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2 Özyeğin University, Istanbul, Turkey
reyhan.aydogan@ozyegin.edu.tr

3 Centrum Wiskunde and Informatica, Amsterdam, Netherlands
T.Baarslag@cwi.nl

4 Technical University of Delft, Delft, Netherlands
C.M.Jonker@tudelft.nl

Abstract. Classically, disciplines like negotiation and decision making
have focused on reaching Pareto optimal solutions due to its stability
and efficiency properties. Despite the fact that many practical and theo-
retical algorithms have successfully attempted to provide Pareto optimal
solutions, they have focused on attempting to reach Pareto Optimality
using horizontal approaches, where optimality is calculated taking into
account every participant at the same time. Sometimes, this may prove to
be a difficult task (e.g., conflict, mistrust, no information sharing, etc.).
In this paper, we explore the possibility of achieving Pareto Optimal
outcomes in a group by using a bottom-up approach: discovering Pareto
optimal outcomes by interacting in subgroups. We analytically show that
the set of Pareto optimal outcomes in a group covers the Pareto optimal
outcomes within its subgroups. This theoretical finding can be applied
in a variety of scenarios such as negotiation teams, multi-party negoti-
ation, and team formation to social recommendation. Additionally, we
empirically test the validity and practicality of this proof in a variety
of decision making domains and analyze the usability of this proof in
practical situations.

Keywords: Pareto optimality · Agreement technologies · Group
decision making · Multi-agent systems · Artificial intelligence

1 Introduction

Group decision making, in which a group of agents with conflicting preferences
aim to reach mutually acceptable decisions, has been studied within different
disciplines. In social choice theory, voting methods have been applied to choose
the most desired alternatives, while negotiation mechanisms have been proposed
to find unanimous agreements in order to resolve the conflict of interests among
groups of agents. Multi-objective optimization methods, distributed or not, have
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also been developed to find optimal solutions for group decision making settings.
One of the desired properties of such a solution is Pareto optimality, proposed
by the Italian economist Vilfredo Pareto. Its desirability comes from the fact
that, concerning non-Pareto optimal solutions, at least one of the objectives can
be improved without worsening the performance of the rest of objectives. Hence,
rational decision makers should see no objection in moving from a non-Pareto
optimal solution to a Pareto optimal solution.

Reaching Pareto optimal agreements is not straightforward in practice. In
open and dynamic environments, decision makers may not know each other’s
preferences completely. In such cases, the participants may try to reach an
approximation of those solutions. Even it becomes more complicated to find
Pareto optimal solutions when the number of participants increases, as the num-
ber of interactions required to achieve an optimal deal for the group may increase
due to internal conflicts or lack of trust.

A number of works in the field focus on finding a global Pareto optimal
solution by involving all agents at the same time [13,14,20,37], which may lead
to complicated interactions and lengthy decision making processes. However, we
believe that, in many situations, agents can benefit from taking a bottom-up
approach: calculating Pareto optimal outcomes in subgroups. In other words,
we pursue the question of whether or not it is possible to estimate some Pareto
optimal outcomes without knowing or predicting the preferences of all agents. In
essence, solving the Pareto optimal set problem in a smaller group may be less
complicated than in larger groups (e.g., less privacy concerns, less interactions
needed, more willingness to cooperate, etc.) and it may provide a relatively
important ratio of the final Pareto Optimal outcomes. Such kind of property
can be used in some complex group decision making scenarios. Imagine that a
group of agents is negotiating in unison with an unknown opponent [29,31,33]. If
the agents can find the Pareto optimal outcomes within the team, they may use
these outcomes in their bidding strategy to reach a Pareto optimal agreement
with their opponent.

In this paper we explore bottom-up strategies. For that, first we prove that
any Pareto optimal outcome in a subgroup is also Pareto optimal in a larger
group that contains the subgroup, as long as agents’ preferences are strict linear
order. Second, we empirically simulate how bottom-up approaches may perform
in realistic scenarios. More specifically, we show that we can obtain a reasonable
ratio of the Pareto optimal outcomes within a group of agents by only finding
the Pareto optimal outcomes within the subgroup of these agents.

