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Chapter 1

Introduction

As indicated by the title our interest lies with the analysis of unbounded
structures for object-oriented languages. In particular we address two sources
of unboundedness that are commonly found in object-oriented languages: ob-
ject creation, i.e. structural complexity, and multi-threading, i.e. behavioural
complexity.

Construction and validation of programs requires a deep understanding of
the sources of these complexities and ways to address them in the validation
process.

Thesis est omnis divisa in partes tres. All parts address the aforementioned
complexities in different ways and settings. Since the setting and approach
presented in each section is introduced individually we restrain ourselves here
to an overview of the overall thesis to motivate the individual parts.

First we present our approach to address structural complexity by an ab-
straction of the underlying representation of objects and object creation. In
object-oriented programming languages like Java, objects can be dynamically
created by the constructor methods provided by their class. Using construc-
tors for object creation is an abstraction from the underlying representation
of objects and the implementation of object creation. For practical purposes
it is important to be able to specify and verify properties of objects at the
abstraction level of the programming language. We give such a representation
in terms of a weakest precondition calculus for abstract object creation in dy-
namic logic, the logic underlying the KeY theorem prover [19]. This represen-
tation allows to both specify and verify properties of objects at the abstraction
level of the programming language. Based on this weakest precondition calcu-
lus we show how to symbolically execute abstract object creation in the KeY

1



2 CHAPTER 1. INTRODUCTION

theorem prover.

The work presented in the first part was published as [10].

Second we present a technique to address behavioural complexity intro-
duced by multi-threading. Multi-threaded programs can show complex and
unexpected behaviour due to the interleaving of the activities of the individ-
ual processes or threads. An example of such an unexpected and undesired
behaviour is a system reaching a deadlock, i.e. a situation in which processes
are blocked due to mutual waiting. Sources of such mutual waiting can be
for example locks either by explicit or implicit lock handling, e.g. monitor
concept. Reasoning about locks in an object-oriented language the concept of
reentrance comes into picture, i.e. a process that has acquired a lock (to an
object) is free to pass the same lock several times (further method invocations
on the object locked by the process). The lock can only be freed as soon as the
initial method invocation (acquiring the lock) and all consecutive method in-
vocations of the process to methods protected by the lock (e.g. at the object in
case of a monitor) have terminated. This complicates the analysis of deadlock
behaviour as it introduces the need to look at the call stack of the processes.
We present an abtraction of multi-threaded programs (with respect to data
and control flow) that allows us to detect deadlocks. Our technique allows for
reentrant method calls. To the best of our knowledge this is the first automata
based approach tailored to deadlock detection of the abstract control flow of
method calls and returns of multithreaded reentrant programs.

The work presented in the second part was published as [43].

Third we extend a calculus to reason about active objects with futures
and promises. We present an open semantics for the core of the Creol lan-
guage including first-class futures and promises. A future acts as a proxy for,
or reference to, the delayed result of a computation. As the consumer of the
result can proceed its own execution until it actually needs the result, fu-
tures provide a natural, lightweight, and transparent mechanism to introduce
parallelism into a language. A promise is a generalization of a future as it
allows for delegation with respect to which process performs the computation.
The formalization is given as a typed, imperative object calculus to facilitate
the comparison with the multi-threaded concurrency model of object-oriented
languages, e.g. Java.

We close the third part of this thesis by presenting a technique to de-
tect deadlocks in concurrent systems of active objects. Our technique is based
on a translation of the system to analyse into a P/T net and the applica-
tion of a technique to detect termination in such P/T nets. We illustrate our
techique by application to an Actor-like subset of the Creol language featur-
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ing asynchronous calls using futures as means of communication. The so-called
discipline of cooperative multi-tasking within an object as found in Creol can
lead to deadlock. Our technique can be applied to detect such deadlocks.

The work presented in the third part was published as [4] and [44].
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Part I

Object Creation
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Chapter 2

Abstract Object Creation in

Dynamic Logic1

In this chapter we give a representation of a weakest precondition calculus
for abstract object creation in dynamic logic, the logic underlying the KeY
theorem prover. This representation allows to both specify and verify proper-
ties of objects at the abstraction level of the (object-oriented) programming
language. Objects which are not (yet) created never play any role, neither in
the specification nor in the verification of properties. Further, we show how to
symbolically execute abstract object creation.

2.1 Introduction

In object-oriented programming languages like Java, objects can be dynami-
cally created by the constructor methods provided by their class. Using con-
structors for object creation is an abstraction from the underlying representa-
tion of objects and the implementation of object creation. At the abstraction
level of the programming language, objects are described as instances of their
classes, i.e., the classes provide the only operations which can be performed on
objects. For practical purposes it is important to be able to specify and verify
properties of objects at the abstraction level of the programming language.
Specification languages like the Java Modeling Language (JML) [73] and the
Object Constraint Language (OCL) [83] abstract from the underlying repre-
sentation of objects. In [40], a Hoare logic is presented to verify properties of

1The work presented in this chapter was published as [10].

7



8 CHAPTER 2. ABSTRACT OBJECT CREATION

an object-oriented programming language at the abstraction level of the pro-
gramming language itself. This Hoare logic is based on a weakest precondition
calculus for object creation which abstracts from the implementation of object
creation.

In this chapter we give a representation of a weakest precondition calcu-
lus for abstract object creation in dynamic logic, the logic underlying the KeY
theorem prover [19]. This representation allows to both specify and verify prop-
erties of objects at the abstraction level of the programming language. Objects
which are not (yet) created never play any role, neither in the specification
nor in the verification of properties.

The generalization of Hoare logic to dynamic logic is of particular interest
because it allows for the specification of properties of dynamic object struc-
tures which cannot be expressed in first-order logic, like reachability. In Hoare
logic such properties require quantification over (finite) sequences or recur-
sively defined predicates in the specification language which seriously com-
plicates both the weakest precondition calculus and the underlying logic. In
dynamic logic we can restrict to first-order quantification and use the modal-
ities to express for example reachability properties.

An interesting consequence of the abstraction level of the specification
language studied in this chapter is the dynamic scope of the quantification
over objects because it is restricted to the created objects and as such is also
affected by object creation. However, we show that the standard logic of first-
order quantification also applies in the presence of (object) quantifiers with a
dynamic scope.

Further, we show how to symbolically execute abstract object creation in
KeY. In general, symbolic execution in KeY accumulates in a simultaneous
substitution of the assignments generated by a computation. This accumula-
tion involves a pre-processing of the substitution which in general simplifies
its actual application. However, we cannot simply accumulate abstract object
creation because its side-effects can only be processed by the actual application
of the corresponding substitution. We show how to solve this problem by the
introduction of fresh logical variables which are used as temporary place hold-
ers for the newly created objects. The use of these place holders together with
the fact that we can always anticipate object creation allows to symbolically
execute abstract object creation.
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Related work

Most formalisations of object-oriented programs, like embeddings into the logic
of higher-order theorem provers PVS [100] and Isabelle [70], or dynamic logic
as employed in the KeY theorem prover, use an explicit representation of
objects. Object creation is then formalized in terms of the information about
which objects are in fact created. Such an explicit representation of objects
additionally requires an axiomatization of certain consistency requirements,
e.g., the global invariant that the values of the fields of created objects only
refer to created objects. These requirements pervade the correctness proofs
with the basic case distinction between “to be or not to be created” and adds
considerably to the length of the proofs, as we illustrate in Section 2.5.

The contribution of this chapter is the formalization of object creation in
dynamic logic which abstracts from an explicit representation of objects and
the corresponding implementation of object creation. Proofs in this formaliza-
tion only refer to created objects and as such are not pervaded by irrelevant
implementation details.

Outline

In Section 2.2 we introduce a dynamic logic for a simple WHILE-language
with object creation. This language allows us to focus on object creation. We
present the axiomatization of the language in terms of the sequent calculus
given in Section 2.3. Please observe that this calculus can be extended to
other programming constructs of existing object-oriented languages like Java
as described in [21]. With the calculus at hand symbolic execution of programs
is described in Section 2.4. After a discussion of the state of the art in symbolic
execution with respect to object creation and a look into the expressiveness of
our approach in Section 2.5 we conclude with Section 2.6.

2.2 Dynamic Logic

To focus on the abstract object creation we restrict ourselves to a simple
WHILE-language as our object-oriented programming language. The language
contains data of three types Object, Integer, and Boolean. In [21] Becker and
Platzer present a similar dynamic logic for Java Card called ODL. ODL cov-
ers the type system of Java. Besides the type system, dynamic dispatch, side-
effects of expressions, and exception handling are presented in terms of pro-
gram transformations. However ODL models object creation in terms of an
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explicit representation of objects. To obtain a logic covering Java that follows
our theory of abstract object creation this representation can be replaced by
our theory or our theory can be extended analogous to [21].

2.2.1 Syntax

We assume the sets F of fields and GVar of global variables to be given. Fields
are the instance variables of objects. We assume a partitioning of the global
variables into a set PVar of program variables and a set LVar of logical vari-
ables. Logical variables do not change during program execution, i.e. there
are no assignments to logical variables. Logical variables are used to express
invariant properties and for (first-order) quantification. All fields and vari-
ables are typed. As mentioned before we restrict to the types Object, Integer,
and Boolean. We omit explicit declarations. The grammar for statements and
expressions of the simple WHILE-language are presented in Figure 2.1.

s ::= while e do s od | if e1 then s2 else s3 fi | s1; s2 | skip |
u := new | e1.x := e2 | u := e statements

e ::= u | e.x | null | e1 = e2 | if e1 then e2 else e3 fi | f(e1, ..., en) expressions

Figure 2.1: Grammar rules for the simple WHILE-language

The statement while denotes the usual looping. Conditional branching is
denoted by if–then–else. The condition for both looping and branching is given
by a Boolean expression. A semicolon denotes sequential composition. By skip

we denote the empty statement. Object creation is denoted by u := new, where
u is a program variable. An assignment to a program variable is denoted by
u := e. A dot denotes dereferencing, i.e., e1.x := e2 denotes an assignment
to the field x of the object referenced by e1. For technical convenience only
we do not have assignments e.x := new. In order to separate object creation
from the aliasing problem we reason about such assignments in terms of the
statement u := new; e.x := u, where u is a fresh program variable.

The expression null of type Object denotes the undefined reference. The
Boolean expression e1 = e2 denotes the test for equality between the values of
the expressions e1 and e2, e.g., e1 and e2 refer to the same object in case e1 and
e2 are variables of type Object. A conditional expression is denoted by if–then–
else. The function f(e1, ..., en) denotes an arithmetic or Boolean operation of
arity n. We assume every statement and expression to be well-typed. It is
important to note that object expressions, i.e., expressions of type Object,
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can only be compared for equality, dereferenced, or appear as argument of a
conditional expression.

Formulas. Dynamic logic is a variant of modal logic. Different parts of a
formula are evaluated in different worlds (states), which vary in the interpre-
tation of, in our case, program variables and fields. Dynamic logic extends full
first-order logic with two additional (mix-fix) operators: 〈 . 〉 . (diamond) and
[ . ] . (box). In both cases, the first argument is a program (fragment), whereas
the second argument is another dynamic logic formula. A formula 〈p〉φ is true
in a state s if execution of p terminates when started in s and results in a state
where φ is true. As for the box-operator, a formula [p]φ is true in a state s
if execution of p, when started in s, does either not terminate or results in a
state where φ is true. In other words, the difference between the operators is
the difference between total and partial correctness.2 Dynamic logic is closed
under all logical connectives.

For instance, the formula ∀ l. (〈p〉 (l = u) ↔ 〈q〉 (l = u)) states equiva-
lence of p and q w.r.t. the program variable u.

Example 2.2.1 (Object Creation) We give an example of a formula in-
volving object creation: ∀l.〈u := new〉¬(u = l). It states that every new object
indeed is new because the logical variable l ranges over all the objects that ex-
ist before the object creation u := new. Consequently, after the execution of
u := new we have that the new object is not equal to any object that already
existed before, i.e., ¬(u = l), when l refers to an “old” object. Note that the
formula 〈u := new〉∀l.¬(u = l) has a completely different meaning. In fact the
formula is false (cf. Section 2.3.3). These examples illustrate a further advan-
tage of dynamic logic over Hoare logic: the presence of explicit quantifiers in
both formulas clarify the difference in meaning.

All major program logics (Hoare logic, weakest precondition calculus, dy-
namic logic) have in common that the resolving of assignments requires sub-
stitutions in the formula, in one way or the other. In the KeY approach, the
effect of substitutions is delayed, by having explicit substitutions in the logic,
called ‘updates’. In this chapter, elementary updates have the form u := new,
e1.x := e2, or u := e. Updates are introduced to the logic via the update

2Just as in standard modal logic, the diamond resp. box operators quantify existentially
resp. universally over states (reached by the program). In case of deterministic programs,
however, the only difference between the two is whether termination is claimed or not.
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modality { . } . , connecting arbitrary updates with arbitrary formulas, like in
0 < v→{u := v} 0 < u.

A full account of KeY style dynamic logic can be found in [20].

2.2.2 Semantics

To define the semantics of our DL we assume given an arbitrary (infinite) set
O of object identities, with typical element o. We define null itself to be an
element of O, i.e., the value of the expression null is null itself. By dom(T ) we
denote the domain of values of type T , e.g., dom(Object)=O.

States. A state Σ = (σ, τ) is a pair consisting of a heap σ and an environment
τ . The heap σ is a partial function such that σ(o) for every o ∈ O, if defined,
denotes the internal state of object o. That is, the value of a field x of an object
o, for which σ(o) is defined, is given by σ(o)(x) ∈ dom(T ). The domain dom(σ)
of objects that exist in a heap σ is given by the set of objects o for which σ(o) is
defined. In order to describe unbounded object creation we require the domain
of a heap to be finite. The environment τ assigns values to the global variables.
The value of a variable v is given by τ(v).

We require every state Σ = (σ, τ) to be consistent, i.e.,

• null ∈ dom(σ),

• σ(o)(x) ∈ dom(σ) for every o ∈ dom(σ) and field x of type Object,

• τ(v) ∈ dom(σ) for every global variable v of type Object.

In words, null is an existing object, the fields of type Object of existing objects
refer to existing objects and all global variables of type Object refer to existing
objects.

Semantics of Expressions and Statements. The semantics of an expres-
sion e of type T is a partial function [[e]] : Σ⇀ dom(T ). As an example, if [[e]]
is defined and does not evaluate to null then

[[e.x]](σ, τ) = σ([[e]](σ, τ))(x),

otherwise [[e.x]] is undefined. For a general treatment of failures we assume
given a predicate def(e) which defines the conditions under which the expres-
sion e is defined. For example, we have that def(u.x) ≡ ¬(u = null).
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The semantics of a statement s is a partial function [[s]] : Σ ⇀ Σ. We
focus on the semantics of object creation. In order to formally describe the
initialisation of newly created objects, we first introduce for each type T an
initial value of type T , i.e., initObject = null, initInteger = 0, and initBoolean =
false. We define init to be the initial state, i.e., the state that assigns to each
field x of type T its initial value initT . For the selection of a new object we
use a choice function ν on heaps to get a fresh object, i.e., ν(σ) 6∈ dom(σ).

We now define

[[u := new]](σ, τ) = (σ[o := init], τ [u := o]),

where o = ν(σ). The heap σ[o := init] assigns the local state init to the new
object o and the environment τ [u := o] assigns this object to the program
variable u.

Semantics of Formulas. A formula φ in dynamic logic is valid if Σ |= φ
holds for every consistent state Σ. For a logical variable l of type Object, we
have the following semantics of universal quantification

(σ, τ) |= ∀l.φ iff for all o ∈ dom(σ) : (σ, τ [l := o]) |= φ,

where the consistency of (σ, τ [l := o]) implies that the object o exists in σ.
Consequently, quantification is restricted to the existing objects. Note that
null is always included in the scope of the quantification (i.e., the scope of the
quantification is non-empty).

Returning to the above example, we have

(σ, τ) |= ∀l.〈u := new〉¬(u = l)
iff
(σ, τ [l := o]) |= 〈u := new〉¬(u = l)

for all o ∈ dom(σ). Let o′ = ν(σ). By the semantics of the diamond modality
of dynamic logic and the above semantics of object creation we conclude that

(σ, τ [l := o]) |= 〈u := new〉¬(u = l)
iff
(σ[o′ := init], τ [l := o]) |= ¬(u = l)
iff
o 6= o′

Note that since o′ /∈ dom(σ) by definition of ν(σ) indeed o 6= o′ for all o ∈
dom(σ).
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2.3 Axiomatization

In this section, we introduce a proof system for dynamic logic with object
creation which abstracts from the explicit representation of objects in the
semantics defined above. As a consequence the rules of the proof system are
purely defined in terms of the logic itself and do not refer to the semantics.
It is characteristic for dynamic logic, in contrast to Hoare logic or weakest
precondition calculi, that program reasoning is fully interleaved with first-
order logic reasoning, because diamond, box or update modalities can appear
both outside and inside the logical connectives and quantifiers. It is therefore
important to realise that in the following proof rules, φ, ψ and alike, match
any formula of our logic, possibly containing programs or updates.

2.3.1 Sequent Calculus

We follow [21, 19] in presenting the proof system for dynamic logic as a sequent
calculus. A sequent is a pair of sets of formulas (each formula closed for logical
variables) written as φ1, ..., φm ⊢ ψ1, ..., ψn. The intuitive meaning is that,
given all of φ1, ..., φm hold, at least one of ψ1, ..., ψn must hold. We use capital
Greek letters to denote (possibly empty) sets of formulas. For instance, by
Γ ⊢ φ→ψ,∆ we mean a sequent containing at least an implication formula on
the right side. Sequent calculus rules always have one sequent as conclusion
and zero, one or many sequents as premises:

Γ1 ⊢ ∆1 . . . Γn ⊢ ∆n

Γ ⊢ ∆

Semantically, a rule states that the validity of all n premises implies the validity
of the conclusion (“top-down”). Operationally, rules are applied bottom-up,
reducing the provability of the conclusion to the provability of the premises,
starting from the initial sequent to be proved. Rules with no premise close the
current proof branch. In Figure 2.2 we present some of the rules dealing with
propositional connectives and quantifiers (see [55] for the full set). We omit
the rules for the left hand side, the rules to deal with negation and the rule to
cover conditional expressions. φ[l/e] denotes standard substitution of l with e
in φ.

When it comes to the rules dealing with programs, most of them are not
sensitive to the side of the sequent and can moreover be applied to subformulas
even. For instance, 〈s1; s2〉φ can be split up into 〈s1〉〈s2〉φ regardless of where
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impRight
Γ, φ ⊢ ψ,∆

Γ ⊢ φ→ ψ,∆
andRight

Γ ⊢ φ,∆ Γ ⊢ ψ,∆

Γ ⊢ φ ∧ ψ,∆

allRight

Γ ⊢ φ[l/c],∆

Γ ⊢ ∀l.φ,∆
with c a new constant

allLeft

Γ,∀l.φ, φ[l/e] ⊢ ∆

Γ,∀l.φ ⊢ ∆
with e an expression

close
Γ, φ ⊢ φ,∆

ind

Γ ⊢ φ[l/0],∆ Γ ⊢ ∀l.(φ→φ[l/l + 1]),∆

Γ ⊢ ∀l.φ,∆
with l of type Integer

Figure 2.2: Sequent rules - first-order logic rules

it occurs. For that we introduce the following syntax

⌊φ′ ⌋

⌊φ ⌋

for a schema rule where the premise is constructed from the conclusion via
replacing an occurrence of φ by φ′.

In Figure 2.3 we present the rules dealing with statements. The schematic
modality 〈[·]〉 can be instantiated with both [·] and 〈·〉, though consistently
within a single rule application. The extension of these rules with the predicate
def(e) to reason about failures is standard and therefore omitted.

Total correctness formulas of the form 〈while ...〉φ are proved by first ap-
plying the induction rule ind (possibly after generalising the formula) and ap-
plying the unwind rule within the induction step. For space reasons, we omit
the invariant rule dealing with formulas of the form [while ...]φ (see [21, 20]).
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split
⌊ 〈[s1]〉〈[s2]〉φ ⌋

⌊ 〈[s1; s2]〉φ ⌋
if

⌊ (e→〈[s1]〉φ) ∧ (¬e→〈[s2]〉φ) ⌋

⌊ 〈[if e then s1 else s2 fi]〉φ ⌋

unwind
⌊ 〈[if e then s;while e do s od else skip fi]〉φ ⌋

⌊ 〈[while e do s od]〉φ ⌋

assignVar
⌊ {u := e}φ ⌋

⌊ 〈[u := e]〉φ ⌋
assignField

⌊ {e1.x := e2}φ ⌋

⌊ 〈[e1.x := e2]〉φ ⌋

createObj
⌊ {u := new}φ ⌋

⌊ 〈[u := new]〉φ ⌋

Figure 2.3: Sequent rules - dynamic logic rules

2.3.2 Application of General Updates

Updates are essentially delayed substitutions.3 They are resolved by applica-
tion to the succeeding formula, e.g., {u := e}(u > 0) leads to e > 0. Update
application is only allowed on formulas not starting with either a diamond,
box or update modality. The last restriction is dropped for symbolic execution,
see Section 2.4.

We now define update application on formulas in terms of a rewrite re-
lation {U}φ  φ′ on formulas. As a technical vehicle, we extend the update
operator to expressions, such that {U}e is an expression, for all updates U
and expressions e. Accordingly, the rewrite relation  carries over to such
expressions: {U}e e′.

In Figure 2.4 we define  for all standard cases (see also [92, 19]). The
symbol U matches all updates, whereas Unc (‘non-creating’) excludes state-
ments of the form u := new. Furthermore, Lit is the set of literals of all types,
in our context {null, true, false} ∪ {. . . ,−1, 0, 1, . . .}. (Recall LVar is the set of
logical variables.)

The aliasing analysis performed by the last rule is the motivation to add

3The benefit of delaying substitutions in the context of symbolic execution is illustrated
in Section 2.4.
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{U}φ1 ∗ {U}φ2  φ′

{U}(φ1 ∗ φ2) φ′

with ∗ ∈ {∧,∨,→}

¬{U}φ φ′

{U}(¬φ) φ′

Q l. {Unc}φ φ′

{Unc}(Q l. φ) φ′

with Q ∈ {∀, ∃}, l not in Unc

{U}α α
with α ∈ LVar ∪ Lit

{Unc}e1 = {Unc}e2  e′

{Unc}(e1 = e2) e′
f({U}e1, ..., {U}en) e′

{U}f(e1, ..., en) e′

({u := e1}e2).x e′

{u := e1}(e2.x) e′

({e.x := e1}e2).y  e′

{e.x := e1}(e2.y) e′

x, y different fields

{u1 := e}u2  u2
u1, u2 different variables

{u := e}u e

if ({e.x := e1}e2) = e then e1 else ({e.x := e1}e2).x fi  e′

{e.x := e1}(e2.x) e′

Figure 2.4: Application of Updates - standard cases

conditional expressions to our language. Object creation of the form u := new

is only covered as far as it behaves like any other update. The cases where
object creation makes a difference are discussed separately in Section 2.3.3.
The relation is defined in a big-step manner, such that updates are resolved
completely in a single  step.

Note that  is not defined for formulas of the form {U}〈s〉φ, {U}[s]φ
or {U}{U ′}φ, i.e., they are not subject to update application. We return to
formulas with nested updates, like {U}{U ′}φ, in Section 2.4.
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The following rule links the rewrite relation  with the sequent calculus:

applyUpd

⌊φ′ ⌋

⌊ {U}φ ⌋
with {U}φ  φ′

2.3.3 Contextual Application of Object Creation

To define update application on expressions {u := new}e, simple substitution is
not sufficient, i.e., replacing u in e by some expression, because we cannot refer
to the newly created object in the state prior to its creation. However, since
object expressions can only be compared for equality, or dereferenced, and do
not appear as arguments of any other function, we define update application
by a contextual analysis of the occurrences of u in e.

We define application of u := new inductively. Some cases are already
covered in Section 2.3.2, Figure 2.4 (the rules dealing with unrestricted U).
The other cases are discussed in the following.

If u1 and u2 are different variables, then

{u1 := new}u2  u2

Since the fields of a newly created object are initialised we have

{u := new}u.x initT

where T is the type of x.

If e is neither u nor a conditional expression then

({u := new}e).x e′

{u := new}(e.x) e′

Otherwise, if e is a conditional expression then

if {u := new}b then {u := new}(e1.x) else {u := new}(e2.x) fi e′

{u := new}(if b then e1 else e2 fi .x) e′

Note that we use here the valid equation:
if b then e1 else e2 fi .x = if b then e1.x else e2.x fi.

The only other possible context of u is that of an equality e = e′. We
distinguish the following cases.
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If neither e nor e′ is u or a conditional expression then they cannot refer
to the newly created object and we define4

({u := new}e) = ({u := new}e′) e′′

{u := new}(e = e′) e′′

If e is u and e′ is neither u nor a conditional expression (or vice versa)
then after u := new the expressions e and e′ cannot denote the same object
(because one of them refers to the newly created object and the other one
refers to an already existing object) and so we define

{u := new}(e = e′) false

On the other hand if both the expressions e and e′ equal u we obviously
have

{u := new}(e = e′) true

If e is a conditional expression of the form if b then e1 else e2 fi then

if {u := new}b then {u := new}(e1 = e′) else {u := new}(e2 = e′) fi e′′

{u := new}(e = e′) e′′

And similarly for e′ = e. Note that we use here the valid equation:
(if b then e1 else e2 fi = e′) = if b then e1 = e′ else e2 = e′ fi

Since object expressions can only be compared for equality, dereferenced or
appear as argument of a conditional expression, it is easy to see that for every
boolean expression e there exists an expression e′ such that {u := new}e e′.

The following lemma states the semantic correctness of the rewrite relation
{u := new}e e′: The value of e′ in the state before the assignment u := new

equals the value of e after the assignment.

Lemma 2.3.1
If {u := new}e e′ and [[u := new]](σ, τ) = (σ′, τ ′) then [[e′]](σ, τ) = [[e]](σ′, τ ′).

The proof of this lemma involves a further elaboration of proofs given in [16].

Now we define the rewriting of {u := new}φ, where φ is a first-order for-
mula in predicate logic (which does not contain modalities). The rules for this
generalization are standard.

4To see why the shifting inwards of {u := new} is necessary, consider the case
{u := new}(u.x = u.x).
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Example 2.3.2 We present a rule for quantification as an example:

({u := new}φ[l/u]) ∧ ∀l.({u := new}φ) ψ

{u := new}∀l.φ ψ

where l is a logical variable. This rewrite rule takes care of the changing scope
of the quantified variable l by distinguishing the following cases: p holds for
the new object is expressed by the first conjunct {u := new}φ[l/u] which is
obtained by application of the update to φ[l/u] and p holds for all ’old’ objects
is expressed by the second conjunct ∀l.({u := new}φ).

Example 2.3.3 As an example, we derive {u := new}∀l.¬(u = l) ¬(true)∧
∀l.¬false:

{u := new}(u = u) true

{u := new}¬(u = u) ¬(true)

{u := new}(u = l) false

{u := new}¬(u = l) ¬false

∀l.{u := new}¬(u = l) ∀l.¬false

{u := new}¬(u = u) ∧ ∀l.{u := new}¬(u = l) ¬(true) ∧ ∀l.¬false

{u := new}∀l.¬(u = l) ¬(true) ∧ ∀l.¬false

The resulting formula is equivalent to false. We use this to prove the formula
〈u := new〉∀l.¬(u = l), which states that u is different from all objects existing
after the update (including u itself), invalid. In fact we have the following
derivation for ¬〈u := new〉∀l.¬(u = l).

closeTrue
∀l.¬false ⊢ true

notLeft
¬(true),∀l.¬false ⊢

andLeft
¬(true) ∧ ∀l.¬false ⊢

applyUpd
{u := new}∀l.¬(u = l) ⊢

assignVar
〈u := new〉∀l.¬(u = l)) ⊢

notRight
⊢ ¬〈u := new〉∀l.¬(u = l)

On the other hand, we have the following derivation of

∀l.〈u := new〉¬(u = l)

which expresses in an abstract and natural way that u indeed is a new object
different from objects existing before the update.

closeFalse
false ⊢

notRight
⊢ ¬false

applyUpd
⊢ {u := new}¬(u = c)

assignVar
⊢ 〈u := new〉¬(u = c)

allRight
⊢ ∀l.(〈u := new〉¬(u = l))
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The second example shows that the standard rules for quantification apply
to the quantification over the existing objects.

2.4 Symbolic Execution

2.4.1 Simultaneous Updates for Symbolic State Representa-

tion

The proof system presented so far allows for classical backwards reasoning,
in a weakest precondition manner. We now generalise the notion of updates,
to allow for the accumulation of substitutions, thereby delaying their applica-
tion. In particular, this can be done in a forward manner, giving the proofs a
symbolic execution nature. We illustrate this principle by example:

close
u < v ⊢ u < v

applyUpd
u < v ⊢ {w := u |u := v | v := u}v < u

mergeUpd
u < v ⊢ {w := u |u := v}{v := w}v < u

assignVar
u < v ⊢ {w := u |u := v}〈v := w〉v < u

mergeUpd
u < v ⊢ {w := u}{u := v}〈v := w〉v < u

split, assignVar
u < v ⊢ {w := u}〈u := v; v := w〉v < u

split, assignVar
u < v ⊢ 〈w := u;u := v; v := w〉v < u

The first application of the update rule mergeUpd introduces what is called
the simultaneous update w := u |u := v. After applying the second mergeUpd,
note that the w from the inner update was turned into a u in the simultaneous
update. This is achieved by applying the outer update to the inner one:

mergeUpd

⌊ {U1 | . . . | Un | U
′}φ ⌋

⌊ {U1 | . . . | Un}{U}φ ⌋
with {U1 | . . . | Un}U  U ′

For this, we need to extend the rewrite relation  towards defining appli-
cation of updates to updates:

u := {Unc}e U ′

{Unc}(u := e) U ′

({Unc}e1).x := {Unc}e2  U ′

{Unc}(e1.x := e2) U ′

What remains is the definition of the application of simultaneous updates
to expressions. For space reasons, we will not include the full definition here,
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but only one interesting special case, where two left-hand sides both write the
field x which is accessed in e.x.

if ((Ue2) = e) then e′2 else if ((Ue1) = e) then e′1 else U(e).x fi fi  e′

U(e.x) e′

with U = {e1.x := e′1 | e2.x := e′2}

This already illustrates two principles: a recursive alias analysis has to be
performed on all left-hand sides, and moreover, in case of a clash, the rightmost
update will ‘win’. The latter is exactly what reflects the destructive semantics
of imperative programming. Most cases are, however, much simpler. Most of
the time, it is sufficient to think of an application of a simultaneous update
as an application of a standard substitution (of more than one variable). For
a full account on simultaneous updates, see [92].

The idea to use simultaneous updates for symbolic execution was devel-
oped in the KeY project [19], and turned out to be a powerful concept for the
validation of real world (Java) programs. A simultaneous update forms a rep-
resentation of the symbolic state which is reached by “executing” the program
in the proof up to the current proof node. The program is “executed” in a
forward manner, avoiding the backwards execution of (pure) weakest precon-
dition calculi, thereby achieving better readability of proofs. The simultaneous
update is only applied to the post-condition as a final, single step. The KeY
tool uses these updates not only for verification, but also for test case genera-
tion with high code based coverage [46] and for symbolic debugging.

2.4.2 Symbolic Execution and Abstract Object Creation

A motivation to choose the setting of dynamic logic with updates is to allow
for abstract object creation in symbolic execution style verification. To do
so, we have to answer the question of how symbolic execution and abstract
object creation can be combined. The problem is that there is no natural
way of merging object creation {u := new} with other updates. Consider, for
instance, the following formulas, only the first of which is valid.

〈u := new; v := u〉(u = v) 〈u := new; v := new〉(u = v)

Symbolic execution generates the following formulas:

{u := new}{v := u}(u = v) {u := new}{v := new}(u = v)

Merging the updates naively results in both cases in:

{u := new | v := new}(u = v)
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Whichever semantics one gives to a simultaneous update with two object cre-
ations, the formula cannot be both valid and invalid.

