
INSIGHTS IN

REINFORCEMENT LEARNING

Formal analysis and empirical evaluation of

temporal-difference learning algorithms

Hado van Hasselt

This research was supported by the Netherlands Organisation for Scientific

Research (NWO) under project number 612.066.514.

SIKS Dissertation Series No. 2011-04

The research reported in this thesis has been carried out under the auspices

of SIKS, the Dutch Research School for Information and Knowledge Systems.

© 2010 Hado Philip van Hasselt

Printed by Wöhrmann Print Service

ISBN 978-90-39354964

INSIGHTS IN

REINFORCEMENT LEARNING

Formal analysis and empirical evaluation of

temporal-difference learning algorithms

INZICHTEN IN REINFORCEMENT LEARNING

Formele analyse and empirische evaluatie van

algoritmes die leren van temporele verschillen

(met een samenvatting in het Nederlands)

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Universiteit Utrecht

op gezag van de rector magnificus, prof.dr. J.C. Stoof, ingevolge het

besluit van het college voor promoties in het openbaar te verdedigen

op maandag 17 januari 2011 des middags te 4.15 uur

door

Hado Philip van Hasselt

geboren op 12 september 1979 te Utrecht

Promotoren: Prof.dr. J.-J.Ch. Meyer

Prof.dr. L.R.B. Schomaker

Co-promotor: Dr. M.A. Wiering

Dit proefschrift werd mede mogelijk gemaakt met financiële steun van de

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO).

CONTENTS

Contents 1

1 Introduction 3

1.1 The Aim of this Dissertation . 5

1.2 Previous Work . 5

1.3 Agents . 7

1.4 Reinforcement Learning . 10

1.5 Overview . 15

2 Reinforcement Learning 17

2.1 Markov Decision Processes . 17

2.2 Dynamic Programming . 29

2.3 Model-Free Value Learning . 33

2.4 Learning Action Values . 42

2.5 Conclusion . 50

3 Estimation Biases in Maximization 51

3.1 Introduction . 51

3.2 Preliminaries . 53

3.3 The Single Estimator . 57

3.4 The Double Estimator . 60

3.5 Comparing the Single and Double Estimator 65

3.6 A Comparison on Uniform Variables 66

3.7 The Effect of More Samples . 70

3.8 The Effect of More Variables . 73

3.9 Conclusion . 76

3.10 Proofs . 79

4 The Overestimation of Q-learning 85

4.1 Context and Contributions . 86

4.2 Overestimations in Bandit Problems 89

4.3 Convergence Rates of Q-learning 94

4.4 Double Q-learning . 101

4.5 Experiments . 104

4.6 Conclusion . 109

4.7 Proofs . 112

1

2 CONTENTS

5 Action Value Algorithms 115

5.1 Introduction . 115

5.2 Gradients and Norms . 116

5.3 Expected Sarsa . 118

5.4 General Q-learning . 120

5.5 QV-learning . 127

5.6 Actor Critic . 131

5.7 Actor Critic Learning Automata 132

5.8 Experiments . 134

5.9 Conclusion . 144

5.10 Proofs . 146

6 Ensemble Algorithms in Reinforcement Learning 149

6.1 Ensemble Methods . 150

6.2 Voting Schemes . 153

6.3 Policy Based Ensembles . 161

6.4 Summary of Ensemble Methods 163

6.5 Experiments . 166

6.6 Discussion and Future Research 177

6.7 Conclusion . 179

7 Continuous State and Action Spaces 181

7.1 Introduction . 181

7.2 Markov Decision Processes in Continuous Spaces 182

7.3 Function Approximation . 183

7.4 Approximate Reinforcement Learning 196

7.5 Continuous Actions . 207

7.6 Experiments . 212

7.7 Conclusion . 226

8 Discussion 231

8.1 Summary . 231

8.2 Conclusions . 232

8.3 Rules of Thumb . 234

8.4 Conclusion . 237

Publications by the Author 239

Dutch Summary 253

Acknowledgments 255

Bibliography 257

CHAPTER 1

INTRODUCTION

In artificial intelligence the aim is to build intelligent entities (Russell and

Norvig, 2009). According to some, an artificial entity can be called intelligent

when it can successfully mimic human behavior (Turing, 1950). For others,

an entity is intelligent if it can solve mathematical equations or check proofs

(Appel et al., 1977). In any case, there are many useful applications for so-

called intelligent machines (Holland, 1992; Kortenkamp et al., 1998). In this

dissertation, we will not discuss whether such entities are in fact intelligent.

Also, we will not consider the different problems one can encounter when try-

ing to define what ‘intelligence’ in fact is (McCarthy and Hayes, 1968; Brooks,

1991; Dennett, 2005). Rather, we will focus on a specific skill that is related

to intelligence, if not essential for it: the skill of learning.

The research field of machine learning constitutes a subset of the broader

field of artificial intelligence. Machine learning researchers investigate how

to construct algorithms that allow a computer to learn from observations

(Mitchell, 1996; Bishop, 2006). For instance, the goal can be to have a com-

puter program that can recognize faces (Turk and Pentland, 2002) or that

can play a game of backgammon (Tesauro, 1994). These goals can be met by

constructing a step by step recipe that the computer can follow in order to

reach the desired result. However, for such an approach the programmer has

to know a solution to the problem and implement this solution in full. Also,

it requires that the programmer takes into account all possible situations the

programmight encounter. This is often infeasible. Therefore, it is often easier

to use a machine learning algorithm that allows the computer to deduce so-

lutions itself, based on its observations. This way, the computer can continue

to learn from its experience while it is in operation and it may even discover

solutions that the programmer would have never thought of.

