ! z; e | SOME ? z; e | NONE ! z; e | e1 ⊕ e2
| FORK c.e | SEND(c, e1); e2 | RECV(c, z); e | CLOSE ! c ; e | CLOSE ? c

T :: = unit | A
T−→ B | A

0−→ B | !T.T ′ | ?T.T ′ | end! | end? | ⊕T | �T

We say expressions are effectful if they can raise an exception, and pure other-
wise. Besides the unit type, types for λexc include (linear) arrow types of two
forms: A

0−→ B is the type of functions that do not raise exceptions, whereas
A

T−→ B is the type of functions that may raise an exception of type T . We also
have session types !T.T ′ and ?T.T ′ for output and input channel-based com-
munication. Types for labeled selection and choice are not included but can be
easily accommodated. Types end! and end? denote the dual views of terminated
endpoints. Furthermore, we have types ⊕T and �T for expressions that may
produce and consume values of a type T , respectively. We write S, S′ to denote
the session fragment of the type structure (i.e., no unit nor arrow types). On
this fragment, we assume a duality relation, denoted S, defined as expected. The
type syntax does not include general (non-linear) functional values nor shared
sessions; the integration of these constructs is orthogonal and unsurprising.

As values, we consider variables, abstractions, and the unit value ∗; we also
have the abortable value 〈〈v〉〉, which represents discardable (affine) values: given

Linearity, Control Effects, and Behavioral Types 247

a value v of type T , value 〈〈v〉〉 will be of type ⊕T . For convenience, the language
is let-expanded; as a result, application is of the form (f x), for variables f and
x. Expressions also include a try-catch construct for scoped exceptions, with
the expected meaning, and a construct for raising/throwing exceptions with
an explicit value. The key features of the process model in Sect. 2 appear as
expressions that may produce a value of a certain type and one construct that
may consume a value of a certain type. Non-deterministic choices between two
expressions are also supported. Concurrency is enabled by spawning threads,
using a forking construct. Moreover, λexc includes expressions for channel-based
communication, enabling the exchange of values of any type (including channels).

As mentioned above, the intended operational model for λexc is call-by-value;
rather than directly giving the operational semantics for the language, we first
delineate its behavior via a type system and then give its semantics indirectly,
via a type respecting encoding into the basic type system introduced in Sect. 2.

The type system we consider here is actually a type-and-effect system in
which the effect represents the type of the exception that can be raised by the
typed expression. Judgments are then the form D �U e : T : under an environment
D (a set of typing assignments), the expression e has return type T , while the
effect type U is either 0 (the expression is pure) or T (the expected type of
exceptions).

The typing rules for λexc are shown in Fig. 4. Rule (ABS) types abstractions; it
decrees that the type of the exception possibly raised by the abstraction body will
be used as the effect associated to the arrow type. Rule (PRO) types abortable
values 〈〈v〉〉, as motivated earlier: it closely follows the principles of Rule (T⊕x

w)
for session-based processes; in particular, it requires all free variables in v to be
abortable (cf. the premise ⊕D). Rule (LIFT) allows to cast an (trivially) effecful
expression from a pure one.

There are three typing rules for let expressions LET a = e1 IN e2; the actual
rule used depends on the exceptions possibly raised by its constituent sub-
expressions e1 and e2. Rule (LET1) is used when both e1 and e2 are effectful.
Observe that e2 must be typable in an abortable environment, in order to safely
account for an exception raised in e1. Rule (LET2) handles the case in which
both e1 and e2 are pure, while Rule (LET3) covers the case in which only e1
is pure. These three typing rules are crucial to isolate effects and to exploit the
combination of pure with effectful computations.

Rule (TRY) types the construct TRY e1 CATCHx. e2; the type of the exception
possibly raised by e1 must match with the type of x in e2. Notice that e1 and
e2 must be of the same type (T in the rule). Rule (THROW) ensures that the
type of the thrown value is propagated as an effect. Rule (FORK) captures the
essence of thread spawning for communication types, creating a new (linear)
session channel where one endpoint is handed to the thread body and the other
endpoint returned by the fork operation. Rules (CLOSE1) and (CLOSE2) type
session channel closing operations; Rules (SEND) and (RECV) type operations
for sending and receiving values along session channels.