The proposed solution is twofold: not to merge an object creation with
other updates at all, but to create a second reference to the new object, to
be used for merging. For this, we introduce a fresh auxiliary variable to store
the newly created object, and generate two updates according to the following
rule:

createObj
⌊ {a := new}{u := a}φ ⌋

⌊ 〈u = new〉φ ⌋
with a a fresh program variable

The inner update {u := v} can be merged with other updates resulting from
the analysis of φ. The next point to address is the “disruption” of the sym-
bolic state, caused by object creation being unable to merge with their “neigh-
bours”, thereby strictly separating state changes happening before and after
object creation. The key idea to overcome this is to gradually move all object
creations to the very front (as if all objects were allocated up front) and per-
form standard symbolic execution on the remaining updates. We achieve this
by the following rule:

pullCreation
⌊ {u := new}Uncφ ⌋

⌊ Unc{u := new}φ ⌋
with u not appearing in Unc

We illustrate symbolic execution with abstract object creation by an ex-
ample.

notRight, closeFalse
⊢ ¬false

applyUpd
⊢ {a := new}¬(v = a)

applyUpd
⊢ {a := new}{u := v | v := a |w := u}¬(w = v)

mergeUpd
⊢ {a := new}{u := v | v := a}{w := u}¬(w = v)

mergeUpd, assignVar
⊢ {a := new}{u := v}{v := a}〈w := u〉¬(w = v)

pullCreation
⊢ {u := v}{a := new}{v := a}〈w := u〉¬(w = v)

split, createObj
⊢ {u := v}〈v := new;w := u〉¬(w = v)

split, assignVar
⊢ 〈u := v; v := new;w := u〉¬(w = v)
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2.5 Discussion

2.5.1 Object Creation vs. Object Activation

Proof systems for object-oriented languages(cf. [2]) usually achieve the unique-
ness of objects via an injective mapping, here called obj, from the natural num-
bers to object identities. Only the object identities obj(i) up to a maximum
index i are considered to stand for actually created objects. In each state, the
successor of this maximum index is stored in a ghost variable, here called next.
(In case of Java, next would be a static field, for each class). Object creation
increases the value of next, which conceptually is more an activation than a
creation. Quantifiers cover the entire co-domain of obj, including “not yet cre-
ated” objects. In order to restrict a certain property φ to the “created” objects,
the following pattern is used: ∀l.(ψ→φ), where ψ restricts to the created ob-
jects. Formulas of the form ∃n. (n < next∧ obj(n) = l) are the approach taken
in ODL [21]. To avoid the extra quantifier, ghost instance variable of boolean
type, here called created, can be used to indicate for each object whether or
not it has already been “created”, see [20]. In this case we set the created sta-
tus of the “new” object (identified by next) and increase next. The assertion
∀n.(obj(n).created ↔ n < next) retains the relation between the created status
and the object counter next on the level of the proofs. In both case, we need
further assertions to state that fields of created objects always refer to created
objects.

To state in this setting that a new object indeed is new we need to argument
the formula introduced in Section 2.3, i.e. ∀l. (l.created→〈u := new〉¬(u = l)).
In fact the formula in Section 2.3 is not valid in this setting. An object acti-
vation style proof of this is given in Figure 2.5 (abbreviating created by cr).
Many steps in this proof are caused by the particular details of the explicit
representation of objects and the simulation of object creation by object acti-
vation.

2.5.2 Expressiveness

Many interesting properties of dynamic object structures, like reachability in
dynamic linked data structures, cannot be expressed in first-order predicate
logic. There are approaches to simulate reachability by an overapproximation
of the reachable states [74]. In first-order dynamic logic however we can use
the modalities to express such properties. For example, if a linked list is given
in terms of a field next and the data is stored in a field data then the following
formula in dynamic logic states that the object denoted by v is reachable from
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close
c.cr, obj(next)=c ⊢ c.cr

equality
c.cr, obj(next)=c ⊢ obj(next).cr

notLeft
¬obj(next).cr, c.cr, obj(next)=c ⊢

(2 rules)
(obj(next).cr ↔ next < next), c.cr, obj(next)=c ⊢

allLeft
∀n.(obj(n).cr ↔ n < next), c.cr, obj(next)=c ⊢

assumption(1)
c.cr, obj(next)=c ⊢

notRight
c.cr ⊢ ¬(obj(next)=c)

applyUpd
c.cr ⊢ {u :=obj(next) | obj(next).cr := true | next :=next+1}¬(u=c)

createObj
c.cr ⊢ 〈u := new〉¬(u=c)

impRight
⊢ c.cr→〈u := new〉¬(u=c)

allRight
⊢ ∀l. (l.cr→〈u := new〉¬(u= l))

Figure 2.5: Object activation style proof

the object denoted by u:

〈while u 6= v do u := u.next od〉(true)

Note that in DL such formulas can be used to express properties themselves.

2.6 Conclusion

In this chapter we gave a representation of a weakest precondition calculus for
abstract object creation in dynamic logic and the KeY theorem prover. Ab-
stract object creation is formalized in terms of an inductively defined rewrite
relation. The standard sequent calculus for dynamic logic is extended with a
schema rule which allows to substitute formulas in sequents and thus provides
a general mechanism to import for example specific rewrite relations. The
resulting logic abstracts from an explicit representation of objects and the
corresponding implementation of object creation. As such it abstracts from
irrelevant implementation details which in general complicate proofs. More-
over, it treats the dynamic scope of quantified object variables in a standard
manner. Finally, we have shown how to symbolically execute abstract object
creation in KeY.
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Part II

Multi-threading
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Chapter 3

Deadlock Detection for

Reentrant Call-graphs1

In this chapter we investigate the synchronization of multithreaded call graphs
with reentrance similar to call graphs in Java programs. We model the individ-
ual threads as Visibly Pushdown Automata (VPA) and analyse the reachabil-
ity of a state in the product automaton by means of a Context Free Language
(CFL) which captures the synchronized interleaving of threads. We apply this
CFL-reachability analysis to detect deadlock.

3.1 Introduction

Due to behavioural complexity formal methods are needed when it comes to
reasoning about programs. This is particularly true for concurrent (or mul-
tithreaded) programs. Such programs in general involve the synchronization
of different processes (or threads) which may lead to undesirable deadlock
situations.

A group of activities competing for a number of resources can block each
other if each of them holds resources another one needs. A typical example of
such a resource is exclusive access to a part of the system, i.e. a class or object,
guarded by a lock. Modern programming languages like Java opt for implicit
lock handling, i.e. instead of explicitly grabbing a lock via the execution of a
lock operation a region is declared to be subject to a lock and the lock handling
is done by the execution platform rather than the programmer.

1The work presented in this chapter was published as [43].
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These languages also allow for reentrance, i.e. a thread is allowed to enter
each region guarded by a lock several times if it holds the lock. In such a
setting the number of times a thread has entered a lock-guarded region has
to be counted to decide when to release the lock again. There are techniques,
e.g. preemption or global lock orders, to address the problem of deadlock in
such a setting. But these techniques do not provide a general solution to the
deadlock problem, i.e. most concurrent programming languages have to deal
with deadlocks and how to avoid them on the programming level.

The combination of multithreading, implicit lock handling, and reentrance
makes the detection of deadlocks hard. This explains the need for methods
and tools to do automatic deadlock analysis.

Contribution In order to develop an automated method for deadlock de-
tection applicable to Java-like languages we abstract from data and focus on
the control flow of method calls and returns. The unsynchronized interleaving
of a finite number of reentrant (abstract) threads is naturally modelled as a
multistack Visibly Pushdown Automaton [14]. In order to analyse the synchro-
nization between threads we apply Context-Free-Language(CFL)-reachability
as introduced in [90] to the underlying finite state automaton. Information
about the ownership of the locks is included in the CFL to model synchronized
sequences of calls and returns and to identify deadlock states.

In general however CFLs are not closed under arbitrary interleavings. We
resolve this lack of expressive power of CFL languages in this particular setting
by showing that for every (synchronized) interleaving there exists a reschedul-
ing which does not affect the synchronization and is included in the CFL lan-
guage. In fact, the CFL language only restricts the scheduling of the returns
and we can anticipate returns of synchronised method calls without affecting
the synchronization.

To the best of our knowledge this is the first automata based approach
tailored to deadlock detection of the abstract control flow of method calls and
returns of multithreaded reentrant programs. A sketch of an implementation
is described in the concluding section. In this implementation the programmer
only needs to indicate a finite number of threads, i.e., for each thread class the
number of threads involved in the deadlock analysis.

Related Work In [91] Rinard gives an overview of recent techniques to
analyse multithreaded programs. Deadlock detection is only covered for lan-
guages communicating via pairwise rendezvous. Ramalingam (see [89]) has
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shown that the analysis of synchronization problems is not decidable even for
only two threads if a CCS-style pairwise rendezvous is used to synchronize
among the threads.

In [68] Kahlon et al. give a compositional method to reason about programs
synchronizing via locks based on Visibly Pushdown Automata. Visibly Push-
down Automata are a kind of pushdown automata tailored to the generation
of nested words reflecting the structure of traces generated by languages with
nested call and return structures. The languages generated by these automata
are closed under intersection. The result from [89] is generalized by showing
that the reachability problem is not decidable for two threads communicating
via non-nested locks. The language presented is non-reentrant and uses ex-
plicit acquire and release primitives. The automata are extended by so called
acquisition histories to record relevant locking information to synchronize the
threads. These acquisition histories can be used together with the explicit
acquire primitives to identify deadlock situations. As soon as reentrance is
allowed the setting gets more complicated. Due to reentrance the number of
calls to synchronised methods has to be counted to decide whether or not to
release a lock. Note that Java provides a nested call and return structure (with
respect to one thread) which implies a nested acquire and release of locks.

Kidd et al. [69] introduce a technique called language strength reduction to
reduce reentrant locks to non-reentrant locks in the context of Visibly Push-
down Languages. They check for atomic-set serializability violations, i.e. an
illegal data access pattern. Due to this goal they take data into consideration.
They create a CFL for each thread and for each lock. These languages are
approximated by regular languages. Additionally a language describing a vio-
lation of a data access pattern is defined and the intersection of all languages
is checked for emptiness. Up to our understanding there is no natural way to
express a deadlock in this setting.

Lammich and Müller–Olm [72] present a model that can deal with thread
creation and reentrant monitors. Their analysis is also focused on atomic-set
serializability violations. Their approach is based on a fixpoint construction.
They also use acquisition histories but only for synchronization purposes again.
To reduce the number of executions to analyse they reduce the executions to
a restricted subset involving the notion of a macrostep, i.e. a number of steps
by one thread such that the stack only grows that is there are at most new
locks taken after a macrostep but none are freed. In general, their analysis
answers whether a given program location and a stack of method calls can be
reached by a computation. However solutions to this reachability problem do
not solve the more abstract problem of checking the reachability of a deadlock
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configuration.

In [34] Carotenuto et al. introduce Visibly Pushdown Automata with a
finite number of stacks. The languages generated by these automata are also
closed under intersection. However the emptiness problem is not decidable for
these automata.

A variety of other synchronization and communication mechanisms in con-
current programs with recursion have been studied (cf. for example [24], [35]).
In [25] Bouajjani et al. present a formalism to compute abstractions of multi-
threaded call-graphs.

Outline This chapter is organized as follows. We start with a section on the
syntax and semantics of synchronised multithreaded programs. In Section 3.3
we introduce Thread Automata to model the individual threads. Based on
Thread Automata we introduce a technique based on CFL-reachability for
the analysis of the product automaton in Section 3.4. In Section 3.5 we prove
soundness and completeness of our method. We conclude in Section 3.6.

3.2 Synchronized Multithreaded Programs

We abstract from data, which includes object identities. In our setting locks
are bound to classes. A system consists of a finite number of given classes and
a finite number of given threads synchronizing via locks.

3.2.1 Syntax

We assume a given set of method names M with typical element m. Methods
are specified by the following regular expressions. Here τ denotes an internal
step and m denotes a call.

r ::= τ | m | r; r | r + r | r∗

Figure 3.1: Grammar rule for the simple multithreaded language

We denote by Ms the synchronised methods and by Mu the unsynchronised
ones. Every method is either synchronised or not:

M = Ms ∪Mu and Ms ∩Mu = ∅.
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We assume a given set D of method definitions. A method definition con-
sists of a method name m and a method body given by a regular expression
m ::= r. Furthermore we assume a finite partitioning C of the method names
into classes with typical element c.

For every class c, we denote by

• M c its methods,

• M c
s its synchronised methods,

• M c
u its unsynchronised methods.

We assume that every method belongs to exactly one class.

The set of method definitions D and the set of classes C define a program
P . The behaviour of a program is defined in terms of a given set of threads T
with typical element t. Each thread t has an initial (run) method denoted by
run(t).

3.2.2 Operational Semantics

The operational semantics of a multithreaded program is described by a la-
belled transition relation between configurations Θ which consist of pairs (t, θ),
where θ is a stack of labelled expressions m@r. We require Θ to contain for
each thread t ∈ T at most one such pair. The label m@r indicates that r is the
continuation of the execution of the body of method m. We record the name
of the method to formalize synchronization as described below. The label at
the top of the stack represents the method currently executed by the thread.
By θ ·m@r we denote the result of pushing the label m@r unto the stack θ.

To describe operationally the return of a method we extend the syntax
of expressions by return expression ret . We identify the method body r in a
declaration m ::= r with r; ret .

Method Calls We have the following transition for unsynchronised meth-
ods:

A call of the method m′ thus pushes the corresponding label on the stack.
Note that upon return of m′ the execution of m continues with r.

For synchronised methods we additionally require that no other thread is
executing a synchronised method subject to the same lock:
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unsync
Θ ∪ {(t, θ ·m@m′; r)} → Θ ∪ {(t, θ ·m@r ·m′@r′)}

with m′ ::= r′ ∈ D and m′ ∈ M c
u for some class c.

sync

Θ ∪ {(t, θ ·m@m′; r)} → Θ ∪ {(t, θ ·m@r ·m′@r′)}
with m′ ::= r′ ∈ D , m′ ∈ M c

s for some class c, and there does not exist
(t′, θ′) ∈ Θ such that t 6= t′ and θ′ contains a continuation m′′@r′′ of
method m′′ ∈ M c

s .

ret Θ ∪ {(t, θ ·m@ret)} → Θ ∪ {(t, θ)}

Figure 3.2: Operational rules

Return Returning from a method is described by The top of the stack thus
is simply popped upon return.

The rules for the choice and iteration operators are obtained by a straight-
forward lifting of the corresponding transitions for regular expressions as de-
scribed in the next section.

The above transition relation maintains the following synchronization in-
variant:

Corollary 3.2.1 For every class c there is at most one (t, θ) ∈ Θ such that θ
contains a continuation m@r of a synchronised method m ∈ M c

s .

This characterization of threads and locks can be modelled in a straight-
forward manner as a multistack pushdown automaton with counters for each
class. Reachability is not decidable in this general setting. Therefore we model
the system differently. Each thread is modelled as a Visibly Pushdown Au-
tomata (VPA, for short). We show that the product of these automata are
amenable to analysis via a technique based on CFL-reachability. We give a
grammar to steer this analysis.

3.3 Thread Automata

In this section we model and analyse the operational semantics of multi-
threaded programs described above in terms of thread automata. For each
thread t a Thread Automaton TA(t) is defined as a VPA, in terms of a call
alphabet Σt

call = {tm | m ∈ M } and a return alphabet Σt
ret = {tret}. By Σt we
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denote the visible alphabet Σt
call ∪ Σt

ret of thread t. A call of method m by
thread t is indicated by tm. The return of thread t from a method call is in-
dicated by tret . The idea is that the call alphabet generates push operations,
whereas the return alphabet generates pop operations. For each thread t its
local alphabet is defined by {τ}, used to describe internal steps.

States

The set of states of TA(t) is the set Rt of regular expressions reachable from
the run method run(t). Here reachability is defined in terms of the following
standard transition relation describing the behaviour of (regular) expressions:

• m; r → r

• r1 + r2; r → ri; r for i ∈ {1, 2}

• r∗; r′ → r; r∗; r′

• r∗; r′ → r′

Transitions

The external transitions of TA(t) are of the form (r, a, r′, s), where r and r′

are states as introduced above, a is an action of the visible alphabet of t, and s
a stack symbol. The stack alphabet Γt of a Thread Automaton TA(t) is given
by the set {tr | t ∈ T , r ∈ Rt}, where the regular expression r denotes the
return “address” of t. Method calls push a stack symbol upon the stack. This
symbol encodes the location to return to later. Method returns pop a symbol
from the stack. The location to return to can be derived from this symbol.

Internal transitions are of the form (r, τ, r′) with r and r′ states in terms
of regular expressions, and τ to denote the internal step.

Method call For every state m; r′ we have the transition (m; r′, tm, r, tr′),
where m ::= r ∈ D . This transition models a move of control from state
m; r′ to state r and a push of token tr′ on the stack when reading tm . The
states encode the actual code to execute whereas the stack symbol encodes the
location to return to when the method call terminates, i.e. a return is received.
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Return For every state r, returning from a method is described by the
transition (ret , tret , r, tr) which models a move of control from state ret to state
r and a pop of token tr from the stack when reading tret . For each caller of the
method a return transition exists. The location of return to is determinate by
the token popped of the stack. Because the return location being determined
by the stack symbol an unspecific return action tret is sufficient.

Internal transitions The choice construct is described by the transitions
(r1 + r2; r, τ, ri; r) for i ∈ {1, 2} and iteration is described by a transition mod-
elling looping (r∗; r′, τ, r; r∗; r′) and a transition modelling termination
(r∗; r′, τ, r′). Note that internal transitions do not involve an operation on the
stack.

Unsynchronised Product

We model the system by the product of the above automata for the individual
threads. This automaton does not take synchronization between the individual
threads into account. We add this synchronization by means of a grammar in
Section 3.4.

Let T = {t1, . . . , tn}. By TA(T ) we denote the unsynchronised product of
the automata TA(ti). This product is described by a multistack VPA with call
alphabet Σcall = {tm | t ∈ T , m ∈ M }, return alphabet
Σreturn = {tret | t ∈ T} and for each thread t a stack over the alphabet Γt. We
denote by q0 the initial state q0 = 〈run(t1), . . . , run(tn)〉.

States

The states of the product automaton are of the form 〈r1, . . . , rn〉 where ri
denotes the state of ti.

Transitions

We lift the transitions of the individual threads to transitions of the prod-
uct in the obvious manner. Note that this lifting still does not provide any
synchronization between the threads.

Reachability

Similar to the operational semantics for the definition of reachability in TA(T )
we give a declarative characterization of the synchronization between threads



3.3. THREAD AUTOMATA 37

in terms of arbitrary sequences of calls and returns.

This characterization involves the following language theoretic properties:

• Calls and returns in a sequence arematched according to formal language
theory, i.e. a bracketed grammar.

• A call without a matching return is called pending.

• A return without a matching call is called pending.

• A sequence is well-formed if it does not contain any pending returns.

Note that the words generated by the unsynchronised product are already
well-formed.

Now we define synchronised sequences of calls and returns:
A sequence is called synchronised if for each call tm to a synchronised method
m (m ∈ M c

s ) by thread t there exists no pending call t′m′ to a synchronised
method m′ of c by a thread t′ 6= t in the prefix of the sequence up to tm.

We conclude this section with the definition of reachability and a definition
of deadlock freedom in TA(T ).

A state q = 〈r1, . . . , rn〉 of TA(T ) is reachable in TA(T ) if there exists a
computation in TA(T )

(q0, {⊥}n)
W
→ (q, θ̄)

for a synchronised sequence of calls and returns W and a tuple of stacks
θ̄ = 〈θ1, . . . , θn〉. Where ⊥ denotes the empty stack.

This notion of reachability of a state does not provide enough information
for deadlock detection. Therefore we extend the definition in the obvious man-
ner to configurations: A configuration (q, θ̄) of TA(T ) is reachable in TA(T )
if there exists a computation in TA(T )

(q0, {⊥}n)
W
→ (q, θ̄)

for a synchronised sequence. Furthermore a configuration (q, θ̄) is a deadlock
configuration iff (q, θ̄) 6→, which indicates there is no transition possible, and at
least one thread is not yet terminated, i.e. there exists an i such that ri 6= ret
or θi 6= ⊥.

Finally we define the automaton TA(T ) to be deadlock free iff there does
not exist a reachable deadlock configuration.
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3.4 CFL-Reachability

For the proof of the decidability of the reachability problem and deadlock
freedom we apply CFL-reachability to the finite state automaton FA(T ) em-
bodied in TA(T ). We first focus on the unsynchronised product and introduce
synchronization later.

CFL-Modelling of Unsynchronised Interleavings

The the finite state automaton FA(T ) contains all internal transitions (q, τ, q′)
of TA(T ). To model the push and pop transitions of TA(T ) we introduce the
set of actions

Σ = {tmr , tr | t ∈ T , m ∈ M , r ∈ R}

where tmr denotes a call of m by t with return expression r and tr indicates
that t returns to the regular expression r. We then model the transitions
(q, tm, q

′, tr) and (q, tret , q
′, tr) in TA(T ) by (q, tmr , q

′) and (q, tr, q
′), respec-

tively.

In order to compensate for the loss of information we introduce next for
each thread t the following context free grammar which describes the structure
of recursive call/return sequences.

St ::= ǫ | Bt | tmr S
t | StSt

Bt ::= ǫ | tmr r
t | BtBt

rt ::= Bttr

Sequences generated by the non-terminal St can contain pending calls, whereas
sequences generated by Bt do not contain pending calls. Sequences generated
by the non-terminal rt (r ∈ Rt) describe a return from a method call to the
expression r. In these sequences the call itself does not appear, e.g., these
sequences contain a return tr without a matching call. Note that the non-
terminal rt should be distinguished from the corresponding terminal tr.

Starting with St or Bt the grammar produces well-formed sequences.

We lift this grammar to the definition of another CFL grammar describing
the unsynchronised interleavings of the individual threads. The non-terminals
of this grammar are sets G, where G contains for each thread t one of its
non-terminals St, Bt, and rt. The above rules are lifted to this grammar as
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follows.

G ::= ǫ (G ⊆ {St, Bt | t ∈ T})
G ∪ {St} ::= G ∪ {Bt} | tmr G ∪ {St}
G ∪ {Bt} ::= tmr G ∪ {rt}
G ∪ {rt} ::= G ∪ {Bt} tr
G1 ◦G2 ::= G1 G2

where the composition G1 ◦G2 contains for every thread a non-terminal U t for
which there exist a rule U t ::= V t

1V
t
2 , with V

t
1 in G1 and V t

2 in G2. Note that
only sets G which contain for each thread t either St or Bt can be split (in other
words, the non-terminal rt cannot be split). Note also that the non-terminal
rt cannot be generated by a split.

We denote by G0 = {St | t ∈ T} the initial configuration of a derivation.
Note that not all possible interleavings can be derived by this grammar

(see the following example). But for any possible interleaving an equivalent one
(with respect to synchronization) exists which can be derived by the grammar.
Since the non-terminal rt can not be split the location of a method return
is restricted. This does not affect the reachability or deadlock analysis. The
method returns can be shuffled within certain limits (a return can be brought
forward ignoring steps of other threads and can be delayed by steps of other
threads on other locks). This holds also for the synchronised case as we show
later. In the synchronized case this property is ensured by the requirements
with respect to the lock sets.

Example 3.4.1 We give an example of a sequence that can not be derived

directly. The sequence tmr , t
′m′

r′ , tr, t
′m
r′′ , t

′
r′′ , t

′
r′ with m ∈ M c

s and m′ ∈ M c′ 6=c
s .

It is not possible to find a direct derivation for G0 ⇒∗ tmr , t
′m′

r′ , tr, t
′m
r′′ , t

′
r′′ , t

′
r′.

Since the projection on t resp. t′ contains a matching return for every call it
can only be derived by a rule starting from Bt resp. Bt′ . We have to start with
Bt to get the tmr in the front position of the sequence. The next step has to
be a Bt′ step to get t′m

′

r′ to the second position. Now G = {rt} ∪ {r′t
′
}. The

next step has to be a r′t
′
to get t′r′ to the end of the sequence. Now we get

G = {rt} ∪ {Bt′}. Here we are stuck. To get the tr in front of the t′mr′′ , t
′
r′′ we

could only use the composition rule but this one is forbidden for Gs containing
a rt. Instead we can derive tmr , tr, t

′m′

r′ , t
′m
r′′ , t

′
r′′ , t

′
r′ . By reordering the returns

we can get the original sequence..

According to the technique of CFL-reachability we define inductively tran-
sitions of the form (q,G, q′), where q and q′ are states of FA(T ) and G is a set
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of non-terminals. Such a transition indicates that q′ is reachable from q by a
sequence generated by G.

• For every rule G ::= ǫ and state q we add a transition (q,G, q).

• For transitions (q, τ, q′) and (q′, G, q′′) we add a transition (q,G, q′′). Sim-
ilarly, for transitions (q,G, q′) and (q′, τ, q′′) we add a transition (q,G, q′′).

• Given a transition (q,G, q′), an application of a rule G′ ::= G generates
a transition (q,G′, q).

• Given transitions (q0, t
m
r , q) and (q,G, q1), an application of a rule G′ ::=

tmr G generates a transition (q0, G
′, q1).

• Given transitions (q0, G, q) and (q, tr, q1), an application of a rule G′ ::=
G tr generates a transition (q0, G

′, q1).

• Given transitions (q0, G1, q) and (q,G2, q1), an application of rule G1 ◦
G2 ::= G1G2 generates a transition (q0, G1 ◦G2, q1).

Reachability of a state q in FA(T ) from the initial state q0 by a word G0 ⇒
∗ W

then can be decided by checking the existence of a transition (q0, G0, q).

CFL-Modelling of Synchronised Interleavings

We now extend the above grammar for unsynchronised interleavings of threads
with input/output information about the locks. This information is repre-
sented by pairs (I, L), where I, L ⊆ T × C . The set of locks I are taken by
some threads at the beginning of a derivation (step), whereas L is the set of
locks that are taken by some threads at the end of a derivation (step). We
denote an element of T × C by tc which indicates that t holds the lock of
class c. We implicitly restrict to subsets of T × C where for each class c at
most one thread holds its lock. The non-terminals of this new grammar are
annotated sets (I, L) : G, where I ⊆ L and G contains for each thread t one
of its non-terminals St, Bt, and rt.

We have the following rules (here Ic = {t ∈ T | tc ∈ I} and
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Lc = {t ∈ T | tc ∈ L}).

(I,I):G ::= ǫ (G⊆{St,Bt|t∈T})

(I,L):G∪{St} ::= (I,L):G∪{Bt}

| tmr (I,L):G∪{St} (m 6∈ M c
s or tc ∈ I ∩ L)

| tmr (I∪{tc},L):G∪{St} (m∈M c
s , Ic=∅, tc∈L)

(I,L):G∪{Bt} ::= tmr (I,L):G∪{rt} (m 6∈ M c
s or tc ∈ I ∩ L)

| tmr (I∪{tc},L∪{tc}):G∪{rt} (m ∈ M c
s , Ic = Lc = ∅)

(I,L):G∪{rt} ::= (I,L):G∪{Bt} tr

(I,L):G1◦G2 ::= (I,L′):G1 (L′,L):G2

The above grammar generates synchronised sequences. The conditions of
the rules reflect in a natural manner the locking mechanism. To characterize
the language generated by the above grammar we denote for a sequence of
calls and returns W the set of locks still taken at the end of W by Lock(W ):
tc ∈ Lock(W ) iff there exists a pending call to a method m by thread t with
m ∈ M c

s .

Theorem 3.4.2 For every sequence W generated by (I, L) : G we have the
following properties:

• W is synchronised

• tc ∈ L iff tc ∈ I ∪ Lock(W ).

Proof: The theorem is proven by induction on the length of the derivation of
W . Details of the proof can be found in appendix A.1.

To check reachability we add inductively transitions (q, α : G, q′) to FA(T )
analogous to the unsynchronised case above.

3.5 Soundness and Completeness of CFL-Reachability

Soundness and completeness of our method follows from the general technique
of CFL-reachability and the following properties of our specific grammars to-
gether with the properties for sequences generated by the grammar established
in Theorem 3.4.2.

We define an equivalence relation W ′ ≈W as follows: For every thread t

• the projection of W ′ on t equals that of W on t
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• Lock(W ′) = Lock(W ).

Lemma 3.5.1 For every well-formed synchronised sequence W there exists a
well-formed synchronised sequence W ′ such that G0 ⇒∗ W ′ with G0 = {St |
t ∈ T} and W ′ ≈W .

Proof: The lemma is proven by induction on the length of the word W .
Details of the proof can be found in appendix A.2.

We extend the notion of a synchronised sequence to a sequence synchro-
nised with respect to a lock set I. A sequence W is synchronised with respect
to I if for each tc ∈ I W does not contain any calls or returns of a thread
t′ 6= t to a synchronised method of class c.

Lemma 3.5.2 If G0 ⇒
∗ W with W synchronised then (∅,Lock(W )) : G0 ⇒

∗

W .

Proof: Instead of proving the lemma directly we prove a more general state-
ment: If G0 ⇒∗ W with W synchronised with respect to I, then (I, I ∪
Lock(W )) : G0 ⇒∗ W .

The statement is proven by induction on the length of the derivation G0 ⇒
∗

W . Details of the proof can be found in appendix A.3.

Theorem 3.5.3 The reachability problem of TA(T ) is decidable.

Our method for checking reachability of a state q in TA(T ) consists of
checking the existence of a transition (q0, (∅, L) : G0, q) in FA(T ).

Decidability follows from soundness and completeness proven above.

Theorem 3.5.4 The problem of deadlock freedom of TA(T ) is decidable.

In this case our method consists of checking reachability of (q0, (∅, L) :
G0, q) for some state q for which there exists a subset of threads T ′ ⊆ T
such that in q each thread t ∈ T ′ is about to execute a synchronised method
m ∈ M c

s of a class c the lock of which is already held by a different thread
t′ ∈ T ′, i.e., t′c ∈ L.

Note that this notion of deadlock is a refinement of the notion presented
in Section 3.3. With this notion we do not only cover a deadlock of the whole
system but also of parts of the system.
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3.6 Conclusion

We generalized the technique of CFL-reachability to the analysis of the syn-
chronized interleavings of multithreaded Java programs. By means of this tech-
nique we can decide whether a state in the finite state automaton underlying
the product of the individual thread automata is reachable by a synchronized
interleaving. We also can decide deadlock freedom.

Future Work We are working on an implementation of our approach using
the Meta Environment tools (see [101]). This work first involves the develop-
ment of a suitable ASF specification to rewrite the parse tree of a Java program
to the call graphs which form the basis of our analysis. The next step will be
to provide a Meta Environment tool to perform the actual CFL-reachability
analysis. Once this implementation for Java is finished it will be interesting to
extend the method with further static analysis of the control flow graphs and
dataflow in Java programs.
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Chapter 4

Behavioral Interface

Description of an

Object-Oriented Language

with Futures and Promises1

This chapter formalizes the observable interface behavior of a concurrent,
object-oriented language with futures and promises. The calculus captures
the core of Creol, a language, featuring in particular asynchronous method
calls and, since recently, first-class futures.

The focus of the chapter are open systems and we formally characterize
their behavior in terms of interactions at the interface between the program
and its environment. The behavior is given by transitions between typing
judgments, where the absent environment is represented abstractly by an as-
sumption context. A particular challenge is the safe treatment of promises:
The erroneous situation that a promise is fulfilled twice, i.e., bound to code
twice, is prevented by a resource aware type system, enforcing linear use of the
write-permission to a promise. We show subject reduction and the soundness
of the abstract interface description.

1The work presented in this chapter was published as [4].
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4.1 Introduction

How to marry concurrency and object-orientation has been a long-standing
issue; (see e.g., [15]) for an early discussion of different design choices. The
thread-based model of concurrency, prominently represented by languages
like Java and C♯ has been recently criticized, especially in the context of
component-based software development. As the word indicates, components
are (software) artifacts intended for composition, i.e., open systems, interact-
ing with a surrounding environment. To compare different concurrency mod-
els for open systems on a solid mathematical basis, a semantic description of
the interface behavior is needed, and this is what we provide in this work.
We present an open semantics for the core of the Creol language [39, 66],
an object-oriented, concurrent language, featuring in particular asynchronous
method calls and, since recently [42], first-class futures. An open semantics
means, it describes the interface behavior of a program or a part of a pro-
gram, interacting with its environment.

Futures and promises

A future, very generally, represents a result yet to be computed. It acts as a
proxy for, or reference to, the delayed result from some piece of code (e.g., a
method or a function body in an object-oriented, resp. a functional setting). As
the consumer of the result can proceed its own execution until it actually needs
the result, futures provide a natural, lightweight, and (in a functional setting)
transparent mechanism to introduce parallelism into a language. Since their
introduction in Multilisp [58, 18], futures have been used in various languages
like Alice ML [71, 11, 93], E [45], the ASP-calculus [30], Creol, and others. A
promise is a generalization2 insofar as the reference to the result on the one
hand, and the code to calculate the result on the other, are not created at the
same time; instead, a promise can be created and only later, after possibly
passing it around, be bound to the code (the promise is fulfilled).