In this dissertation we will discuss some advances and insights into the

research field of reinforcement learning (Sutton and Barto, 1998). Reinforce-

ment learning can be considered to be a subset of machine learning. In rein-

forcement learning, the focus is primary on algorithms that can learn through

interaction with an environment. In other words, these algorithms learn

through a form of trial-and-error.

A reinforcement learning algorithm is often called an ‘agent’ and the set-

ting the agent finds itself in is called the environment of the agent. Later

in this chapter we will discuss what our definition for an agent is. Then, we

will discuss how reinforcement learning fits into this picture and discuss the

contributions and views that are presented in this dissertation.

3

4 CHAPTER 1. INTRODUCTION

In general, a reinforcement learning agent chooses an action to perform in

every situation it encounters. The action might induce a reward or a penalty

and leads to a new situation that may or may not depend on the action that

was taken. The reinforcement signal and the new situation are then used by

the reinforcement learning algorithm to improve the performance of its future

actions. The difference with many other machine learning algorithms is that

the reinforcements do not tell the agent what it should have done, only how

well the action that it actually did turned out. Such reinforced interactions

with an environment occur naturally in many settings. For instance, when

playing a game one may eventually obtain a reward or a penalty when the

game is won or lost, but the opponent will usually not tell the player what

a better move would have been. Likewise, a production plant may give feed-

back on the number of goods that are produced and this can be used by a

reinforcement learning algorithm to try to increase these numbers.

In this dissertation we will mainly discuss algorithms that can be used by

agents to optimize their behavior in terms of some reinforcement signal they

receive from the environment. This means we want the agent to improve its

behavior, rather than just to learn about its environment in a neutral sense.

In other words, we investigate the problem of ‘control’, rather than the prob-

lem of ‘prediction’. We strongly favor methods that are fast to compute, easy to

implement, easy to understand intuitively and widely applicable. Informally,

we refer to algorithms that adhere to these requirements as ‘practical’. There

are many possible practical methods and it is often hard to know beforehand

which method is best for a given problem. At the end of this dissertation we

will present some guidelines that state in which situation which algorithm is

most likely to perform well, based on our experiments, analyses and observa-

tions.

In reinforcement learning, many algorithms have been proposed to solve

the problem of learning good policies of behavior in arbitrary environments.

In this dissertation, we look at a subset of these methods. In particular, we

will examine model-free temporal-difference methods.

The adjective ‘model-free’ is somewhat of a misnomer, but it implies that

the algorithms do not build an explicit model of the environment. The behav-

ioral policy that the agent obtains through learning may contain an implicit

model of the environment, for instance in the sense of a value function that

describes the expected value of an action in every situation. However, no

attempt is made to model the environment itself. Naturally there exist prob-

lems that are easier solved with a model-based approach. The idea behind the

choice for model-free algorithms is that it is often easier to determine which

actions are promising than it is to understand and model the entire world

around oneself. Additionally, a model of the environment in general requires

much more storage space than a policy of behavior that tells the agent what

to do in each situation. In practice, this usually makes model-free algorithms

1.1. THE AIM OF THIS DISSERTATION 5

easier to implement and computationally faster.

The methods we investigate most are ‘temporal difference’ methods be-

cause they use earlier obtained knowledge to be able to improve their behav-

ior after every action they take. The notion of temporal differences will be

explained in more formal terms in Chapter 2.

In the remainder of this introduction, we will introduce some of the con-

cepts that will be used in this dissertation. In Section 1.1, we will state the

aim of this work and Section 1.2 discusses how this relates to previous work.

We will present our definition of a learning agent in Section 1.3 and discuss

how reinforcement learning algorithms can be used by these agents and how

it relates to other research fields in Section 1.4. Finally, we give an overview

of the dissertation in 1.5.

1.1 The Aim of this Dissertation

The aim of this dissertation is to investigate the properties of some of the

reinforcement learning algorithms in order to be able to give suggestions be-

forehand on which algorithm is to be preferred on a given problem. Often,

the precise characteristics of the problem and especially of the optimal solu-

tion are not known before learning commences. Therefore, such suggestions

should be based on high-level observations that are more likely to be available

about the type of problem that is to be solved. For instance, a relevant high-

level observation could be whether the reinforcement signals are expected to

contain a large amount of noise or not. The goal is to minimize the need for a

domain expert, but to be able to use the basic knowledge about each problem

efficiently.

We will look at low-level properties of many of the algorithms, since we

believe many of the high-level behaviors that are obtained with use of these

algorithms can only be fully understood when the low-level properties are

fully known. For instance, we will show that an often used algorithm called

Q-learning (Watkins, 1989) suffers from a bias that thus far seems to have

been overlooked. This bias can have a direct impact on the behaviors that

result from the use of this algorithm, or any of its many variants.

1.2 Previous Work

Much of the existing literature on reinforcement learning algorithms seems to

broadly fall into one of three general categories. Naturally, these categories

are subjective in nature and some papers will fall in more than one of the

categories, or even in none of them. However, we feel the categorization is

useful and fairly intuitive.

6 CHAPTER 1. INTRODUCTION

The first category is the general theoretical work. For instance, in this cat-

egory algorithms are shown to converge to the exact desired result in the limit

(e.g., Dayan and Sejnowski, 1994; Jaakkola et al., 1994; Szepesvári, 1998;

Singh et al., 2000; van Hasselt and Wiering, 2007b; Sutton et al., 2008), or

within a certain amount of time with high probability (e.g., Fiechter, 1994;

Kearns and Singh, 1999; Even-Dar et al., 2002; Even-Dar and Mansour, 2003;

Mannor and Tsitsiklis, 2004; Strehl et al., 2009). Although useful, unfortu-

nately often these results are not mirrored completely in the actual perfor-

mance of the different algorithms on real-world tasks. For instance, in Chap-

ter 7 we will see that an algorithm that can not be proven to converge to the

correct result will reach a far better performance on the well-known moun-

tain car benchmark than any of the tested provably convergent algorithms.