248 L. Caires and J.A. Pérez

Fig. 4. Typing rules for λexc.

Rule (SOME1) and Rule (SOME2) type the production and consumption
of a non-deterministic value as z, respectively. In particular, Rule (SOME2)
applies to expressions that do not return values, but that may interact with
expressions that do return values via channel-based communication. Notice
the similarities between Rules (SOME1) and (SOME2) (for functional expres-
sions) and Rules (T�

x
d) and (T⊕x

w) (for process terms), respectively. In the
same vein, Rule (NONE) can be seen as the analogue of Rule (T�

x) but for
abortable expressions in our functional language. Rule (NONDET) enables the
non-deterministic choice between two pure expressions that do not return values;
this allows us to define, e.g., non-deterministic sessions.

In general, the (two-sided) typing rules in Fig. 4 encompass a notion of dual-
ity, in the sense that a connective appearing in the left-hand side of the turnstile
in the Fig. 4 corresponds to its dual in the right-hand side of the turnstile.
This intuition will be captured in our embedding of functional expressions as
processes, detailed next.

Example 4.1. We can now return to the code snippet in Fig. 2 and give some typ-
ings using the type structure just introduced. As mentioned in the introduction,

Linearity, Control Effects, and Behavioral Types 249

Fig. 5. Encoding of λexc types into logical propositions.

there is a precise stage of the protocol along (dual) names res and f after which
failure is safe. In our type structure we can precisely delineate such a place. We
would have:

l : ?string.?string.end? log : !string.!string.end!
f : ?string.!int.⊕(?string.end?) res : !string.?int.�(!string.end!)

These typings require minor modifications in the code of Fig. 2: we add prefix
‘SOME ? f ’ before ‘RECV(f, bk)’, and prefix ‘SOME ! res’ before ‘SEND(res, book)’.

Embedding λexc Into Session Typed Processes. We now present a typeful
encoding of λexc into the logically motivated typed process model of Sect. 2, and
establish its correctness (Theorem 4.1). The encoding has two main components:
the encoding of (functional) types into linear logic based session types, and the
encoding of λexc expressions into (non-deterministic) concurrent processes.

Figure 5 gives the encoding of types. We use the following shorthand nota-
tions:

↑ [[T]] � [[T]] ⊗ 1 (1)

[[U]] � [[T]] � ([[U]] ⊗ 1) ⊕ ([[T]] ⊗ 1) (2)

�
(
[[T]] ÷ [[U]]

)
� �([[T]] ⊗ (([[U]] � [[T]]) ⊗ 1)) (3)

Also, we assume the expected extension of the encoding of types to typing envi-
ronments: given D = x1:T1, · · · , xn:Tn then [[D]] = x1:[[T1]], · · · , xn:[[Tn]].

The encoding of expressions is typeful: for each typing rule in Fig. 4 we give
a corresponding type derivation for session-typed processes. Figures 6 and 7
give a complete account; for readability, in those figures we show only the conclu-
sion (final judgment) in the derivation. Also, we use the following abbreviations
for processes:

– we write y〈z〉.P (where z is free in P) for the free output process, represented
as y(w).([w↔z] | P) (cf. Sect. 2);

– we write y.0;P and y.0 to stand for y.close;P and y.close, respectively;
– we define Sq as the process q(u).q.0;u.0;0. Notice that Sq � q : ↑ [[unit]].

250 L. Caires and J.A. Pérez

Fig. 6. Typeful encoding of λexc terms into basic processes (Part 1).

As usual in encodings of (call-by-value) functional languages into the π-calculus,
our encoding of expressions is indexed by names, which are used to interact with
the environment; they can be seen as continuations or as locations where the
value returned by an expression will be made available. In our case, these names
are related to the effects of the source expression e:

Linearity, Control Effects, and Behavioral Types 251

Fig. 7. Typeful encoding of λexc terms into basic processes (Part 2).

– If e is pure then its encoding will be indexed by a single continuation name y.
This will be denoted [[e]]y.