The remainder of this paper is organized as follows: first we present a proof
of how Pareto optimal solutions in subgroups are also Pareto optimal in larger
groups when agents have strict, transitive, and complete preferences. Section 3
discusses some of the implications of the proof, and how it can be applied to
solve a wide variety of problems in multi-agent systems. In Sect. 4, we empiri-
cally validate the theory in practice and analyze empirically compare the ratio
of Pareto optimal outcomes within subgroups to the Pareto optimal outcomes
within the entire group in a wide variety of real domains. After discussing the
related work, we finally conclude the paper with future lines of work.



Can We Reach Pareto Optimal Outcomes Using Bottom-Up Approaches? 21

2 Pareto Optimality in Subgroups

In this section we prove that any Pareto optimal outcome in a subgroup of agents
is also Pareto optimal in any group of agents containing the subgroup. First, we
provide some of the necessary definitions and introduce some notation.

Let A = {a1, ..., an} be a set of agents where k is the index of agent ak and
A′ = {a1, ..., am} be a superset of A, A ⊂ A′ where m > n. O is the set of all
possible solutions in a given domain, and o ∈ O represents a possible solution
in the domain. We assume that �i represents agent’s ai preference relation over
outcomes in O. If o �i o

′ then agent ai likes o at least as well as o′, we write
o �i o

′ to denote a strict preference for o and o = o′ to denote indifference. We
assume that the agents’ preference relations are strict, transitive and complete.

An outcome o∗ is Pareto optimal with respect to A and O, denoted by
po(o∗,A,O) iff

�o ∈ O ∃j ≤ n

n∧

i=1

o �i o
∗ ∧ o �j o

∗.

We denote the set of all Pareto optimal outcomes over A by O∗
A = {o∗ ∈ O |

po(o∗,A,O)}.
Theorem 1. Given a set of outcomes O. For all two sets of agents A and A′,
if A ⊂ A′, then O∗

A ⊂ O∗
A′ .

Proof. Let us assume by reductio ad absurdum that A ⊂ A′, but O∗
A 	⊂ O∗

A′ .
This means there exists an o∗ ∈ O∗

A such that o∗ /∈ O∗
A′ . Expanding the definition

of Pareto optimal outcomes, we have

o∗ /∈ {o ∈ O | �o′ ∈ O ∃k ≤ m,

m∧

i=1

o′ �i o ∧ o′ �k o}.

This means there must exist an o ∈ O and a k ≤ m such that
m∧
i=1

o �i o
∗∧o �k o∗.

We consider two scenarios: either ak ∈ A or ak /∈ A.

– If ak ∈ A then o is an outcome that dominates o∗ over A, which is not possible
as o∗ is Pareto optimal over A.

– Otherwise, k > n, so we have
n∧

i=1

o �i o
∗. In that case, as o∗ is Pareto optimal

over A, the condition is only true if all of the agents in A are indifferent
between o and o∗. As preferences are strict, that cannot be true either.

Since both sides lead to a contradiction, we have proven the theorem.

At this point the reader may be wondering how the theorem above behaves
in a scenario where agents’ preferences are not strict. As we will discuss later,
the likeliness of such as scenario is small, but the conclusion of the theorem
above may in fact not hold in that case. Basically, an outcome that is Pareto
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optimal in a subgroup A may not be Pareto optimal in the group A′ when all
of the agents in A are indifferent between such outcome and another Pareto
optimal outcome. Then, one of the two outcomes may not be Pareto optimal
with A′ when one of the agents in the group is not indifferent between those
outcomes. Nevertheless, as we shall outline in Sect. 4.2, such situations are rare
in practice, as all of the agents need to be indifferent between outcomes. This
becomes increasingly unlikely as the group size grows and thus, for large enough
groups, we can consider that the theorem is true for practically any scenario.

There are several practical implications to the set/superset Pareto relation-
ship. The first one is that a negotiation team [31] can discover a prospective
set of Pareto optimal outcomes by just considering the preferences of the team.
With high probabilities, these deals will also be Pareto optimal when engaging
in a negotiation with and additional agent. However, the consequences of this
theorem can be also applied to other domains like multilateral negotiations or
group decision making. In the next section, we discuss some of the prospective
applications of this finding.