The notion of futures goes back to functional programming languages. In
that setting, futures are annotations to side-effect-free expressions3, that can

2 The terminology concerning futures, promises, and related constructs is not too con-
sistent in the literature. Sometimes, the two words are used as synonyms. Interested in the
observable differences between futures and promises, we distinguish the concepts and thus
follow the terminology as used e.g., in λ(fut)and Alice ML.

3Though in e.g. Multilisp also expressions with side-effects can be computed in parallel,
but still under the restriction that the observable behavior equals that of the sequential
counterpart.
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be computed in parallel to the rest of the program. If some program code
needs the result of a future, its execution blocks until the evaluation of the
future is completed and the result value is automatically fetched back (implicit
futures). An important property of future-based functional programs is, that
future annotations do not change the functionality: the observable behavior
of an annotated program equals the observable behavior of its non-annotated
counterpart. This property is no longer assured in the object-oriented setting.

To facilitate parallelization, futures were introduced in the
java.util.concurrent package of the Java 2 Platform Standard Edition 5.0.
Here, futures are no annotations: they may execute program code with side-
effects, leading to non-determinism and to a different observable behavior.
The result of a Java future must be explicitly claimed when needed for further
computation (explicit futures)4.

Basically, Java objects are passive objects, i.e., they store data and define
methods to manipulate them, but they do not execute any code; the active,
executing part are the threads. Consequently, Java futures consist of the code
to be executed in parallel (definable via the Callable interface), some proxy
for later access to the result (the Future interface), and the executing threads
(Executor interface). Due to this distinction, Java futures are not bound to a
certain thread. Furthermore, the Java setting allows to use promises: a future
object can be first created, and bound to some code and to some thread later
on.

Interface behavior

An open program, in this setting, interacts with its environment via message
exchange. Besides message passing, of course, different communication and
synchronization mechanisms exists (shared variable concurrency, multi-cast,
black-board communication, publish-and-subscribe and many more). We con-
centrate here, however, on basic message passing using asynchronous method
calls. In that setting, the interface behavior of an open program C can be char-
acterized by the set of all those message sequences (traces) t, for which there
exists an environment E such that C and E exchange the messages recorded
in t. Thereby we abstract away from any concrete environment, but consider
only environments that are compliant to the language restrictions (syntax,

type system, etc.). Consequently, interactions are not arbitrary traces C
t

=⇒;

4Explicit futures/promises may be implemented as a library, whereas implicit fu-
tures/promises require language support.
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instead we consider behaviors C ‖ E
t

=⇒
t̄
Ć ‖ É where E is a realizable envi-

ronment and trace t̄ is complementary to t, i.e., each input is replaced by a
matching output and vice versa. The notation C ‖ E indicates that the com-
ponent C runs in parallel with its environment or observer E. To account for
the abstract environment (“there exists an E s.t. . . . ”), the open semantics is
given in an assumption-commitment way:

∆ ⊢ C : Θ
t

=⇒ ∆́ ⊢ Ć : Θ́ ,

where ∆ (as an abstract version of E) contains the assumptions about the
environment, and dually Θ the commitments of the component. Abstracting
away also from C gives a language characterization by the set of all possible
traces between any component and any environment.

Such a behavioral interface description is relevant and useful for the follow-
ing reasons. 1) The set of possible traces given this way is more restricted (and
realistic) than the one obtained when ignoring the environments. When rea-
soning about the trace-based behavior of a component, e.g., in compositional
verification, with a more precise characterization one can carry out stronger
arguments. 2) When using the trace description for black-box testing, one can
describe test cases in terms of the interface traces and then synthesize appro-
priate test drivers from it. Clearly, it makes no sense to specify impossible
interface behavior, as in this case one cannot generate a corresponding tester.
3) A representation-independent behavior of open programs paves the way for
a compositional semantics, a two-level semantics for the nested composition
of program components. It allows furthermore optimization of components:
only if two components show the same external, observable behavior, one can
replace one for the other without changing the interaction with any environ-
ment. 4) The formulation gives insight into the semantic nature of the lan-
guage, here, the externally observable consequences of futures and promises.
This helps to compare alternatives, e.g., the Creol concurrency model with
Java-like multi-threading.

Contribution

The chapter formalizes the abstract interface behavior for concurrent object-
oriented languages with futures and promises. The contributions are the fol-
lowing.
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Concurrent object calculus with futures and promises We formalize
a class-based concurrent language featuring futures and promises. The for-
malization is given as a typed, imperative object calculus in the style of [1]
resp. one of its concurrent extensions. The operational semantics for compo-
nents distinguishes unobservable component-internal steps from external steps
which represent observable component-environment interactions. We present
the semantics in a way that facilitates comparison with the multi-threading
concurrency model of Java, i.e., the operational semantics is formulated so
that the multi-threaded concurrency as (for instance) in Java and the one
here based on futures are represented similarly.

Linear type system for promises The calculus extends the semantic basis
of Creol as given for example in [42] with promises. Promises can refer to a
computation with code bound to it later, where the binding is done at most
once. To guarantee such a write-once policy when passing around promises,
we refine the type system introducing two type constructors

[T ]+− and [T ]+ .

The first one represents a reference to a promise that can still be written
(and read) with result type T , the second one where only a read-permission is
available. The write permission constitutes a resource which is consumed when
the promise is fulfilled. The resource-aware type system is therefore formulated
in a linear manner wrt. the write permissions. Linear type systems [102] or
linear logics [56] are, roughly speaking, instances of so-called sub-structural
type systems resp. logics. In constrast to ordinary such derivation systems,
where a hypothesis can be used as many times as needed for carrying out a
proof, derivation systems built upon linear use of assumptions work differently:
using an assumption in a proof step “consumes” it. That feature allows in a
natural way to reason about “resources”: In our setting, the write-permission
is such a resource, and using the corresponding type to derive well-typedness
of one part of the program consumes that right such that it is not longer
available for type-checking the rest of the program, assuring the intended
write-once discipline. The type system resembles in intention the one in [82]
for a functional calculus with references. Our work is more general, in that it
tackles the problem in an object-oriented setting (which, however, conceptually
does not pose much complications), and, more importantly, in that we do not
consider closed systems, but open components. Also this aspect of openness is
not dealt with in [42]. Additionally, the type system presented here is simpler
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than in [82], as it avoids the representation of the promise-concept by so-called
handled futures.

Soundness of the abstractions We show soundness of the abstractions,
which includes

• subject reduction, i.e., preservation of well-typedness under reduction.
Subject reduction is not just proven for a closed system (as usual), but
for an open system interacting with its environment. Subject reduction
implies furthermore:

• absence of run-time errors like “message-not-understood”, also for open
systems.

• soundness of the interface behavior characterization, i.e., all possible
interaction behavior is included in the abstract interface behavior de-
scription.

• for promises: absence of write-errors, i.e. the attempt to fulfill a promise
twice.

Related work

The general concept of “delayed reference” to a result of a computation to be
yet completed is quite old. The notion of futures was introduced by Baker and
Hewitt [18], where (future e) denotes an expression executed in a separate
thread, i.e., concurrently with the rest of the program. As the result of the
expression e is not immediately available, a future variable (or future) is in-
troduced as placeholder, which will eventually contain the result of e. In the
meantime, the future can be passed around, and when it is accessed for read-
ing (“touched” or “claimed”), the execution suspends until the future value is
available, namely when e is evaluated. The principle has also been called wait-
by-necessity [28, 29]. Futures provide, at least in a purely functional setting,
an elegant means to introduce concurrency and transparent synchronization
simply by accessing the futures. They have been employed for the parallel
Multilisp programming language [58].

Indeed, quite a number of calculi and programming languages have been
equipped with concurrency using future-like mechanisms and asynchronous
method calls. Flanagan and Felleisen [50, 48, 49] present an operational se-
mantics, based on evaluation contexts, for a λ-calculus with futures. The for-
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malization is used for analysis and optimization to eliminate superfluous deref-
erencing (“touches”) of future variables. The analysis is an application of a
set-based analysis and the resulting transformation is known as touch opti-
mization. Moreau [80] presents a semantics of Scheme equipped with futures
and control operators. Promises is a mechanism quite similar to futures and
actually the two notions are sometimes used synonymously. They have been
proposed in [77]. A language featuring both futures and promises as separate
concepts, is Alice ML [11, 23, 71, 93].

[82] presents a concurrent call-by-value λ-calculus with reference cells (i.e.,
a non-purely functional calculus with an imperative part and a heap) and
with futures (λ(fut)), which serves as the core of Alice ML. Certain aspects
of that work are quite close to the material presented here. In particular,
we were inspired by using a type system to avoid fulfilling a promise twice
(in [82] called handle error). There are some notable differences, as well. The
calculus incorporates futures and promises into a λ-calculus, such that func-
tions can be executed in parallel. In contrast, the notion of futures here, in
an object-oriented setting, is coupled to the asynchronous execution of meth-
ods. Furthermore, the object-oriented setting here, inspired by Creol, is more
high-level. In contrast, λ(fut) relies on an atomic test-and-set operation when
accessing the heap to avoid atomicity problems. Besides that, [82] formalizes
promises using the notion of handled futures, i.e., the two roles of a promise,
the writing- and the reading part, are represented by two different references,
where the handle to the futures represents the writing-end. Apart from that,
[82] is not concerned with giving an open semantics as here. On the other
hand, [82] investigates the role of the heap and the reference cells, and gives
a formal proof that the only source of non-determinism by race conditions
in their language actually are the reference cells and without those, the lan-
guage becomes (uniformly) confluent.5 Recently, an observational semantics
for the (untyped) λ(fut)-calculus has been developed in [81]. The observational
equivalence is based on may- and must-program equivalence, i.e., two program
fragments are considered equivalent, if, for all observing environments, they
exhibit the same necessary and potential convergence behavior.

5Uniform confluence is a strengthening of the more well-known notion of (just ordinary)
confluence; it corresponds to the diamond property of the one-step reduction property. For
standard reduction strategies of a purely functional λ-calculus, only confluence holds, but
not uniform confluence. However, the non-trivial “diamonds” in the operational semantics
of λ(fut) are caused not by different redexes within one λ-term (representing one thread),
but by redexes from different threads running in parallel, where the reduction strategy per
thread is deterministic (as in our setting, as well).
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Futures have also been investigated in the object-oriented paradigm. For in-
stance, the object-oriented language Scala [84] has recently been extended [57]
by actor-based concurrency, offering futures and promises as part of the stan-
dard library. The futures and promises are inspired by their use in Alice ML.
In Java 5, futures have been introduced as part of the java.util.concurrent
package. As Java does not support futures as a core mechanism for parallelism,
they are introduced in a library. Dereferencing of a future is done explicitly
via a get-method (similarly to this chapter). A recent paper [103] introduces
safe futures for Java. The safe concept is intended to make futures and the
related parallelism transparent and in this sense goes back to the origins of the
concept: introducing parallelism via futures does not change the meaning of
a program. While straightforward and natural in a functional setting, safe fu-
tures in an object-oriented and thus state-based language such as Java require
more considerations. [103] introduces a semantics which guarantees safe, i.e.,
transparent, futures by deriving restrictions on the scheduling of parallel exe-
cutions and uses object versioning. The futures are introduced as an extension
of Featherweight Java (FJ) [59], a core object calculus, and is implemented
on top of Jikes RVM [12, 26]. Pratikakis et. al. [87] present a constraint-
based static analysis for (transparent) futures and proxies in Java, based on
type qualifiers and qualifier inference [51]. Also this analysis is formulated as
an extension of FJ by type qualifiers. Similarly, Caromel et. al. [32, 31, 30]
tackle the problem to provide confluent, i.e., effectively deterministic system
behavior for a concurrent object calculus with futures (asynchronous sequen-
tial processes, ASP, an extension of Abadi and Cardelli’s imperative, untyped
object calculus impς [1]) and in the presence of imperative features. The ASP
model is implemented in the ProActive Java-library [33]. The fact, that ASP
is derived from some (sequential, imperative) object-calculus, as in the formal-
ization here, is more a superficial or formal similarity, in particular when being
interested in the interface behavior of concurrently running objects, where the
inner workings are hidden anyway. Apart from that there are some similarities
and a number of differences between the work presented here and ASP. First
of all, both calculi are centered around the notion of first-class futures, yield-
ing active objects. The treatment, however, of getting the value back, is done
differently in [30]. Whereas here, the client must explicitly claim a return value
of an asynchronous method, if interested in the result, the treatment of the
future references is done implicitly in ASP, i.e., the client blocks if it performs
a strict operation on the future (without explicit syntax to claim the value).
Apart from that, the object model is more sophisticated, in that the calculus
distinguishes between active and passive objects. Here, we simple have objects,
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which can behave actively or passively (reactively), depending on the way they
are used. In ASP, the units of concurrency are the explicitely activated ac-
tive objects, and each passive one is owned and belongs to exactly one active
one. Especially, passive objects do not directly communicate with each other
across the boundaries of concurrent activity, all such communication between
concurrent activities is mediated and served by the active objects.

Related to that, a core feature of ASP, not present here, is the necessity to
specify (also) the receptive behavior of the active object, i.e., in which order it
is willing to process or serve incoming messages. The simplest serve strategy
would be the willingness to accept all messages and treat them in a first-come,
first-serve manner, i.e., a input-enabled FIFO strategy on the input message
queue. The so-called serve-method is the dedicated activity of an active object
to accept and schedule incoming method calls. Typically, as for instance in the
FIFO case, it is given as a non-terminating process, but it might also terminate,
in which case the active object together with the passive objects it governs,
becomes superfluous: an active object which does no service any longer does
not become a passive data structure, but can no longer react in any way.

As extension of the core ASP calculus, [30, Chapter 10] treats delegation
that bears some similarities with the promises here. By executing the con-
struct delegate(o.l(~v)) (using our notational conventions), a thread n hands
over the permission and obligation to provide eventually a value for the future
reference n to method l of object o, thereby losing that permission itself. That
corresponds to executing bind o.l(~v) : T →֒ n. Whereas in our setting, we must
use a yet-unfulfilled promise n for that purpose, the delegation operator in
ASP just (re-)uses the current future for that. Consequently, ASP does not
allow the creation of promises independently from the implicit creation when
asynchronously calling a method, as we do with the promiseT construct. In
this sense, the promises here are more general, as they allow to profit from
delegation and have the promise as first-class entity, i.e., the programmer can
pass it around, for instance, as argument of methods. This, on the other hand,
requires a more elaborate type system to avoid write-errors on promises. This
kind of error, fulfilling a promise twice, is avoided in the delegate-construct of
ASP not by a type system, but by construction, in that the delegate-construct
must be used only at the end of a method, so that the delegating activity can-
not write to the future/promise after it has delegated the permission to another
activity.

Further uses of futures for Java are reported in [67, 78, 88, 98, 97]. Futures
are also integral part of Io [60] and Scoop (simple concurrent object-oriented
programming) [17, 38, 79], a concurrent extension of Eiffel. Both languages
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are based on the active objects paradigm.

Benton et. al. [22] present polyphonic C♯, adding concurrency to C♯, featur-
ing asynchronous methods and based on the join calculus [52, 53]. Polyphonic
C♯ allows methods to be declared as being asynchronous using the async key-
word for the method type declaration. Besides that, polyphonic C♯ supports
so-called chords as synchronization or join pattern. With similar goals, Java
has been extended by join patterns in [61, 62].

In the context of Creol, de Boer et. al. [42] present a formal, operational se-
mantics for the language and extend it by futures (but not promises). Besides
the fact, that both operational semantics ultimately formalize a comparable
set of features, there are, at a technical level, a number of differences. For
once, here, we simplified the language slightly mainly in two respects (apart
from making it more expressive in adding promises, of course). We left out
the “interleaving” operators 9 and /// of [42] which allow the user to express
interleaving concurrency within one method body. Being interested in the ob-
servable interface behavior, those operations are a matter of internal, hidden
behavior, namely leading to non-deterministic behavior at the interface. Since
objects react non-deterministically anyhow, namely due to race conditions
present independently of 9 and ///, those operators have no impact on the
possible traces at the interface. The operators might be useful as abstractions
for the programmer, but without relevance for the interface traces, and so we
ignore them here. Another simplification, this time influencing the interface
behavior, is how the programmer can claim the value of a future. This in-
fluences, as said, the interface behavior, since the component may fetch the
value of a future being part of the environment, or vice versa. Now, the design
of the Creol-calculus in [42] is more liberal wrt. what the user is allowed to
do with future references. In this chapter, the interaction is rather restricted:
if the client requests the value using the claim-operation, there are basically
only two reactions. If the future computation has already been completed,
the value is fetched and the client continues; otherwise it blocks until, if ever,
the value is available. The bottom line is, that the client, being blocked, can
never observe that the value is yet absent. The calculus of [42], in contrast,
permits the user to poll the future reference directly, which gives the freedom
to decide, not to wait for the value if not yet available. Incorporating such a
construct into the language makes the absence of the value for a future ref-
erence observable and would complicate the behavioral interface semantics to
some extent. This is also corroborated by the circumstance that the expressive
power of explicit polling quite complicates the proof theory of [42] (see also
the discussion in the conclusion of [42]). This is not a coincidence, since one
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Figure 4.1: Claiming a future (busy wait)

crux of the complete Hoare-style proof systems such as in [42] is to internalize
the (ideally observable) behavior into the program state by so-called auxil-
iary variables. In particular recording the past interaction behavior in history
variables is, of course, an internalization of the interface behavior, making it
visible to the Hoare-assertions. As a further indication that allowing to poll a
future quite adds expressivity to the language is the observation that adding a
poll-operation to ASP, destroys a central property of ASP, namely confluence,
as is discussed in [30, Chapter 11].

Apart from that, the combination of claiming a futures, the possibility
of polling a future, and a general await-statement complicates the semantics
of claiming a future: in [42], this is done by busy-waiting, which in practice
one intends to avoid. So instead of the behavior described in Figure 4.3, the
formalization in [42] behaves as sketched in Figure 4.1.

After an unsuccessful try to obtain a value of future, the requesting thread
is suspended and loses the lock. In order to continue executing, the blocked
thread needs two resources: the value of the future, once it is there, plus
the lock again. The difference of the treatment in Figure 4.3 and the one of
Figure 4.1 for [42] is the order in which the requesting thread attempts to
get hold of these two resources: our formalization first check availability of
the future and afterwards re-gains the lock to continue, whereas [42] do it vice
versa, leading to busy wait. The reason why it is sound to copy the future value
into the local state space without already having the lock again (cf. Figure 4.3)
is, of course, that, once there, the future value remains stable and available.

In addition, our work differs also technically in the way, the operational
semantics is represented. [42] formulated the (internal) operational semantics
using evaluation contexts (as do, e.g., [82] for λ(fut)), whereas we rely on a
“reduction-style” semantics, making use of an appropriate notion of structural
congruence. While largely a matter of taste, it seems to us that, especially
in the presence of complicated synchronization mechanisms, for instance the
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ready queue representation of [42], the evaluation contexts do not give rise to
an immediately more elegant specification of the reduction behavior. Admit-
tedly, we ignored here the internal interleaving operators 9 and ///, which quite
contribute to the complexity of the evaluation contexts. Another technical dif-
ference concerns the way, the futures, threads, and objects are represented in
the operational semantics, i.e., in the run-time syntax of the calculus. Different
from our representation, their semantics makes the active-objects paradigm of
Creol more visible: The activities are modeled as part of the object. More pre-
cisely, an object contains, besides the instance state, an explicit representation
of the current activity (there called “process”) executing “inside” the object
plus a representation of the ready-queue containing all the activities, which
have been suspended during their execution inside the object. The scheduling
between the different activities is then done by juggling them in and out of
the ready-queue at the processor release points. Here, in contrast, we base our
semantics on a separate representation of the involved semantics concepts: 1)
classes as generators of objects, 2) objects carrying in the instance variables
the persistent state of the program, thus basically forming the heap, and 3),
the parallel activities in the form of threads. While this representation makes
arguably the active-object paradigm less visible in the semantics, it on the
other hand separates the concepts in a clean way. Instead of an explicit local
scheduler inside the objects, the access to the shared instance states of the ob-
jects is regulated by a simple, binary lock per object. So, instead of having two
levels of parallelism —locally inside the objects and inter-object parallelism—
the formalization achieves the same with just one conceptual level, namely:
parallelism is between threads (and the necessary synchronization is done via
object-locks). Additionally, our semantics is rather close to the object-calculi
semantics for multi-threading as in Java [63, 64, 95]. This allows to see the
differences and similarities between the different models of concurrency, and
the largely similar representation allows a more formal comparison between
the interface behaviors in the two settings.

The language Cool [36, 37] (concurrent, object-oriented language) is de-
fined as an extension of C++ [96] for task-level parallelism on shared memory
multi-processors. Concurrent execution in Cool is expressed by the invoca-
tion of parallel functions executing asynchronously. Unlike the work presented
here, Cool contains future types, which correspond to the types of the form [T ]
used here. Further languages supporting futures include ACT-1 [75, 76], con-
current Smalltalk [104, 107], and of course the influential actor model [7, 8, 9],
ABCL/1[105, 106] (in particular the extension ABCL/f [99]).

We have characterized the behavioral semantics of open systems, simi-
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larly to the one presented here for futures and promises, in earlier papers,
especially for object-oriented languages based on Java-like multithreading and
synchronous method calls, as in Java or C♯. [6] deals with thread classes and
[5] with re-entrant monitors. In [95] the proofs of full abstraction for the se-
quential and multithreaded cases of a class-based object-calculus can be found.
Poetzsch-Heffter and Schäfer [86] present a behavioral interface semantics for
a class-based object-oriented calculus, however without concurrency. The lan-
guage, on the other hand, features an ownership-structured heap.

Outline The chapter is organized as follows. Section 4.2 defines the syntax,
the type system, and the operational semantics, split into an internal one,
and one for the interface behaviour of open systems. Section 4.3 describes the
interface behavior. Section 4.4 concludes with related and future work. For
more details see [3].

4.2 Calculus

This section presents the calculus, based on a version of the Creol-language
with first-class futures [42] and extended with promises. It is a concurrent
variant of an imperative, object-calculus in the style of the calculi from [1].
Our calculus covers first-class futures, which can be seen as a generalization
of asynchronous method calls and promises.

We start with the abstract syntax in Section 4.2.1. After discussing the type
system in Section 4.2.2, we present the operational semantics in Section 4.2.3.

4.2.1 Syntax

The abstract syntax is given in Figure 4.2. It distinguishes between user syn-
tax and run-time syntax (the latter underlined). The user syntax contains the
phrases in which programs are written; the run-time syntax contains syntac-
tic constituents additionally needed to express the behavior of the executing
program in the operational semantics. The latter are not found in a program
written by the user, but generated at run-time by the rules of the operational
semantics.

The basic syntactic category of names n, which count among the values v,
represents references to classes, to objects, and to futures/promises. To facili-
tate reading, we allow ourselves to write o and its syntactic variants for names
referring to objects, c for classes, and n when being unspecific. Technically,
the disambiguation between the different roles of the names is done by the
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C ::= 0 | C ‖ C | ν(n:T ).C | n[(O)] | n[n, F,L] | n〈t〉 | n〈•〉 component

O ::= F,M object
M ::= l = m, . . . , l = m method suite
F ::= l = f, . . . , l = f fields
m ::= ς(n:T ).λ(x:T, . . . , x:T ).t method
f ::= ς(n:T ).λ().v | ς(n:T ).λ().⊥n′ field
t ::= v | stop | letx:T = e in t thread
e ::= t | if v = v then e else e | if undef (v.l()) then e else e expr.

| promise T | bindn.l(~v) : T →֒ n | v.l() | v.l := ς(s:n).λ().v
| new n | claim@(n, n) | get@n | suspend(n) | grab(n) | release(n)

v ::= x | n | () values
L ::= ⊥ | ⊤ lock status

Figure 4.2: Abstract syntax

type system and the abstract syntax of Figure 4.2 uses the non-specific n for
names. The unit value is represented by () and x stands for variables, i.e., local
variables and formal parameters, but not instance variables.

A component C is a collection of classes, objects, and (named) threads,
with 0 representing the empty component. The sub-entities of a component
are composed using the parallel-construct ‖. The entities executing in parallel
are the named threads n〈t〉, where t is the code being executed and n the
name of the thread. In the given setting, threads are always promises (with
the exception of initial threads, see Section 4.2.3), with their name being the
reference under which the result value of t, if any6, will be available. A class
c[(O)] carries a name c and defines its methods and fields in O. An object
o[c, F, L] with identity o keeps a reference to the class c it instantiates, stores
the current value F of its fields, and maintains a binary lock L indicating
whether any code is currently active inside the object (in which case the lock
is taken) or not (in which case the lock is free). The symbols ⊤, resp., ⊥,
indicate that the lock is taken, resp., free. From the three kinds of entities at
component level —threads n〈t〉, classes c[(O)], and objects o[c, F, L]— only the
threads are active, executing entities, being the target of the reduction rules.
The objects, in contrast, store the state in their fields or instance variables,
whereas the classes are constant entities specifying the methods.

The named threads n〈t〉 are incarnations of method bodies “in execution”.
Incarnations insofar, as the formal parameters have been replaced by actual
ones, especially the method’s self-parameter has been replaced by the identity
of the target object of the method call. The term t is basically a sequence

6There will be no result value in case of non-terminating methods.
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of expressions, where the let-construct is used for sequencing and for local
declarations.7 During execution, n〈t〉 contains in t the currently running code
of a method body. When evaluated, the thread is of the form n〈v〉 and the
value can be accessed via n, the future reference, or future for short.

Each thread belongs to one specific object “inside” which it executes, i.e.,
whose instance variables it has access to. Object locks are used to rule out
unprotected concurrent access to the object states: though each object may
have more than one method body incarnation partially evaluated, at each
time point at most one of those bodies (the lock owner) can be active inside
the object. In the terminology of Java, all methods are implicitly considered
“synchronized”. A crucial difference between a concurrency model based on
multi-threading like Java and a concurrency model based on active objects like
Creol is the way method calls are issued at the caller site. In Java and similar
languages, method calls are synchronous in the sense that the calling activity
blocks to wait for the return of the result and thus the control is transferred to
the callee. Here, method calls are issued asynchronously, i.e., the calling thread
continues executing and the code of the method being called is computed
concurrently in a new thread located in the callee object. In that way, a method
call never transfers control from one object, the caller, to another one, the
callee. In other words, no thread ever crosses the boundaries of an object,
which means, the boundaries of an object are at the same time boundaries of
the threads and thus, the objects are at the same time units of concurrency.
Thus, the objects are harnessing the activities and can be considered as bearers
of the activities. This is typical for object-oriented languages based on active
objects.

The final construct at the component level is the ν-operator for hid-
ing and dynamic scoping, as known from the π-calculus. In a component
C = ν(n:T ).C ′, the scope of the name n (of type T ) is restricted to C ′ and
unknown outside C. ν-binders are introduced when dynamically creating new
named entities, i.e., when instantiating new objects or new promises. The
scope is dynamic, i.e., when the name is communicated by message passing,
it is enlarged.

Besides components, the grammar specifies the lower level syntactic con-
structs, in particular, methods, expressions, and (unnamed) threads, which
are basically sequences of expressions. A method ς(s:T ).λ(~x:~T ).t provides the
method body t abstracted over the ς-bound “self” parameter s and the formal

7t1; t2 (sequential composition) abbreviates let x:T = t1 in t2, where x does not occur free
in t2.



62 CHAPTER 4. FUTURES AND PROMISES

parameters ~x. For uniformity, fields are represented as methods without pa-
rameters (with the exception of the standard self-parameter). The “body” of
a field is either a value or yet undefined. Note that the methods are stored in
the classes but the fields are kept in the objects, of course. In freshly created
objects, the lock is free, and all fields carry the undefined reference ⊥c, where
class name c is the (return) type of the field.

We use f for instance variables or fields and l = ς(s:T ).λ().v, resp. l =
ς(s:T ).λ().⊥c for field variable definition. Field access is written as v.l() and
field update as v′.l := ς(s:T ).λ().v. By convention, we abbreviate the latter
constructs by l = v, l = ⊥c, v.l, and v′.l := v. Note that the construct v.l()
is used for field access only, but not for method invocation. We will also use
v⊥ to denote either a value v or a symbol ⊥c for being undefined. Note that
the syntax does not allow to set a field back to undefined. Direct access (read
or write) to fields across object boundaries is forbidden by convention, and
we do not allow method update. Instantiation of a new object from class c is
denoted by new c.

Expressions especially include syntax to deal with promises and futures.
The expression promiseT creates a new promise, i.e., a reference or name for
a result yet to come. At the point of creation, only the name exists, but no
code has been determined and attached to the reference to calculate the result.
Binding code to the promise is done by bind o.l(~v) : T →֒ n, stipulating that
the eventual result is calculated using the method l of object o with actual
parameters ~v. Executing the binding operation is also known as fulfilling the
promise. Some languages do not allow to independently create a name for the
eventual result, i.e., creation and binding are done inseparately by one single
command. In that situation, one does not speak of promises, but (just) of
futures, even if in the literature, sometimes no distinction is drawn between
futures and promises. In a certain way, futures and promises can be seen as two
different roles of a reference n: the promise-role means, a client can write to the
name using the bind-operation, and the future-role represents the possibility to
read back an eventual result using the reference. In this way, we will use both
the term future and promise when referring to the same reference, depending
on the role it is playing when used.

The expression bind o.l(~v) : T →֒ n binds a method body to the promise n.
Thus, there is a close connection to asynchronous method calls, central to the
concurrency model of Creol. Indeed, in comparison with [42], which introduces
the concept of futures (but not promises) into Creol, asynchronous calls are
syntactic sugar for creating a new promise and immediately binding o.l(~v)
to it. This behaves as an asynchronous method call, as the one creating the
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promise and executing the bind can continue without being blocked waiting
for the result.

The further expressions claim, get, suspend, grab, and release deal with
communication and synchronization. As mentioned, objects come equipped
with binary locks, responsible for assuring mutual exclusion. The two basic,
complementary operations on a lock are grab and release. The first allows an
activity to acquire access in case the lock is free (⊥), thereby setting it to
⊤, and release(o) conversely relinquishes the lock of the object o, giving other
threads the chance to be executed in its stead, when succeeding to grab the
lock via grab(o). The user is not allowed to directly manipulate the object
locks. Thus, both expressions belong to the run-time syntax, underlined in
Figure 4.2, and are only generated and handled by the operational semantics
as auxiliary expressions at run-time. Instead of using directly grab and release,
the lock-handling is done automatically when executing a method body: before
starting to execute, the lock has to be acquired and upon termination, the lock
is released again. Besides that, lock-handling is involved also when futures are
claimed, i.e., when a client code executing in an object, say o, intends to read
the result of a future. The expression claim@(n, o) is the attempt to obtain
the result of a method call from the future n while in possession of the lock
of object o. There are two possibilities in that situation: either the value of
the future has already been determined, i.e., the method calculating the result
has terminated, in which case the client just obtains the value without loosing
its own lock. In the alternative case, where the value is not yet determined,
the client trying to read the value gives up its lock via release and continues
executing only after the requested value has been determined (using get to
read it) and after it has re-acquired the lock. Unlike claim, the get-operation
is not part of the user-syntax. Both expressions are used to read back the
value from a future and the difference in behavior is that get unconditionally
attempts to get the value, i.e., blocks until the value has arrived, whereas claim
gives up the lock temporarily, if the value has not yet arrived, as explained.
This behavior is sketched in Figure 4.3. Note the order in which get and grab

are executed after releasing the lock: the value is read in via get before the
lock has actually been re-acquired! That this order is acceptable rests on the
fact that a future, once evaluated, does not change the value later and reading
the value in by itself has no side-effect. Reversing the order —first re-aquiring
the lock and afterwards checking for availability of the future’s value— would
result in equivalent behavior but amount to busy waiting. Finally, executing
suspend(o) causes the activity to relinquish and re-grab the lock of the object
o. We assume by convention, that when appearing in methods of classes, the
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//GFED@ABC⊤
claim

fut. not evaluated
///o/o/o/o/o/o/o/o

claim

fut. evaluated

%%GFED@ABC⊤

release

��

GFED@ABC⊤ //

GFED@ABC⊥
get

fut. evaluated
//GFED@ABC⊥

grab

OO

Figure 4.3: Claiming a future

claim- and the suspend-command only refer to the self-parameter self , i.e.,
they are written claim@(n, self ) and suspend(self ).