– If e is effectful then its encoding will be indexed by names y and x. This will
be denoted [[e]]y,x: name y represents an non-deterministic continuation, along
which the value to which e reduces may be produced ; name x represents the
continuation to the enclosing try-catch block exception handler.

252 L. Caires and J.A. Pérez

These intuitive distinctions are made precise in our main technical result, which
exploits the shorthand notations (1), (2), and (3) above:

Theorem 4.1 (Typability). Suppose D �U e : T . Then, for some names y, x,
we have:

– [[e]]y � [[D]], y: ↑ [[T]], if U = 0.
– [[e]]y,x � [[D]], y:�

(
[[T]] ÷ [[U]]

)
, x:[[U]] � [[T]], if U �= 0.

Consequently, our source language λexc (which combines functions, concurrency,
non-determinism, and exceptions) will inherit key guarantees from the target
process language, namely preservation and global progress (deadlock absence
and lock-freedom).

Due to space limitations, in the following we only discuss selected cases of
Figs. 6 and 7. As already mentioned, the type of a let expression LET a = e1 IN e2
considers different possibilities for the interplay of pure and effectful compu-
tations in e1 and e2. If both expressions are pure (cf. Rule (LET2)) then the
encoding is simple:

[[LET a = e1 IN e2]]y = (νq)([[e1]]q | q(a).q.0; [[e2]]y)

Since e1 is pure, we know [[e1]]q will surely produce a value, which will be made
available to [[e2]]y along the private (linear) name q. The case in which both e1
and e2 may raise exceptions (cf. Rule (LET1)) is more interesting:

[[LET a = e1 IN e2]]y,x = (νq)([[e1]]q,x | q.someD; q(a).q(s).q.0; [[e2]]y,s)

In this case, since e1 may raise an exception, we account for this possibility via the
prefix q.someD, which requires all values (including sessions) in [[e2]]y,s (excepting
a) to be in abortable state. The production of a value within [[e1]]q,x will be
signaled by a prefix q.some, while throwing of an exception will be signaled by a
prefix q.none (see next). Therefore, if [[e1]]q,x produces a value (q.some is executed)
then this value will be passed to [[e2]]q,s using the private name q; subsequently, the
reference to the enclosing try-block x will also be passed to [[e2]]q,s as parameter s,
exploiting linearity of name-passing (delegation). Otherwise, if [[e1]]q,x ever raises
an exception (q.none is executed) then all the values in D will be safely and
hereditarily discarded.

The encoding of values takes into account that a value may occur in an
abortable context. The encoding of a variable z of type T is as follows:

[[z]]y = y〈z〉.y.0 [[z]]y,x = y.some; y〈z〉.y〈x〉.y.0

If z occurs in a pure context/expression, then its encoding, given on the left, is
standard; name y will have type ↑ [[T]] (cf. (1)). Otherwise, if z occurs in an effect-
ful (abortable) context, then its encoding, given on the right, first announces the
production of a value using prefix y.some; after z is sent along y, name x (rep-
resenting the continuation of the enclosing try-catch block exception handler)
will be sent along y. The type of x will be [[U]] � [[T]], where U is the type of

Linearity, Control Effects, and Behavioral Types 253

the enclosing exception (cf. (2)). Thus, intuitively, x encompasses the potential
for a normal execution ([[T]]) but also contains information on the (exceptional)
behavior to be triggered upon failure ([[U]]). A more concrete justification for the
typing x:[[U]]� [[T]] will become apparent next, when discussing the deterministic
choice that underlies the encoding of try-catch and throw expressions.

To encode an abstraction λz.e, we distinguish several cases, depending on
whether e and λz.e are effectful or not. The simplest case is when both e and
λz.e are pure:

[[λz.e]]y = y(f).(y.0 | f(z).f(k).f.0; [[e]]k)

We follow closely known encodings of λ-calculus in the π-calculus, here adapted
to a linear setting in which the continuation y and the reference to the function
body f are session-typed [43]. When both λz.e and e are effectful we follow a
similar principle:

[[λz.e]]y,x = y.some; y(f).(y〈x〉.y.0 | f(z).f(k).f(j).f.0; [[e]]k,j)

The prefix y.some declares the production of a value, namely the reference to the
function body f . An invocation to f must supply the parameter of the function
(z) but also the continuations k and j, to be linearly used by the encoding [[e]]k,j .