3 Prospective Applications

In Sect. 2 we have demonstrated that, the vast majority of the times, an outcome
that is Pareto optimal in a subgroup of agents will also remain Pareto optimal in
a larger group. However, the reader may still be wondering about the usability of
such proof in practice. In this section, we will discuss the usability of the proof
in a wide variety of practical domains. It should be highlighted that we are
not depicting achieving Pareto optimality as a simple task, not even calculating
a small portion of it. In fact, it is usually one of the most difficult goals for
optimization algorithms. However, there is value in computing Pareto optimality
in smaller/less complex problems as long as we are able to use those solutions in
a most difficult problem, which is exactly the situation that arises while making
practical use of our proof. Now, imagine the following situations:

– Negotiation teams: In this scenario, a group of individuals negotiate as a
party with opponent(s) to achieve a deal [28–31,33]. In that case, finding the
outcomes that are Pareto optimal within the team may play in favor of the
team as (i) if the team sticks to these outcomes while negotiating with oppo-
nents, it can ensure efficiency in the final outcome, (ii) the set of calculated
deals may be reused in multiple negotiations with different opponents as they
remain Pareto optimal, and (iii) finding Pareto optimal outcomes once may
reduce the time spent in negotiation threads as the team exactly knows which
outcomes are more beneficial for team members. On top of that, one can also
assume that team members may be more willing to share information with
teammates, which may make easier the search for Pareto optimal outcomes
inside the team.

– Multi-party negotiations: Some participants in a multi-party negotiation
[4,8,11,13,14,37] may decide to collude and bias the agreement with their
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preferences. For that, the subgroup of agents may calculate Pareto optimal
outcomes within the subgroup, and decide on the Pareto optimal outcomes
that they plan to use in the upcoming multi-party negotiation. This way, there
may be higher probabilities for the negotiation to finish with an outcome that
satisfies the subgroups’ interests and that is efficient. Another possible appli-
cation for this proof in multi-party settings is precisely the idea of looking for
Pareto optimal agreements within subgroups of agents. For instance, agents
with high degrees of trust may decide to share some information that facil-
itates the search of Pareto optimal outcomes within the subgroup. Then,
once outcomes are found in subgroups, these may be shared among all of the
agents, and the whole group may need to decide on the most appropriate
Pareto optimal outcome.

– Decision making in open environments: Open multi-agent systems [3,
15,32] have the particularity of being systems where agents enter and leave
the system dynamically. In such environments, decision making tasks may
suffer from the same characteristic and agents may enter and leave decision
making tasks as needed, resulting in a real time problem. For those situations,
agents in a decision making task may benefit from a continuous search for
Pareto optimal outcomes. As new agents join the task, those Pareto optimal
outcomes calculated should be kept as they will remain Pareto optimal in the
new group. When agents leave, remaining group members can get rid of some
outcomes that have become dominated in the new setting.

– Team/coalition formation: Teams of agents [2] can be iteratively built
considering the number of Pareto optimal outcomes within the current team
and the new Pareto optimal outcomes that may arise when adding a new
members. In general, when the agent added to the team is more dissimilar
to current team members, the more Pareto optimal outcomes will be added
when the agent joins the team. Hence, it can be used a measure of team
similarity/dissimilarity.

– Multi-objective optimization: A more general application for this proof
is multi-objective optimization [9]. Initially, an agent may need to optimize
a problem with n objective functions. If the agent computes a set of Pareto
optimal outcomes for such a problem, it can keep those outcomes for future
optimizations considering additional goals or objectives.

As the reader may have noticed, the range of applications where this app-
roach could be applied is varied. We are not claiming that those are the sole
applications for this approach, and there may be others in domains like social
choice [6], group recommendations [24], and so forth.

4 Experimental Study

Section 2 shows theoretically that Pareto optimal outcomes within a group of
agents having complete, transitive and strict preferences are still Pareto optimal
when the group size increases with incoming agents. Even when preferences are
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non strict, we expect for the theorem to hold in most of the cases. In this section,
we empirically analyze the prospective performance and applicability of bottom-
up approaches. For that purpose, we selected a variety of domains:

– Sushi domain: The sushi domain [18] is a widely used dataset in decision
making tasks. The dataset contains 5000 preference profiles over 10 types of
sushi. Each preference profile has strictly ranked all the types of sushi.

– AGH course selection: This dataset contains information about 153 stu-
dents that stated their preferences on 6 courses offered by AGU University of
Science and Technology in 2004 [36].