Before continuing with the type system, let us explain how and why we
exclude a specific potential deadlock situation in the semantics of the claim-
statement (though the language does not generally exclude the presence of
deadlocks, i.e., it is possible to write a deadlocking program in the language).
Remember that if a thread is about to execute a claim-statement in an object,
it always owns the lock of the object. If the claimed result is not yet available,
then the claiming thread blocks. During blocking, if we would not release the
lock previously, no other thread could execute in the object, since it would
require the lock of the object. Consequently, if the computation of the claimed
result needs execution in the object, the threads would deadlock. Such dead-
locks could not be easily excluded syntactically, since release and grab are only
auxiliary syntax, i.e., they cannot be used to write programs, and we do not
support checking if a thread already finished its computation. Thus we release
the lock before blocking, i.e., waiting for the claimed result, and re-grab the
lock after the thread got the result.

4.2.2 Type system

The language is typed and the available types are given in the following gram-
mar:

T ::= B | Unit | [T ]+− | [T ]+ | [l:U, . . . , l:U ] | [(l:U, . . . , l:U)] | n
U ::= T × . . .× T → T

Besides base types B (left unspecified; typical examples are booleans, in-
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tegers, etc.), Unit is the type of the unit value (). Types [T ]+− and [T ]+

represent the reference to a future which will return a value of type T , in case
it eventually terminates. [T ]+− indicates that the promise has not yet been
fulfilled, i.e., it represents the write-permission to a promise, which implies
read-permission at the same time. [T ]+ represents read-only-permission to a
future. The read/write capability is more specific than read-only, which is ex-
pressed by the (rather trivial) subtyping relation generated by [T ]+− ≤ [T ]+,
accompanied by the usual subsumption rule. Furthermore, [ ]+ acts mono-
tonely, and [ ]+− invariantly wrt. subtyping. When not interested in the access
permission, we just write [T ].

The name of a class serves as the type for its instances. We need as aux-
iliary type constructions (i.e., not as part of the user syntax, but to for-
mulate the type system) the type or interface of unnamed objects, written
[l1:U1, . . . , lk:Uk] and the interface type for classes, written [(l1:U1, . . . , lk:Uk)].
We allow ourselves to write ~T for T1 × . . .×Tk etc. where we assume that the
number of arguments match in the rules, and write Unit → T for T1×. . .×Tk →
T when k = 0.

We are interested in the behavior of well-typed programs, only, and this
section presents the type system to characterize those. As the operational rules
later, the derivation rules for typing are grouped into two sets: one for typing
on the level of components, i.e., global configurations, and secondly one for
their syntactic sub-constituents (cf. also the two different levels in the abstract
syntax of Figure 4.2).

In Figure 4.4 we define the typing on the level of global configurations,
i.e., for “sets” of objects, classes, and named threads. On this level, the typing
judgments are of the form

∆ ⊢ C : Θ , (4.1)

where ∆ and Θ are name contexts, i.e., finite mappings from names (of classes,
objects, and threads) to types. In the judgment, ∆ plays the role of the typ-
ing assumptions about the environment, and Θ of the commitments of the
component, i.e., the names offered to the environment. Sometimes, the words
required and provided interface are used to describe their dual roles. ∆ must
contain at least all external names referenced by C and dually Θ mentions the
names offered by C. Both contexts constitute the static interface information.
A pair ∆ and Θ of assumption and commitment context with disjoint domains
is called well-formed.

The empty configuration 0 is well-typed in any context and exports no
names (cf. rule T-Empty). Two configurations in parallel can refer mutually
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T-Empty

∆ ⊢ 0 : ()

∆′ ≤ ∆ Θ ≤ Θ′ ∆ ⊢ C : Θ
T-Sub

∆′ ⊢ C : Θ′

∆1,Θ2 ⊢ C1 : Θ1 ∆2,Θ1 ⊢ C2 : Θ2

T-Par

∆1 ⊕∆2 ⊢ C1 ‖ C2 : Θ1,Θ2

∆ ⊢ C : Θ, n:T
T-Nu

∆ ⊢ ν(n:T ).C : Θ

;∆, c:T ⊢ [(O)] : T
T-NClass

∆ ⊢ c[(O)] : (c:T )

;∆ ⊢ c : [(TF , TM )] ; ∆, o:c ⊢ [F ] : [TF ]
T-NObj

∆ ⊢ o[c,F, L] : (o:c)

; ∆, n:[T ]+ ⊢ t : T
T-NThread

∆ ⊢ n〈t〉 : (n:[T ]+)
T-NThread′

∆ ⊢ n〈•〉 : (n:[T ]+−)

Figure 4.4: Typing (component level)

to each other’s commitments and together offer the (disjoint) union of their
names (cf. rule T-Par). It is an invariant of the operational semantics that the
identities of parallel entities are disjoint wrt. the mentioned names. Therefore,
Θ1 and Θ2 in the rule for parallel composition are merged disjointly, indicated
by writing Θ1,Θ2 (analogously for the assumption contexts). Also the treat-
ment of the assumption context requires care wrt. the write-permissions. In
general, C1 and C2 can rely on the same assumptions that also C1 ‖ C2 in
the conclusion uses, as it represents the environment common to C1 ‖ C2.
This, however, does not apply to the write-permissions: if C1 ‖ C2 do have
write-permission on a promise n, which resides in the environment of C1 ‖ C2,
this is represented as n:[T ]+− in the assumptions of the parallel composition.
Due to the linear nature of the write-permission, however, the binding n:[T ]+−

can occur only in the assumptions of either C1 or of C2 in the two premises of
T-Par. In other words, the assumption context of C1 ‖ C2 must be split as far
as the write-permissions to promises are concerned. To capture this intuition,
we define:

Definition 4.2.1 Let the symmetric operation ⊕ on well-formed name con-
texts be defined as follows:

0⊕∆ = ∆
n:[T ]+,∆1 ⊕ n:[T ]+−,∆2 = n:[T ]+−, (∆1 ⊕∆2)
n:T,∆1 ⊕ n:T,∆2 = n:T, (∆1 ⊕∆2) T 6= [T ′]+− for some T ′

∆1 ⊕∆2 = undefined else

We omit symmetric rules (e.g. for ∆ ⊕ 0). The contexts are considered as
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unordered, i.e., n:T,∆ does not mean, the binding n:T occurs leftmost in a
“list”.

In combination with the rest of the rules (in particular, rule T-Bind in
Figure 4.6), this assures that a promise cannot be fulfilled by the component
and the environment at the same time.

The ν-binder hides the bound object or the name of the future inside the
component (cf. rule T-Nu). In the T-Nu-rule, we assume that the bound
name n is new to ∆ and Θ. Let-bound variables are stack allocated and
checked in a stack-organized variable context Γ (see Figures 4.5 and 4.6).
Object names created by new and future/promise names created by promise

are heap allocated and thus checked in a “parallel” context (cf. again the
assumption-commitment rule T-Par). The rules for named classes introduce
the name of the class and its type into the commitment (cf. T-NClass). The
code [(O)] of the class c[(O)] is checked in an assumption context where the name
of the class is available. Note also that the premise of T-NClass (like those of
T-NObj and T-NThread) is not covered by the rules for type checking at the
component level, but by the rules for the lower level entities (in this particular
case, by rule T-Obj from Figure 4.5). The judgments in Figures 4.5 and 4.6
use as assumption not only a name context, but additionally a stack-organized,
variable context Γ in order to handle the let-bound variables. So in general, the
assumption context at that level is of the form Γ;∆. The premise of T-NClass

starts, however, with Γ being empty, i.e., with no assumptions about the type
of local variables. This is written in the premise as ;∆, c:T ⊢ [(O)] : T ; similar
for the premises of T-NObj and T-NThread. An instantiated object will be
available in the exported context Θ by rule T-NObj.

Promises, that are not yet fulfilled, are present in the configuration as
thread entities n〈•〉 (see Section 4.3); their type [T ]+− can be derived by
rule T-NThread′. Fulfilled promises n〈t〉 are treated by rule T-NThread,
where the type [T ]+ of the future reference n is matched against the result
type T of thread t. As n is already fulfilled, its type exports read-permission,
only. As t may refer to n, it is checked in the premise by ∆ extended by the
appropriate binding n:[T ]+. The last rule is a rule of subsumption, expressing a
simple form of subtyping: we allow that an object respectively a class contains
at least the members which are required by the interface. This corresponds
to width subtyping. Note, however, that each named object has exactly one
type, namely its class.

Definition 4.2.2 (Subtyping) The relation ≤ on types is defined as identity
for all types except for [T ]+− ≤ [T ]+ (mentioned above) and object interfaces,
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where we have:

[(l1:U1, . . . , lk:Uk, lk+1:Uk+1, . . .)] ≤ [(l1:U1, . . . lk:Uk)] .

For well-formed name contexts ∆1 and ∆2 , we define in abuse of notation
∆1 ≤ ∆2, if ∆1 and ∆2 have the same domain and additionally ∆1(n) ≤ ∆2(n)
for all names n.

The definition is applied, of course, also to name contexts Θ, used for the
commitments. The relations ≤ are obviously reflexive, transitive, and anti-
symmetric.

Next we formalize the typing for objects and threads and their syntactic
sub-constituents. Again, the treatment of the write-permissions requires care:
The capability to write to a promise is consumed by the bind-operation as it
should be done only once. This is captured by a linear type system where the
execution of a thread or an expression may change the involved types. The
judgments are of the form

Γ;∆ ⊢ e : T :: Γ́, ∆́, (4.2)

where the change from Γ and ∆ to Γ́ and ∆́ reflects the potential consumption
of write-permissions when executing e. The consumption is only potential, as
the type system statically overapproximates the run-time behavior, of course.
The typing is given in Figures 4.5 and 4.6. For brevity, we write ∆; Γ ⊢ e : T
for ∆; Γ ⊢ e : T :: Γ́, ∆́, when Γ́ = Γ and ∆́ = ∆. Besides assumptions about
the provided names of the environment kept in ∆, the typing is done relative
to assumptions about occurring free variables. They are kept separately in a
variable context Γ, a finite mapping from variables to types. Apart from the
technicalities, treating the write capabilities in a linear fashion is straightfor-
ward: one must assure that the corresponding capability is available at most
once in the program and is not duplicated when passed around. A promise is no
longer available for writing when bound to a variable using the let-construct,
or when handed over as argument to a method call or a return.

Classes, objects, and methods resp. fields have no effect on ∆ (see rules
T-Class, T-Obj,T-Memb, and T-Undef). Note that especially in T-Memb,
the name context ∆ does not change. This does not mean, that a method can-
not have a side-effect by fulfilling promises, but they are not part of the check
of the method declaration here. Rule T-Class is the introduction rule for
class types, the rule of instantiation of a class T-NewC requires reference to
a class-typed name. In the rules T-Memb and T-FUpdate we use the meta-
mathematical notation T.l to pick the type in T associated with label l, i.e.,
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Γ;∆ ⊢ c : [(l1:U1, . . . , lk:Uk)] Γ;∆ ⊢ mi : Ui mi = ς(si:c).λ(~xi:~Ti).ti
T-Class

Γ;∆ ⊢ [(l1 = m1, . . . , lk = mk)] : c

Γ;∆ ⊢ c : [(l1:U1, . . . , lk:Uk)] Γ;∆ ⊢ fi : Ui fi = ς(si:c).λ().v⊥
T-Obj

Γ;∆ ⊢ [l1 = f1, . . . , lk = fk] : c

Γ, ~x:~T ;∆, s:c ⊢ t : T ′ :: Γ́; ∆́ Γ;∆ ⊢ c : T T = [(. . . , l:~T → T ′, . . .)]
T-Memb

Γ;∆ ⊢ ς(s:c).λ(~x:~T ).t : T.l

Γ;∆, s:c ⊢ c : [(. . . , l : Unit → c′, . . .)]
T-Undef

Γ;∆ ⊢ ς(s:c).λ().⊥c′ : c
′

Γ;∆ ⊢ v : c Γ;∆ ⊢ c : T Γ;∆ ⊢ v′ : T.l
T-FUpdate

Γ;∆ ⊢ v.l := v′ : c

Γ;∆ ⊢ c : [(T )]
T-NewC

Γ;∆ ⊢ new c : c

Γ1;∆1 ⊢ e : T1 :: Γ2;∆2 Γ2, x:T1;∆2 ⊢ t : T2 :: Γ3;∆3

T-Let

Γ1;∆1 ⊢ letx:T1 = e in t : T2 :: Γ3;∆3

Γ1;∆1 ⊢ v1 : T1 Γ1;∆1 ⊢ v2 : T1

Γ1;∆1 ⊢ e1 : T2 :: Γ2;∆2 Γ1;∆1 ⊢ e2 : T2 :: Γ2;∆2
T-Cond

Γ1;∆1 ⊢ if v1 = v2 then e1 else e2 : T2 :: Γ2; ∆2

Γ1;∆1 ⊢ v : c Γ1; ∆1 ⊢ c : [(. . . , l:Unit → T, . . .)]

Γ1;∆1 ⊢ e1 : T2 :: Γ2;∆2 Γ1;∆1 ⊢ e2 : T2 :: Γ2;∆2
T-Cond⊥

Γ1;∆1 ⊢ if undef(v.l()) then e1 else e2 : T2 :: Γ2;∆2

T-Stop

Γ;∆ ⊢ stop : T
T-Unit

Γ;∆ ⊢ () : Unit

Figure 4.5: Typing (objects and threads)



70 CHAPTER 4. FUTURES AND PROMISES

T.l denotes U , when T = [. . . , l:U, . . .] and analogously for T = [(. . . , l:U, . . .)].
Rules T-Class and T-Obj check the definition of classes resp., of objects
against the respective interface type [(l1:U1, . . . , lk:Uk)]. Note that the type of
the self-parameter must be identical to the name of the class, the method re-
sides in. The premises of rule T-Memb check the method body in the context
Γ appropriately extended with the formal parameters xi, resp. the context
∆ extended by the ς-bound self-parameter (s in the rule). T-Undef works
similarly, treating the case of an uninitialized field. The terminated expression
stop and the unit value do not change the capabilities (cf. rules T-Stop and
T-Unit). Note that stop has any type (cf. rule T-Stop) reflecting the fact
that control never reaches the point after stop. Further constructs without
side-effects are the three expressions to manipulate the monitor locks (suspen-
sion, lock grabbing, and lock release), object instantiation (T-NewC), and
field update. Wrt. field update in rule T-FUpdate, the reason why the up-
date has no effect on the contexts is that we do not allow fields to carry a
type of the form [T ]+−. This effectively prevents the passing around of write-
permissions via fields. The ruleT-Let for let-bindings introduces a local scope.
The change from ∆1 to ∆2 and further from ∆2 to ∆3 (and analogously for
the Γs) reflects the sequential evaluation strategy: first e is evaluated and af-
terwards t. For conditionals, both branches must agree on their pre- and post
∆-contexts, which typically means, over-approximating the effect by taking
the upper bound on both as combined effect. Note that the comparison of the
values in T-Cond resp. the check for definedness in T-Cond⊥ has no side-
effect on the contexts. The rule for testing for definedness using undef (not
shown) works analogously.

In Figure 4.6 we define the typing rules to deal with futures, promises,
and especially the linear aspect of consuming and transmitting the write-
permissions. The claim-command fetches the result value from a future; hence,
if the reference n is of type [T ]+, the value itself carries type T (cf. rule
T-Claim). The rule T-Get for get works analogously.

The expression promiseT creates a new promise, which can be read or
written and is therefore of type [T ]+−. Note, however, that the context ∆ does
not change. The reason is that the new name created by promise is hidden by
a ν-binder immediately after creation and thus does not immediately extend
the ∆-context (see the reduction rule Prom below). The binding of a thread
t to a promise n is well-typed if the type of n still allows the promise to be
fulfilled, i.e., n is typed by [T ]+− and not just [T ]+. The expression claim

dereferences a future, i.e., it fetches a value of type T from the reference
of type [T ]+. Otherwise, the expression has no effect on ∆, as reading can
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T-Prom

Γ;∆ ⊢ promise T : [T ]+−

Γ;∆ ⊢ n : [T ]+ Γ;∆ ⊢ o:c
T-Claim

Γ;∆ ⊢ claim@(n, o) : T

Γ;∆ ⊢ n : [T ]+

T-Get

Γ;∆ ⊢ get@n : T

Γ;∆, n:[T ]+ ⊢ o : c Γ;∆, n:[T ]+ ⊢ c : [(. . . , l:~T → T, . . .)]

Γ;∆, n:[T ]+ ⊢ ~v : ~T Γ́; ∆́ = Γ;∆ \(~v : ~T )
T-Bind

Γ;∆, n : [T ]+− ⊢ bind o.l(~v) : T →֒ n : [T ]+ :: Γ́; ∆́, n:[T ]+

Γ(x) = T Γ́ = Γ \x : T
T-Var

Γ;∆ ⊢ x : T :: Γ́;∆

∆(x) = T ∆́ = ∆ \n : T
T-Name

Γ;∆ ⊢ n : T :: Γ;∆′

∆ ⊢ o : c
T-Suspend

Γ;∆ ⊢ suspend(o) : Unit

∆ ⊢ o : c
T-Grab

Γ;∆ ⊢ grab(o) : Unit

∆ ⊢ o : c
T-Release

Γ;∆ ⊢ release(o) : Unit

Γ1;∆1 ⊢ t : T :: Γ2; ∆2 T ≤ T ′

T-Sub

Γ1;∆1 ⊢ t : T ′ :: Γ2;∆2

Figure 4.6: Typing (objects and threads)

be done arbitrarily many times. Note that in rule T-Claim, the type of o
is not checked, as by convention, the claim-statement must be used in the
form claim@(n, self ) in the user syntax, where self is the self-parameter of
the surrounding methods. Reduction then preserves well-typedness so a re-
check here is not needed. Similar remarks apply to the remaining rules. The
treatment of get is analogous (cf. rules T-Claim and T-Get). For T-Bind,
handing over a promise with read-/write-permissions as an actual parameter
of a method call, the caller loses the right to fulfill the promise. Of course,
the caller can only pass the promise to a method which assumes read-/write-
permissions, if itself has the write-permission. The loss of the write-permission
is specified by setting ∆́ and Γ́ to ∆ \~v : ~T resp. to Γ \~v : ~T . The difference-
operator ∆ \n : [T ]+− removes the write-permission for n from the context
∆. In T-Bind, the premise Γ;∆, n:[T ]+ ⊢ ~v : ~T abbreviates the following:
assume ~v = v1, . . . vn and ~T = T1 . . . Tn and let Ξ1 abbreviate Γ;∆, n:[T ]+.
Then Ξ ⊢ ~v : ~T means: Ξi ⊢ vi : Ti and Ξi+1 = Ξi \Ti, for all 1 ≤ i ≤ n.
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Note that checking the type of the callee has no side-effect on the bindings.
Mentioning a variable or a name removes the write-permission (if present)
from the respective binding context (cf. T-Var and T-Name). The next three
rules T-Suspend, T-Grab, and T-Release deal with the expressions for
coordination and lock handling; they are typed by Unit. The last rule T-Sub

is the standard rule of subsumption.

4.2.3 Operational semantics

The operational semantics is given in two stages, component internal steps
and external ones, where the latter describe the interaction at the interface.
Section 4.2.3 starts with component-internal steps, i.e., those definable with-
out reference to the environment. In particular, the steps have no externally
observable effect. The external steps, presented afterwards in Section 4.2.3,
define the interaction between component and environment. They are defined
in reference to assumption and commitment contexts. The static part of the
contexts corresponds to the static type system from Section 4.2.2 on compo-
nent level and takes care that, e.g., only well-typed values are received from
the environment.

Internal steps

The internal semantics describes the operational behavior of a closed system,
not interacting with its environment. The corresponding reduction steps are
shown in Figure 4.7, distinguishing between confluent steps  and other in-
ternal transitions

τ
−→, both invisible at the interface. The  -steps, on the one

hand, do not access the instance state of the objects. They are free of imper-
ative side-effects and thus confluent. The

τ
−→-steps, on the other hand, access

the instance state, either by reading or by writing it, and may thus lead to
race conditions. In other words, this part of the reduction relation is in general
not confluent.

The first seven rules deal with the basic sequential constructs, all as conflu-
ent steps. The basic evaluation mechanism is substitution (cf. rule Red). Note
that the rule requires that the leading let-bound variable is replaced only by
values v. The operational behavior of the two forms of conditionals are axiom-
atized by the four Cond-rules. Depending on the result of the comparison in
the first pair of rules, resp., the result of checking for definedness in the second
pair, either the then- or the else-branch is taken. In rule Cond2, we assume
that v1 does not equal v2, as side condition. Evaluating stop terminates the
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future for good, i.e., the rest of the thread will never be executed as there is
no reduction rule for the future n〈stop〉 (cf. rule Stop). The rule FLookup

deals with field look-up, where F ′.l(o)() stands for ⊥c[o/s] = ⊥c, resp., for
v[o/s], where [c, F ′, L] = [c, . . . , l = ς(s:c).λ().⊥c, . . . , L], if the field is yet
undefined, resp., [c, F ′, L] = [c, . . . , l = ς(s:c).λ().v, . . . , L]. In rule FUpdate,
the meta-mathematical notation F.l := v stands for (. . . , l = v, . . .), when
F = (. . . , l = v′, . . .). There will be no external variant of the rule for field
look-up later in the semantics of open systems, as we do not allow field access
across component boundaries. The same restriction holds for field update in
rule FUpdate. A new object as instance of a given class is created by rule
NewOi. Note that initially, the lock is free and there is no activity associated
with the object, i.e., the object is initially passive.

The expression promiseT creates a fresh promise n′. A new thread n′〈•〉
is allocated with an “undefined” body, as so far nothing more than the name
is known. The rule Prom mentions the types T and T ′. The typing system
assures that the type T is of the form [S]+− for some type S. A promise
is fulfilled by the bind-command (cf. rule Bindi), in that the new thread n′

is put together with the code to be executed and run in parallel with the
rest. In the configuration after the reduction step, the meta-mathematical
notation M.l(o)(~v) stands for t[o/s][~v/~x], when the method suite [M ] equals
[. . . , l = ς(s:T ).λ(~x:~T ).t, . . .].

Upon termination, the result is available via the claim- and the get-syntax
(cf. the Claim-rules and rule Geti), but not before the lock of the object is
given back again using release(o) (cf. rule Release). If the thread is not yet
terminated, the requesting thread suspends itself, thereby giving up the lock.
The behavior of claim is sketched in Figure 4.3. Note the types of the involved
let-bound variables: the future reference is typed by [T ], indicating that the
value for x will not directly be available, but must be dereferenced first via
claim.

The two operations grab and release take, resp., give back the lock of an
object. They are not part of the user syntax, i.e., the programmer cannot
directly manipulate the monitor lock. The user can release the lock using the
suspend-command or by trying to get back the result from a call using claim.

The above reduction relations are used modulo structural congruence, which
captures the algebraic properties of parallel composition and the hiding op-
erator. The basic axioms for ≡ are shown in Figure 4.8 where in the fourth
axiom, n does not occur free in C1. The congruence relation is imported into
the reduction relations in Figure 4.9. Note that all syntactic entities are always
tacitly understood modulo α-conversion.
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For illustration of the operational semantics, we show the combination
of creating a promise and binding a method body to it. The steps in the
reduction sequence below are justified by Prom, Let, and Bind, in that order.
In the sequence, we did not write the definition of the object plus the class,

n〈let x:T=v in t〉 n〈t[v/x]〉 Red

n〈let x2:T2=(let x1:T1=e1 in e) in t〉 n〈let x1:T1=e1 in (let x2:T2=e in t)〉 Let

n〈let x:T=(if v=v then e1 else e2) in t〉 n〈let x:T=e1 in t〉 Cond1

n〈let x:T=(if v1=v2 then e1 else e2) in t〉 n〈let x:T=e2 in t〉 where (v1 6=v2) Cond2

n〈let x:T=(if undef(⊥c′ ) then e1 else e2) in t〉 n〈let x:T=e1 in t〉 Cond
⊥
1

n〈let x:T=(if undef(v) then e1 else e2) in t〉 n〈let x:T=e2 in t〉 Cond
⊥
2

n〈let x:T=stop in t〉 n〈stop〉 Stop

o[c,F,L]‖n〈letx:T=o.l() in t〉
τ
−→o[c,F,L]‖n〈letx:T=F.l(o)() in t〉 FLookup

o[c,F,L]‖n〈letx:T=o.l:=v in t〉
τ
−→o[c,F.l:=v,L]‖n〈letx:T=o in t〉 FUpdate

c[(F,M)]‖n〈letx:c=new c in t〉 c[(F,M)]‖ν(o:c).(o[c,F,⊥]‖n〈letx:c=o in t〉) NewOi

n〈let x:T ′=promise T in t〉 ν(n′:T ′).(n〈let x:T ′=n′ in t〉‖n′〈•〉) Prom

c[(F ′,M)]‖o[c,F,L]‖n1〈let x:T=bind o.l(~v):T2 →֒n2 in t1〉‖n2〈•〉
τ
−→

c[(F ′,M)]‖o[c,F,L]‖n1〈let x:T=n2 in t1〉‖n2〈letx:T2=grab(o);M.l(o)(~v) in release(o);x〉
Bindi

n1〈v〉‖n2〈letx:T=claim@(n1,o) in t〉 n1〈v〉‖n2〈let x:T=v in t〉 Claim1
i

t2 6=v
Claim2

i

n2〈t2〉‖n1〈let x:T=claim@(n2,o) in t′1〉 

n2〈t2〉‖n1〈let x:T=release(o);get@n2 in grab(o);t′1〉

n1〈v〉‖n2〈letx:T=get@n1 in t〉 n1〈v〉‖n2〈let x:T=v in t〉 Geti

n〈suspend(o);t〉 n〈release(o);grab(o);t〉 Suspend

o[c,F,⊥]‖n〈grab(o);t〉
τ
−→o[c,F,⊤]‖n〈t〉 Grab

o[c,F,⊤]‖n〈release(o);t〉
τ
−→o[c,F,⊥]‖n〈t〉 Release

Figure 4.7: Internal steps
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0 ‖ C ≡ C C1 ‖ C2 ≡ C2 ‖ C1 (C1 ‖ C2) ‖ C3 ≡ C1 ‖ (C2 ‖ C3)

C1 ‖ ν(n:T ).C2 ≡ ν(n:T ).(C1 ‖ C2) ν(n1:T1).ν(n2:T2).C ≡ ν(n2:T2).ν(n1:T1).C

Figure 4.8: Structural congruence

needed to do the last reduction step. I.e., the reduction sequence below runs
in parallel with c[(F ′,M)] ‖ o[c, F, L], where in particular the method suite
M , stored in the class c of the object o, contains the definition of the method
body. That definition is needed for binding operation in the last reduction
step. In the corresponding rule Bindi, this is written as M.l(o)(~v). In the final
configuration, t′ contains the result of looking up the method body and is of the
form grab(o);M.l(o)(~v). The overall behavior of the fulfilled promise n2, i.e.,
after the binding step, is: first acquire the lock of the object, afterwards execute
the method body with the formal parameters including the self-parameter
appropriately substituted. With the return value computed and remembered
in z, the lock is released and the result is made available under the future
reference n2:

n1〈let x:[T ]+− = promise T in (let y : T2 = bind o.l(~v) : T →֒ x in t)〉  

ν(n2:[T ]+−).(n1〈letx:[T ]+− = n2 in (let y:[T ]+ = bind o.l(~v) : T →֒ x in t)〉 ‖ n2〈•〉)  

ν(n2:[T ]+−).(n1〈let y:[T ]+ = bind o.l(~v) : T →֒ n2 in t[n2/x])〉 ‖ n2〈•〉)
τ
−→

ν(n2:[T ]+−).(n1〈let y:[T ]+ = n2 in t[n2/x])〉 ‖ n2〈let z:T = t′ in release(o); z〉)

Note that the overall behavior of first creating a promise and, in a next
step, binding a method body to it, corresponds exactly to the behavior of an
asynchronous method call. Asynchronous method calls can therefore be seen
as syntactic sugar. The introduction of promises as a separate datatype and

C ≡  ≡ C′

C  C′

C  C′

C ‖ C′′
 C′ ‖ C′′

C  C′

ν(n:T ).C  ν(n:T ).C′

C ≡
τ
−→ ≡ C′

C
τ
−→ C′

C
τ
−→ C′

C ‖ C′′ τ
−→ C′ ‖ C′′

C
τ
−→ C′

ν(n:T ).C
τ
−→ ν(n:T ).C′

Figure 4.9: Reduction modulo congruence
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binding as corresponding, separate operation on promises therefore generalizes
the setting with futures and asynchronous method calls, only.

In the following, we show that the type system indeed assures what it is
supposed to, most importantly that a promise is indeed fulfilled only once.
An important part of it is a standard property, namely preservation of well-
typedness under internal reduction (subject reduction). First we characterize
as erroneous situations where a promise is about to be written a second time:
A configuration C contains a write-error if it is of the form C ≡ ν(Θ′).(C ′ ‖
n′〈let x : T = bind t1 : T1 →֒ n in t2〉 ‖ n〈t〉). Configurations without such
write-errors are called write-error free, denoted ⊢ C : ok . In [82], an analogous
condition is called handle-error.

The ancillary lemmas proceed in general by induction on the typing deriva-
tions for judgments of the form ∆ ⊢ C : Θ. From a proof-theoretical (and
algorithmic) point of view, the type system as formalized in Figures 4.4, 4.5,
and 4.6 has an unwelcome property: it is too “non-deterministic” in that it
allows the non-structural subsumption rules T-Sub on the level of threads t
and on the level of components C at any point in the derivation. This liberal-
ity is unwelcome for proofs by induction on the typing derivation as one loses
knowledge about the structure of the premises of an applied rule in the deriva-
tion. We write ∆ ⊢m C : Θ for derivations where subsumption at the level of
components (by rule T-Sub from Figure 4.4) is not used, and subsumption
from Figure 4.6 is only used “when needed”, i.e., for adaptation. Taking for in-
stance T-Bind and concentrating on the premises relevant for the illustration:
Given as the interface type of the class Γ;∆, n:[T ]+ ⊢m c : [(. . . , l:~T → T, . . .)]
and furthermore Γ;∆, n:[T ]+ ⊢m ~v : ~S, the minimal types ~S of the ~v may
not directly match the expected argument type ~T of the method labeled l (as
is required in the premise of the rule T-Bind). Restricting now the use of
subsumption to “adapt” the ~S to ~T gives the type system for minimal types
(denoted by using ⊢m instead of ⊢). This could be explicitly done by remov-
ing the freely applicable T-Sub and distributing its effect into the premises
of structural rules, where such adaptation is needed. In the discussed rule
T-Bind, by stipulating

. . . Γ;∆, n:[T ]+ ⊢m c : [(. . . , l:~T → T, . . .)] Γ;∆, n:[T ]+ ⊢m ~v : ~S ~S ≤ ~T
T-Bindm

Γ;∆, n : [T ]+− ⊢m bind o.l(~v) : T →֒ n : [T ]+ :: Γ́; ∆́, n:[T ]+

where ~S ≤ ~T is interpreted pointwise Si ≤ Ti, for all i. As the formulation of
that type system is rather standard and straightforward, we omit its definition.
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Lemma 4.2.3 (Minimal typing) 1. If ∆ ⊢m C : Θ and ∆′ ⊢ C : Θ′,
then ∆ ≤ ∆′ and Θ′ ≤ Θ.

2. If ∆ ⊢m C : Θ then ∆ ⊢ C : Θ.

3. If ∆′ ⊢ C : Θ′, then ∆ ⊢m C : Θ with ∆ ≤ ∆′ and Θ′ ≤ Θ, for some ∆
and Θ.

Proof: Straightforward.

First we show that a well-typed component does not contain a manifest
write-error.

Lemma 4.2.4 If ∆ ⊢m C : Θ, then ⊢ C : ok.

Proof: By induction on the typing derivations for judgments on the level
of components, i.e., for judgments of the form ∆ ⊢ C : Θ; the subordinate
typing rules from Figures 4.5 and 4.6 on the level of threads and expressions
do not play a role for the proof. The empty component in rule T-Empty, one
of two base cases, is clearly write-error free. So is the unfulfilled promise of
rule T-NThread, the other base case. The cases for the rule T-Nu is proved
by straightforward induction. The cases for rules T-NClass, T-NObj, and
T-NThread are trivially satisfied, as they mention a single, basic component,
only.