The encoding of applications goes hand in hand with the encoding of let
expressions. Given the let-expanded semantics (which forces an expression’s con-
text to deal with potentially abortable expressions), the encoding of applications
(f a) is simple:

[[(f a)]]y,x = f〈a〉.f〈y〉.f〈x〉.f.0

We may now discuss the encodings of try-catch and throw expressions:

[[TRY e1 CATCH z. e2]]y = (νj)((νk)([[e1]]k,j | k.some∅; k(u).k(z).k.0; z.inl; z〈u〉.z.0)
︸ ︷︷ ︸

(I)

|

j.case(j(u).j.0; y〈u〉.y.0 , j(z).j.0; [[e2]]y)
︸ ︷︷ ︸

(II)

)

[[THROW z]]y,x = y.none | x.inr;x〈z〉.x.0

The encoding of TRY e1 CATCH z. e2 is in two parts, denoted (I) and (II) above.
Part (I) concerns normal behaviors only; Part (II) concerns normal and excep-
tional behaviors:

– If e1 does not raise an exception then [[e1]]k,j will trigger a prefix k.some, which
will synchronize with Part (I). Subsequently, the obtained value and the ref-
erence to the enclosing exception block will be passed around; in this case, z
will be substituted by j, and the prefix j.inl will synchronize with the choice
on j (Part (II)) to send the resulting value along y. This choice discards the
right branch containing [[e2]]y.

254 L. Caires and J.A. Pérez

– If e1 raises an exception then, because of the encoding of throw, process [[e1]]k,j

will trigger a prefix k.none which will synchronize with Part (I). As a result,
the remaining behavior on k and z will be discarded. However, the choice
on j (Part (II)) will continue to be available: this is used by the encoding of
throw, which by executing j.inr will select the right branch of Part (II). The
value raised by the exception will be then passed to [[e2]]y, which can now be
executed.

Our encoding of try-catch therefore elegantly amalgamates the key features of
our process model: most notably, the presence of abortable behaviors in a pleas-
ant coexistence with non-abortable behaviors, and the interplay between non-
deterministic and deterministic choices—indeed, it is the deterministic choice
that underlies the exception mechanism what ultimately justifies the type
[[U]] � [[T]] for x, given in (2).

In the typed model presented here (and its encoding into processes), we
consider try-catch constructs TRY e1 CATCH z. e2 in which e2 is pure (cf. Fig. 4).
However, there is no fundamental obstacle to address the general case in which
both e1 and e2 may raise exceptions; the encoding given in Fig. 7 can be extended
following expected lines.

Constructs for non-deterministic behaviors have fairly straightforward encod-
ings:

[[SOME ! z; e]]y,x = z.some; [[e]]y,x [[NONE ! z; e]]y,x = z.none | [[e]]y,x

[[SOME ? z; e]]y,x = z.someD; (νq)([[e]]q | Sq) | y(v).(v.0 | y.0)

In [[SOME ? z; e]]y,x, notice that typing ensures that e does not return a value; also,
set D enables to safely discard behaviors in e in the event of an exception. Given
the conditions ensured by typing, the encoding of non-deterministic choices is
unsurprising:

[[e1 ⊕ e2]]y = ((νz)([[e1]]z | Sz) ⊕ (νz)([[e2]]z | Sz)) | [[∗]]y

In essence, processes Sz consume the (unit) value produced by [[e1]]y and [[e2]]y
through z. The resulting processes can then be composed first in a non-
deterministic choice, and then in an independent parallel composition with [[∗]]y.
It would not be hard to extend this encoding to handle the general case in which
e1 and e2 may raise exceptions and return values different from unit. To that
end, typing should ensure that e1 and e2 are each typable in an abortable con-
text (cf. Rule (T�)), but also that the name representing the continuation to
the enclosing exception handlers (i.e., x) is given an abortable type.