– Book crossing domain: This is a well-known dataset in recommender sys-
tems [38]. The original dataset contains information about 278,858 users that
have produced 1,149,780 ratings on 271,379 books. As we require preferences
to be complete on at least a subset of items, we kept 7 users that had rated 23
books in common. The users that we kept were calculated so that the number
of items rated in common was maximized.

– Movielens domain: This is a popular domain in recommender systems [25],
being one of the de facto benchmarks when testing recommender algorithms.
The original dataset contains 138,000 users that have emitted ratings on
27,000 movies. As we require preferences to be complete, for this study, we
picked the 10 users that had provided more recommendations in the dataset
and chose the movies that had been rated by all these 10 users. After reducing
the dataset, we obtained 10 preference profiles that had rated a total of 298
movies.

– Holiday domain: This is a multi-party negotiation domain available in
Genius [22]. In this scenario, decision makers need to decide on the details of a
holiday trip that they are going to take together. More specifically, the partic-
ipants can decide on their destination, the duration for the trip, the budget,
the activities to be done in the holiday, and the transportation method. In
total, 9 preference profiles over 1024 possible outcomes are available. These
preferences have been elicited from TU Delft computer science students, but
not with serious plans for a joint holiday in mind.

– Symposium domain: This is another multi-party negotiation domain that
is available in Genius [22]. The scenario is on the organization of conferences
where the decision makers need to decide on where a conference will be held
and schedules for the talks. There are 9 preference profiles over 2305 possi-
ble outcomes. These preferences have been elicited from faculty members in
computer science of TU Delft experienced in organizing conferences, but not
having a specific conference in mind.

– Party domain: This is a multi-party negotiation domain where agents decide
on the details of a party that they are going to host together [22]. Even though
the original domain does not provide real user preferences, we carried out an
experiment where we elicited preferences from students in a Master level AI
course. Students were asked to input their real preferences via Genius based on
their tastes for hosting parties. More specifically, the issues in the negotiation
scenario are the type of food, the type of drinks, the location for the party,
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the type of invitations to be sent, the type of music, and how to cleanup after
the party. In total, we elicited 24 real preference profiles over 3072 outcomes.

From a global perspective, the sushi, agh, and book domain are small attend-
ing to the number of outcomes. These domains correspond to decision making
domains where outcomes are non customizable objects (e.g., a movie, a book,
a course, etc.). The data in the Movielens domain is less sparse and we were
able to find 10 users that had rated 298 outcomes in common. This is again a
domain where outcomes are non customizable, but the size of the domain is one
order of magnitude larger than that of the small domains. The three remaining
multi-party negotiation domains (i.e., holiday, symposium, and party domain)
represent scenarios where the final outcome can be customized via the negotiable
issues. As a result, the number of possible outcomes is larger. We consider these
domains and the Movielens domain as the large domains in our study.

4.1 Validation and Performance Analysis

Our performance metric is the ratio of the Pareto optimal outcomes within a
subgroup with a size of {2, ..., n – 1} to the Pareto optimal outcomes within the
n-sized group. If the ratio remains low even for large subgroups, then this means
that the performance of our theoretical finding may be of little value in practice,
as only a small ratio of the final Pareto outcomes may be achievable. However,
if the ratio is large, then it may indicate that bottom-up approaches may be
valuable. Additionally, common sense indicates that, the larger the subgroup,
the higher the ratio of final Pareto optimal outcomes that may be obtained in
the subgroup. However, one question that arises is the actual speed by which
the ratio of final Pareto outcomes increases, and whether or not subgroups may
be able to calculate a respectable ratio of the final Pareto optimal outcomes.

For testing the practical performance of our bottom-up approaches, we ran-
domly generated groups of size n based on the preference profiles available for
each domain. For each randomly generated group, we built all possible sub-
groups with varying sizes {2, .., n − 1} and estimated the Pareto optimal set in
each (sub)group. More specifically, for each domain we tested a maximum of
1000 groups1 of size n = {5, 7, 9}2.

The results of this experiment can be observed in Fig. 1. As expected, the
results show that the larger the subgroup is, the larger the average ratio of the
final Pareto Optimal set that we get. The increase is clearly continuous for all
of the domains and group sizes. When we look at the results for groups of 7 and
9 members we observe a non-linear increase with the size of the subgroup. This
non-linear increase is not as evident in the case of 5 members’ groups, as in that
case we only have 3 data points3.