As another example, sometimes different algorithms share the same theoretic

asymptotic convergence rate, while the finite time performance of one of these

algorithms is vastly better on a subset of problems. An example of this can be

found in Chapter 4.

The second category of literature proposes new algorithms or adaptations

to old algorithms without a strict theoretical proof of general improvement.

Usually, the proposed novelties are then shown to be useful according to some

performance measure. This performance metric may be theoretical, such as

a general bound on the expected number of times the algorithm performs a

poor action (e.g., Singh and Yee, 1994; Strehl et al., 2006). More often, the per-

formance metric is empirical and results from comparing the new algorithms

to older algorithms on some benchmarks (e.g., Riedmiller, 2005; Geramifard

et al., 2006; Wiering and van Hasselt, 2007). Sometimes both types of metrics

are used. Naturally, new algorithms are often not fully understood right away

and some turn out to be strict improvements over older algorithms, while oth-

ers seem to be better only on the metrics they were tested on.

The third category covers purely empirical work. These papers describe

the results of experiments with one or more existing algorithms (e.g., Michels

et al., 2005; Taylor et al., 2006; Whiteson et al., 2007). A requirement for

many venues to publish such a paper is that the domain on which the al-

gorithms are tested is sufficiently complex, or of clear importance to people

outside the research field. Examples include applications on power systems

(e.g., Ernst et al., 2004) or in psychology research (e.g., Conn et al., 2008; Liu

et al., 2008). The emphasis is then on the domain the algorithm is applied to,

rather than on the algorithm itself.

In this dissertation, we will attempt to tread some middle ground between

the first two types of papers. We will look at the expected actual performance

of algorithms by considering both the asymptotic guarantees and the perfor-

mance on some simple settings. This allows us to build intuitions about which

algorithm to prefer in which setting. In some cases, we formalize these intu-

itions, for instance by showing that an algorithm converges in the limit to the

1.3. AGENTS 7

optimal behavior, but the emphasis is on the practical use of the algorithms.

As such, we generalize older algorithms, provide alternatives and discuss the

advantages and disadvantages of the different methods. Rather than trying

to make statements about the general value of each algorithm, we try to pin-

point in which settings the algorithms can probably be expected to perform

well.

We will show the results of small experiments with existing algorithms to

be able to highlight the advantages and disadvantages of using one approach

over another. Where possible, we will state general theoretical guarantees,

but if these cannot be given in we will not refrain from stating our intuitions

why one algorithm performs better than another in some domain, based on

inspection on how the algorithms works. This would be hard to do if we would

only run experiments on large complex domains, since then it becomes much

harder to interpret why and how an algorithm reaches the behavior that is

observed. Although we will discuss the limiting convergence properties of

certain algorithms and we feel it is useful to have these guarantees in general,

we will see that the practical performance of an algorithm often has little

connection with the asymptotic guarantees that may of may not be given.

We hope this dissertation can be useful in gaining more understanding

about the algorithms that are described. These algorithms include well es-

tablished, often discussed algorithms and brand new algorithms. Eventually,

this hopefully leads to a better understanding on when to use which algo-

rithm and on how to construct even better algorithms, since there is no single

algorithm that is best in all possible domains.

We examine which algorithms give a good trade-off between performance,

speed and ease of implementation. This will lead up to some rules of thumb

that we will present in Chapter 8. There, we condense our findings into some

suggestions on when to use which algorithm when only very limited know-

ledge about the problem at hand is assumed. Naturally, if more is known

about a particular problem, more specific algorithms can be used that in-

corporate this domain knowledge. Additionally, for every setting there will

be an algorithm that performs better than the algorithms that we suggest.

However, we have confidence that the suggested algorithms are fairly widely

applicable and will be able to reach satisfactory performance levels in many

problems of interest.

1.3 Agents

Agents are a common useful concept in computer science. Intuitively, agents

can be viewed as entities that perform some task more or less independently

while observing the environment. For instance, robots can be considered

agents, but so can certain computer programs. A more formal definition is

8 CHAPTER 1. INTRODUCTION

easy to give, but unfortunately the literature seems to disagree on what this

formal definition should be. We will first discuss some of the supposed re-

quirements for a system to be called an agent. Then, we will discuss what the

term ‘agent’ means in the context of reinforcement learning.

1.3.1 Definitions of Agents

The word ‘agent’ is used for a number of different concepts. One particularly

broad definition is given by Russell and Norvig (2009), who state that

An agent is anything that can be viewed as perceiving its environ-

ment through sensors and acting upon that environment through

effectors.

However, this particular definition is so broad that there are few systems that

can not be considered an agent. In particular, the vague requirement that an

agent ‘can be viewed as perceiving its environment’ is fairly subjective. For

instance, would one consider a doorbell an agent since it can perceive a finger

pressing and it can respond by making a suitable noise?

Others have tried to make finer distinctions between types of agents by

listing properties that agents do or do not have. One such list of properties

is given by Franklin and Graesser (1997) who list the properties reactive,

autonomous, goal-oriented, temporally continuous, communicative, learning,

mobile, flexible and character. Unfortunately, these properties are also not

without problems. If one considers an agent to be a mapping from its (past)

percepts to its actions, many of these properties stop to make sense. For

instance, a goal-oriented agent is defined as an agent that ‘does not simply act

in response to the environment’. This property clearly hinges on the definition

of the word ‘simply’. Does this imply that if the reasoning process is complex

enough one can speak of a goal-oriented agent, even if the whole reasoning

process is deterministic? The problem here is that any deterministic process

can in principle be replaced with a (potentially large) table that tells the agent

what to do in each separate case. Then no actual reasoning is involved and

the agent acts ‘simply’ in response to the environment (and potentially its

past percepts). But if such a simple table-based agent perform precisely the

same actions in the same situations as the reasoning agent, would one benefit

from calling one goal-oriented and the other not?