5 Further Related Work

In the purely functional (and sequential) programming setting, control operators
have been given Curry-Howard interpretations in the context of classical logic
[2,26,36]. To our best knowledge, this paper presents the first attempt at tack-
ling state-aware concurrent programming features, involving linearity (our main

Linearity, Control Effects, and Behavioral Types 255

focus herein), while building on a Curry-Howard interpretation of classical linear
logic as session types. A very tentative sketch of some ideas behind this work
was presented at Cardelli’s Fest [8]; here we provide a complete account of non-
determinism and failure, introduce new computational primitives, present associ-
ated results, and provide non-trivial examples, including the typeful embedding
of a realistic functional, concurrent language with exceptions.

The tensions between affinity, linearity and control effects have been widely
investigated in different settings, and already referred in the introduction. The
work [45] considers a form of affinity in stateful settings (including session types)
and explores how to safely interface an affine language with a conventional one.
We share several high level aims with [45], although following a fundamentally
different approach, and obtaining results of different relevance; in particular,
we consider a unified (concurrent) language that admits a fundamental Curry-
Howard correspondence with linear logic, and offers strong guarantees by sta-
tic typing such as deadlock-freedom. Within the session types literature, the
interplay of session types and functional languages (including encodings of func-
tional calculi) has received much attention (see, e.g., [25,32,35,48]) but non-
determinism/failure do not seem to have been addressed. The paper [35] relates
effect and session type systems, but effects such as exceptions are not addressed.
A work exploring affinity in session calculi is [34]. Existing works on excep-
tion mechanisms for session types impose severe syntactic restrictions to typable
programs and/or do not ensure progress: this observation applies to models of
interactional exceptions and interruptible sessions based on both binary ses-
sions (cf. [15]) and multiparty sessions (cf. [14,21]). Further work is required
to connect our process model (based on binary session types) with multiparty
structured interactions with exceptions/interruptions, following logic-based rela-
tionships between binary and multiparty session types [9].

Also related are [3,17]. The work in [3] explores forms of non-determinism
and failure via the conflation of additive connectives. This is quite different
from our approach, which is based on a new pair of monadic/comonadic con-
nectives, fully justified by a Curry-Howard interpretation and expressive enough
to represent forms of affinity and exceptions. The work in [17] does have non-
determinism at the level of processes, but its expressiveness is not analyzed, and
non-determinism at the level of types is not addressed. In contrast, we provide
types for non-determinism via specific connectives in the context of a Curry-
Howard correspondence, and exploit the expressiveness of the non-deterministic
process model by modeling a realistic functional language.

As explained in the introduction, a main aim of this work is not just to
propose yet another point in the design space solution for exceptions, affinity, or
linearity. Instead, we show how a small set of logically motivated primitives is
expressive enough to model fairly general notions of (controlled) affinity and non-
determinism in higher-order concurrent programs (including exception handling)
while preserving all the fundamental properties of a Curry-Howard interpretation
for linear logic. We leave for future work a deeper study of the expressiveness of

256 L. Caires and J.A. Pérez

our model, as exceptions and compensations are key programming abstractions
in models of service-oriented computing (see, e.g., [23]).

6 Concluding Remarks

We have presented the first type system that accommodates non-deterministic
and abortable behaviors within session-based concurrent programs while build-
ing on a Curry-Howard correspondence with linear logic. Conceptually sim-
ple, our approach conservatively extends classical linear logic with two dual
modal connectives, related to linear logic exponentials, but that express non-
determinism and failure rather than sharing.

We have shown that our type system enforces progress and session fidelity;
its underlying operational semantics, based on Curry-Howard principles, is
actually compatible with standard non-confluent formulations of internal non-
determinism for process algebra, in the sense of our postponing result (The-
orem 3.5). Our system is very expressive, as illustrated by several examples,
including a typed embedding of a higher-order linear functional language with
threads, sessions, non-determinism, and exceptions.

We have not discussed the presence of intuitionistic (unrestricted) types in
the functional language of Sect. 4, as the main focus in the paper is on linearity
and its challenging combination with non-determinism and failure. The combi-
nation of these ingredients with general (non-linear) functional values and shared
sessions would be as expected, resulting from the type discipline of the interpre-
tation of the exponentials in the basic model. Also, key properties of our type
system such as strong normalization and confluence can be established along
predictable lines [37]. A further advantage of our approach is its natural com-
patibility with other extensions to the basic framework, for example behavioral
polymorphism [10]. Another interesting direction for future work is to better
understand the behavioral equivalences induced by our interpretation.