1 The total number is min(1000,
(
m
n

)
), where m is the total number of available pref-

erence profiles and n is the size of the group.
2 Except for the Book domain, where we only have 7 preference profiles.
3 Even non-linear functions may look like linear when the number of points is reduced.
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Fig. 1. Average ratio of the final Pareto optimal obtained in subgroups of different size

One should highlight that for n − 1 agents in the subgroup, n being the
total number of agents in the group, the average ratio of the Pareto optimal set
obtained in the subgroup is always over 50% of the final set, being close to 80% in
some cases (e.g., smaller domains, larger groups). This is a good result, especially
for negotiation team scenarios [29,31,33], where the team could calculate the
Pareto set inside the team and use those outcomes in the negotiation with an
opponent. This is a clear case where a subgroup of size n−1 can be formed (i.e.,
all of the team members) and, according to the experimental results, obtain
a notably high ratio of final Pareto optimal outcomes. Consequently, they can
propose Pareto optimal bids without knowing their opponent’s preferences.

The result is also notable for smaller subgroups. For instance, in groups of
size 5, we are able to obtain between an average of 68% of the final Pareto set
for small domains and 32% for the larger domains with just about half of the
group members (i.e., 3). In the case of groups of size 7, we get 68% of the final
Pareto set for small domains and 28% for larger domains with just about half of
the group members (i.e., 4). Similarly, for groups of size 9 we are able to obtain
an average of 76% of the final Pareto set in small domains, and 30% in large
domains with just about half of group members (i.e., 5).
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The trends in the graphics and the results mentioned above also may suggest
that larger domains may result in lower ratios of the final Pareto optimal frontier
achievable by subgroups. Nevertheless, the results can still be considered as
positive for the studied domain sizes as we have been able to observe above.
Despite the data trend, it is still premature to draw any conclusion as it would be
necessary to experiment with a wider range of domain sizes and more domains
from each size. Studying the changes in the behavior of the proof for larger
domains is part of our future work. However, it is not very feasible to elicit the
preferences of humans for very large domains (e.g., 10,000, 100,000, etc.)

4.2 Applicability Analysis

There are still other aspects that we need to analyze to determine the applicabil-
ity of bottom-up approaches in real situations. Even though considerable ratios
of the final Pareto optimal set are obtainable within subgroups, this may be use-
less in practice if the total number of Pareto optimal outcomes is very close to all
possible outcomes. In those cases, there would be no point in calculating Pareto
optimal outcomes in subgroups, as almost any outcome would be Pareto opti-
mal. Therefore, we are interested in checking that the set of final Pareto optimal
outcomes does not dramatically approach the total number of outcomes. In [26],
O’Neill studied how Pareto optimality was affected by the number of agents par-
ticipating in a decision making process. To put it simply, the author proved that
the number of Pareto optimal outcomes grows exponentially with the number
of agents, with the assumption that all preference profiles are equally probable.
Additionally, he proposed a formula to estimate the number of outcomes that
are expected to be Pareto optimal based on the size of the domain m, and the

number of agents in the group n: E(Km,n) = −
m∑
i=1

(−1)i
(
m
i

)
1

in−1 .

He also stated that the size of the domain had an effect on the number of
outcomes that were Pareto optimal: larger outcome spaces tend to slow down
the exponential growth of the Pareto optimal set, although the growth is still
exponential. Of course, for drawing such a conclusion, the author had to assume
that all preference profiles were equally probable. We argue that, in practice, all
preference profiles are not equally probable as in some domains not all of the
outcomes may be equally feasible (e.g., high prices in a team of buyers, popular
choices in movies, popular choices in travel destinations, etc.). Hence, we argue
that the exponential growth may not be as fast as in the theoretical case, and
bottom-up approaches may be applicable to more scenarios.

In order to examine this theoretical finding in practice, we calculated the
ratio of the Pareto optimal outcomes to the total number of outcomes for each
domain and group size. Figure 2 shows the average ratio of outcomes that are
Pareto optimal for different groups sizes and domains. In these graphs, blue
dots represent the average ratios calculated in real scenarios while green dots
denote the theoretical estimation provided by [26] for domains of the same size.
In addition to this, for each data point we provide the total number of cases4

4 Again, the total number is min(1000,
(
m
n

)
).
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Fig. 2. Average ratio of the final Pareto optimal set obtained with subgroups of differ-
ent size (Color figure online)

that were considered for calculating the average. Numbers in red represent less
than 30 samples and such averages should be ignored.