Similar problems occur for some of the other properties. For instance, can

an action that changes the environment be interpreted as communication?

And can any process that is implemented on a digital computer ever truth-

fully be called temporally continuous?

Because of the aforementioned issues, we will refrain from further dis-

cussing such lists of properties. Our definition of an agent will be quite close

to the one given above and and we can formalize it fairly simple as follows:

1.3. AGENTS 9

Definition 1.1 (Agents). An agent is a mapping from its internal state and

its percepts to actions in an environment.

The internal state of the agent can be important, but something can be

considered an agent if its internal state is (nearly) empty. Then, the agent is

actually a mapping from percepts to actions. In such a case, we will speak of

a reactive agent.

Definition 1.2 (Reactive Agents). A reactive agent is a mapping from percepts

to actions.

Under this definition, a doorbell is also a reactive agent, be it a very sim-

ple one. Reactive agents are not necessarily deterministic, but we assume

they will not change their behavior based on their past observations. A re-

active agent might update its internal state to store information about its

past percepts. The only restriction is that it does not use the internal state to

influence its actions.

In the next subsection we will highlight one property that we believe can

be formalized in a straightforward manner and that is important in the rest

of this dissertation: the property of learning.

1.3.2 Learning Agents

Our definition of a learning agent is the following:

Definition 1.3 (Learning Agents). A learning agent is a mapping from its

internal state and its percepts to actions in an environment, where the internal

state changes over time under influence of the percepts and this can potentially

result in changes in the perceived mapping from percepts to actions.

This implies that if one observes a learning agent, one will usually see

change its behavior over time, because its internal state changes. However,

this does not need to happen. For instance, an agent that learns from its

percepts that the actions it was performing yield desirable results, it may

learn to keep performing these actions. The crux is that for each learning

agent there must exist some situation in which the percepts indeed lead to a

change in the behavior of the agent.

In this chapter, we do not specify how the internal state changes or how

this potentially influences the mapping from percepts to actions, but in gen-

eral the learning process will attempt to optimize some predefined criteria.

In reinforcement learning, these criteria are communicated to the agent by

means of reinforcements. In the rest of this dissertation we will discuss many

algorithms that can be used to construct a learning agent and we will explic-

itly specify how these change the internal state of the agent and how this can

affect the behavior of the agent.

10 CHAPTER 1. INTRODUCTION

1.4 Reinforcement Learning

The next chapter will give a more formal introduction to many of the concepts

in reinforcement learning. This section will be more high-level and will dis-

cuss the connection between reinforcement learning and the definition of a

learning agent that we gave above. Additionally, we will shortly discuss how

reinforcement learning fits in the larger research fields of machine learning

and artificial intelligence.

1.4.1 Learning Policies

An agent in reinforcement learning is quite simple: it consists of a policy

of behavior and a learning algorithm to adapt this policy. Most other ele-

ments, such as the source of the reinforcements, post processing systems on

the percepts and even the body of the agent are considered to be part of the

environment. The policy of behavior is then adapted with use of the learning

algorithm. This algorithm can take many different forms and will usually

store some additional information in an internal state, such as an estimate of

the expected value of an action, or a model of the environment.

The policy can be considered a function that maps situations to actions.

In general, learning functions from data is the topic of machine learning and

reinforcement learning can be considered a subfield of this broader field of

research. Machine learning concerns itself with the design of algorithms that

can learn from available data in an automatic, clearly formalized way, such

that these algorithms can be implemented on a computer. Broadly speaking,

machine learning algorithms can be divided into the following three cate-

gories:

• Supervised Learning in which the goal is to find a function that maps

inputs to outputs and where the data from which such a mapping is

learned consists of labeled samples of inputs with their corresponding

target outputs. Supervised learning is a very active field and many good

books have been written on the topic, such as those by Vapnik (1995)

and Bishop (2006). Examples of supervised learning include classifica-

tion of handwritten numerals (LeCun et al., 1989; Bottou et al., 1994),

handwritten text (Schomaker, 1993) and prediction (Hastie et al., 2005).

• Unsupervised Learning in which the goal is to discover underlying

patterns, clusters and regularities in a set of unlabeled data (Hartigan,

1975; Barlow, 1989). For instance, this is useful in visualizations of data

to determine how to interpret and further process this data (Deboeck

and Kohonen, 1998; Nattkemper and Wismüller, 2005) or to discover

irregularities (Pearlmutter and Hinton, 1986).

1.4. REINFORCEMENT LEARNING 11

• Reinforcement learning in which the goal is to find optimal strate-

gies of behavior for an artificial agent when only reinforcement sig-

nals are available that do not specify how the agent should perform

its desired task, but only indicate how well the agent is performing

at the present time. Examples of possible applications include games

(Tesauro, 1994), robotics (Peters et al., 2003) and control tasks (Werbos,

1989b). We will discuss reinforcement learning at length in the next

chapter. Some introductory texts of varying complexity and complete-

ness include the books by Bertsekas and Tsitsiklis (1996), Sutton and

Barto (1998), Bertsekas (2007) and Szepesvári (2010).