Acknowledgments. Thanks to the anonymous reviewers for useful remarks
and suggestions. This work has been partially sponsored by FCT PEst/UID/
CEC/04516/2013; by FCT CLAY PTDC/EEI-CTP/4293/2014; by EU COST Actions
IC1201 (BETTY), IC1402 (ARVI), and IC1405 (Reversible Computation); and by
CNRS PICS project 07313 (SuCCeSS).

References

1. Andreoli, J.-M.: Logic programming with focusing proofs in linear logic. J. Log.
Comput. 2(3), 297–347 (1992)

2. Ariola, Z.M., Herbelin, H.: Minimal classical logic and control operators. In:
Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP
2003. LNCS, vol. 2719, pp. 871–885. Springer, Heidelberg (2003). doi:10.1007/
3-540-45061-0 68

http://dx.doi.org/10.1007/3-540-45061-0_68
http://dx.doi.org/10.1007/3-540-45061-0_68

Linearity, Control Effects, and Behavioral Types 257

3. Atkey, R., Lindley, S., Morris, J.G.: Conflation confers concurrency. In: Lindley, S.,
McBride, C., Trinder, P., Sannella, D. (eds.) A List of Successes That Can Change
the World. LNCS, vol. 9600, pp. 32–55. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-30936-1 2

4. Barber, A.: Dual intuitionistic linear logic. Technical report LFCS-96-347
University of Edinburgh (1996)

5. Benton, P.N., Bierman, G.M., de Paiva, V.: Computational types from a logical
perspective. J. Funct. Program. 8(2), 177–193 (1998)

6. Benton, N., Bierman, G., Paiva, V., Hyland, M.: A term calculus for intuitionis-
tic linear logic. In: Bezem, M., Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664,
pp. 75–90. Springer, Heidelberg (1993). doi:10.1007/BFb0037099

7. Boreale, M.: On the expressiveness of internal mobility in name-passing calculi.
Theor. Comput. Sci. 195(2), 205–226 (1998)

8. Caires, L.: Types and logic, concurrency and non-determinism. In: Abadi, M.,
Gardner, P., Gordon, A.D., Mardare, R. (eds.) Essays for the Luca Cardelli Fest,
pp. 69–83. Microsoft Research TR MSR-TR–104 (2014)

9. Caires, L., Pérez, J.A.: Multiparty session types within a canonical binary the-
ory, and beyond. In: Albert, E., Lanese, I. (eds.) FORTE 2016. LNCS, vol. 9688,
pp. 74–95. Springer, Heidelberg (2016). doi:10.1007/978-3-319-39570-8 6

10. Caires, L., Pérez, J.A., Pfenning, F., Toninho, B.: Behavioral polymorphism and
parametricity in session-based communication. In: Felleisen, M., Gardner, P. (eds.)
ESOP 2013. LNCS, vol. 7792, pp. 330–349. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-37036-6 19

11. Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In:
Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 222–236.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-15375-4 16

12. Caires, L., Pfenning, F., Toninho, B.: Towards concurrent type theory. In: Types
in Language Design and Implementation, pp. 1–12 (2012)

13. Caires, L., Pfenning, F., Toninho, B.: Linear logic propositions as session types.
Math. Struct. Comput. Sci. 26(03), 367–423 (2016)

14. Capecchi, S., Giachino, E., Yoshida, N.: Global escape in multiparty sessions. Math.
Struct. Comput. Sci. 26(2), 156–205 (2016)

15. Carbone, M., Honda, K., Yoshida, N.: Structured interactional exceptions in ses-
sion types. In: Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201,
pp. 402–417. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85361-9 32

16. Carbone, M., Lindley, S., Montesi, F., Schürmann, C., Wadler, P.: Coherence gen-
eralises duality: a logical explanation of multiparty session types. In: CONCUR
2016, pp. 3:1–33:15 (2016)

17. Carbone, M., Montesi, F., Schürmann, C., Yoshida, N.: Multiparty session types as
coherence proofs. In: Proceedings of CONCUR 2015. LIPIcs, vol. 42, pp. 412–426.
Schloss Dagstuhl (2015)