As it can be observed in Fig. 2, the growth in the number of outcomes that
are Pareto optimal is usually slower in real domains than in the theoretical esti-
mation. Being more specific, we observe that only the symposium domain shows
a similar behavior to that of the theoretical case. The rest of the domains deviate
from the theoretical behavior sooner or later, showing a slower saturation. We
can observe that this difference is specially acute in the Movielens, Book, Sushi,
and Agh domain, which are the ones whose preferences have been rigorously
elicited from real users (except for the party domain). This may reinforce our
initial intuition, that, in real domains, the exponential growth on the number
of Pareto optimal outcomes may not be as drastic as in the theoretical case. In
other domains like the party and the holiday domain, the difference is less acute
but still existent.

In fact, if one analyzes the proposed domains one by one, it is possible to
realize that there are general preferential trends. This is clear in domains like
Movielens or the Book domain, where we know that some movies and some books
tend to be more popular than others. For instance, The Shawshank Redemption
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is one of the most popular movies of all times, and it has been able to obtain
average ratings of 9.3 over 10 stars in sites like IMDB5, where it has been voted
by more than 1 million users. Similarly, we can find books like Harry Potter
and the Deathly Hallows that have received an average rating of 4.59 over 5
stars with more than 1 million ratings on sites like GoodReads6. Finding users
that did not like these items has low odds, and as a consequence we can state
that not all preference profiles are equally probable. Not only there are general
trends in users preferences, but many times we find that there are clusters of users
with similar preferences [35]. For instance, in the book domain, we can expect
that users that have liked The Lord of the Rings will also like other fantasy
themed books like Song of Ice and Fire. This is the type of patterns exploited
by recommender systems, and suggests that the number of likely preference
profiles is even smaller.

With respect to the other small domains (e.g., AGH, Sushi), we analyzed the
preferences of users. In fact, for analyzing the preferences of users on items we
performed a Borda count with all of the preference profiles. We could observe
that, in the Sushi domain, there are also some popular choices the toro (a total
score of 39445) and some choices that are usually the least liked by users like the
kappa-maki (a total score of 14928). In the case of the AGH domain, we could
also observe that one of the courses (e.g., course 3) was the most preferred one
with a score of 731, whereas the least preferred score had almost half the score.
This means that in these domains, preferences are not equally distributed and
one should not expect such an exponential growth as in the theoretical case.

With respect to negotiation domains, we elicited real preferences from the
Party domain, whereas we used the preference profiles provided by Genius in the
Holiday and Symposium domain. Interestingly, we could observe that real users
in the Party domain tend to consider the type of food, the type of drinks, and
the music as the most important attributes. Even in some specific attributes, we
could find that there were popular choices like for instance Beer only for drinks,
and Finger-food and Chips and Nuts for food choices. With respect to the rest of
negotiation domains, it has to be considered that they were not strictly and rigor-
ously elicited like in the case of the party domain. Users were not contextualized
in a specific scenario and their preferences were just elicited from their previous
experiences in similar scenarios. In the case of the Holiday domain, we were able
to observe some patterns like users considering the duration and the activities
as the most important attributes. The users usually preferred longer durations
to shorter durations, and we observed a slight positive inclination towards His-
torical Places and Restaurants. Even in the rest of less important attributes we
were able to find some patterns like the fact that most users preferred Miami and
Amsterdam as destinations. These patterns again show that not all preference
profiles are equally likely, and that is reflected in the fact that the experimental
growth depicted for Fig. 2 is slower than the theoretical growth. On the other
hand, the Symposium domain is closer to the theoretical expectation. This may

5 http://www.imdb.com. Visited on 16th November 2015.
6 http://www.goodreads.com/. Visited on 16th November 2015.

http://www.imdb.com
http://www.goodreads.com/
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Table 1. Average % of false positives calculated in a subgroup

Group size Subgroup size

2 3 4 5 6 7 8

5 7% 4% 1% – – – –

7 5% 2% 1% 0.7% 0.3% – –

9 4% 2% 1% 0.7% 0.4% 0.2% 0.07%

be explainable due to the fact that the Symposium domain preferences were not
elicited thinking on an specific symposium. In contrast to the Holiday domain,
which did not follow a rigorous preference elicitation process either, in the Sym-
posium domain it is harder to relate to the scenario, as it includes totally fictional
speakers (e.g. Mr. Talkolot), whereas in the holiday domain one always can think
about his/her own preferences on a trip. This may explain why the increase in
the ratio of Pareto optimal outcomes is similar to the theoretical case where
preference profiles are equally probable. It should be highlighted that in many
negotiation domains, preferences are made different to test the performance of
negotiation algorithms in conflicting scenarios.