Case: Rule T-Par

We are given ∆1,Θ2 ⊢ C1 : Θ1 and ∆2,Θ1 ⊢ C2 : Θ2 with ∆ = ∆1 ⊕ ∆2. By
induction, both C1 and C2 are write-error free. The non-trivial case (which we
lead to a contradiction) is when one of the components attempts to write to a
promise and the partner already has fulfilled it. So, without loss of generality
assume that C1 = ν(Θ′

1).(C
′
1 ‖ n1〈letx : T = bindx : T →֒ n2 in t

′′〉 and
C2 = ν(Θ′

2).(C
′
2 ‖ n2〈t2〉). Assume that n2 occurs in neither Θ′

1 nor Θ′
2,

otherwise no write-error is present (since in that case, the name n2 mentioned
on both sides of the parallel refers to different entities). For C1 to be well-typed,
we have ∆1,Θ2 ⊢ n2 : [T2]

+− for some type T2. For C2 to be well-typed, we
have Θ2 ⊢ n : [T2]

+ for some type T2. Thus, ∆ ⊢ C1 ‖ C2 : Θ1,Θ2 cannot be
derived, which contradicts the assumption.

Lemma 4.2.5 (Subject reduction: ≡) If ∆ ⊢m C1 : Θ and C1 ≡ C2, then
∆ ⊢m C2 : Θ.

Proof: We show preservation of typing by the axioms of Figure 4.8. Proceed
by induction on the derivation of ∆ ⊢m C1 : Θ.
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Case: C ‖ 0 ≡ C (idempotence)
We are given ∆ ⊢ C ‖ 0 : Θ. Inverting rule T-Par and by rule T-Empty we
get as sub-goals ∆,Θ ⊢m 0 : () and ∆ ⊢m C : Θ, which concludes the case.

Case: C ≡ C ‖ 0 (idempotence)
Immediate using rules T-Par and T-Empty.

Case: C1 ‖ C2 ≡ C2 ‖ C1 (commutativity)
Immediate.

Case: C1 ‖ (C2 ‖ C3) ≡ (C1 ‖ C2) ‖ C2 and vice versa (associativity)
By straightforward induction.

Case: C1 ‖ ν(n:T ).C2 ≡ ν(n:T ).(C1 ‖ C2)
where n does not occur free in C1. We are given ∆ ⊢ C1 ‖ ν(n:T ).C2 : Θ1,Θ2,
where n occurs in neither Θ1 nor Θ2. Inverting rules T-Par and T-Nu, we
obtain as two subgoals ∆,Θ2 ⊢ C1 : Θ1 and ∆,Θ1 ⊢ C2 : Θ1,Θ2, n:T , and the
result follows by rules T-Par and T-Nu.

Case: ν(n1:T1).ν(n2:T2).C ≡ ν(n2:T2).ν(n1:T1).C
Analogously.

The next lemma is another step towards subject reduction. Note that
minimal types are not preserved by reduction. Especially executing a bind-
operation with rule Bindi changes the type of the corresponding name from
[T ]+− to [T ]+.

Lemma 4.2.6 (Subject reduction:
τ
−→ and  ) Assume ∆ ⊢m C : Θ.

1. If C
τ
−→ Ć, then ∆ ⊢ Ć : Θ.

2. If C  Ć, then ∆ ⊢ Ć : Θ.

Proof: The reduction rules of Figure 4.7 are all of the form C1 ‖ n〈t1〉
τ
−→

C2 ‖ n〈t2〉, where often C1 = C2 or C1 and C2 missing. In the latter case, it
suffices to show that ;∆, n:[T ]+ ⊢m t1 : T implies ;∆, n:[T ]+ ⊢ t2 : T .

Case: Rule Red: n〈letx : T = v in t〉 n〈t[v/x]〉
By preservation of typing under substitution.

The five rules for let and for conditionals are straightforward. The case for
stop follows from the fact that stop has every type (cf. rule T-Stop).
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Case: Rule Prom: n〈letx:T ′ = promiseT in t〉  ν(n′:T ′).(n〈let x : T ′ =
n′ in t〉 ‖ n′〈•〉)
The type system (for minimal types) assures that T ′ = [T ]+−, i.e., for the
left-hand side of the reduction step, we obtain as one subgoal (inverting rules
T-NThread′, T-Let, and T-Prom) x:[T ]+−;∆, n:[S]+ ⊢ t : S. The result
follows from rules T-Nu, T-Par, T-Let, and T-NThread′ (and weakening):

. . . x:[T ]
+−

; ∆, n
′
:[T ]

+−
, n:[S]

+
⊢ t : S

; ∆, n
′
:[T ]

+−
, n:[S]

+
⊢ letx : [T ]

+−
= n

′
in t : S

∆, n
′
:[T ]

+−
⊢ n〈letx : [T ]

+−
= n

′
in t〉 : n:[S]

+
∆, n:[S]

+
, n

′
:[T ]

+
⊢ n

′
〈•〉 : n

′
:[T ]

+−

T-Par

∆ ⊢ n〈let x : [T ]
+−

= n
′
in t〉 ‖ n

′
〈•〉 : (n:[S]

+
, n

′
:[T ]

+−
)

T-Nu

∆ ⊢ ν(n
′
:[T ]

+−
).(n〈let x : T

′
= n

′
in t〉 ‖ n

′
〈•〉) : (n:[S]

+
)

Case: Rule Bindi n1〈t〉 ‖ n2〈•〉 = n1〈let x:T = bind o.l(~v) : T2 →֒ n2 in t1〉 ‖
n2〈•〉

τ
−→ n1〈letx:T = n2 in t1〉 ‖ n2〈let x:T2 = grab(o);M.l(o)(~v) in release(o);x〉

The type system assures (cf. rule T-Bind) that T = [T2]
+. By assumption,

we are given ∆ ⊢ n1〈t〉 : Θ, which implies Θ = n1:[T1]
+ for some type T1. In-

verting rules T-Par, T-NThread, T-Let, and T-Bind gives for the named
thread n1:

; ∆1, n2:[T2]
+
, n1:[T1]

+
⊢ ~v : ~T ∆

′′
= ∆

′
\(~v:~T ) . . .

T-Bind

; ∆1, n2:[T2]
+−

⊢ bind o.l(~v) : T2 →֒ n2 : T :: ; ∆
′′

1 , n2:[T2]
+

x:[T2]
+
; ∆

′′

1 , n2:[T2]
+

⊢ t1 : T1 :: x:[T2]
+
; ∆́2, n2:[T2]

+

; ∆1, n2:[T2]
+−

, n1:[T1]
+

⊢ letx:[T2]
+

= bind o.l(~v) : T2 →֒ n2 in t1 : T1 :: ; ∆́1, n2:[T2]
+
, n1:[T1]

+

∆1, n2:[T2]
+−

⊢ n1〈letx:[T2]
+

= bind o.l(~v) : T2 →֒ n2 in t1〉 : n1:[T1]
+

Rule T-Bind (and T-NThread) implies that the assumption context ∆
contains especially the binding n2:[T ]

+−, i.e., the assumption ∆ in the last
conclusion is of the form ∆′, n2:[T2]

+−.

Now to the post-configuration after the
τ
−→-step. With rule T-Par we ob-

tain the following two sub-goals:

∆, n2:[T2]
+−

⊢ n1〈letx:T = n2 in t1〉 : n1:[T1]
+
∆, n1:[T1]

+
⊢ n2〈letx:T2 = grab(o);M.l(o)(~v) in release(o);x〉 : n2:[T2]

+−

∆ ⊢ n1〈let x:T = n2 in t1〉 ‖ n2〈letx:T2 = grab(o);M.l(o)(~v) in release(o); x〉 : n1:[T1]
+
, n2:[T2]

+−

The left one is derived using rules T-NThread, T-Let, and T-Name, where
there second premise of ruleT-Let is discharged by the corresponding assump-
tion from above and weakening.
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T-Name

∆, n2:[T2]
+, n1:[T2]

+ ⊢ n2 : [T2]
+ x:[T2]

+,∆;n2:[T2]
+, n1:[T2]

+ ⊢ t1 : T1

T-Let

∆, n2:[T2]
+, n1:[T2]

+ ⊢ let x:T = n2 in t1 : T1

∆, n2:[T2]
+ ⊢ n1〈letx:[T2]

+ = n2 in t1〉 : n1:[T1]
+

The second premise can be derived as follows:

. . .

; ∆, n1:[T1]
+
, n2:[T2]

+
⊢ M.l(o)(~v) : T2

T-Var

y:T2; ∆, n1:[T1]
+
, n2:[T2]

+
⊢ y : T2

y:T2; ∆, n1:[T1]
+
, n2:[T2]

+
⊢ release(o); y : T2

T-Let

; ∆, n1:[T1]
+
, n2:[T2]

+
⊢ let y:T2 = M.l(o)(~v) in release(o); y : T2

; ∆, n1:[T1]
+
, n2:[T2]

+
⊢ let y:T2 = grab(o);M.l(o)(~v) in release(o); y : T2

T-NThread

∆, n1:[T1]
+

⊢ n2〈let y:T2 = grab(o);M.l(o)(~v) in release(o); y〉 : n2:[T2]
+

T-Sub

∆, n1:[T1]
+

⊢ n2〈let y:T2 = grab(o);M.l(o)(~v) in release(o); y〉 : n2:[T2]
+−

The premise ;∆, n1:[T1]
+, n2:[T2]

+ ⊢ M.l(o)(~v) : T2 follows by preservation of
typing by substitution. Note the use of subsumption in the last step.

Lemma 4.2.7 (Subject reduction: ≡) If ∆ ⊢ C1 : Θ and C1 ≡ C2, then
∆ ⊢ C2 : Θ.

Proof: Assume ∆ ⊢ C1 : Θ and C1 ≡ C2. By Lemma 4.2.3(3), ∆′ ⊢m C1 : Θ
′

s.t. ∆ ≤ ∆′ and Θ′ ≤ Θ. By Lemma 4.2.5, ∆′ ⊢m C2 : Θ′, and hence by
Lemma 4.2.3(2), also ∆′ ⊢ C2 : Θ′, and the result follows by subsumption
(rule T-Sub).

Lemma 4.2.8 (Subject reduction:
τ
−→ and  ) Assume ∆ ⊢ C : Θ.

1. If C
τ
−→ Ć, then ∆ ⊢ Ć : Θ.

2. If C  Ć, then ∆ ⊢ Ć : Θ.

Proof: As consequence of the corresponding property for minimal typing from
Lemma 4.2.6, Lemma 4.2.3, and subsumption.

Lemma 4.2.9 (Subject reduction) If ∆ ⊢ C : Θ and C =⇒ Ć, then ∆ ⊢
Ć : Θ.
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Proof: A consequence of Lemma 4.2.7 and 4.2.8.

A direct consequence is that all reachable configurations are write-error free:

Corollary 4.2.10 If ∆ ⊢ C : Θ and C =⇒ Ć, then ⊢ Ć : ok.

Proof: A consequence of Lemma 4.2.4 and subject reduction from Lemma 4.2.9.

External semantics

In this section we introduce the external semantics that defines the interaction
between component and environment. We start by formalizing typing judg-
ments and transitions between typing judgments, being the basic form of the
external steps. We continue with static typing assumptions for well-formed and
well-typed labels. Context updates, given next, express the dynamic change
of typing judgments for incoming and outgoing communications. Making use
of the above formalisms, we give the steps of the external semantics.

The external semantics formalizes the interaction of an open component
with its environment. The semantics is given as labeled transitions between
typing judgments on the level of components (cf. Figure 4.4), i.e., judgments
of the form

∆ ⊢ C : Θ, (4.3)

where, as before, ∆ represents the assumptions about the environment of the
component C and Θ the commitments. The assumptions require the existence
of named entities in the environment (plus giving static typing information),
and dually, the commitment promises the existence of such entities in C. It
is an invariant of the semantics, that the assumption and commitment con-
texts are disjoint concerning their name bindings. In addition, the interface
keeps information about whether the value of a future n is already known
at the interface (this information is not needed in the static type system of
Figure 4.4). If it is, we write n:T = v as binding of the context. We write
furthermore ∆ ⊢ n = v, if ∆ contains the corresponding value information
(and if not interested in the type) and write ∆ ⊢ n = ⊥, if that is not the
case. This extension makes the value of a future (once successfully claimed)
available at the interface. With these judgments, the external transitions are
of the form:

∆ ⊢ C : Θ
a
−→ ∆́ ⊢ Ć : Θ́ . (4.4)
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γ ::= n〈call o.l(~v)〉 | n〈get(v)〉 | ν(n:T ).γ basic labels
a ::= γ? | γ! receive and send labels

Figure 4.10: Labels

Notation 4.2.11 We abbreviate the tuple of name contexts ∆,Θ as Ξ. Fur-
thermore we understand ∆́, Θ́ as Ξ́, etc.

The labels of the external transitions represent single steps of the interface
interactions (cf. Figure 4.10). A component exchanges information with the
environment via call- and get-labels (by convention, referred to as γc and γg,
for short). Interaction is either incoming or outgoing, indicated by ?, resp., !.
In the labels, n is the identifier of the thread (i.e., also future/promise) car-
rying out the call resp. of being queried via claim or get. Besides that, object
and future names (but no class names) may appear as arguments in the com-
munication. Scope extrusion of names across the interface is indicated by the
ν-binder. Given a basic label γ = ν(Ξ).γ′ where Ξ is a name context such that
ν(Ξ) abbreviates a sequence of single n:T bindings (whose names are assumed
all disjoint, as usual) and where γ′ does not contain any binders, we call γ′

the core of the label and refer to it by ⌊γ⌋. We define the core analogously for
receive and send labels. The free names fn(a) and the bound names bn(a) of
a label a are defined as usual, whereas names(a) refer to all names of a. In
addition, we distinguish between names occurring as arguments of a label, in
passive position, and the name occurring as carrier of the activity, in active
position. Name n, for illustration, occurs actively and free in n〈call o.l.(~v)〉
and in n〈get(v)〉. We write fna(a) for the free names occurring in active posi-
tion, fnp(a) for the free names in passive position, etc. All notations are used
analogously for basic labels γ. Note that for incoming labels, Ξ contains only
bindings to environment objects (besides future names), as the environment
cannot create component objects; dually for outgoing communication.

The steps of the operational semantics for open systems check the static
assumptions, i.e., whether at most the names actually occurring in the core
of the label are mentioned in the ν-binders of the label, and whether the
transmitted values are of the correct types. This is covered in the following
definition.

Definition 4.2.12 (Well-formedness and well-typedness) A label a =
ν(Ξ).⌊a⌋ is well-formed, written ⊢ a, if dom(Ξ) ⊆ names(⌊a⌋) and if Ξ is



4.2. CALCULUS 83

a well-formed name-context for object and future names, i.e., no name bound
in Ξ occurs twice. The assertion

Ξ́ ⊢ o.l? : ~T → T (4.5)

(“an incoming call of the method labeled l in object o expects arguments of
type ~T and results in a value of type T”) is given by the following rule, i.e.,
implication:

; Θ́ ⊢ o : c ; Ξ́ ⊢ c : [(. . . , l:~T → T, . . .)]

Ξ́ ⊢ o.l? : ~T → T
(4.6)

For outgoing calls, Ξ́ ⊢ o.l! : ~T → T is defined dually. In particular, in the
first premise, Θ́ is replaced by ∆́. Well-typedness of an incoming core label a
with expected type ~T , resp., T , and relative to the name context Ξ́ is asserted
by

Ξ́ ⊢ a : ~T → resp., Ξ́ ⊢ a : → T , (4.7)

as given by Figure 4.11. Finally, let Ξ́0 abbreviate ; Ξ́. Then ; Ξ́ ⊢ ~v : ~T means:
Ξ́i ⊢ vi : Ti and Ξ́i+1 = Ξ́i \Ti, for all 0 ≤ i ≤ n− 1.

Note that the receiver o of the call is checked using only the commitment
context Θ́, to assure that o is a component object. Note further that to check
the interface type of the class c, the full Ξ́ is consulted, since the argument
types ~T or the result type T may refer to both component and environment
classes.

The premise ; Ξ́ ⊢ ~v : ~T in rule LT-CallI is interpreted in such a way
that checking for write-permission consumes that permission (analogous to
the corresponding premise of rule T-Bind in Figure 4.6). This is formalized in
the definition of ; Ξ ⊢ ~v : ~T for well-typedness of a sequence of values, given at
the end of Definition 4.2.12, which iterates through the sequence, potentially
removing write-permission for a vi s.t. the permission is no longer available
for type cheking the rest of the sequence.

In a similar spirit: requiring that Ξ́ is of the form Ξ́1, n:[T ]
+, Ξ́2 assures

that it is not possible to transmit n with write-permissions if n is the active
thread of the label.

Besides checking whether the assumptions are met before a transition,
the contexts are updated by a transition step, especially extended by the new
names, whose scope extrudes. For the binding part Ξ′ of a label ν(Ξ′).γ, the
scope of the references to existing objects and thread names ∆′ extrudes across
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Ξ́ = Ξ́1, n:[T ]+, Ξ́2 ; Ξ́ ⊢ ~v : ~T a = n〈call or .l(~v)〉?
LT-CallI

Ξ́ ⊢ a : ~T →

; Ξ́ ⊢ v : T a = n〈get(v)〉?
LT-GetI

Ξ́ ⊢ a : → T

Figure 4.11: Typechecking labels

the border. In the step, ∆′ extends the assumption context ∆ and Θ′ the
commitment context Θ. Besides information about new names, the context
information is potentially updated wrt. the availability of a future value. This
is done when a get-label is exchanged at the interface for the first time, i.e.,
when a future value is claimed successfully for the first time. For outgoing
communication, the situation is dual.

Before we come to the corresponding Definition 4.2.13 below, we make
clear (again) the interpretation of judgments ∆ ⊢ C : Θ. Interesting is in
particular the information n:[T ]+−, stipulating that name n is available with
write-permission (and result type T ). In case of ∆ ⊢ n : [T ]+−, the name n is
assumed to be available in the environment as writable, and conversely Θ ⊢
n : [T ]+− asserts write-permission for the component. Since read-permissions,
captured by types [T ]+, are not treated linearly —one is allowed to read from
a future reference as many times as wished— the treatment of bindings n:[T ]+

is simpler. Hence, we concentrate here on n:[T ]+− and the write-permissions.

As the domains of ∆ and Θ are disjoint, bindings n:T ′ cannot be available
in the assumption context ∆ and the commitments Θ at the same time. The
information T ′ = [T ]+− indicates which side, component or environment, has
the write-permission. If, e.g., ∆ ⊢ n : [T ]+−, then the component is not allowed
to execute a bind on reference n. In the mentioned situation, the component
can execute a claim-operation on n. The same applies if ∆ ⊢ n : [T ]+. In other
words, a name n can be accessed by reading by both the environment and the
component once known at the interface, independent from whether it is part
of ∆ or of Θ. A difference between bindings of the form n:[T ]+− and n:[T ]+

(and likewise n:[T ]+ = v) is, that communication can change ∆ ⊢ n : [T ]+−

to Θ ⊢ n : [T ]+− and vice versa. For names n of type [T ]+, this change of
side is impossible. The latter kind of information, for instance Θ ⊢ n : [T ]+,
implies that the code has been bound to n and it is placed in the component.
Once fixed there, the reference to n may, of course, be passed around, but the
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thread named n itself cannot change to the environment since the language
does not support mobile code.

Now, how do interface interactions update the contexts? We distinguish
two ways, the name n can be transmitted in a label: passively, when trans-
ported as the argument of a call or a get-interaction, and actively, when men-
tioned as the carrier of the activity, as the n in n〈call o.l(~v)〉 and n〈get(v)〉. As
usual, such references (actively or passively) can be transmitted as fresh names,
i.e., under a ν-binder, or alternatively as an already known name. When trans-
mitted passively and typed with [T ]+− for some type T , the write-permission
to n is handed over to the receiving side and at the same time, that permis-
sion is removed from the sender side. So if, e.g., the environment is assumed
to possess the write-permission for reference n, witnessed by ∆ ⊢ n : [T ]+−,
then sending n as argument in a communication to the component removes
the binding from the environment and adds the permission to the component
side, yielding Θ ⊢ n : [T ]+−.

Now, what about transmitting n actively? An incoming call n〈call o.l(~v)〉?,
e.g., reveals at the interface that the promise indeed has been fulfilled. As, in
that situation of an incoming call, the thread, executing the call, is located at
the component, the commitment context is updated to satisfy Θ ⊢ n : [T ]+ =
⊥ (for an appropriate type T ) after the communication. Indeed, before the
step it is checked, that the environment actually has write-permission for n,
i.e., that ∆ ⊢ n : [T ]+−, or that the name n is new. See the incoming call
in Figure 4.12(a), where the n is fresh, resp. in Figure 4.12(c), where the n
has been transmitted passively and with write-permissions to the environment
before the call (in the dotted arrow).

Whereas call-labels make public, at which side the thread in question
resides, get-labels, on the other hand, reveal that the computation has ter-
minated and fix the result value (if the information about the result value
had not been public interface information before). There are two situations,
where a, say, outgoing get-communication is possible. In both cases, the named
thread, representing the future, resides in the component and after the get-
communication, the value is determined, i.e., Θ ⊢ n : [T ]+ = v (if not already
before the step). One scenario is that ∆ ⊢ n : [T ]+ = ⊥ before the step still. If,
in that situation, the get is executed by the environment, it is required that the
component must have had write-permission before, i.e., Θ ⊢ n : [T ]+− (cf. Fig-
ure 4.12(b)). The only way, the value for n is available for the environment now
is that the promise had been fulfilled and the corresponding thread already
has terminated, and this could have been done by the component, only. In that
situation, the contexts are updated from Θ ⊢ n : [T ]+− to Θ ⊢ n : [T ]+ = v
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by the get-interaction. Alternatively, the thread may be known to be part of
the component with the promise already fulfilled (Θ ⊢ n : [T ]+ = ⊥, as shown
in Figures 4.12(a) and 4.12(c)). Finally, the value for n might already been
known at the interface, i.e., already before the step, Θ ⊢ n : [T ]+ = v holds.
In that situation, v has been added as interface information previously by
a prior get-interaction, and the situation corresponds to the very last get in
Figures 4.12(b) and 4.12(c).

∆Θ

call

claim

get

Ξ 6⊢ n

Θ ⊢ n : [T ]+ = ⊥

Θ ⊢ n : [T ]+ = v

(a)

∆Θ

get
get

Ξ 6⊢ n

Θ ⊢ n : [T ]+−

Θ ⊢ n : [T ]+ = v

(b)

∆Θ

call

claim

get

get

Ξ 6⊢ n

∆ ⊢ n:[T ]+−

Θ ⊢ n : [T ]+ = ⊥

Θ ⊢ n : [T ]+ = v

(c)

Figure 4.12: Scenarios

Definition 4.2.13 (Context update) Let Ξ be a name context and a =
ν(Ξ′).⌊a⌋ an incoming label. Let Ξ́ = Ξ + a be defined as follows.

We define the (intermediate) contexts Θ′′ = Θ and ∆′′ = ∆,Ξ′. Let further-
more Σ′′ be the set of bindings defined as follows. In case of a call-label, i.e.,
⌊a⌋ = n〈call o.l(~v)〉?, let the vector of types ~T be defined by Ξ ⊢ o.l? : ~T → T
according to Equation (4.5) of Definition 4.2.12. Then Σ′′ consists of bindings
of the form vi:[T

′
i ]
+− for values vi from ~v such that Ti = [T ′

i ]
+−. In case of a

get-label, i.e., ⌊a⌋ = n〈get(v)〉?, the context Σ′′ is v:[T ]+− if ∆′′ ⊢ n : [[T ]+−]+,
and empty otherwise.

With Σ′′ given this way, the definitions of the post-contexts ∆́ and Θ́ distin-
guish between calls and get-interaction: If a is a call-label and n ∈ namesa(a),
we define

∆́ = (∆′′ \Σ′′) \n:[T ]+− and Θ́ = Θ′′,Σ′′, n:[T ]+ . (4.8)

If a is a get-label a = ν(Ξ′).n〈get(v)〉? and n ∈ namesa(a), ∆́ and Θ́ are given
by:

∆́ = (∆′′ \Σ′′), n:[T ]+ = v and Θ́ = Θ′′,Σ′′ . (4.9)

For outgoing communication, the definition is applied dually.
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The definition proceeds in two stages. In a first step, the assumption con-
text ∆ is extended with the bindings Ξ′ carried with the incoming label a. Note
that the bindings Ξ′ ⊢ n : [T ]+− or Ξ′ ⊢ n : [T ]+ for promise/future references,
kept in Σ′, are added to the assumption context ∆ but not the commitment
context (in the considered case of incoming communication). The second step
deals with the write-permissions, i.e., it transfers the write-permission trans-
mitted from the sender to the receiver. The binding context Σ′′ deals with the
permissions carried by thread names transmitted passively, i.e., as arguments
of the communication. It remains to take care also of the information carried
by the active thread. There, we distinguish calls and get-labels. An incoming
call (cf. Equation (4.8)) with n as active thread is the sign that the thread
is now located at the component side and that the write-permission has been
consumed by the environment. Hence, in Equation (4.8), the environment loses
the write-permission and the component is extended by the binding n:[T ]+.
In case of an incoming get, the transmitted value v is remembered as part of
∆ (cf. Equation (4.8)).

The previous definition deals with the change of context information by
communication. Apart from that, unfulfilled promises of the form n〈•〉 also
change side, if their name is exchanged together with write-permission. As
notation, we use C(Ξ) to denote the component n1〈•〉 ‖ . . . ‖ nk〈•〉, where the
names ni correspond to all names of the context Ξ mentioned as ni : [Ti]

+−

for some type Ti.

Now to the interface behavior, given by the external steps of Figure 4.13.
Corresponding to the labels from Figure 4.10, there are a number of rules for
external communication: either incoming or outgoing calls, resp., exchange of
get-labels. Most rules have some premises in common. In all cases of a labeled
transition, the context Ξ is updated to Ξ́ = Ξ + a using Definition 4.2.13.
The rules for incoming communication differ from the corresponding ones for
outgoing communication in that well-typedness and well-formedness of the
label is checked by the premises Ξ́ ⊢ ⌊a⌋ : ~T → , resp. Ξ́ ⊢ ⌊a⌋ : → ~T
(for calls) resp., Ξ́ ⊢ ⌊a⌋ : → T (for get-labels), using Definition 4.2.12.
For outgoing communication, the check is unnecessary as starting with a well-
typed component, there is no need in re-checking now, as the operational steps
preserve well-typedness (subject reduction).

When the component claims the value of a future, we distinguish two situ-
ations: the future value is accessed for the first time across the interface or not.
In the first case (rules ClaimI1 and ClaimI2), the interface does not contain
the value of the future yet, stipulated by the premise ∆ ⊢ n′ = ⊥. Remember
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that ∆ ⊢ n′ requires that n′ is part of the environment. In that situation it is
unclear from the perspective of the component, whether or not the value has
already been computed. Hence, it is possible that executing claim is immedi-
ately successful (cf. rule Claim1) or that the thread n trying to obtain the
value has to suspend itself and try later (cf. rul Claim2). Rule Claim2 works
exactly like the corresponding internal rule Claim2

i from Figure 4.7, except
that here it is required that the queried future n′ is part of the environment.
The behavior of a thread wrt. claiming a future value has been illustrated in
Figure 4.3 earlier. If the future value is already known at the interface (cf. rule
Claim3 and especially premise ∆ ⊢ n′ = v), executing claim is always success-
ful and the value v is (re-)transmitted. get works analogously to claim, except
that get insists on obtaining the value, i.e., the alternative of relinquishing the
lock and trying again as in rule Claim2, is not available for get. The last two
rules deal with the situation that the environment fetches the value.

Finally, we characterize the initial configuration. Initially, the component
contains at most one initial activity and no objects. More precisely, given that
Ξ0 ⊢ C0 is the initial judgment, then C0 contains no objects. Concerning
the threads: initially exactly one thread is executing, either at the component
side or at the environment side. The distinction is made at the interface that
initially either Θ0 ⊢ n or ∆0 ⊢ n, where n is the only thread name in the
system.

Remark 4.2.14 (Comparison with Java-like multithreading) The for-
malization for the multithreaded case, for instance in [5], is quite similar. One
complication encountered there is that one has to take reentrance into account.
The rule for an incoming call CallI in Figure 4.13 deals with a non-reentrance
situation, which is the only situation relevant in the setting here. In addition to
the rule CallI, Java-like multithreading requires further CallI-rules to cover
the situations, when the call is reentrant.

4.3 Interface behavior

Next we characterize the possible (“legal”) interface behavior as interaction
traces between component and environment. Half of the work has been done
already in the definition of the external steps in Figure 4.13: For incoming com-
munication, for which the environment is responsible, the assumption contexts
are consulted to check whether the communication originates from a realiz-
able environment. Concerning the reaction of the component, no such checks
are necessary. To characterize when a given trace is legal, the behavior of the
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a = ν(Ξ′). n〈call o.l(~v)〉? Ξ́ = Ξ + a (Ξ′ ⊢ n ∨ ∆ ⊢ n : [ ]+−) Ξ́ ⊢ o.l? : ~T → T Ξ́ ⊢ ⌊a⌋ : ~T →

CallI

Ξ ⊢ C
a

−→ Ξ́ ⊢ C ‖ C(Ξ′) ‖ n〈letx:T = grab(o);M.l(o)(~v) in release(o); x〉

a = ν(Ξ′). n〈call o.l(~v)〉! Ξ′ = fn(⌊a⌋) ∩ Ξ1 Ξ́1 = Ξ1 \Ξ′ ∆ ⊢ o Ξ́ = Ξ + a

CallO

Ξ ⊢ ν(Ξ1).(C ‖ C(Ξ′) ‖ n〈•〉 ‖ n′〈let x:T = bind o.l(~v) : T →֒ n in t〉)
a

−→

Ξ́ ⊢ ν(Ξ́1).(C ‖ n′〈letx : T = n in t〉)

a = ν(Ξ′). n′〈get(v)〉? Ξ́ = Ξ + a ∆ ⊢ n′ = ⊥ Ξ́ ⊢ ⌊a⌋ : → T

ClaimI1

Ξ ⊢ ν(Ξ1).(C ‖ n〈let x:T = claim@(n′, ) in t〉)
a

−→ Ξ́ ⊢ ν(Ξ1).(C ‖ C(Ξ′) ‖ n〈let x:T = v in t〉)

∆ ⊢ n′ = ⊥

ClaimI2

Ξ ⊢ ν(Ξ1).(C ‖ n〈let x:T = claim@(n′, o) in t〉)  

Ξ ⊢ ν(Ξ1).(C ‖ n〈let x : T = release(o); get@n′ in grab(o); t〉)

a = n′〈get(v)〉? ∆ ⊢ n′ = v Ξ ⊢ ⌊a⌋ : → T

ClaimI3

Ξ ⊢ ν(Ξ1).(C ‖ n〈let x:T = claim@(n′, ) in t〉)
a

−→ Ξ ⊢ ν(Ξ1).(C ‖ C(Ξ′) ‖ n〈let x:T = v in t〉)

a = ν(Ξ′). n′〈get(v)〉? Ξ́ = Ξ + a ∆ ⊢ n′ = ⊥ Ξ́ ⊢ ⌊a⌋ : → T

GetI1

Ξ ⊢ ν(Ξ1).(C ‖ n〈letx:T = get@n
′
in t〉)

a

−→ Ξ́ ⊢ ν(Ξ1).(C ‖ C(Ξ
′
) ‖ n〈let x:T = v in t〉)

a = n′〈get(v)〉? ∆ ⊢ n′ = v Ξ ⊢ ⌊a⌋ : → T

GetI2

Ξ ⊢ ν(Ξ1).(C ‖ n〈let x:T = get@n′ in t〉)
a

−→ Ξ ⊢ ν(Ξ1).(C ‖ C(Ξ′) ‖ n〈letx:T = v in t〉)

a = ν(Ξ′).n〈get(v)〉! Ξ′ = fn(⌊a⌋)∩ Ξ1 Ξ́1 = Ξ1 \Ξ′ Ξ́ = Ξ + a

GetO1

Ξ ⊢ ν(Ξ1).(C ‖ C(Ξ
′
) ‖ n〈v〉)

a

−→ Ξ́ ⊢ ν(Ξ́1).(C ‖ n〈v〉)

a = n〈get(v)〉! Θ ⊢ n = v

GetO2

Ξ ⊢ C
a

−→ Ξ ⊢ C

Figure 4.13: External steps

component side, i.e., the outgoing communication, must adhere to the dual dis-
cipline we imposed on the environment for the open semantics. This means,
we analogously abstract away from the program code, rendering the situation
symmetric.