18. Cardelli, L.: Typeful Programming. IFIP State-of-the-Art Reports: Formal
Description of Programming Concepts, pp. 431–507 (1991)

19. Nicola, R., Hennessy, M.: CCS without τ ’s. In: Ehrig, H., Kowalski, R., Levi,
G., Montanari, U. (eds.) CAAP 1987. LNCS, vol. 249, pp. 138–152. Springer,
Heidelberg (1987). doi:10.1007/3-540-17660-8 53

20. DeLine, R., Fähndrich, M.: Typestates for objects. In: Odersky, M. (ed.) ECOOP
2004. LNCS, vol. 3086, pp. 465–490. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-24851-4 21

http://dx.doi.org/10.1007/978-3-319-30936-1_2
http://dx.doi.org/10.1007/978-3-319-30936-1_2
http://dx.doi.org/10.1007/BFb0037099
http://dx.doi.org/10.1007/978-3-319-39570-8_6
http://dx.doi.org/10.1007/978-3-642-37036-6_19
http://dx.doi.org/10.1007/978-3-642-37036-6_19
http://dx.doi.org/10.1007/978-3-642-15375-4_16
http://dx.doi.org/10.1007/978-3-540-85361-9_32
http://dx.doi.org/10.1007/3-540-17660-8_53
http://dx.doi.org/10.1007/978-3-540-24851-4_21
http://dx.doi.org/10.1007/978-3-540-24851-4_21

258 L. Caires and J.A. Pérez

21. Demangeon, R., Honda, K., Hu, R., Neykova, R., Yoshida, N.: Practical interrupt-
ible conversations: distributed dynamic verification with multiparty session types
and python. Formal Methods Syst. Des. 46(3), 197–225 (2015)

22. Ehrhard, T., Regnier, L.: Differential interaction nets. Theor. Comput. Sci. 364(2),
166–195 (2006)

23. Ferreira, C., Lanese, I., Ravara, A., Vieira, H.T., Zavattaro, G.: Advanced mecha-
nisms for service combination and transactions. In: Wirsing, M., Hölzl, M. (eds.)
Rigorous Software Engineering for Service-Oriented Systems. LNCS, vol. 6582,
pp. 302–325. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20401-2 14

24. Gardner, P., Laneve, C., Wischik, L.: Linear forwarders. Inf. Comput. 205(10),
1526–1550 (2007)

25. Gay, S., Vasconcelos, V.T.: Linear type theory for asynchronous session types. J.
Funct. Program. 20(1), 19–50 (2010)

26. Griffin, T.: A formulae-as-types notion of control. In: POPL 1990, pp. 47–58 (1990)
27. Honda, K.: Types for dyadic interaction. In: Best, E. (ed.) CONCUR 1993. LNCS,

vol. 715, pp. 509–523. Springer, Heidelberg (1993). doi:10.1007/3-540-57208-2 35
28. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline

for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998). doi:10.1007/
BFb0053567

29. Hüttel, H., Lanese, I., Vasconcelos, V.T., Caires, L., et al.: Foundations of session
types and behavioural contracts. ACM Comput. Surv. 49(1), 3 (2016)

30. Kobayashi, N., Pierce, B.C., Turner, D.N.: Linearity and the pi-calculus. In: 23rd
Symposium on Principles of Programming Languages, POPL 1996, pp. 358–371.
ACM (1996)

31. Krishnaswami, N.R., Turon, A., Dreyer, D., Garg, D.: Superficially substructural
types. In: ICFP 2012, pp. 41–54 (2012)

32. Lindley, S., Morris, J.G.: Embedding session types in Haskell. In: 9th International
Symposium on Haskell, Haskell 2016, pp. 133–145 (2016)

33. Militão, F., Aldrich, J., Caires, L.: Rely-guarantee protocols. In: Jones, R. (ed.)
ECOOP 2014. LNCS, vol. 8586, pp. 334–359. Springer, Heidelberg (2014). doi:10.
1007/978-3-662-44202-9 14