The fact that, as we have shown, not all preference profiles are equally likely
makes bottom-up approaches more applicable to real life scenarios than the
results depicted in theory [26]. However, it should be noted that, even though
the growth is slower, the graphics still suggest an increase with the size of the
group and eventually the proof may not be applicable for domains involving a
large number of agents. These results raise an interesting trade-off that should
be analyzed in the future: the relation between the performance of bottom-up
approaches, which increases with the subgroup size, and its applicability, which
decreases with the group size, as nearly all outcomes may be Pareto optimal.

There is another additional issue to be studied concerning the applicability
of bottom-up approaches. As the reader may have guessed, the aforementioned
domains do not guarantee strict preferences. Therefore, some Pareto optimal out-
comes calculated in subgroups may not be Pareto optimal in the whole group
(we call these false positives). In order to study this, we measured the ratio of
false positives in the previous experimental setting. The results are summarized
in Table 1. As it can be observed, the percentage of false positives remains low
for every possible scenario, and it tends to decrease with the size of the sub-
group. This matches our initial intuition, and shows that the proof presented in
this paper practically holds in every situation. Hence, this result supports the
applicability of bottom-up approaches in practice.

5 Related Work

Since its introduction by the Italian mathematician Vilfred Pareto, Pareto opti-
mality has been an efficiency and stability concept that has had an impact
on many disciplines and areas of knowledge. Not only it has been studied in
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mathematics, but Pareto optimality has been considered a cornerstone in some
computer science areas like artificial intelligence, specially in those fields con-
cerned with making decisions by means of automated software (e.g., multi-agent
systems, multi-objective optimization, etc.).

Despite its increasing popularity in computer science areas, most of the
studies have dedicated their efforts on reaching Pareto optimal solutions. For
instance, many researchers in automated negotiation have successfully focused
on achieving Pareto or near Pareto optimal agreements. Fatima et al. studied
the case of two agents negotiating issues based on an endogenous agenda, and
analyzed conditions and strategies that led to Pareto optimal agreements. In
[20], the authors propose a general framework for bilateral negotiations where
agents are able to reach near Pareto optimal outcomes by decomposing the nego-
tiation process into iso-utility curves, from where outcomes are proposed based
on the similarity to the last offer proposed by the opponent. Later, authors in
[34] refine the models to make it capable of working with non-linear utility func-
tions and addressing the issue of devices with limited computational capabilities
by applying genetic algorithms. Ehtamo et al. [14] propose a centralized mecha-
nism for achieving Pareto optimal outcomes based on real valued linear additive
utility functions and information sharing. Recently, Hara et al. [13] proposed a
mediated mechanism based on genetic algorithms that is capable of achieving
near Pareto optimal outcomes for multi-party negotiations where agents prefer-
ences present non-linear relationships and change over time. In addition to using
Pareto optimality to measure the effectiveness of negotiation outcome, Marsa-
Maestre et al. use the structure of the Pareto Frointer to decide the degree of
competitiveness of a given negotiation scenario [23].