4.3.1 Legal traces system

The rules of Figure 4.14 specify legality of traces. We use the same conven-
tions and notations as for the operational semantics (cf. Notation 4.2.11). The
judgments in the derivation system are of the form

Ξ ⊢ s : trace . (4.10)
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Ξ⊢ǫ:trace L-Empty

a=ν(Ξ′). n〈call o.l(~v)〉? Ξ́=Ξ+a (Ξ′⊢n∨∆⊢n:[]+−)

Ξ́⊢o.l?:~T→ Ξ́⊢⌊a⌋:~T→ Ξ́⊢s:trace
L-CallI

Ξ⊢a s:trace

a=ν(Ξ′).n〈get(v)〉? Ξ́=Ξ+a ∆⊢n=⊥ Ξ́⊢⌊a⌋: →T Ξ́⊢s:trace
L-GetI1

Ξ⊢a s:trace

a=n〈get(v)〉? ∆⊢n=v Ξ⊢s:trace
L-GetI2

Ξ⊢a s:trace

Figure 4.14: Legal traces (dual rules omitted)

We write Ξ ⊢ t : trace , if there exists a derivation according to the rules of
Figure 4.14 with an instance of L-Empty as axiom. The empty trace is always
legal (cf. rule L-Empty), and distinguishing according to the first action a of
the trace, the rules check whether a is possible. Furthermore, the contexts are
updated appropriately, and the rules recur checking the tail of the trace. The
rules are symmetric wrt. incoming and outgoing communication (the dual rules
are omitted). Rule L-CallI for incoming calls works completely analogously
to the rule CallI in the semantics: the second premise updates the context Ξ
appropriately with the information contained in a, premise Ξ′ ⊢ n of L-CallI

assures that the identity n of the future, carrying out the call, is fresh and
the two premises Ξ́ ⊢ o.l? : ~T → and Ξ́ ⊢ ⌊a⌋ : ~T → together assure that
the transmitted values are well-typed (cf. Definition 4.2.12); the latter two
checks correspond to the analogous premises for the external semantics in rule
CallI, except that the return type of the method does not play a role here.
The L-GetI-rules for claiming a value work similarly. In particular the type
checking of the transmitted value is done by the combination of the premises
∆ ⊢ n : [T ] and Ξ́ ⊢ ⌊a⌋ : → T . As in the external semantics, we distinguish
two cases, namely whether the value of the future has been incorporated in
the interface already or not (rules L-GetI2 and L-GetI1). In both cases, the
thread must be executing on the side of the environment for an incoming get.
This is checked by the premise ∆ ⊢ n = ⊥ resp. by ∆ ⊢ n = v. In case of
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L-GetI2, where the value of the future has been incorporated as v into the
interface information, the actual parameter of the get-label must, of course,
be v. If not (for L-GetI1), the transmitted argument value is arbitrary, apart
from the fact that it must be consistent with the static typing requirements.

It remains to show that the behavioral description, as given by Figure 4.14,
actually does what it claims to do, to characterize the possible interface behav-
ior of well-typed components. We show the soundness of this abstraction plus
the necessary ancillary lemmas such as subject reduction. Subject reduction
means, preservation of well-typedness under reduction. In the formulation of
subject reduction, we make sure that the write-permissions of the environment
are not available for type-checking the component. We use ⌊∆⌋ instead of ∆
as assumption, were ⌊ ⌋ replaces each binding n:[T ]+− in ∆ by n:[T ]+.

Lemma 4.3.1 (Subject reduction) If ⌊∆⌋ ⊢ C : Θ and ∆ ⊢ C : Θ
s

=⇒
∆́ ⊢ Ć : Θ́, then ⌊∆́⌋ ⊢ Ć : Θ́.

Proof: By induction on the number of reduction steps. That internal steps
preserve well-typedness, i.e., ⌊∆⌋ ⊢ C : Θ =⇒ ⌊∆́⌋ ⊢ C : Θ, follows from
the corresponding Lemma 4.2.9 for internal steps. That leaves the external
reduction steps of Figure 4.13.

Case: CallI

We are given ⌊∆⌋ ⊢ C : Θ. The disjunctive premise of the rule distinguishes
two sub-cases: 1) Ξ′ ⊢ n (where Ξ′ are the bindings carried along with the
call-label, i.e., the thread name is transmitted freshly) or 2) ∆ ⊢ n : [ ]+− (the
thread is not transmitted freshly and the environment has write-permission
before the step). Both are treated uniformly in the following argument. For
the right-hand side of the transition, we need to show ⌊∆́⌋ ⊢ C ′ ‖ n〈letx:T =
grab(o);M.l(o)(~v) in release(o);x〉 : Θ́, where C ′ corresponds to C extended
by new n′〈•〉-promises. According to the definition of context update (Defini-
tion 4.2.13), Ξ́ = ∆́, Θ́, where Θ́ = Θ,Σ′′, n:[T ]+ and where Σ′′ contains bind-
ings n′:[T ′]+− for those references transmitted with read-/write-permission as
argument of the call (see the right-hand of Equation (4.8)). The assumption
context ∆́ for Ć after the step (by the left-hand of the same equation) is of
the form (∆,Ξ′) \Σ′′ \n:[T ]+−. So for the new thread n at component side,
we need to show that

⌊(∆,Ξ′) \Σ′′ \n:[T ]+−⌋ ⊢ C ‖ C(Σ′′) ‖ n〈t′〉 : Θ,Σ′′, n:[T ]+ (4.11)

with t′ given as let x:T = grab(o);M.l(o)(~v) in release(o);x. To derive Equa-
tion (4.11), using a number of instances of rule T-Par in the last derivation
steps, gives
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∆̃, ⌊Σ′′⌋, n:[T ]+ ⊢ C : Θ ∆̃, n:[T ]+, ⌊Θ⌋ ⊢ C(Σ′′) : Σ′′

∆̃, ⌊Θ⌋,Σ′′, n:[T ]+ ⊢ t′ : T

∆̃, ⌊Θ⌋,Σ′′ ⊢ n〈t′〉 : n:[T ]+

..

.

⌊(∆,Ξ′) \Σ′′ \n:[T ]+−⌋ ⊢ C ‖ C(Σ′′) ‖ n〈t′〉 : Θ,Σ′′, n:[T ]+

(4.12)

where ∆̃ abbreviates the assumption context ⌊(∆,Ξ′) \Σ′′ \n:[T ]+−⌋ from
Equation (4.11). Note, how the write-permissions from Σ′′ in the commit-
ment of the conclusion at the bottom are split among the three subgoals.
All write-permissions are given to the assumptions of n〈t′〉, whereas C can
assume only read-access (cf. rule T-Par and the definition of ⊕ from Def-
inition 4.2.1). The context Θ is split similarly. The left open goal can be
rephrased as ⌊∆⌋, ⌊Ξ′⌋, n:[T ]+ ⊢ C : Θ and can be discharged using the given
⌊∆⌋ ⊢ C : Θ and weakening. The open goal in the middle follows directly from
an appropriate number of instances of rule T-NThread′.

It remains to show the right-upper subgoal (with ∆̃ expanded):

⌊(∆,Ξ′) \Σ′′ \n:[T ]+−⌋, ⌊Θ⌋,Σ′′, n:[T ]+ ⊢ letx:T = t′ : T (4.13)

Note that, apart from the write-permissions, the complicated type context
corresponds to: ∆,Ξ′,Θ, or more formally:

⌊(⌊(∆,Ξ′) \Σ′′ \n:[T ]+−⌋, ⌊Θ⌋,Σ′′, n:[T ]+)⌋ = ⌊∆,Ξ′,Θ⌋

Intuitively, it means, t′ must be checked with all name bindings available
from ∆ and Θ plus the ones, which scope is exchanged in Ξ′ as part of the
label. No write-permissions, however, can be used to type-check t′ except those
being transmitted by the argument of the call and which are kept in Σ′′ (the
context Σ′′ is the only part of t′ typing context not being stripped off the
write-permissions by ⌊ ⌋).

Note that the meta-mathematical notation M.l(o)(~v) in t′ stands for the
substitution tbody [o/s][~v/~x], i.e., the method body with the self-parameter s
substituted by the callee’s identity and with the formal parameter replaced by
the actual ones. Now, the well-typedness of the pre-configuration ⌊∆⌋ ⊢ C : Θ
together with the premise Ξ́ ⊢ o.l :?~T → T of rule CallI (cf. Definition 4.2.12)
implies that C is of the form C ′ ‖ c[(. . . , l = ς(s:c).λ(~x : ~T ).tbody , . . .)], and

further that ⌊∆⌋ ⊢ C : Θ has ~x:~T ; ⌊∆⌋,Θ ⊢ tbody : T as subgoal. The remaining
subgoal Equation (4.13) of the derivation Equation (4.12) follows by rules
T-Let, T-Grab, preservation of typing under substitution, rule T-Release,
and the axiom T-Var.
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Case: CallO

We are given ∆ ⊢ ν(Ξ1).(C ‖ n〈•〉 ‖ n′〈letx:T = bind o.l(~v) : T →֒ n in t〉) : Θ
before the step and ∆́ ⊢ ν(Ξ́1).(C ‖ n′〈letx : T = n in t〉) : Θ́ afterwards,
with C = C ′ ‖ n1〈•〉 ‖ . . . ‖ nk〈•〉. By one of the premises of rule CallO

we know ∆ ⊢ o, i.e., object o is an environment object.8 That the name o
refers to an object is assured by the type system and the assumption that
the pre-configuration is well-typed. By inverting the rules T-Nu, T-Par,
T-NThread, T-Let, and T-Bind, we get:

. . . Ξ′ = ⌊∆⌋,Ξ1,Θ Ξ́′ = Ξ′ \(~v:~T , n:[T ]+−)
T-Bind

; ⌊∆⌋,Ξ1,Θ ⊢ bind o.l(~v) : T →֒ n : T :: ∆́′ x:T ; Ξ́′ ⊢ t : T ′ :: . . .

; ⌊∆⌋,Ξ1, Θ̃, n′:[T ′]+ ⊢ letx:T = bind o.l(~v) : T →֒ n in t : T ′

⌊∆⌋,Ξ1, Θ̃ ⊢ n′〈let x:T = bind o.l(~v) : T →֒ n in t〉 : n′:[T ′]+

T-Par,T-Nu . . .
...

⌊∆⌋ ⊢ ν(Ξ1).(C ‖ n′〈let x : T = bind o.l(~v) : T →֒ n in t〉 ‖ n〈•〉) : Θ

Note that t in the left-upper leaf is type-checked in the context Ξ′, which
corresponds to Ξ′ = ⌊∆⌋,Ξ1, Θ̃, n

′:[T ′]+ with those write-permissions removed
that are transmitted via the arguments of the method l (cf. rule T-Bind).

To derive well-typedness of the post-configuration, we distinguish two sub-
cases, namely whether 1.) the promise n is known at the interface before the
step or 2.) it is still hidden. In the first subcase, we have Θ ⊢ n : T ′ with
T ′ = [T ]+− (as a consequence of the fact that the configuration is well-typed),
or more precisely, Θ = Θ̃′, n:[T ]+−, n′:[T ′]+. The derivation of well-typedness
of the post-configuration ⌊∆́⌋ ⊢ ν(Ξ́1).(C

′ ‖ n′〈let x : T = n in t〉) : Θ́ works
as follows:

; ⌊∆́⌋, Ξ́1, Θ́ ⊢ n : T x:T ; ⌊∆́⌋, Ξ́1, Θ́ ⊢ t : T ′

T-Let

; ⌊∆́⌋, Ξ́1, Θ́ ⊢ let x:T = n in t : T ′

T-NThread

⌊∆́⌋, Ξ́1,
˜́
Θ ⊢ n′〈let x:T = n in t〉 : n′:[T ′]+

T-Par,T-Nu . . .
...

⌊∆́⌋ ⊢ ν(Ξ́1).(C
′ ‖ n′〈let x : T = n in t〉) : Θ́

8We do not allow cross-border instantiation in this paper, i.e., the component is not
allowed to instantiate environment objects and vice versa.
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where Θ́ =
˜́
Θ, n′:[T ′]+. Using the premises of the reduction rule CallO, that

relates the different binding contexts mentioned in the step (i.e., Ξ́1 = Ξ1 \Ξ
′,

where Ξ′ are the bindings mentioned in the call labels), ∆′ = ∆,Ξ′, n:[T ]+

(as stipulated by the premise Ξ́ = Ξ + a of rule CallO and given by Defini-
tion 4.2.13, especially Equation (4.8)). Note that Equation (4.8) is formulated
for incoming communication, i.e., used dually here, and that in the consid-
ered subcase, we assume that n is known at the interface before the step, i.e.,
Θ ⊢ n:[T ]+−, as agreed upon earlier. It is straightforward to see that the com-
bined context ∆,Ξ1,Θ equals Θ́, Ξ́1, ∆́, with the exception, that the former
contains n:[T ]+− (as part of Θ) and the latter only n:[T ]+ (as part of ∆́. Cf.
especially by Equation (4.8)). Furthermore, considering ⌊∆⌋ and ⌊∆́⌋ instead
of ∆ and ∆́:

⌊∆́⌋, Ξ́1, Θ́ = (⌊∆⌋,Ξ1,Θ) \(n:[T ]+−, ~v:~T ) (4.14)

where ~v:~T is given as mentioned in the left-upper leaf of the first derivation tree
and as defined by the premise of rule T-Bind (these bindings correspond to
the Σ′′ used in Equation (4.8) and represent the write-permissions transmitted
by the call-label from the component to the environment). This discharges the
top-left subgoal of the derivation. The second subcase with Ξ1 ⊢ n:[T ]

+− works
analogously.

Case: Claim1

The core of the type preservation here is to assure that the claim-statement
in the pre-configuration and the transmitted value v in the post-configuration
are of the same appropriate type T . Well-typedness of the pre-configuration
implies with claim@(n′, o,) of type T , that the reference n′ is of type [T ]+.
The third premise of rule ClaimI1 states Ξ́ ⊢ ⌊a⌋ : → T , which implies with
Definition 4.2.12, especially rule LT-GetI of Figure 4.11, that also v is of type
T , as required.

Case: Claim2

By inverting the type rules T-Nu, T-Par, T-Let and T-Claim for the pre-
configuration of the step, and by using the same typing rules (except T-Claim)
plus T-Get, T-Release, and T-Grab.

The remaining rules work similarly.

Lemma 4.3.2 (Soundness of abstractions) If Ξ0 ⊢ C and Ξ0 ⊢ C
t

=⇒,
then Ξ0 ⊢ t : trace.

Proof: By induction on the number of steps in
t

=⇒. The base case of zero
steps (which implies t = ǫ) is immediate, using rule L-Empty. The induction
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for internal steps of the form Ξ ⊢ C =⇒ Ξ ⊢ Ć follows by subject reduction for
internal steps from Lemma 4.2.9; in particular, internal steps do not change
the context Ξ. The external steps of Figure 4.13 remain. First note the contexts
Ξ are updated by each external step to Ξ́ the same way as the contexts are
updated in the legal trace system.

The cases for incoming communication are checked straightforwardly, as
the operational rules check incoming communication for legality, already, i.e.,
the premises of the operational rules have their counterparts in the rules for
legal traces.

Case: CallI

Immediate, as the premises of rule L-CallI coincide with the ones of rule
CallI.

Case: Claim1 and Get1

The two cases are covered by rule L-Get1, which has the same premises as
the operational rules.

Case: Claim2

Trivial, as the step is an internal one.

Case: Claim3 and Get2

The two cases are covered by rule L-Get2.

The cases for outgoing communication are slightly more complex, as the
label in the operational rule is not type-checked or checked for well-formedness
as for incoming communication and as is done in the rules for legality.

Case: CallO

We need to check whether the premises of rule L-CallO, the dual to rule
L-CallI of Figure 4.14, are satisfied. By assumption, the pre-configuration

Ξ ⊢ ν(Ξ1).(C ‖ n′〈letx:T = bind o.l(~v) : T →֒ n in t〉) (4.15)

is well-typed. For thread name n this implies, it is bound either in Ξ or in Ξ1,
more precisely, either Θ ⊢ n : [T ]+− (it is public interface information that
the component has write-permission for n) or Ξ1 ⊢ n : [T ]+− (the name n is
not yet known in the environment before the communication). In the latter
situation we obtain Ξ′ ⊢ n : [ ]+− by the premise Ξ′ = fn(⌊a⌋) ∩ Ξ1 of rule
CallO. Thus, the third premise Ξ′ ⊢ n ∨ Θ ⊢ n : [ ]+− of rule L-CallO

is satisfied. We furthermore need to check whether the label is type-correct
(checked by premises nr. 4 and 5 of rule L-CallO). Its easy to check that the
label is well-formed (cf. the first part of Definition 4.2.12). The first premise
of the check of Equation (4.6), that the receiving object o is an environment
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object, is directly given by the premise ∆ ⊢ o of rule CallO. That the object
o supports a method labeled l (of type ~T → T ) follows from the fact that
the pre-configuration of the call-step is well-typed. This gives the premise
Ξ́ ⊢ o.l! : ~T → T of rule L-CallO. The type check Ξ́ ⊢ ⌊a⌋ : ~T → (checking
that the transmitted values ~v are of the expected type ~T ) remains, which
again follows from well-typedness of Equation (4.15) (especially inverting rule
T-Bind).

The remaining cases work similarly.

Remark 4.3.3 (Comparison with reentrant threading) In a multithreaded
setting with synchronous method calls (see for instance [5] [95]), the definition
of legal traces is more complicated. Especially, to judge whether a trace s is
possible requires referring to the past. I.e., instead of judgments of the form of
Equation (4.10), the check for legality with synchronous calls uses judgments
of the form:

Ξ ⊢ r ⊲ s : trace ,

reading “after history r (and in the context Ξ), the trace s is possible”. This
difference has once more to do with reentrance, resp. with the absence of this
phenomenon here. In the threaded case, where, e.g., an outgoing call can be
followed by a subsequent incoming call as a “call-back”. To check therefore,
whether a call or a return is possible as a next step involves checking the
proper nesting of the call- and return-labels. This nesting requirement (also
called the balance condition) degenerates here in the absence of call-backs to
the given requirement that each call uses a fresh (future) identity and that
each get-label (taking the role of the return label in the multithreaded setting)
is preceded by exactly one matching preceding call. This can be judged by ∆ ⊢
n : [ ] or Θ ⊢ n : [ ] (depending on whether we are dealing with incoming or
outgoing getfuts-labels) and especially, no reference to the history of interface
interactions is needed.

Remark 4.3.4 (Monitors) The objects of the calculus act as monitors as
they allow only one activity at a time inside the object. For the operational
semantics of Section 4.2.3, the lock-taking is part of the internal steps. In
other words, the handing-over of the call at the interface and the actual entry
into the synchronized method body is non-atomic, and at the interface, objects
are input-enabled.

This formalization therefore resembles the one used for the interface de-
scription of Java-like reentrant monitors in [5]. To treat the interface inter-
action and actual lock-grabbing as non-atomic leads to a clean separation of
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concerns of the component and of the environment. In [5], this non-atomicity,
however, gives rise to quite complex conditions characterizing the legal inter-
face behavior. In short, in the setting of [5], it is non-trivial to characterize
exactly those situations, when the lock of the object is necessarily taken by
one thread which makes certain interactions of other threads impossible. This
characterization is non-trivial especially as the interface interaction is non-
atomic.

Note, however, that these complications are not present in the current
setting with active objects, even if the objects act as monitors like in [5]. The
reason is simple: there is no need to capture situations when the lock is taken.
In Java, the synchronization behavior of a method is part of the interface
information. Concretely, the synchronized-modifier of Java, specifies that the
body of a method is executed atomically in that object without interference of
other9 threads, assuming that all other methods of the callee are synchronized,
as well. Here, in contrast, there is no interface information that guarantees that
a method body is executed atomically. In particular, the method body can give
up the lock temporarily via the suspend-statement, but this fact is not reflected
in the interface information here. This absence of knowledge simplifies the
interface description considerably.

4.4 Conclusion

We presented an open semantics describing the interface behavior of com-
ponents in a concurrent object-oriented language with futures and promises.
The calculus corresponds to the core of the Creol language, including classes,
asynchronous method calls, the synchronization mechanism, and futures, and
extended by promises. Concentrating on the black-box interface behavior, how-
ever, the interface semantics is, to a certain extent, independent of the concrete
language and is characteristic for the mentioned features; for instance, extend-
ing Java with futures (see also the citations below) would lead to a quite similar
formalization (of course, low level details may be different). Concentrating on
the concurrency model, certain aspects of Creol have been omitted here, most
notably inheritance and safe asynchronous class upgrades.

9Note that a thread can “interfere” in that setting with itself due to recursion and reen-
trance.
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Future work

An obvious way to proceed is to consider more features of the Creol-language,
in particular inheritance and subtyping. Incorporating inheritance is challeng-
ing, as it renders the system open wrt. a new form of interaction, namely the
environment inheriting behavior from a set of component classes or vice versa.
Also Creol’s mechanisms for dynamic class upgrades should be considered
from a behavioral point of view (that we expect to be quite more challenging
than dealing with inheritance). An observational, black-box description of the
system behavior is necessary for the compositional account of the system be-
havior. Indeed, the legal interface description is only a first, but necessary, step
in the direction of a compositional and ultimately fully-abstract semantics, for
instance along the lines of [95]. Based on the interaction trace, it will be useful
to develop a logic better suited for specifying the desired interface behavior
of a component than enumerating allowed traces. Another direction is to use
the results in the design of a black-box testing framework, as we started for
Java in [41]. We expect that, with the theory at hand, it is straightforward to
adapt the implementation to other frameworks featuring futures, for instance,
to the future libraries of Java 5.



Chapter 5

Termination Detection for

Active Objects1

In this chapter we investigate deadlock detection for a modeling language based
on active objects. To detect deadlock in an Actor-like subset of Creol we focus
on the communication between the active objects. For the analysis of the model
we translate a Creol configuration to a process algebra featuring the Linda
coordination primitives. The translation preserves the deadlock behaviour of
the model and allows us to apply a formalism introduced by Busi et al. [27]
to detect global deadlocks in the process algebra.

5.1 Introduction

Active objects form a well established model for distributed systems. We
present a static technique for the detection of global deadlock in concurrent
systems of active objects. Our technique is based on a translation into a process
algebra which features the coordination primitives of the Linda language and
the representation of the process algebra as a P/T net following the formalism
of Busi et al. [27].

We apply this technique to an Actor-like subset of the Creol modeling
language. Creol [65, 66] is a modeling language for distributed concurrent
systems based on asynchronous communication. In Creol a system consists
of active objects communicating via asynchronous method calls, futures, and
promises [4, 42]. Creol objects encapsulate their data and can only be accessed
by their interfaces. In contrast to the synchronous setting where control, i.e.

1The work presented in this chapter was published as [44].
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threads, passes object boundaries, each method call spawns a new process
within the called object. However, only one process is active within an object.
Further, instead of returning the result of a method invocation to the caller
the result is stored in a future. Active processes can release control by means
of, for example, waiting on a future for the result of a method call. This gives
rise to a so-called discipline of cooperative multi-tasking within an object.

Creol programs in general give rise to complex deadlock situations because
of the synchronization between processes involving requests for the result of
an invocation represented by a future. The main result of this work is de-
cidability of detection of global deadlocks for an Actor-like subset [7, 94] of
Creol which restricts the fine-grained synchronization between the processes
within an object to the coarse grained run-to-completion pattern of Actor-like
languages. In other words, the execution of a method cannot be preempted in
this subset. A request for the result of a computation by an active process of
an object therefore blocks the object itself.

Abstracting further from data we show in this work that the coordination
language Linda can be used as a natural model to describe the network com-
munications of our Actor-like language by externalizing the set of pending calls
of the objects into the tuple space. Busi et al. also investigate the consequences
of two different semantics for message generation. In their work the distinction
between ordered and unordered semantics is crucial. In the ordered semantics
a message is generated immediately. Due to this choice messages appear in
the order in which they were sent in the tuple space. In the unordered seman-
tics a send-box for the message is added to the tuple space which has to be
turned into the message itself in an internal step later. The ordered semantics
is more expressive than the unordered one. In fact the ordered semantics is
Turing-powerful. Of particular interest is that this distinction does not ap-
ply to the semantics of Creol programs because Creol programs do not allow
for testing for a message or conditional branching on the presence/absence of
messages. One of the main challenges to automated termination/global dead-
lock detection of Creol programs is the unbounded generation of fresh names
representing futures. The main result of this chapter is that restricting to the
run-to-completion model of execution, i.e., disallowing preemption of active
processes, allows for a finite representation of futures and an application of
the techniques described in Busi et. al. [27].

Outline This chapter is organized as follows. We start with the introduction
of an Actor-like subset of Creol in Section 5.2 followed by a presentation of the
used Linda dialect in Section 5.3. In Section 5.4 we introduce the translation
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to Linda. We investigate the properties of our translation in Section 5.5. We
briefly discuss in Section 5.6 the semantic consequences of extending our Actor-
like language to more refined communication primitives and more fine-grained
synchronization patterns.

5.2 Active Objects

A Creol model describes a system of active objects. The active objects com-
municate via asynchronous method calls. Each active object is a monitor and
allows at most one active process to execute within the object. Scheduling
among the processes of an object is cooperative, i.e. a process has to release
the monitor lock explicitly – except for termination. Each object has an un-
bounded set of pending processes. In case the lock of an active object is free
any process in the set of pending processes can grab the lock and start to exe-
cute. The initial “active” behavior of an object is given in terms of a designated
run-method which is the active process after object creation.

The explanation above characterizes the general behaviour of Creol ob-
jects. We ristrict ourselves to an Actor-like subset CA of Creol which allows
a translation to the coordination language Linda. In CA we forbid so called
processor release points, i.e. in Creol a process can suspend execution by re-
leasing the object lock and continue execution later after grabbing the lock
again. In the Actor setting methods run to completion, i.e. suspension is not
available. We give syntax and operational rules for our CA which resemble the
rules for standard Creol without the corresponding primitives for suspension
and processor release.

We focus on the analysis of the communication structure of the model to de-
tect deadlocks caused by the communication pattern used by the model. Con-
sequently we abstract from data except for object identities and futures. Due
to the abstraction from data, conditional branching becomes non-deterministic
choice (e1 + e2). Abstracting from data we also abstract from object creation
and assume all objects to be given in advance.

To translate CA to Linda we introduce as an intermediate step an abstract
semantics for CA. In the concrete semantics runtime labels for futures are
unique. The translation of CA to Linda would involve a translation of these
runtime labels into messages in Linda, consequently keeping these runtime
labels would result in an unbounded message alphabet. To obtain a finite
alphabet of messages we replace the unique runtime labels by communication
labels which are only unique with respect to their syntactic occurence in the
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method definitions, i.e. consecutive invocations of the same method may use
the same labels for the communication. This change is reflected by the abstract
semantics. Furthermore we change the semantics of the request of the result of
a call. In Creol reading a future is a non-destructive operation, i.e. a future can
be read an arbitrary number of times. With respect to termination or deadlock
detection consecutive reading of a future does not provide new information. If
the first read operation on a future is successful all consecutive read operations
on that future are successful. This property of the read operation allows us
to omit all consecutive read operations on a future and to replace the non-
destructive read operation of the concrete semantics by a destructive read
operation in the abstract semantics.

5.2.1 Syntax

Given a set of method names M with typical element m, the definition of an
object consists of a labeled set of method definitions of the following form

Object o{run = e; ret ,m1 = e1; ret , . . . ,mn = en; ret}.

The designated run-method run ∈ M defines the initial activity of the object
which is executed after object creation. The expressions for the method bodies
are given by the following grammar:

e ::= τ | o.m | 3f = o.m | 3f? | e; e | e+ e expression

Here, τ denotes an internal step. Both o.m and 3f = o.m denote an asyn-
chronous method call to method m of object o. We distinguish anonymous
calls o.m and named calls 3f = o.m. Anonymous calls and named calls differ
in the way they treat the result of the call. For anonymous calls no reference to
the result is saved, i.e. the result cannot be requested by the caller. For named
calls a reference to the future is stored in the local state of the object and the
caller can request the result later by a corresponding get-expression, e.g. 3f?.
We call the future f the name of the method call. We give a notion of balanced
method definitions with respect to the named calls in a method body, i.e. in
each branch of a choice the same set of futures has to be requested. The no-
tion of balanced methods facilitates the definition of the finite representation
of communication labels. This is restriction for technical convenience only. It is
possible to deal with unbalanced method definitions. Applying static analysis
and/or program transformations any method definition can be transformed
into a balanced one.
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The expression 3f? is a blocking request of the result of the call with name
3f . The result is consumed upon request, which entails that 3f?;3f? leads
to a deadlock. The return symbol ret represents the writing of the result and
the termination of the method. The grammar guarantees that any method
definition ends with a ret–statement and that there is only the ret–statement
in the final position and no intermediate ones. Both ending each method with
an explicit ret–statement and restricting the definition to exactly one ret–
statement is done for technical convenience only. In abuse of notation we use
e as a shorthand for e′; ret throughout the remainder of this paper.

The language has no explicit construct for iteration but recursion is sup-
ported via anonymous method calls. For technical convenience we assume
without loss of generality that the identifiers of all futures in the program
are statically unique and hence identify the occurence of the corresponding
call, i.e. we can use the futures as communication labels.

A Creol model is given in terms of the set of the objects O defining the
model. By Do we refer to the set of method definitions m = e; ret given in o.
For technical convenience we assume the names of the methods to be unique
among all objects. By Do(m) we denote the definition given for method m in
o, i.e. e; ret for m = e; ret .

Example 5.2.1 (Running Example) We give a running example in terms
of a Creol model inspired by Dijsktra’s classical deadly embrace example. The
system consists of two objects o1 and o2 with similar behaviour. First each
object calls a method on itself. Then the invocation calls a method on the other
object and waits for the result. Depending on the scheduling of the methods the
model can run into a deadlock.

Object o1{run = o1.m1; ret ,m1 = 3f = o2.m4;3f?; ret ,m2 = ret}.
Object o2{run = o2.m3; ret ,m3 = 3g = o1.m2;3g?; ret ,m4 = ret}.

Both a non-deadlocking and a deadlocking run of the model are presented in
section 5.2.2. The deadlock related to this example is an instance of the circular
waiting problem.

Definition 5.2.2 (Well-formedness) A method is well-formed if each re-
quest of a future, e.g. 3f?, is in the scope of a corresponding declaration, e.g.
3f = o.m, and if each future is only declared once. Well-typed Creol programs
satisfy this requirement.

As futures are local to method bodies and cannot be passed around, the re-
quest for a future that has not been declared before always leads to a deadlock.
We only consider well-formed programs.
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Example 5.2.3 (Running Example: Well-formedness) It is easy to see
that our running example is a well-formed model, i.e. each future that is re-
quested was declared before.

Example 5.2.4 (Well-formedness) We give a slight variation of the defi-
nition of o1 to illustrate the importance of the notion of well-formedness. The
following program is not well-formed:

Object o1{run = o1.m1; ret ,m1 = 3f?; ret ,m2 = ret}
Object o2{run = o2.m3; ret ,m3 = 3g = o1.m2;3g?; ret ,m4 = ret}

If we request the future f without declaring it first, i.e. without doing the actual
call. o1 will wait forever, thus o1 is deadlocked forever. In this case the whole
system will deadlock. Either the calls started by the initial activity of o2, i.e.
m3 and m2, are scheduled before m1 is scheduled and the activity initiated by
o2 terminates which leaves m1 as the only and deadlocked process or m1 blocks
object o1 before m3 or m2 are scheduled. In this case the call m2 is deadlocked
by m1 blocking o1. Here we get a circle of processes waiting: m3 is waiting for
the result of m2 which is waiting for m1 to free o1 which is waiting for the
undeclared future f , i.e. for a result that can never be calculated.

5.2.2 Operational Semantics

Once scheduled a process does not release control until termination, i.e. the
method “runs-to-completion”. The operational semantics of a corresponding
system of active objects is described by a labeled transition relation between
configurations. Given a set of object definitions, a global configuration Θ con-
tains a set of object configurations and a set of futures. We assume an infinite
set of run-time labels κ for the identification of named calls and their corre-
sponding futures. For technical convenience, the distinguished label ⊥ will be
used to identify processes generated by anonymous calls. A configuration of an
object named o is given by a tuple (o, (σ, a),Γ). We assume object names to
be unique in valid configurations Θ. The status of the currently active process
is given by σ and a, where a is the expression representing the active process
and σ is the process’s local state assigning run-time labels to names of futures.
Finally, Γ is the set of pending calls resp. the set of pending processes. An ac-
tive process is a pair of a run-time label and an expression to be executed. A
pending process is a pair of a run-time label and a method name. For a process
generated by a named call its unique runtime label κ also identifies the return
value. By ǫ we denote the absence of an active process, i.e. an empty local
state and an idle object.
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Note that in the run-to-completion semantics there are no partially evalu-
ated processes in the set of pending processes but only “fresh” method invo-
cations. The active process represents the method currently executed by the
object and it has exclusive access to the object.