34. Mostrous, D., Vasconcelos, V.T.: Affine sessions. In: Kühn, E., Pugliese, R. (eds.)
COORDINATION 2014. LNCS, vol. 8459, pp. 115–130. Springer, Heidelberg
(2014). doi:10.1007/978-3-662-43376-8 8

35. Orchard, D.A., Yoshida, N.: Effects as sessions, sessions as effects. In: Proceedings
of the POPL 2016, pp. 568–581. ACM (2016)

36. Parigot, M.: λµ-calculus: an algorithmic interpretation of classical natural deduc-
tion. In: Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624, pp. 190–201. Springer,
Heidelberg (1992). doi:10.1007/BFb0013061

37. Pérez, J.A., Caires, L., Pfenning, F., Toninho, B.: Linear logical relations for
session-based concurrency. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211,
pp. 539–558. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28869-2 27

38. Pfenning, F.: Structural cut elimination. In: 10th Annual IEEE Symposium on
Logic in Computer Science, LICS 1995, pp. 156–166. IEEE Computer Society
(1995)

39. Plotkin, G.D.: A powerdomain construction. SIAM J. Comput. 5(3), 452–487
(1976)

40. Sangiorgi, D., Walker, D.: The π-Calculus: A Theory of Mobile Processes.
Cambridge University Press, Cambridge (2001)

http://dx.doi.org/10.1007/978-3-642-20401-2_14
http://dx.doi.org/10.1007/3-540-57208-2_35
http://dx.doi.org/10.1007/BFb0053567
http://dx.doi.org/10.1007/BFb0053567
http://dx.doi.org/10.1007/978-3-662-44202-9_14
http://dx.doi.org/10.1007/978-3-662-44202-9_14
http://dx.doi.org/10.1007/978-3-662-43376-8_8
http://dx.doi.org/10.1007/BFb0013061
http://dx.doi.org/10.1007/978-3-642-28869-2_27

Linearity, Control Effects, and Behavioral Types 259

41. Scalas, A., Yoshida, N.: Lightweight session programming in scala. In: 30th Euro-
pean Conference on Object-Oriented Programming, ECOOP 2016, pp. 21:1–21:28
(2016)

42. Toninho, B., Caires, L., Pfenning, F.: Dependent session types via intuitionistic
linear type theory. In: PPDP 2011, pp. 161–172 (2011)

43. Toninho, B., Caires, L., Pfenning, F.: Functions as session-typed processes.
In: Birkedal, L. (ed.) FoSSaCS 2012. LNCS, vol. 7213, pp. 346–360. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-28729-9 23

44. Toninho, B., Caires, L., Pfenning, F.: Higher-order processes, functions, and
sessions: a monadic integration. In: Felleisen, M., Gardner, P. (eds.) ESOP
2013. LNCS, vol. 7792, pp. 350–369. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-37036-6 20

45. Tov, J.A., Pucella, R.: Stateful contracts for affine types. In: Gordon, A.D. (ed.)
ESOP 2010. LNCS, vol. 6012, pp. 550–569. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-11957-6 29

46. Tov, J.A., Pucella, R.: A theory of substructural types and control. In: OOPSLA
2011, pp. 625–642 (2011)

47. Tov, J.A., Pucella, R.: Practical affine types. In: POPL 2011, pp. 447–458 (2011)
48. Wadler, P.: Propositions as sessions. In: ICFP 2012, pp. 273–286. ACM (2012)

http://dx.doi.org/10.1007/978-3-642-28729-9_23
http://dx.doi.org/10.1007/978-3-642-37036-6_20
http://dx.doi.org/10.1007/978-3-642-37036-6_20
http://dx.doi.org/10.1007/978-3-642-11957-6_29
http://dx.doi.org/10.1007/978-3-642-11957-6_29

	Linearity, Control Effects, and Behavioral Types
	1 Introduction
	2 The Core Language and Its Type System
	2.1 Reduction Semantics
	2.2 Basic Typing Rules, Congruence Rules, and Reduction Rules
	2.3 Non-determinism and Failure

	3 Main Results
	4 Higher-Order Concurrency, Non Determinism, and Exceptions
	5 Further Related Work
	6 Concluding Remarks
	References