Supervised learning needs the availability of pairs of inputs and correspond-

ing targets from which it can learn. Usually, it is assumed that the mapping

that is to be learned is fixed and that a set of labeled data is available to

learn from at a certain time. Unsupervised learning does not assume targets

are available and only a set of unlabeled data points is required. The most

one can hope for in such a setting is to structure the data in a meaningful

manner. Reinforcement learning can be interpreted as being somewhere be-

tween these two settings. Targets for the desired behavior of the agent are

not assumed to be available, but we do assume there is some measure that

can be observed that informs the agent how well it is doing. The agent can

then obtain more information simply by trial and error. The appeal of this

method is that it is usually much easier to construct a meaningful reinforce-

ment scheme than it is to construct good policies of behavior from scratch.

In fact, most human behavior is learned through a mechanism more resem-

bling reinforcement learning than supervised learning; incentives and pun-

ishments are often encountered in real life, but precise descriptions on how

to act are much less common.

For instance, in a game playing setting one may not know what a good

strategy is to win the game. However, a reinforcement signal is easy to define:

simply give a positive reinforcement when the game was won and a negative

reinforcement when the game was lost. Using this method, Tesauro (1994)

constructed an artificial backgammon player that played against itself until

it was as good as the best human players at the time. Because no desired

behavior was specified in advance, the artificial player could even improve the

known opening theory of the game, by suggesting a move that was uncommon

for master level human players. Later analysis proved the artificial player

to be correct and many human players adopted the suggested improvement.

This is another appeal of reinforcement learning: since no targets are used

for the behavior, new previously unconsidered solutions may be found that the

programmer of the agent need not have been able to construct. This contrasts

with supervised learning, where the optimal behavior is known even if the

mapping that results in the best general solution is not.

12 CHAPTER 1. INTRODUCTION

Naturally, the different fields influence each other, and many different

machine learning techniques are used in reinforcement learning. In this dis-

sertation, we will mainly focus on algorithms that learn a value for every

action in every situation. This value then represents a measure for the ex-

pected reinforcement the agent will receive after performing the correspond-

ing action. If these values are known, the optimal policy can be constructed

simply by selecting the highest valued actions. Some methods to represent

these values are taken from more general machine learning approaches, such

as the neural networks that are discussed in Chapter 7. However, in general

it is non-trivial to find the correct action values since the actions of the agent

influence the reinforcements and an action may have an effect that is only

observed much later.

1.4.2 Values, Policies and Models

In general, if one wants to learn new behaviors there are three general ways

to do so. First, can store indirect measures that influence the behavior such

as a value that represents the expected future reinforcement for each action.

Second, one can directly adapt the policy of behavior itself. Third, one can

learn a model of the environment and use this to reason about good policies

of behavior. Each general methods corresponds to specific algorithms in rein-

forcement learning that update the behavior in that manner.

Each of the general methods has its own advantages and disadvantages.

For instance, adapting the policy itself seems a convenient approach, but how

does one then compare two different policies? And how does one decide how

to adapt a policy in the first place? When values are used, an interesting

question is how to use these values to construct a policy. Finally, constructing

a model of the environment can be very complex and an obvious question is

how precisely to use this model to construct a policy.

In this dissertation, we will mainly discuss value-based model-free rein-

forcement learning algorithms. The reason is not that we believe that the

other approaches are less likely to produce good results. Rather, some in-

teresting results can be obtained with use of values functions and we have

therefore focused on this particular subfield of reinforcement learning.

A potential advantage of using values compared to using a model-based

approach lies in the fact that there exist problems in which the desired behav-

ior is far simpler than an accurate model of the environment. The backgam-

mon game discussed above is an example of this. If one would want to model

the potential outcomes of an action, one would need to take into account all

the possible outcomes of each throw of the dice.1 This means a tree of possi-

1A very small explanation for those who do not know the game of backgammon. Backgam-

mon is a two-player game where each player throws two dice each turn to determine the

possible moves. Then the player can usually choose from a fairly large number of legal moves

1.4. REINFORCEMENT LEARNING 13

bilities branches out very quickly and it is impractical to consider all possi-

bilities of a few turns in the future. However, learning the approximate value

of a large number of rules through trial and error was proven to be quite suc-

cessful. Additionally, in many problems large parts of the environment may

be inconsequential for the choice of action and therefore it would be a waste

of resources to construct a complete model for these parts. The problem is

that often it is not known beforehand which parts of the environment are

important, making it hard for model-based approaches to prune their mod-

els appropriately. Naturally, there also exist settings in which a model-based

approach is far superior to a value-based approach, since it potentially holds

more relevant information for the agent. In particular, it may be better to

build a model if the environment is fairly simple and therefore easily mod-

eled but there are many actions to choose between in each setting.

1.4.3 Practical Reinforcement Learning

As mentioned in the introduction, we call an algorithm practical if is it fast

to compute, easy to implement, easy to interpret and widely applicable. In

this section, we specify what we mean by each of these properties and why we

consider them to be important.

The first requirement that we stated earlier is that an algorithm is fast

to compute. In reinforcement learning, this may or may not be important in

practice. If an algorithm is run on a problem where there is much time be-

tween each two consecutive decisions, it is less important that the used algo-

rithm is computationally efficient. Then, it is much more important that the

algorithm makes optimal use of the available information, since the gather-

ing of more information can be costly. On the other hand, there are problems

where a fast simulation of the problem exists and the time needed by the al-

gorithm should not be too long between each two steps in order to be able to

run in real time. In this dissertation we will mainly consider algorithms that

run in linear time compared to the size of the percepts that are observed.

The second requirement is ease of implementation. Although this may

not be very important for the quality of the behavior that is learned by the

agents, we include this requirement for a couple of reasons. First, if an al-

gorithm is easy to implement, the probability that an error is made during

implementation is less. Second, the simpler the algorithm, the more likely its

performance guarantees can be generalized to untried problems, as long as

these are fairly similar. Finally, we feel that if two algorithms share more or

less the same performance guarantees, an easy algorithm is to be preferred

in the same way as Ockham’s razor is used to argue that a simple theorem

is better than a complex theorem. We also interpret the difficulty of tuning

an algorithm to be part of the implementation complexity. Some algorithms

for each possible outcome of the dice.