The concept of Pareto optimally is not only widely used in automated nego-
tiation but also used in other application areas in multiagent systems. For exam-
ple, Kash et al. study the problem of fair division of resources in scenarios where
agents enter and leave the system dynamically [19]. In this work, they define
the concept of dynamic Pareto optimality for such scenarios and under which
conditions and mechanisms the efficiency property can be accomplished. The
main difference with this work resides in the fact that our approach, although
it can be applied to dynamic environments, it focuses on scenarios where agents
have to decide on a non-divisible and discrete outcome space. Amador et al. [1]
propose a task allocation method for agents with temporal constraints that is
capable of providing envy free and Pareto optimal solutions under specific con-
ditions. Other works like [27] have extended the concept of Pareto optimality
to argumentation frameworks. The authors study different agent attitudes, how
they relate to the problem of efficiency in abstract argumentation dialogues,
and define several situations and scenarios that lead to Pareto optimal argu-
ments. They focus on characterizing Pareto optimal solutions in argumentation
dialogues while our proposal is much more general as it relates to one of the
underlying properties of theoretical Pareto optimality, which can be applicable
to a wide variety of domains.
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Another field related to our study is that of multi-objective optimization.
Pareto optimality is a well-known efficiency measure in multi-objective opti-
mization [16,17,21]. Similarly to our multiagent decision setting, researchers in
centralized multi-objective optimization have noticed the exponential increase on
the number of Pareto optimal outcomes with the number of objective functions
[7,10]. Due to this unfortunate property of Pareto optimality, some researchers
have offered practical alternatives to the selection of Pareto optimal outcomes.
Di Pierro et al. define the concept of k optimality for deciding over Pareto opti-
mal outcomes. Basically, a non-dominated outcome is defined as k-optimal when
that outcome is non-dominated over every possible combination of k objectives.
Thus, it results in a stronger concept of optimality that may help to choose a
solution over a set of Pareto optimal outcomes. We want to highlight the practical
usability of k-optimality on future decision making mechanisms for agents and
how it complements our current findings. First, based on our proof, a subgroups
of agents may calculate Pareto optimal outcomes on subgroups and communi-
cate them to the rest of subgroups. Then, a mechanism may be devised to allow
agents to select a k-optimal outcome over calculated Pareto optimal outcomes.

Finally, economic and theoretical studies are also a source of related work.
As introduced in the text, [26] analyzed how the number of Pareto optimal
outcomes exponentially increases with the number of agents by assuming that
all preference profiles are equally probable. In our present study, we have, among
other contributions, shown how real domains in practice behave with regards to
Pareto optimality. More specifically, we have shown that, despite the increase in
the number of Pareto optimal outcomes with the number of agents, the growth
speed is not as quick as portrayed by [26]. This is, as far as we know, our
closest work in the study of the underlying properties of Pareto optimality. Of
course, there have been other successful studies on Pareto optimality for specific
domains and problems like characterizing fairness, or studying the relationship
between monotonic solutions and Pareto optimality [5,12], but their focus of
study has not been on the exploration of bottom-up approaches for reaching
Pareto optimality.

6 Conclusion

In this paper, we have explored the applicability and performance of bottom-up
approaches for reaching Pareto optimal outcomes in groups. Our analysis shows
that Pareto optimal outcomes in a group remain optimal when increasing the
number of agents in the group in many practical scenarios. This has implications
for bottom-up approaches, as Pareto optimal outcomes may be calculated in
subgroups first, and then be used in scenarios involving the whole group.

We performed experimental analysis on preferences elicited from users in
real-life scenarios and validated that this principle can be applied to a wide
range of domains. Our results on performance and applicability indicate that
we are able to calculate a significant ratio of the final Pareto optimal frontier
within subgroups. Conversely, we analyzed the applicability of our approach
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by considering how the ratio of Pareto outcomes increases with the size of the
group. Our findings highlight that this increase is not as abrupt as expected
in theoretical studies, as not all preference profiles are equally likely in many
real-life domains. Still, the increase of the ratio of final Pareto optimal outcomes
points to a necessary trade off in practice, which we plan to analyze in the future.

Another interesting aspect that requires more study is deciding on the right
Pareto optimal outcomes for the group. The concept of a Pareto optimal out-
come does not automatically ensure it is going to be acceptable for the group;
for instance, an outcome with the maximum utility for a group member and
the minimum utility for another group member may be Pareto optimal, but
should definitely not be deemed acceptable for the group. Therefore, a mech-
anism should be devised to ensure that either those Pareto optimal outcomes
calculated in subgroups are beneficial for the group, or a posterior negotiation
or social choice procedure should help group members to select the most appro-
priate outcome for the group afterwards.

Additionally, as a future work, we plan to design novel negotiation approaches
for intra-team negotiations that benefit from our findings. In particular, we plan
to design a negotiation strategy for negotiation teams, which first calculate the
Pareto optimal solutions within the team using our approach, and then target
that set of Pareto optimal proposals when negotiating with the opponent.
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