Initial configuration The initial configuration θo of an object o is given by
the object itself containing the definitions of the methods, the active process,
and an empty set of pending processes:

θo = {(o, (σ⊥,⊥ : Do(run)), ∅)} .

Here, Do(run) denotes the body of the run-method given in o. The active
process is labelled with the runtime label ⊥ as an anonymous invocation, i.e.
“no” future will be produced. The initial local state σ⊥ does not contain any
assignments for the futures.

The initial configuration ΘI of the model is the set of the initial configu-
ration of the objects:

ΘI =
⋃

o∈O

θo .

Method scheduling An idle object can non-deterministically schedule any
pending process:

Θ ∪ {(o, ǫ,Γ ∪ {κ : m})} → Θ ∪ {(o, (σ⊥, κ : Do(m)),Γ)}

Here, ǫ denotes the idle object, i.e. no active process in execution and no local
state. Upon scheduling the method body Do(m) of method m is inlined and
the local state σ⊥ is initiated, i.e. an empty assignment is provided.

Method termination Upon method termination the object is set to idle
and a future representing the result of the corresponding call is created:

Θ ∪ {(o, (σ, κ : ret),Γ)} → Θ ∪ {(o, ǫ,Γ)} ∪ {κ}

Upon method termination the local state is discarded. The absence of a cal-
culated result value justifies the representation of the result of a method call
by transforming the runtime label κ of the invocation into a future denoting
the termination of the corresponding invocation.
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Choice The rules for the non-deterministic choice in CA are as expected:

Θ ∪ {(o, (σ, κ : e1 + e2; e),Γ)} → Θ ∪ {(o, (σ, κ : e1; e),Γ)}

Θ ∪ {(o, (σ, κ : e1 + e2; e),Γ)} → Θ ∪ {(o, (σ, κ : e2; e),Γ)}

Internal Step Internal steps have no side effect on the configuration.

Θ ∪ {(o, (σ, κ : τ ; e),Γ)} → Θ ∪ {(o, (σ, κ : e),Γ)}

Method call An anonymous method call adds a corresponding invocation
to the set of pending processes of the callee and allows the caller to continue
execution.

Θ ∪ {(o, (σ, κ : o′.m′; e),Γ)} ∪ {(o′, a′,Γ′)}
→ Θ ∪ {(o, (σ, κ : e),Γ)} ∪ {(o′, a′,Γ′ ∪ {⊥ : m′})}

Here ⊥ suffices as a label for the process caused by an anonymous call to
method m′ of object o′ by object o since no return value is requested.

Future A method call adds the call to the set of pending processes of the
callee and allows the caller to continue execution.

Θ ∪ {(o, (σ, κ : f = o′.m′; e),Γ)} ∪ {(o′, a′,Γ′)}
→ Θ ∪ {(o, (σ[f := κ′], κ : e),Γ)} ∪ {(o′, a′,Γ′ ∪ {κ′ : m′})}

Here σ[f := κ′] denotes the result of assigning the label κ′ to the future name
3f in σ.

Requesting result A result to a method call is consumed upon request.

Θ ∪ {(o, (σ[f := κ′], κ : f?; e),Γ)} ∪ {κ′} → Θ ∪ {(o, (σ, κ : e),Γ)}

Consumption of the result is modeled by removing the future κ′ from the
configuration. Please note that requesting a result is blocking. In case the result
is not available the process and thereby the object containing the process are
stuck.

Example 5.2.5 (Running Example: Concrete Semantics) We revisit our
running example of a Creol program to illustrate the semantics of our Creol
modelling language. The initial configuration consists of the two objects o1 and
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o2. For each object the run method is the active process. First both run methods
are executed which leads to a pending call of m1 at o1 and a pending call of m3

at o2. The pending call of m1 at o1 is scheduled which leads to a named call
f of m4 at o2 with runtime label κ. The call of method m4 at o2 is scheduled
which produces the result κ. The result is consumed by the request of process
m1 at o1. Now the pending call of m3 at o2 is scheduled. The execution of
the method leads to an invocation of m2 at o1. The invocation of m2 at o1 is
scheduled and produces a result κ′. The result is consumed by the invocation of
method m3 at o2 and the execution terminates. During the execution a couple
of anonymous results ⊥ are produced. By definition these can not be claimed
by any process.

ΘI = {(o1, (σ⊥,⊥ : o1.m1; ret), ∅), (o2, (σ⊥,⊥ : o2.m3; ret), ∅)}
→ {(o1, (σ⊥,⊥ : ret), {⊥ : m1}), (o2, (σ⊥,⊥ : o2.m3; ret), ∅)}
→ {(o1, (σ⊥,⊥ : ret), {⊥ : m1}), (o2, (σ⊥,⊥ : ret), {⊥ : m3})}
→ {(o1, ǫ, {⊥ : m1}), (o2, (σ⊥,⊥ : ret), {⊥ : m3}),⊥}
→ {(o1, ǫ, {⊥ : m1}), (o2, ǫ, {⊥ : m3}),⊥,⊥}
→ {(o1, (σ⊥,⊥ : 3f = o2.m4;3f?; ret), ∅), (o2, ǫ, {⊥ : m3}),⊥,⊥}
→ {(o1, (σ[f := κ],⊥ : 3f?; ret), ∅), (o2, ǫ, {⊥ : m3, κ : m4}),⊥,⊥}
→ {(o1, (σ[f := κ],⊥ : 3f?; ret), ∅), (o2, (σ⊥, κ : ret), {⊥ : m3}),⊥,⊥}
→ {(o1, (σ[f := κ],⊥ : 3f?; ret), ∅), (o2, ǫ, {⊥ : m3}), κ,⊥,⊥}
→ {(o1, (σ,⊥ : ret), ∅), (o2, ǫ, {⊥ : m3}),⊥,⊥,⊥}
→ {(o1, ǫ, ∅), (o2, ǫ, {⊥ : m3}),⊥,⊥,⊥}
→ {(o1, ǫ, ∅), (o2, (σ⊥,⊥ : 3g = o1.m2;3g?; ret), ∅),⊥,⊥,⊥}
→ {(o1, ǫ, {κ

′ : m2}), (o2, (σ
′[g := κ′],⊥ : 3g?; ret), ∅),⊥,⊥,⊥}

→ {(o1, (σ⊥, κ
′ : ret), ∅), (o2, (σ

′[g := κ′],⊥ : 3g?; ret), ∅),⊥,⊥,⊥}
→ {(o1, ǫ, ∅), (o2, (σ

′[g := κ′],⊥ : 3g?; ret), ∅), κ′,⊥,⊥,⊥}
→ {(o1, ǫ, ∅), (o2, (σ

′,⊥ : ret), ∅),⊥,⊥,⊥}
→ {(o1, ǫ, ∅), (o2, ǫ, ∅),⊥,⊥,⊥,⊥}

In the remainder of this chapter we ignore, i.e. omit, anonymous results ⊥
whenever appropriate.

Enabledness Under the assumption that all objects which are referenced,
i.e. called, are included in the configuration any step except from requesting
a result is always enabled. Requesting a result is only enabled if the return
value of the call is available in the configuration.
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Terminal Configuration We call a configuration terminal if there are no
enabled steps for the configuration, i.e. there are no enabled steps for any
object in the configuration.

Example 5.2.6 (Running Example: Terminal Configuration) The ex-
ecution of our running example, we presented above, ends in a terminal con-
figuration.

Definition 5.2.7 (Deadlock) A terminal configuration is called a deadlock
iff it contains an object that is not idle, i.e. which contains a (blocked) active
process.

The notion of deadlock is global in that it requires the whole configuration
to be stuck. Local deadlocks, e.g. circular waiting among only a subset of the
objects, is not covered by the definition. The detection of local deadlocks is
not in the scope of this chapter.

Example 5.2.8 (Running Example: Deadlock) We vary the execution of
our running example of a Creol program. Instead of scheduling the call of m4

at o2 we schedule the call of m3 at o2 first. This leads to an invocation of m2

at o1. Now the active processes of both objects wait for the result of a call to
the other object which is blocked by the other active process, i.e. no further
progress can be made.

θo = {(o1, (σ⊥,⊥ : o1.m1; ret), ∅), (o2, (σ⊥,⊥ : o2.m3; ret), ∅)}
→ {(o1, (σ⊥,⊥ : ret), {⊥ : m1}), (o2, (σ⊥,⊥ : o2.m3; ret), ∅)}
→ {(o1, (σ⊥,⊥ : ret), {⊥ : m1}), (o2, (σ⊥,⊥ : ret), {⊥ : m3})}
→ {(o1, ǫ, {⊥ : m1}), (o2, (σ⊥,⊥ : ret), {⊥ : m3})}
→ {(o1, ǫ, {⊥ : m1}), (o2, ǫ, {⊥ : m3})}
→ {(o1, (σ⊥,⊥ : 3f = o2.m4;3f?; ret), ∅), (o2, ǫ, {⊥ : m3})}
→ {(o1, (σ[f := κ],⊥ : 3f?; ret), ∅), (o2, ǫ, {⊥ : m3, κ : m4})}
→ {(o1, (σ[f := κ],⊥ : 3f?; ret), ∅),

(o2, (σ⊥,⊥ : 3g = o1.m2;3g?; ret), {κ : m4})}
→ {(o1, (σ[f := κ],⊥ : 3f?; ret), {κ′ : m2}),

(o2, (σ
′[g := κ′],⊥ : 3g?; ret), {κ : m4})}

The execution leads to a terminal configuration which contains blocked active
processes thus it leads to deadlock.

We are going to detect deadlock via detection of termination. To distin-
guish normal termination and deadlock we introduce divergence by means of
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a decoration of the objects with a diverging method. We change the definition
of an object to introduce divergence.

Object o{run = e; o.divo; ret ,m1 = e1; ret , . . . ,mn = en; ret , divo = o.divo; ret}

It is easy to see that in case of the first execution in Example 5.2.5 the ob-
jects can start to execute the diverging methods, i.e. the last configuration is
no longer terminal and no terminal configuration is reachable from the last
configuration. In case of the second execution in Example 5.2.8 this is not the
case. The diverging methods are only additional pending calls in the set of
pending calls. The last configuration is still terminal and a deadlock. Using
only standard primitives, i.e. method definition and anonymous call, we hide
the diverging methods and simply assume it to be present instead of treating
it explicitly. We only make use of the diverging methods in case of normal
termination of a model.

In order to prove that our modelling language coincides with our Linda
representation with respect to termination we give as an intermediate step an
abstract semantics which introduces a finite representation for the potentially
unbounded number of run-time labels generated by the concrete semantics.
We show that the “concrete” and the “abstract” semantics coincide in case of
well–formed, balanced programs. We show how to translate a Creol model in
the abstract setting into a Linda configuration. Finally we give a bisimulation
between our Creol model in the abstract setting and its counterpart in Linda.

5.2.3 Finite Representation of Creol

Next we give a finite representation of the unbounded generation of run-time
labels. To obtain such a finite representation we restrict ourselves to balanced
programs. Note, however, that this will not render the state-space finite as the
set of messages is unbounded.

Definition 5.2.9 (Balanced) A program is balanced if all objects are bal-
anced. An object is balanced if all its methods are balanced. A method is bal-
anced if for each choice in all branches of the choice the same multiset of
futures is requested with respect to the set of futures that were defined before
the choice.

The unbounded production of run-time labels for futures is a major prob-
lem in the automated analysis of Creol program. To address this problem
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the combination of statically unique labels, balanced programs, and run–to–
completion semantics is crucial. The statically unique labels allow to distin-
guish the individual calls by their futures. Due to the balancing a future is
either consumed in any terminating execution of a method or by none. The
run–to–completion semantics prevents two invocations of the same method
to be interleaved. Together statically unique labels, balancing and run–to–
completion semantics ensure that the results of two invocations are not con-
fused. This allows for a precise analysis with respect to termination without
unique runtime labels. For technical convenience we extend the notion of bal-
ancing. In addition to the branches behaving similarly we require each future
to be consumed. This way we get an exact matching between named calls in
the concrete semantics and named calls in the abstract semantics.

Example 5.2.10 (Balancing) We give method definitions to illustrate the
notion on balancing.

m1 = 3f = o.m′; (3f?) + (3g = o′.m′′;3f?); ret (5.1)

m2 = 3f = o.m′; (3g = o′.m′′) + (3h = o′′.m′′′;3h?);3f?; ret (5.2)

m3 = 3f = o.m′; (3f?) + (3g = o′.m′′;3g?); ret (5.3)

All method definitions are well-formed. Method definition m1 is balanced. The
future f is the only future that is defined before the choice and it is consumed
in both branches of the choice. Method definition m2 is balanced. The future
f is the only future that is defined before the choice and it is not consumed in
any of the branches of the choice.

Method definition m3 is unbalanced. The future f is the only future that
is defined before the choice and it is consumed in the left branch of the choice
but not in the right branch. In case of an execution of m3 a future f can
be produced which is not consumed, i.e. if the right branch is chosen. This
future remains in the configuration and in case of a later invocation of m3 the
left branch can be chosen and the request for the result of f can be served by
the result of the first invocation. To exclude this kind of mismatch we restrict
ourselves to balanced programs.

Intuitively, being balanced implies that there are no dangling run-time
labels, i.e., labels not referenced by any future.

Lemma 5.2.11 (No dangling run-time labels) Assume a balanced pro-
gram. Then for every configuration reachable from the initial one we have
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the following mapping: For every run-time label κ not equal to ⊥ appearing in
a configuration Θ there exist a unique local state σ in Θ and a unique future
name 3f such that σ(f) = κ.

Proof: The proof proceeds by induction on the length of the computation.
Base case: The base case is trivial because the initial configuration does

not contain run-time labels different from ⊥.
Induction step: We treat the following main cases of method call, schedul-

ing, and return:
For a method call a fresh run-time label is created which is assigned only

once to the corresponding future name. The well-formedness of the program
definition guarantees that the future name has not been instantiated in the
local state of the active process. The uniqueness of the future names guarantees
that the future name has not been instantiated in the local state of a different
object.

For method scheduling the local state σ⊥ is assigned to the active process.
For a freshly scheduled process there are no pending invocations or futures.

For method return due to balancing there are neither pending invocation
nor pending futures labeled with a run-time label κ ∈ σ with σ being the local
state of the method returning.

Next we observe that in absence of rescheduling only the active process
has a local state and hence, future names are unambiguous. Together with
the above lemma this allows us to replace the run-time labels of the concrete
semantics by their corresponding future names.

The observation above allows us to abstract from the unique runtime labels
and to give an abstract semantics for Creol. In abuse of notation we use ǫ to
denote the absence of an active process in the abstract semantics.

Method scheduling Any pending process can be scheduled if the object is
idle.

Θ ∪ {(o, ǫ,Γ ∪ {3f : e})} → Θ ∪ {(o,3f : e,Γ)}

Method termination Upon method termination an abstract call label l
is added to the configuration. For a named call the future f is added to the
configuration for an anonymous call the designated label ⊥ is added to the
configuration which can not be consumed.

Θ ∪ {(o, l : ret ,Γ)} → Θ ∪ {(o, ǫ,Γ)} ∪ {l}
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Method call For an anonymous call only the abstract label is added to the
set of pending processes.

Θ∪{(o,3f :o′.m′;e,Γ)}∪{(o′,a′,Γ′)}→Θ∪{(o,3f :e,Γ)}∪{(o′,a′,Γ′∪{⊥:Do′(m
′)})}

Future For a future the abstract label is added to the set of pending pro-
cesses.

Θ ∪ {(o,3f ′ : f = o′.m′; e,Γ)} ∪ {(o′, a′,Γ′)}
→ Θ ∪ {(o,3f ′ : e,Γ)} ∪ {(o′, a′,Γ′ ∪ {3f : Do′(m

′)})}

Requesting result Requesting a result to a method call consumes an ab-
stract call label.

Θ ∪ {(o,3f ′ : f?; e,Γ)} ∪ {3f}
→ Θ ∪ {(o,3f ′ : e,Γ)}

Please note that by convention 3f is unique for the static structure of the
model.

Example 5.2.12 (Abstract Runtime Labels) We give an example to il-
lustrate the abstract semantics of Creol. Furthermore the example provides
some insight into the notion of balancing.

Object o1{run = o1.m1; ret ,m1 = 3f = o2.m2;3g = o2.m2;3g?; o1.m1; ret}.
Object o2{run = ret ,m2 = ret}.

The execution is a recursive execution of method m1 which does two method
calls to m2 at o2. The result of the call labeled with g is consumed. The result
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of the call labeled with f is not consumed.

θo = {(o1,⊥ : o1.m1; ret , ∅), (o2,⊥ : ret , ∅)}
→ {(o1,⊥ : o1.m1; ret , ∅), (o2, ǫ, ∅)}
→ {(o1,⊥ : ret , {⊥ : m1}), (o2, ǫ, ∅)}
→ {(o1, ǫ, {⊥ : m1}), (o2, ǫ, ∅)}
→ {(o1,⊥ : 3f = o2.m2;3g = o2.m2;3g?; o1.m1; ret , ∅), (o2, ǫ, ∅)}
→ {(o1,⊥ : 3g = o2.m2;3g?; o1.m1; ret , ∅), (o2, ǫ, {f : m2})}
→ {(o1,⊥ : 3g?; o1.m1; ret , ∅), (o2, ǫ, {f : m2, g : m2})}
→ {(o1,⊥ : 3g?; o1.m1; ret , ∅), (o2, f : ret , {g : m2})}
→ {(o1,⊥ : 3g?; o1.m1; ret , ∅), (o2, ǫ, {g : m2}), f}
→ {(o1,⊥ : 3g?; o1.m1; ret , ∅), (o2, g : ret , ∅), f}
→ {(o1,⊥ : 3g?; o1.m1; ret , ∅), (o2, ǫ, ∅), f, g}
→ {(o1,⊥ : o1.m1; ret , ∅), (o2, ǫ, ∅), f}
→ {(o1,⊥ : ret , {⊥ : m1}), (o2, ǫ, ∅), f}
→ {(o1, ǫ, {⊥ : m1}), (o2, ǫ, ∅), f}
→∗ . . .
→ {(o1, ǫ, {⊥ : m1}), (o2, ǫ, ∅), f, f}

According to the core definition of balanced models a result is either consumed
always, e.g. g, or never, e.g. f . This guarantees that results can never be mis-
taken but due to the constant generation of new futures f the mapping of con-
crete configurations to abstract ones gets complicated. This is why we enforce
balanced models to consume the futures they declare for technical convenience.

Example 5.2.13 (Running Example: Abstract Semantics) We revisit
the deadlocking execution of our running example from Example 5.2.8 to present
the deadlock in the abstract semantics.

θo = {(o1,⊥ : o1.m1; ret , ∅), (o2,⊥ : o2.m3; ret , ∅)}
→ {(o1,⊥ : ret , {⊥ : m1}), (o2,⊥ : o2.m3; ret , ∅)}
→ {(o1,⊥ : ret , {⊥ : m1}), (o2,⊥ : ret , {⊥ : m3})}
→ {(o1, ǫ, {⊥ : m1}), (o2, σ⊥,⊥ : ret){⊥ : m3}}
→ {(o1, ǫ, {⊥ : m1}), (o2, ǫ, {⊥ : m3})}
→ {(o1,⊥ : 3f = o2.m4;3f?; ret , ∅), (o2, ǫ, {⊥ : m3})}
→ {(o1,⊥ : 3f?; ret , ∅), (o2, ǫ, {⊥ : m3, f : m4})}
→ {(o1,⊥ : 3f?; ret , ∅), (o2,⊥ : 3g = o1.m2;3g?; ret , {f : m4})}
→ {(o1,⊥ : 3f?; ret , {g : m2}), (o2,⊥ : 3g?; ret , {f : m4})}

The execution leads to a terminal configuration in the abstract semantics which
contains blocked active processes thus it leads to deadlock.
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For the remainder of this chapter we assume programs to be balanced and
well-formed.

Theorem 5.2.14 (Termination equivalence (Creol)) An execution of a
balanced and well–formed Creol model terminates in the concrete semantics iff
an execution of the model in the abstract semantics terminates.

Proof: We prove the relation by a bisimulation. The local variable assignment
defines the mapping between a concrete configuration Θ and the corresponding
abstract configuration α(Θ). We define the global mapping σ to be the disjoint
union of the local mappings σo: σ =

⋃
o∈O σo

It is sufficient to show Θ → Θ′ iff α(Θ) → α(Θ′).

5.3 Linda

Linda is a coordination language. It provides a tuple space of messages and
primitives to add messages to the tuple space, remove messages from the tuple
space and test the tuple space for the existence of messages. Processes exchange
messages via the tuple space and only via the tuple space.

Busi et al. [27] introduce a process algebra containing the coordination
primitives of Linda. This process algebra is interpreted in two different se-
mantics treating the creation of messages differently. The so-called ordered
semantics features immediate message creation, i.e. upon execution of the cre-
ation primitive the message is available in the tuple space. This is not the case
for the so-called unordered semantics. In the unordered semantics a sendbox is
added to the tuple space which is responsible for creating the actual message
at a later point in time. The ordered semantics is Turing powerful whereas the
unordered one is not.

The differences in the expressiveness of the two semantics originate from
a coupling between the message provider and the message consumer that is
established via the conditional input primitives - in the ordered semantics
one process can derive knowledge about the state of another process by the
existence or absence of messages. In this chapter we do not use these primitives
to translate our Creol model to Linda. For our subset of the language the
ordered and unordered semantics coincide. The semantics of the subset we use
is not Turing powerful. We do not give a detailed proof of this property as it
would require to repeat significant parts of Busi et al. [27]. Furthermore it is
a straightforward variation of the proof of Busi et al. [27] that the unordered
semantics is not Turing powerful. We give intuition on how to vary the proof.
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Busi et al. [27] give a representation of the process algebra in terms of a
restricted form of contextual P/T nets which can be simulated by finite P/T
nets. For finite P/T nets termination is decidable. To detect deadlock Busi et
al. model deadlock as termination and check the P/T net representation for
termination. We follow their approach to detect deadlock in Creol models. We
translate our Creol model to Linda and employ the formalism of Busi et al. [27]
to detect deadlock.

5.3.1 Syntax

Let the messages be a denumerable set of message names, ranged over a, b, . . ..
The syntax of the language LA is defined by the following grammar:

P ::= 〈a〉 | C | P |P
C ::= 0 | η.C | C|C .

where:

η ::= in(a) | out(a) | !in(a)

Compared to L from Busi et al. [27], we omit conditional choices inp(a)?C C
and rdp(a)?C C, and the test for presence of messages rd(a). The difference
between the ordered and unordered semantics results from the conditional
choices in combination with the semantics of the output action. Without con-
ditional choice the difference between instantaneous and buffered output is no
longer observable.

5.3.2 Semantics

We give semantics for our process algebra following Busi et al. [27]. Though
we omitted the primitives for testing for messages and conditional branching
we do present these rules. In Section 5.6 we discuss the semantic consequences
of adding conditional branching and conditional scheduling to our subset of
Creol for this discussion it is helpful to have the rules for the corresponding
Linda primitives at hand. Figure 5.1 shows the reduction rules for Linda. Rule
(1) describes the input of a message from the point of view of the message.
Rule (2) describes the input of a message from the point of view of the receiver.
Rules (1), (2) and (11) describe the input of a message. Rule (3) describes the
testing for a message from the point of view of the tester. Rules (1), (3) and
(12) describe the testing for a message.

Rule (4) describes the replication operation. The trigger message for the
replication is consumed in the replication step. Rules (5) and (7) describe
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conditional branching. The guard is a message. The guard message is consumed
in case of its existence. Rules (6) and (8) describe conditional branching, too.
In this case the condition is a test for existence of a message. The guard
message is not consumed in this case.

Rules (9) and (10) describe the parallel execution. To have a sound treat-
ment of conditional branching we have to ensure that we only decide on non–
existence of a message (¬a) if the message does not exist in any of the parallel
processes.

We present the full set of rules as presented in [27]. Though we use only
rules (3) and (5)–(8). We do not need testing or conditional branching to
translate Creol models to Linda.

(1) 〈a〉
a

−→ 0 (2) in(a).P
a

−→ P

(3) rd(a).P
a

−→ P (4) !in(a).P
a

−→ P | !in(a).P

(5) inp(a)?.P Q
a

−→ P (6) rdp(a)?.P Q
a

−→ P

(7) inp(a)?.P Q
¬a
−→ Q (8) rdp(a)?.P Q

¬a
−→ Q

(9)
P

α
−→ P ′ α 6= ¬a

P | Q
α

−→ P ′ | Q
(10) P

¬a
−→ P ′ Q

a
6−→

P | Q
¬a
−→ P ′ | Q

(11)
P

a
−→ P ′ Q

a
−→ Q′

P | Q
τ

−→ P ′ | Q′
(12)

P
a

−→ P ′ Q
a

−→ Q′

P | Q
τ

−→ P ′ | Q

Figure 5.1: Linda operational semantics (symmetric rules omitted)

Ordered Message Output In Figure 5.2 we present the output–rule for the
ordered semantics. In case of the ordered semantics the message is immediatly
visible in the tuple space. The semantics is called ordered because output
messages occure in the tuple space in the order in which they were issued.

(13) out(a).P
τ

−→ 〈a〉 | P

Figure 5.2: Message sending – ordered semantics

Unordered Message Output In Figure 5.3 we present the output-rules
for the unordered semantics. In case of the unordered semantics a sendbox for
the message is added to the tuple space (see Rule (14)) and the message is
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not yet visible in the tuple space. Only after another internal step the sendbox
delivers the message to the tuple space (see Rule (15)). The semantics is called
unordered because output messages occur in the tuple space in an arbitrary
order.

(14) out(a).P
τ

−→ 〈〈a〉〉 | P

(15) 〈〈a〉〉
τ

−→ 〈a〉

Figure 5.3: Message sending – unordered semantics

Example 5.3.1 (Linda) Consider the following program
P = out(a).inp(a)?〈b〉.0 〈c〉.0. In case of the instantaneous output only the
first branch 〈b〉.0 is reachable. In case of the buffered output both branches are
reachable. The immediate visiblity of the output is crucial for the construction
of the Random Access Machine in the proof of Lo being Turing-powerful.

5.3.3 Expressivness

For a Linda dialect without testing (rd(a)) and without conditional branching
(s?P Q) the difference between the ordered and the unordered semantics is no
longer observable.

Lemma 5.3.2 For a Linda dialect without testing and without conditional
branching the ordered and the unordered semantics are both not Turing pow-
erful.

The proof for the ordered semantics being Turing powerful in [27] depends on
conditional branching. So our first observation is that this proof is no longer
valid if we remove testing and conditional branching. For the proof of the
unordered semantics a P/T net is constructed which coincides with the Linda
program with respect to termination. Then termination for the P/T net is
shown to be decideable. The construction of a P/T net without testing and
conditional branching is straightforward. Testing and conditional branching
introduce an observable difference between initial message (which are always
there) and “normal” messages which are created at an arbitrary point after the
output operation (in the unordered semantics). Furthermore due to the test
for zero (conditional branching) we need to count the number of messages (at
least “zero” and “more than zero”). Following the proofs of [27] both semantics
can be shown to be not Turing powerful.
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5.4 Translation of Abstract Creol Configurations to

Linda Configurations

Instead of translating the Creol model to a Linda program we translate Creol
configurations with the Creol model being the initial configuration to Linda
configurations. Translating the configurations facilitates the proof of the sim-
ulation relation between the Creol model and the Linda program. In addition
to the translation of the model code we have to provide a translation for the
objects, the processes in execution, and the futures. We translate objects as
an object lock and a collection of processes sharing this lock. We translate
processes in execution by translating the code to be executed. We translate
futures to messages.

The crucial step in the modeling of the communication is the abstraction
from the runtime labels. To use the results of Busi et al. [27] and to get decid-
ability of termination we need to represent the Linda model by a finite P/T
net ,i.e. we are restricted to a finite message alphabet. We give an abstraction
that fulfills this requirement. Instead of creating a unique runtime label for
each method invocation we identify the method invocation by statically unique
labels, i.e. labels that are unique on the level of the model code. For balanced,
well-formed programs this identification is sufficient. Due to the balancing the
lifespan of a future is restricted to one method invocation only which allows
to preserve decidability of termination. For details we refer to Section 5.5.

To translate an abstract Creol configuration to a Linda configuration we
have to translate object definitions, objects, and futures into Linda processes
and messages:

Translation of artifacts

Abstract Creol Linda

object definitions replication
object states processes and messages
futures messages

We present a translation for each of these artifacts. The translation of
the abstract Creol configuration to Linda is given by the translation of the
individual elements of the Creol configuration.

We develop the translation of the method definitions by starting with the
translation for a method body which covers the communication steps and
the modeling of non–deterministic choice by parallelism. At this point we do
not cover the production of return values or scheduling. The translation of
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method bodies is integrated into the translation of the method definitions of
a single object by adding the production of return values and the scheduling
of methods. The translation of the method definitions for the Creol model is
given by the parallel composition of the translations of the method definitions
of the individual objects.

Active processes are translated using the translation function for method
bodies. Pending processes are translated to messages in Linda. Futures are
translated to messages. The translation of an abstract Creol configuration is
given by the parallel composition of the translation of the individual elements
of the configuration.

Pruning Linda does not provide a primitive for internal steps. To facilitate
the translation from Creol to Linda we “prune” the Creol configuration from
internal steps as far as possible. Pruning of the internal steps is also in line
with our intention to model the network communication only. The pruning
function ⇓ takes a Creol configuration and removes as many internal steps as
possible. In the end internal steps can only occur in a choice and even there
at most in one branch.

⇓ (ret) ::= ret
⇓ (τ) ::= τ

⇓ (o.m) ::= o.m
⇓ (f = o.m) ::= f = o.m

⇓ (f?) ::= f?
⇓ (e1; e2) ::= ↓ (⇓ (e1);⇓ (e2))

⇓ (e1 + e2) ::= ↓ (⇓ (e1)+ ⇓ (e2))
↓ (e1; e2) ::= e2 if e1 = τ

::= e1; e2 otherwise
↓ (e1 + e2) ::= τ if e1 = e2 = τ

::= e1 + e2 otherwise

Since the choice operator is non–deterministic, the pruning of the Creol con-
figuration does not change the behavior of the program with respect to the
network communication. This follows directly from the definition of the prun-
ing. From now on we assume the Creol configurations to be pruned.

5.4.1 Translation of a Single Method

First we give a translation for a method in isolation not taking scheduling
or the production of return values into account. These are modeled in the
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following Section 5.4.2. We introduce messages to deal with anonymous, asyn-
chronous calls (⊥ : o.m) denoting the callee o and the method name m. To
deal with futures we introduce two messages (f : o.m) and (f). The message
(f : o′.m) denotes a call to method m of object o assigned to the future name
f . The message (f) denotes the result of a call assigned to the future name f .

Though future names are statically unique modeling method calls and
returns this way is ambiguous. Method calls and returns issued by different
method invocations might be mixed up. This problem is avoided by restricting
to balanced programs only.

Non–deterministic choices are modeled by two processes competing for
a designated choice message (o,+) which is statically unique. The processes
model the different branches of the choice. At termination the processes issue
a termination message (o,+) allowing the main process to continue. At this
point of time we do not care about the production of return values or the
scheduling of method invocations.

We take the following two properties into account. Due to the definition
of the syntax each method definition ends with a return statement. Due to
the pruning (silent) internal steps can only occur in (at most one branch of)
a choice e1 + e2. We assume that the method we are modeling is a method of
object o.

Internal Steps Even after pruning, in case of a choice one of the branches
can consist of an internal step only. This internal step is translated into the
empty process 0.

L(τ) ::= 0

Method termination The end of the method is denoted by the return
statement and is (for the time being) translated into the empty process 0.

L(ret) ::= 0

Method call An anonymous method call to method m in object o is trans-
lated to the generation of a message (⊥ : o,m), where o is the callee and m
the method name.

L(o.m) ::= out((⊥ : o.m))

Future A method call to method m in object o with label f is translated
to the generation of a message (f : o.m). Here we abstract from the actual
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future.
L(f = o.m) ::= out((f : o.m))

Requesting result The (blocking) request of an result to a method call
with label f is translated to the consumption of a message (f).