14 CHAPTER 1. INTRODUCTION

have many parameters and only work for very specific settings of these pa-

rameters. Then, we prefer algorithms with less tunable parameters, or for

which the range on which the parameters can be set for acceptable perfor-

mance is large.

The third requirement is ease of interpretation. In practice, this mostly

overlaps with ease of implementation, although conceptually the require-

ments are somewhat orthogonal. For a simple algorithm that is more easily

understood, it will be easier to predict whether or not the algorithm can be

successful in a certain specific setting. Furthermore, the argument on Ock-

ham’s razor also applies to the ease of interpretation.

The fourth requirement was that the algorithm in widely applicable. This

means we do not want to restrict ourselves to much to a single class of prob-

lems that is to be solved. However, we do note that there is no cure-all algo-

rithm that is simple, easy to implement and the best choice for all possible

problems. This final requirement therefore mainly implies that if two algo-

rithms are equally simple to implement and to interpret, they are equally

fast and they produce equally good solutions, then the algorithm that per-

forms better on most other problems is to be preferred in general. Of course,

this does not mean it is also the best choice for any specific problem.

An implicit requirement for any practical algorithm is of course good per-

formance. In reinforcement learning, this performance is usually measured

by how quickly the algorithm finds good solutions and how good the final

solutions are. Most algorithms continue to improve over time. Then, the fi-

nal performance is usually the performance after some fixed allocated time,

which is the metric that we will use in our experiments. In some cases we

will discuss the asymptotic performance in the limit and discuss whether or

not this is optimal. We will investigate the performance of many algorithms

empirically in this dissertation and we will discuss both the speed of learning

and the quality of the solution that is found eventually. However, we feel that

sometimes too much importance has been put on just the performance of the

algorithm, sometimes resulting in algorithms that perform only marginally

better than previous algorithms on a limited set of problems while being very

hard to implement and to interpret.

The focus on practical algorithms is one of the reasons we mainly focus

on model-free temporal-difference methods. We do not believe these methods

will always result in the best possible behavior for a given set of experiences,

but these methods are fast to compute, easy to implement and when properly

used they perform quite well. As such, we will devote a significant part of

this dissertation to the analysis of and experiments with these algorithms, to

build a better intuition on how these algorithms are best used. In this view, a

partial goal of this dissertation is to help with a specific aspect of model-free

temporal-difference methods: the ease of interpretation.

1.5. OVERVIEW 15

1.5 Overview

In the next chapter, we will give a more formal definition of the various con-

cepts that are used in reinforcement learning. There, we will discuss policies,

values, rewards, states and actions and the framework of Markov decision

processes that is used to model the environment as a problem that can be

solved by reinforcement learning. In Chapter 3, we discuss fairly general

properties of finding the maximum of a set of noisy values. These proper-

ties are important in reinforcement learning, as well as in any other field

that attempts to optimize a certain criterion in a noisy setting. We will use

the analysis from Chapter 3 in Chapter 4 to show that Q-learning can suf-

fer from large overestimations in its assessment of the value of an action.

These overestimations are harmful, because they can affect the behavior of

an agent that uses Q-learning in an undesirable manner. This is relevant, be-

cause Q-learning is one of the most widely used algorithms in reinforcement

learning and the inspiration for many later algorithms that will suffer from

similar overestimations. Additionally, in Chapter 4 we construct the Double

Q-learning algorithm as an alternative to Q-learning. This algorithm is based

on an alternative method to find the maximum of a set of noisy values that is

discussed in Chapter 3.

In Chapter 5 we discuss several other model-free temporal-difference meth-

ods that can be used instead of Q-learning. We generalize some of these al-

gorithms to a General Q-learning algorithm and discuss other improvements,

such as the Expected Sarsa algorithm (van Seijen et al., 2009) that can be

viewed as an improvement over the well-known Sarsa algorithm (Rummery

and Niranjan, 1994). We also discuss other alternatives, such as QV-learning

(Wiering, 2005; Wiering and van Hasselt, 2007), actor critic methods (Barto

et al., 1983) and Acla (Wiering and van Hasselt, 2007). We point out differ-

ences and similarities between the algorithms and compare them empirically

to see if our intuitions are confirmed. This shows that there can be large

performance differences between the algorithms, although it is problem de-

pendent which algorithm performs best.

In some cases, very little is known about a problem beforehand. However,

in Chapter 5 we demonstrate that which algorithm is to be preferred can be

very problem dependent. In Chapter 6 we present a partial solution for this by

constructing policy-based ensembles of the different algorithms. We discuss

many different ways to build these ensembles and show that the performance

of such ensembles is comparable to or better than the best individual algo-

rithms. Therefore, these ensembles can be useful to increase the likeliness of

obtaining good policies of behavior after a small number of interactions with

the environment. The only drawback is a somewhat increased computational

load, but the order of complexity of the ensemble is never greater than that

of the slowest constituting algorithm.

16 CHAPTER 1. INTRODUCTION

In Chapter 7 we extend our discussion to continuous states and actions.

For some readers it may seem strange that we wait so long to extend our dis-

cussion to function approximation. This was a deliberate choice, because we

want to discuss the properties of the algorithms in easily analyzable settings

first, before introducing the additional complexity that function approxima-

tion introduces. However, most of the discussion in the preceding chapters

is orthogonal to these issues, implying that the obtained results are also rel-

evant in settings where large or continuous spaces force us to adapt the al-

gorithms. In Chapter 7 we will also discuss continuous action spaces and

how to deal with problems that have such action spaces. This will include a

discussion on existing methods, such as policy gradient methods (Williams,

1992; Sutton et al., 2000; Baxter and Bartlett, 2001) and evolutionary al-

gorithms (Holland, 1962; Rechenberg, 1971; Holland, 1975; Schwefel, 1977;

Davis, 1991; Bäck and Schwefel, 1993). Further, we introduce a simple new

temporal-difference algorithm for continuous state and action spaces called

Cacla (van Hasselt and Wiering, 2007a; van Hasselt and Wiering, 2009) and

present some experimental results that show that this algorithm is very com-

petitive to the current state of the art.

Chapter 8 concludes the dissertation. Here we will discuss our general

findings and give some pointers for future research. We will also summa-

rize our findings with some rules of thumb that can be used to find a good

algorithm for each problem, without having to try them all.

CHAPTER 2

REINFORCEMENT LEARNING: A SHORT INTRODUCTION

This chapter serves as an introduction in reinforcement learning. There are

many texts for a more thorough treatment (Bertsekas and Tsitsiklis, 1996;

Sutton and Barto, 1998; Bertsekas, 2007). We introduce the main concepts

we will be dealing with and we introduce our notation. Our main focus will be

model-free temporal-difference algorithms, but we will also give some point-

ers to other approaches when appropriate. The chapter is organized as fol-

lows.

We start with a description of so-calledMarkov Decision Processes (MDPs)

in Section 2.1, which are the formal models that are used to model the prob-

lems we want to solve. In general, reinforcement learning algorithms assume

such MDPs are given as input to the algorithm.

In Section 2.2 we introduce model-based dynamic programming as amethod

to solve these MDPs. Solving an MDP can mean one of two things. In some

cases one is interested in the value of a certain policy of behavior and solving

an MDP in this case means we predict the value of this given policy. However,

in most cases one will be interested not in the value of some predetermined

policy, but in the optimal policy. This is what we mean with ‘reinforcement

learning for control’: solving an MDP to extract the optimal policy for this

MDP. We will discuss model-based algorithms that use the structure of the

MDP to find this optimal policy.

In Section 2.3 we drop the assumption of a known model and discuss

model-free algorithms. This includes Monte Carlo methods and temporal-

difference (TD) value-prediction methods. Additionally, TD algorithms for

control are considered. This section also includes a discussion on eligibil-

ity traces, that generalize TD and Monte Carlo methods to fall into a single

framework.

2.1 Markov Decision Processes

Reinforcement learning can be used to find optimal solutions for many prob-

lems, but of course these problems should be modeled in a way that the algo-

rithms can be applied. For this, the framework of Markov Decision Processes

(MDPs) is used (Bellman, 1957; Howard, 1960; Puterman, 1994; Boutilier

et al., 1999).

We use a similar notation to that used in the book by Sutton and Barto

(1998). An MDP can then be defined as a tuple (S,A,P,R,γ), with the follow-

17

18 CHAPTER 2. REINFORCEMENT LEARNING

ing definitions for its contents.

• S is a set of states, where st ∈ S denotes the state the agent is in at time

t.

• A(s) is a set of available actions in state s, where at ∈ A(st) denotes the

action the agent performs at time t.

• P : S×A×S→ [0,1] is a transition function where Ps′
sa denotes the prob-

ability of ending up in state s′ when performing action a in state s.

• R : S× A×S → R is a reward function where Rs′
sa denotes the expected

reward when the agent transitions from state s to state s′ after per-

forming action a. The actual reward that is witnessed by the agent af-

ter performing action at and on transitioning to state st+1 may contain

noise and is denoted as r t+1, where E{r t+1|(s,a, s′)= (st,at, st+1)}=Rs′
sa.

• γ ∈ [0,1] is a discount factor.

Other common styles of notation use i, j or x ∈ X for states, u ∈U(i) for ac-

tions, g(i,u, j) for costs, which correspond to negated rewards in our notation,

pi j(u) for transition probabilities and α for the discount factor. It is also fairly

common to use J(x) for the state value that we will later denote with V (s), and

J(x,u) for the action value that we will denote with Q(s,a).

The MDP is sometimes called the environment to contrast it with the

inner workings of the agent. An agent in reinforcement learning is usually

assumed to be very simple, consisting mainly of an action selection policy

π : S× A → [0,1], where πt(s,a) denotes the probability that the agent will

select action a to perform if it is in state s at time t.

Definition 2.1 (Deterministic policy). A deterministic policy π is a policy

where ∀s : π(s,a) = 1 for exactly one a ∈ A(s) and π(s,b) = 0 for all other

b ∈ A(s).

Definition 2.2 (Stationary policy). A stationary policy is a policy that does

not change over time, i.e. where ∀t :πt =π.

With a slight abuse of notation, we will use π(s) to refer to the probability

distribution or the probability mass function of the actions in state s. We

will then use a ∼ π(s) to indicate that action a is chosen according to the

probability function in state s. One interaction of an agent with an MDP

consists of the agent observing the present state st and choosing an action at

to perform according to its policy. The MDP then transitions to a new state

st+1 with probability P
st+1
stat

and returns a reward r t+1 with expected value

R
st+1
stat

. Normally, any physical presence of the agent itself is also considered

part of the environment in this view.

2.1. MARKOV DECISION PROCESSES 19

Markov decision processes by definition fulfill the Markov property. This

property is defined in general as follows.

Definition 2.3 (Markov property). A stochastic process has the Markov prop-

erty if the conditional distribution of the next state of the process depends only

on the current state of the process.

For an MDP, this property implies that the transitions P and the rewards

R do not depend on the states the agent visited in the past. This can be

expressed formally with

E{st+1|s0,a0, . . . , st,at}=E{st+1|st,at} , and

E{r t+1|s0,a0, . . . , st,at}=E{r t+1|st,at} .