L(f?) ::= in((f))

Sequential composition A sequence of Creol statements is translated into
a sequence of Linda statements. Please note that this can only occur as an
intermediate step (since each method definition is of the form e; ret) and leads
to a sequence of communication and choice steps. We lift the definition of
the prefix operator “.” in a straight-forward manner from single statements to
sequences of statements.

L(e1; e2) ::= L(e1).L(e2)

Choice We model internal (non–deterministic) choice in Creol by adding
(generators for) processes for each branch of the choice in parallel to the
method body. Upon arrival at the choice a trigger message for the choice
is generated. Both branches compete for this trigger message – modeling the
choice.

L(e1 + e2) ::= out((o,+)).in((o,+))|E1|E2

where Ex ::=!in((o,+)).L(ex).out((o,+)).0.
Here (o,+) denotes a statically unique label for the choice + in object o

denoting the arrival at the choice. The label (o,+) denotes the completion of
the chosen branch.

5.4.2 Translation of a Single Object

The call with label f of a methodm on object o denoted by a message (f : o,m)
is supposed to produce a future (f). To model the relation between a caller and
a future we model each named invocation. The future to be produced is decided
at the time of method reception. For each label we add a generator process
that creates an instance of a process to execute an invocation of the method.
Furthermore we create a generator for processes to deal with anonymous calls.

In a Creol object at most one active process is allowed this is modeled by
an object token implemented as a message (o). Only the process that holds
the token (modeled by removing the object token from the tuple space) is
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allowed to execute. At termination the process frees the token again (modeled
by adding the object token to the tuple space). The system contains either
exactly one token or active process per object.

Initially the object contains the process for the run–method. The initial
activity holds the object token. This prevents other methods from being sched-
uled before the initial activity has terminated. Upon termination the run–
method creates the object token for the first time and adds it to the tuple
space.

Named invocation We explicitly model the communications for each named
invocation f to assign the proper return value.

L(m) ::= Πf !in((f : o.m)).L(f, e)|!in((⊥ : o.m)).L(⊥, e)

where m = e is the method definition in o. Here Πp∈P p denotes the parallel
composition of the processes in P .

We extend the definition of L to reflect the two modes (named and anony-
mous) of asynchronous calls in our translation function.

L(⊥, ret) ::= 0
L(f, ret) ::= out((f)).0

L(γ, e1 + e2) ::= out((o,+)).in((o,+))|E1|E2

where Ex ::= in((o,+)).L(γ, ex).out((o,+)).0
L(γ, e1; e2) ::= L(γ, e1).L(γ, e2)
L(γ, o′.m) ::= L(o′.m)

L(γ, f = o′.m) ::= L(f = o′.m)
L(γ, f?) ::= L(f?)

We only produce a result in case of a named call.

Scheduling At each point in time at most one process can be active in each
object. We model this by an access token o for object o. Upon reception of a
call to m a new process is spawn to execute the call. The new process first
waits for the object token. Reception of the token models scheduling of the
method. At the end of its execution the process frees the token.

L(o) ::= Πm∈o L(m)

where L(m) is an extension of the above mentioned translation rule L(m)
taking the object lock into account:

L(m) ::= Πf !in((f : o.m)).in(o).L(f, e) | !in((⊥ : o.m)).in(o).L(⊥, e)
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Furthermore the rules for method termination are extended to free the lock
upon method termination.

L(⊥, ret) ::= out((o)).0
L(f, ret) ::= out((f)).out((o)).0

Active Behavior To model the active behavior we model the run–method
as a process. Being the initial activity the run–method is modeled as an anony-
mous call.

LI(o) ::= L(⊥,Do(run))

Please note that the initial activity starts directly with the execution and does
not have to grab the object token. In fact the object token is introduced by
the run-method upon termination.

5.4.3 Translation of a Creol model

A Creol model is the parallel composition of the individual objects and their
initial activities.

L(ΘI) ::= Πo∈O (L(o) | LI(o))

5.4.4 Translation of a Creol configuration

A Creol configuration contains the model definitions, the object locks, the
active processes, pending calls and futures. In case an object does not contain
an active process the lock message is added to the tuple space. For each pending
call a corresponding call message is added to the tuple space. The remaining
program code of the active process is translated. Futures are translated to
corresponding messages. We focus on the individual parts of the translation
of an object.

Pending calls For each pending call to the object the corresponding call
message is added to the tuple space.

L((o, ,Γ ∪ {f : m})) ::= L((o, ,Γ)) | (f : o.m)

Object lock and active process In case the object does not contain an
active process the object lock message is added to the tuple space. Otherwise
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the active process is translated by translation of the remaining code to be
executed taking the corresponding result to be produced into account.

L((o, ǫ, ∅)) ::= (o)
L((o, f : e, ∅)) ::= L(f, e)

Future A future is translated to the corresponding future message.

L(f) ::= (f)

A Creol configuration is the parallel composition of the object definitions, the
objects, the processes and the futures.

L(Θ) ::= Πo∈O L(o) | Πo∈O L((o, , )) | Πf∈FL(f)

Here F denotes the multi-set of all futures.

Example 5.4.1 (Running Example: Translation to Linda) We revisit our
running example to illustrate the translation of Creol models to Linda. We
translate the model by translation of the objects and the initial methods.

L(θo) = L(o1) | L((o1,⊥ : o1.m1; ret , ∅)) | L(o2) | L((o2,⊥ : o2.m3; ret , ∅))
= L(o1) | L(o2) | L(⊥ : o1.m1; ret) | L(⊥, o2.m3; ret)
= L(o1) | L(o2) | L(⊥ : o1.m1).L(⊥ : ret) | L(⊥, o2.m3).L(⊥, ret)
= L(o1) | L(o2) | L(o1.m1).0 | L(o2.m3).0
= L(o1) | L(o2) | out((⊥ : o1.m1)).out((o1)).0

| out((⊥ : o2.m3)).out((o2)).0

The translation of an object is the translation of the method definitions. The
translation is triggered by the futures of the calls to the method. Please note
that due to the unique names of the futures there is a distinct relation between
the futures and the method definitions.

L(o1) = L(m1) | L(m2)
= !in((⊥ : o1.m1)).in((o1)).L(⊥,Do1(m1))

| !in((g : o1.m2)).in((o1)).L(g,Do1 (m2))
= !in((⊥ : o1.m1)).in((o1)).L(⊥,3f = o2.m4;3f?; ret)

| !in((g : o1.m2)).in((o1)).L(g, ret )
= !in((⊥ : o1.m1)).in((o1)).L(3f = o2.m4).L(3f?).L(⊥, ret)

| !in((g : o1.m2)).in((o1)).out((g)).out((o1)).0
= !in((⊥ : o1.m1)).in((o1)).out((f : o2.m4)).in((f)).out((o1)).0

| !in((g : o1.m2)).in((o1)).out((g)).out((o1)).0
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The translation of object o2 is similar.

L(o2) = !in((⊥ : o2.m3)).in((o2)).out((g : o1.m2)).in((g)).out((o2)).0
| !in((f : o2.m4)).in((o2)).out((f)).out((o2)).0

Technical note: In general the process !in((⊥ : o1.m2)).in((o1)).L(⊥, e) resp.
!in((⊥ : o2.m4)).in((o2)).L(⊥, e) would be part of the translation, too. Since
there are no anonymous calls to m2 at o1 resp. m4 at o2 we omit the translation
of the processes for brevity.

Now we present an execution of the model in Linda. We omit terminated
Linda processes, i.e. processes 0.

L(o1) | out((⊥ : o1.m1)).out((o1)).0
| L(o2) | out((⊥ : o2.m3)).out((o2)).out((o2)).0

= L(o1) | (⊥ : o1.m1) | out((o1)).0
| L(o2) | out((⊥ : o2.m3)).out((o2)).out((o2)).0

= L(o1) | out((o1)).0 | in((o1)).out((f : o2.m4)).in((f)).out((o1)).0
| L(o2) | out((⊥ : o2.m3)).out((o2)).0

= L(o1) | (o1) | in((o1)).out((f : o2.m4)).in((f)).out((o1)).0
| L(o2) | out((⊥ : o2.m3)).out((o2)).0

= L(o1) | out((f : o2.m4)).in((f)).out((o1)).0
| L(o2) | out((⊥ : o2.m3)).out((o2)).0

= L(o1) | in((f)).out((o1)).0
| L(o2) | (f : o2.m4) | out((⊥ : o2.m3)).out((o2)).0

= L(o1) | in((f)).out((o1)).0
| L(o2) | (f : o2.m4) | (⊥ : o2.m3) | out((o2)).0

= L(o1) | in((f)).out((o1)).0
| L(o2) | (f : o2.m4) | (⊥ : o2.m3) | (o2)

= L(o1) | in((f)).out((o1)).0
| L(o2) | (f : o2.m4) | (o2) | in((o2)).out((g : o1.m2)).in((g)).out((o2)).0

= L(o1) | in((f)).out((o1)).0
| L(o2) | (f : o2.m4) | out((g : o1.m2)).in((g)).out((o2)).0

= L(o1) | (g : o1.m2) | in((f)).out((o1)).0
| L(o2) | (f : o2.m4) | in((g)).out((o2)).0

= L(o1) | in((o1)).out((g)).out((o1)).0 | in((f)).out((o1)).0
| L(o2) | in((o2)).out((f)).out((o2)).0 | in((g)).out((o2)).0

Here the execution is stuck. Both L(o1) and L(o2) only consume messages.
All remaining processes wait for input without any messages present in the
configuration. Please note that the terminal abstract Creol configuration of Ex-
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ample 5.2.13 translates to the second to last Linda configuration. We elaborate
on this relation in the next section.

5.5 Termination

We prove a correspondence between the abstract semantics of pre-processed
Creol models and their Linda counterparts. In order to formalise the correspon-
dence between the transitions of Creol models and their Linda counterparts we
introduce a reduction semantics for Linda translations of Creol models. The
reduction semantics is defined with respect to congruence rules which capture
implementation details of the translation of Creol models to Linda, e.g. lock
message for scheduling and control messages to resolve choice.

As explained in Section 5.4 we abstract from the unique runtime labels
of Creol in Linda. With the intermediate semantics we move this abstraction
to the Creol level making the abstraction more comprehensible to the reader.
Instead of storing unique runtime labels we use statically unique call labels.
In case of a request of a future f the request can only be met if a call for
f is pending and a future token is available in the configuration. In case the
request can be met both the future and the syntactic label are removed. Due
to the run–to–completion semantics and the balancing of the programs the
lifespan of a future is restricted to one method invocation. This makes explicit
runtime labels superfluous.

We introduced auxiliary constructs, e.g. code replication, object lock mes-
sages and choice messages, to translate certain aspects of the Creol execution
like method scheduling, choice and method in-lining. Due to these auxiliary
constructs the execution of a Linda program can contain intermediate steps
and states that can not be directly mapped to the Creol configuration to ad-
dress these differences we define congruence rules on Linda configurations. We
present these rules in Figure 5.4.

To simulate the execution of a Creol configuration in Linda, we need to give
for each step in Creol a corresponding step in Linda. Some of the steps, e.g.
method scheduling or choice, need preparation steps first which are provided by
the congruence rules. Figure 5.5 summarizes the simulation steps by providing
for each Creol step the corresponding Linda counterpart.

The reduction semantics for translated Creol configurations is given by
rules of the form:

P1 ≡ P ′
1 P2 ≡ P ′

2 P ′
1 −→ P ′

2

P1 −→ P2

where the transitions are restricted to the simulation steps of Figure 5.5.
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Congruence Rules

!in((f : o.m)).P | (f : o.m) ≡ !in((f : o.m)).P | P method inlining
out((o,+)).P ≡ P | (o,+) trigger choice
out((o,+)).P ≡ P | (o,+) signal end of choice

in((o,+)).P | (o,+) ≡ P continue after choice
out((o)).P ≡ P | (o) release object lock

Figure 5.4: Congruence rules

Simulation Steps

Method scheduling Input lock message in(o).P | (o)−→P

Method termination Output future message out((f)).P−→P | (f)

Method call Output call message out((⊥:o.m)).P−→P | (⊥:o.m)

Future Output call message out((f :o.m)).P−→P | (f :o.m)

Requesting result Input future message in((f)).P | (f)−→P

Choice Choice !in((o,+)).P1 | !in((o,+)).P2 | (o,+)

−→!in((o,+)).P1 | !in((o,+)).P2 | Px

Figure 5.5: Simulation steps

Given the above reduction semantics for translated Creol configurations
we have the following correspondence between Creol configurations and their
Linda counterparts:

Theorem 5.5.1 (Bisimulation (Creol vs. Linda)) For any two valid ab-
stract Creol configurations Θ and Θ′, Θ −→ Θ′ iff L(Θ) −→ L(Θ′).

Proof: The proof follows by a straightforward case distinction on the Creol
steps and the corresponding reduction steps in Linda depicted in the tables
above.

Corollary 5.5.2 (Termination equivalence (Creol vs. Linda)) A Creol
program terminates iff the corresponding Linda model terminates.

Proof: It suffices to observe that termination of a translated Creol configu-
ration is preserved under the reduction steps.
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Deadlock Detection To summarize the process of deadlock detection for
Creol models, we have the following steps:

1. As explained in Section 5.2 we add divergence to distinguish normal
termination and global deadlock.

2. We translate the model to a Linda program as explained in Section 5.4.

3. We apply the technique of Busi et al. [27] to check the Linda program
for global deadlocks.

In case the Linda program is free of deadlocks our Creol model is free of
deadlocks.

5.6 Conclusion

We have presented an Actor-like subset of Creol and we have given two seman-
tics for this subset: a concrete semantics which resembles the semantics of full
Creol including the generation of unique run-time labels and a semantics which
abstracts from these labels and yields a finite representation of Creol config-
urations in P/T nets. We have proven that executions in the two semantics
coincide with respect to termination.

To obtain a representation of a Creol model in a P/T net we presented a
translation of Creol configurations to a process algebra based on the coordina-
tion language Linda. For this process algebra there are two different semantics
which differ in the expressiveness of the language. We argued that for the
subset of the process algebra we are using for our translation these semantics
coincide with respect to expressiveness and that both are not Turing powerful.
We have proven that executions of the translation of the Creol model in the
process algebra and executions of the model itself in the abstract semantics
coincide with respect to termination.

The preservation of the termination property allows us to apply the formal-
ism of Busi et al. [27] to reduce deadlock detection to termination detection
for finite P/T nets.

Compared to our previous work on termination detection for concurrent
objects communicating synchronously [43] the asynchronous setting based on
futures requires a different approach. In [47] various decidability results are
introduced for different classes of infinite state systems communicating via
FIFO queues. The specific distinguishing feature of the infinite state systems
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considered in this paper concerns the integration of asynchronous communi-
cation in Actor-like languages with futures which gives rise to the unbounded
generation of fresh names. In [54] a deadlock analysis is presented of of a calcu-
lus with object groups based on abstract descriptions of methods behaviours.
It however does not provide a full treatment of futures.

Future work

The main challenge for future work is the investigation into the decidability of
asynchronous communication based on futures in the context of cooperative
multi-tasking, e.g., the processor release statements of the full Creol language.
We give some directions how to extend our subset of Creol and the semantic
consequences of these extensions.

Conditional Branching Besides the blocking request for a result of a call
Creol features primitives to poll a future, i.e. not requesting the result itself
but just the information whether or not a result has already been calculated.
To model such a command we can use the rdp(a)?.P Q primitive of Linda.
In this case the difference between the ordered and the unordered semantics
becomes visible again and we have to opt for the unordered semantics to keep
termination decidable.

Conditional Scheduling A condition on the existence of futures can be
used to trigger a processor release and rescheduling. The await–statement
denotes such a conditional scheduling point. In case all futures, given in a
guard expression, are available the process continues execution otherwise the
process suspends itself to wait for the missing futures to be calculated. In
the meantime another process is scheduled and executed. We can model the
conditional scheduling on one future by the rdp(a)?.P Q primitive of Linda.
Conditional scheduling on a number of futures can be modeled by a sequence
of the conditional branching primitives in Linda. Due to the abstraction of
the run-time labels we need to check for the existence of all requested futures
every time we check.

In this case we lose precision with respect to the abstraction. Now futures
of different method invocations can be mixed up. In this case the problem is
inherent to the conditional scheduling and cannot be avoided.

Technical Improvement The size of the resulting P/T net can be reduced
if Creol concepts like co-interfaces are taken into account for the translation.
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Creol objects are typed by interfaces. The co-interfaces restrict the set of
possible callers of a method by requiring callers to implement the co-interfaces
of the method. Switching to interfaces and co-interfaces it suffices to model
caller–method–pairs for valid combinations (with respect to the co-interfaces).

Object Creation We can model finite object creation by object activation,
i.e. an objects exists in the initial configuration but is deactivate until an
activation message is received. Object activation can be realized by activation
messages similar to the scheduling tokens. In this case the activation token
blocks the process for the initial run-method until the object creator has send
the activation token.

Direct Translation to P/T net Using only parts of the process algebra
Busi et al. [27] introduced the direct translation of abstract Creol to P/T nets
might yield a simpler translation than using an intermediate translation to
Linda.



Appendix A

Proofs

A.1 Wellformedness of generated sequences

In this section we present an extensive proof of Theorem 3.4.2.

Proof: We prove this by induction on the length of the derivation. We treat
the following cases:

Let Ic = ∅ and tc ∈ L in the following derivation

(I, L) : G ∪ {St} ⇒ tmr (I ∪ {tc}, L) : G ∪ {St} ⇒∗ tmr W

(where m is a synchronised method of c). By the induction hypothesis we have
that

• W is synchronised and

• I ∪ {tc} ∪ Lock(W ) = L.

It follows that tmr W is synchronised and that I ∪ Lock(tmr W ) = I ∪ {tc} ∪
Lock(W ) = L.

Let Ic = Lc = ∅ in the following derivation

(I, L) : G ∪ {Bt} ⇒ tmr (I ∪ {tc}, L ∪ {tc}) : G ∪ {rt} ⇒∗ tmr W

(where m is a synchronised method of c). By the induction hypothesis we have
that

• W is synchronised and

• I ∪ {tc} ∪ Lock(W ) = L ∪ {tc}.
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It follows that tmr W is synchronised and that I∪Lock(tmr W ) = I∪Lock(W ) =
L (note that Ic = Lc = ∅ and in tmr W all calls by t have a matching return,
so Lock(tmr W ) = Lock(W )).

Next we treat the case

(I, L) : G ∪ {rt} ⇒ (I, L) : G ∪ {Bt} tr ⇒
∗ Wtr

By the induction hypothesis we have that

• W is synchronised and

• I ∪ Lock(W ) = L.

So it suffices to observe that, since there exist no pending calls of t in W , we
have Lock(Wtr) = Lock(W ).

As a final case we treat the derivation:

(I, L) : G1 ◦G2 ⇒ (I, L′) : G1 (L
′, L) : G2 ⇒

∗ W

This derivation is decomposed to (I, L′) : G1 ⇒∗ W1 and (L′, L) : G2 ⇒∗ W2,
where W =W1W2. By the induction hypothesis we have that

• W1 and W2 are synchronised and

• I ∪ Lock(W1) = L′ and L′ ∪ Lock(W2) = L.

We first argue that W =W1W2 is synchronised. Let tmr be a synchronised call
in W , with m a synchronised method of c. If tmr appears in W1 then there
exists no preceding pending call to a synchronised method of c by another
thread because W1 is synchronised. On the other hand, if tmr appears in W2

then there exists no preceding pending call (to a synchronised method of c) by
another thread in W2 because W2 is synchronised. There also does not exist
such a call by a thread t′ different from t in W1 because I ∪ Lock(W1) = L′

implies t′c ∈ L′, which in turn rules out the call tmr becauseW2 is synchronised.

Furthermore, if tc ∈ I then there exists no call in W to a synchronised
method of c by another thread because both W1 and W2 are synchronised.

Finally, I ∪ Lock(W ) = I ∪ Lock(W1) ∪ Lock(W2) = L′ ∪ Lock(W2) = L.
Note that indeed Lock(W ) = Lock(W1) ∪ Lock(W2) because if W2 contains
a matching return tr for a pending call tmr in W1 then rt ∈ G2. But this is
ruled out by (I, L) : G1 ◦ G2 ⇒ (I, L′) : G1 (L′, L) : G2 because rt cannot be
generated by a split.
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A.2 Existence of derivation

In this section we present an extensive proof of Lemma 3.5.1.

Proof: We prove the lemma by induction on the length of the word W .

Base Case W = ǫ is straightforward by application of rule (I, I) : G ::= ǫ

Induction Step LetW = w1, . . . , wn, wn+1 be the well-formed synchronised
sequence. Since wn+1 can be either a call or a return there are two cases to
deal with. According to the induction hypothesis there exists a well-formed se-
quence w′

1, . . . , w
′
n such that G0 ⇒

∗ w′
1, . . . , w

′
n, and w

′
1, . . . , w

′
n ≈ w1, . . . , wn.

First we consider the case that wn+1 is a method call tmr . We prefix
the derivation G0 ⇒∗ w′

1, . . . , w
′
n by a composition step: G0 ⇒ G0 G0 ⇒∗

w′
1, . . . , w

′
nG0, and apply the rules G0 ::= tmr G0 and G0 ::= ǫ to obtain

G0 ⇒∗ w′
1, . . . , w

′
n, wn+1.

The proof of the equivalence w′
1, . . . , w

′
n, wn+1 ≈ w1, . . . , wn, wn+1 is straight-

forward. Appending the same call to both sequences w′
1, . . . , w

′
n and w1, . . . , wn

preserves the equality of projection and the equality of the lock sets.
Next we consider the case that wn+1 is a return tr. Let w

′
i = tmr be the

matching call in w′
1, . . . , w

′
n. For this call we can decompose the derivation

into G0 ⇒∗ . . . G ∪ {St} . . . ⇒ . . . tmr G ∪ {St} . . . ⇒∗ w′
1, . . . , w

′
n. In this

derivation we replace the step . . . G ∪ {St} . . . ⇒ . . . tmr G ∪ {St} . . . by the
following sequence of steps

. . . G∪{St} . . . ⇒ . . . G∪{Bt} . . .⇒ . . . tmr G∪{rt} . . . ⇒ . . . tmr G∪{Bt} tr . . .

Note that in the derivation . . . tmr G∪{St} . . . ⇒∗ w′
1, . . . , w

′
n the non-terminal

St can be replaced by Bt since after the call tmr the thread t only generates a
balanced sequence of calls and returns. Therefore we obtain a derivation

G0 ⇒∗ w′
1, . . . , w

′
i, w

′
i+1, . . . , w

′
k, tr, w

′
k+1, . . . , w

′
n

where G ∪ {Bt} ⇒∗ w′
i+1 . . . w

′
k. Due to the nested nature of the method calls

(and the grammar rules) tr is added to w′
1, . . . , w

′
n in such a way that it appears

at the end of the projection of w′
1, . . . , w

′
i, w

′
i+1, . . . , w

′
k, tr, w

′
k+1, . . . , w

′
n to t

like it does for the projection of w′
1, . . . , w

′
n, tr to t preserving the equality of the

projections. Since the same return is added to both sequences the equality of
the lock sets is preserved. This establishes w′

1, . . . , w
′
i, w

′
i+1, . . . , w

′
k, tr, w

′
k+1, . . . , w

′
n ≈

w′
1, . . . , w

′
n, tr.



134 APPENDIX A. PROOFS

A.3 Soundness of lock handling

In this section we present an extensive proof of Lemma Lemma 3.5.2.

Proof: Instead of proving the lemma directly we prove a more general state-
ment: If G0 ⇒∗ W with W synchronised with respect to I, then (I, I ∪
Lock(W )) : G0 ⇒∗ W .

We prove the lemma by induction on the length of the derivation G0 ⇒
∗ W .

Base Case G ::= ǫ is straightforward by application of rule (I, I) : G ::= ǫ.

Induction Step We first treat the following cases of synchronised method
calls and returns:

Pending Synchronised Call Let m be a synchronised method in class
c and G ∪ {St} ⇒ tmr G ∪ {St} ⇒∗ tmr W with tmr W is synchronised with
respect to I. Due to tmr being a pending call we derive that W is synchronised
with respect to I ∪ {tc}. By the induction hypothesis we get (I ∪ {tc}, I ∪
{tc} ∪ Lock(W )) : G ∪ {St} ⇒∗ W . By application of rule (I, I ∪ Lock(W )) :
G ∪ {St} ::= (I, I ∪ Lock(W )) : G ∪ {St} in case tc ∈ Ic, resp. application of
rule (I, I ∪ Lock(W )) : G ∪ {St} ::= (I ∪ {tc}, I ∪ Lock(W )) : G ∪ {St} with
tc ∈ Lock(W ) otherwise, we get a derivation (I, I ∪ Lock(W )) : G ∪ {St} ⇒∗

tmr W .

Matching Synchronised Call For the next case let m be a synchronised
method in class c and G∪{Bt} ⇒ tmr G∪{rt} ⇒∗ tmr W with tmr W is synchro-
nised with respect to I. Due to tmr W being synchronised with respect to I we
concludeW is synchronised with respect to I∪{tc}. By the induction hypothe-
sis we get (I∪{tc}, I∪{tc}∪Lock(W )) : G∪{rt} ⇒∗ W . By application of rule
(I, I∪Lock(W )) : G∪{Bt} ::= (I, I∪Lock(W )) : G∪{rt} in case tc ∈ Ic, resp.
application of rule (I, I∪Lock(W )) : G∪{Bt} ::= (I∪{tc}, I∪{tc}∪Lock(W )) :
G∪ {rt} otherwise, we get a derivation (I, I ∪ Lock(W )) : G∪ {Bt} ⇒∗ tmr W .

Return of a Synchronised Method For the next case let tr be a return to
a call of a synchronised method in class c and G∪{rt} ⇒ G∪{Bt} tr ⇒

∗ Wtr
with Wtr is synchronised with respect to I. Due to tmr W being synchronised
with respect to I we conclude W is synchronised with respect to I. By the
induction hypothesis we get (I, I ∪ Lock(W )) : G ∪ {Bt} ⇒∗ W . Since W is
derived from G ∪ {Bt} it does not contain a pending call of t. It follows that
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Lock(Wtr) = Lock(W ). We conclude that (I, I ∪ Lock(Wtr)) : G ∪ {rt} ⇒
(I, I ∪ Lock(Wtr)) : G ∪ {Bt} tr ⇒

∗ Wtr
We treat composition as the final case

Composition G1 ◦G2 ⇒ G1G2 ⇒∗ W with W is synchronised with respect
to I. It follows that Gi ⇒

∗ Wi (i = 1, 2), withW =W1W2, W1 is synchronised
with respect to I andW2 is synchronised with respect to I∪Lock(W1). By the
induction hypothesis we get derivations (I, I∪Lock(W1)) : G1 ⇒

∗ W1 and (I∪
Lock(W1), I∪Lock(W1)∪Lock(W2)) : G2 ⇒

∗ W2 We have that I∪Lock(W1)∪
Lock(W2) = I ∪Lock(W ) as argued in the proof of theorem 1. So we conclude
that (I, I ∪ Lock(W )) : G1 ◦G2 ⇒

∗ W
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Abstract

Formal methods provide the foundation to reason about systems and their
characteristics, e.g. safety or security properties. To be able to reason about
systems and to provide valid statements about the system the formal methods
must provide means to address key features of the language, e.g. concurrency
or object creation. These features introduce complexity to systems and the
formal methods to reason about these systems.

Both the development of hardware, e.g. multicore processors or the increase
of available memory, and the development of software, e.g. networked and inte-
grated systems and the introduction of high-level programming languages like
Java and C♯, lead to an increased usage of the aforementioned features. New
concepts to address problems like concurrency and delegation, e.g. futures and
promises, are developed and promoted. Formal methods need to include these
features to be capable of reasoning about state of the art software systems.

In this thesis, we show how to address the complexity introduced by mod-
ern software systems, e.g. structural complexity introduced by object creation
and behavioural complexity introduced by multi-threading. We present for-
malisms to check interesting properties, e.g. deadlock freedom or termination,
of such systems. Furthermore we show how to extend a calculus to reason
about systems based on active objects with futures and promises.

In the first part of the thesis we address complexity introduced by object
creation. Object creation is an abstraction from the underlying representation
of objects used for example in object-oriented programming languages like Java
or C♯. For practical purposes it is important to be able to specify and verify
properties of objects at the abstraction level of the programming language.
We give a representation of a weakest precondition calculus for abstract object
creation in dynamic logic which allows to both specify and verify properties of
objects at the abstraction level of the programming language. We generalize
this approach to allow for symbolic execution to integrate our approach to the
setting of the KeY theorem prover.

137



138 ABSTRACT

In the second part of this thesis we address complexity introduced by
multi-threading. Multi-threaded programs show complex behaviour due to the
interleaving of activities of the individual processes and the sharing of state
among these processes. One example of such complex behaviour is the so-called
deadlock. Deadlock describes a situation in which concurrent processes share
resources. Though shared among the processes a single access to a resource is
exclusive. Depending on the order the processes are interleaved the deadlock
may or may not arise. The number of interleavings of the processes is in general
not bound which makes analysis hard. We present a formalism to reason about
deadlock in multi-threaded systems. The formalism focuses on the control flow
of such systems and abstracts from data.

In the third part of this thesis we extend a calculus to reason about active
objects with futures and promises. We present an open semantics for the core
of the Creol language including first-class futures and promises. A future acts
as a proxy for, or reference to, the delayed result of a computation. As the
consumer of the result can proceed its own execution until it actually needs
the result, futures provide a natural, lightweight, and transparent mechanism
to introduce parallelism into a language. A promise is a generalization of a
future as it allows for delegation with respect to which process performs the
computation. The formalization is given as a typed, imperative object calculus
to facilitate the comparison with the multi-threaded concurrency model of
object-oriented languages, e.g. Java.

We close the third part of this thesis by presenting a technique to detect
deadlocks in concurrent systems of active objects. Our technique is based on
a translation of the system to analyse into a P/T net and the application of
a technique to detect termination in such P/T nets. We illustrate our tech-
nique by application to an Actor-like subset of the Creol language featuring
asynchronous calls using futures as means of communication. The so-called
discipline of cooperative multi-tasking within an object as found in Creol can
lead to deadlock. Our technique can be applied to detect such deadlocks.



Samenvatting

Formele methoden vormen de wiskundige basis voor het redeneren over de
correctheid van computer programma’s. Optimaal gebruik van recente on-
twikkelingen in hardware, met name de ontwikkeling van multicore proces-
soren, vereist software die gestructureerd is op basis van parallelle processen.
Dergelijke structurering echter vergroot de complexiteit van software die alleen
door gebruik van formele methoden te beheersen is.

In dit proefschrift worden verschillende formele methoden voor de analyse
van verschillende vormen van parallelle object georiënteerde software geintro-
duceerd en bestudeerd. Centraal hierbij staan programmeerconcepten voor de
beschrijving van hoe nieuwe processen dynamisch worden gecreëerd en hoe
processen communiceren en synchroniseren.

In het eerste gedeelte van dit proefschrift wordt eerst een methode be-
schreven voor de analyse van hoe objecten gecreëerd worden in talen als Java.
Object creatie vormt één van de basismechanismen van object georiënteerde
software voor het programmeren van dynamische structuren en ligt ten grond-
slag aan de creatie van nieuwe parellelle processen in de taal Java .

Vervolgens wordt in dit proefschrift een methode beschreven voor het re-
deneren over de synchronisatie van parallelle processen in Java. Een belan-
gerijke eigenschap van de correcte synchronisatie van parallelle processen is
de afwezigheid van ”deadlock”, een situatie waarin een aantal processen op
elkaar wachten en niet verder uitgevoerd kunnen worden. Voor een volledige
automatisering van de beschreven methode voor het detecteren van dergelijke
”deadlocks” wordt er geabstraheerd van data en beperkt tot een vast eindig
aantal parallelle processen.

De complexiteit van parallelle processen zoals beschreven in de taal Java
komt grotendeels doordat deze processen losgekoppeld zijn van de objecten
zelf. De data van objecten wordt door de parallelle processen gedeeld waardoor
het in het algemeen zeer moeilijk is het effect van deze processen te analyseren.
Nieuwe object georiënteerde programmeertalen als Erlang en Scala beschrijven
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daarentegen processen als het gedrag van een object zelf. Het resulterende
model van een object staat bekend als een ”actor” of ”active object”. In het
derde en laatste gedeelte van het proefschrift wordt een calculus geintroduceerd
voor de algemene beschrijving van het gedrag van systemen bestaande uit
verachillende ”actors”. Voorts wordt een methode beschreven voor de analyse
van verschillende vormen van communicatie en synchronisatie tussen ”actors”.
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