There exist problems in which the Markov property does not hold for the ob-

servable states and actions. These problems can usually be modeled with

partially observable MDPs (POMDPs) (Sondik, 1971; Smallwood and Sondik,

1973; Monahan, 1982). POMDPs assume that there is some MDP that de-

scribes the problem at hand, but that the agent can not observe the full state.

Rather, it is assumed that there is a separate set of observations O, where

ot ∈ O is the observation the agent makes at time t. Then, the chain of ob-

servations may not have the Markov property, but the underlying process is

still assumed to be Markov. Since most standard reinforcement learning al-

gorithms assume the Markov property, there is a separate set of algorithms

that are designed especially for these POMDPs (Lovejoy, 1991; Jaakkola et al.,

1995; Kaelbling et al., 1995; Parr and Russell, 1995; Cassandra, 1998). A full

discussion of these algorithms falls outside the scope of this dissertation.

2.1.1 Further Definitions

We now give some other definitions that will be useful later on. For a more in

depth discussion on MDPs, we refer to the book by Puterman (1994).

Definition 2.4 (Finite MDP). A finite MDP is an MDP with finite state and

action sets: |S| <∞ and |A| <∞.

Definition 2.5 (Deterministic MDP). A deterministic MDP is an MDP where

the transitions and reward are deterministic: Ps′
sa equals one for precisely one

state s′ and zero for all other states and ∀t : r t+1 =R
st+1
stat

.

Definition 2.6 (UndiscountedMDP). An undiscountedMDP is anMDPwhere

γ= 1.

To ensure that the value-based algorithms we will encounter later can

handle undiscounted MDPs, it is then usually assumed that the MDP reaches

a terminal state with probability one in the limit. Otherwise, the value of a

20 CHAPTER 2. REINFORCEMENT LEARNING

state can in principle be unbounded, which may cause problems. There are

other ways to solve this issue, but we will not into them here.

Definition 2.7 (Stationary MDP). A stationary MDP is an MDP where every

element in the tuple (S,A,P,R,γ) is fixed and independent on the time step.

An example of a non-stationary problem is a problem where there is more

than one learning agent and the agents can only observe the behavior of the

other agents. Taking the perspective of any one agent and assuming the other

agents can also affect the environment, the transition and reward functions

can then change over time.

Definition 2.8 (Ergodic MDP). An ergodic MDP is an MDP where every state

can be accessed in a finite number of steps from any other state.

Ergodic MDPs never restrict the agent to a subset of the state space. This

is important for agents that learn from experience, because they can try any

action without the possibility of making a mistake that can not be recovered

from. State s′ is called accessible from state s if there is a policy that leads

from state s to s′ in a finite number of steps. States s and s′ are called commu-

nicating if s is accessible from s′ and vice versa. An MDP is called irreducible

if the set of states forms an equivalence class under this relation, i.e. if any

state can be visited from any other state. By definition, an irreducible MDP

is ergodic.

Definition 2.9 (Terminal state). A terminal, or absorbing, state is a state that

only transitions to itself, with zero reward.

Definition 2.10 (Episodic MDP). An episodic MDP is an MDP with a termi-

nal state that is accessible from any state.

Note that we only need a single terminal state for any episodic problem,

since multiple terminal states would be indistinguishable from each other.

If terminal states with different values are desired, one can model this as

an equivalent MDP with a single terminal state with different rewards on

the incoming transitions. The definition of an episodic MDP does not imply

that an agent actually reaches the terminal state, whether this happens may

depend on the policy. Furthermore, we will refer to MDPs where the terminal

state is only accessible from a subset of the state space as semi-episodic.

Sometimes it is useful to talk about MDPs that do not allow cycles in the

resulting Markov chains, for any policy. In a sense, these MDPs are strictly

episodic.

Definition 2.11 (Acyclic MDP). An acyclic MDP is an MDP where for any

state s′ that is accessible from state s it holds that state s is not accessible from

state s′.

2.1. MARKOV DECISION PROCESSES 21

Figure 2.1: Small examples of an ergodic, episodic and semi-episodic MDP.

Figure 2.1 shows an ergodic, an episodic and a semi-episodic MDP. We

denote states in such figures with open circles, actions with closed circles

and terminal states with squares. Rewards are not shown, but would be

shown next to the incoming connections to each state if they were. In the

ergodic MDP, the upper action has two outgoing connections. This indicates a

stochastic transition: if the agent selects this action it might end up in either

of the two states with some non-zero probability. None of the shown MDPs

are acyclic.

Since the terminal state never transitions to any other state, an episodic

MDP can never be ergodic. In practice, most algorithms are trained on episodic

MDPs by placing them back in a starting state after an episode has ended.

This can equivalently be modeled by allowing the discount factor to differ for

each transition. One can then construct an equivalent MDP with a single

action in the terminal state that transitions according to the starting state

probability distribution to one of the possible starting states. The transition

from the terminal to starting state then should have a discount factor of zero

in order for full equivalence between the two models in terms of optimal val-

ues and policies. We will not treat such variable-discount MDPs in detail.

However, if at any point we refer to an ergodic MDP in theoretical analysis,

the analysis will usually also hold for episodic MDPs with little adaptations,

as long as these episodic MDPs can be transformed into an equivalent ergodic

variable-discount MDP.

2.1.2 Modeling a problem as an MDP

In a large portion of the reinforcement learning literature, it is assumed that

an MDP is given and then the goal is to find a suitable algorithm to solve it.

However, any problemmust be modeled as anMDP before it can be solved and

there is usually more than one way to do this. In this subsection, we briefly

consider some of the difficulties and design choices that arise from this. For a

22 CHAPTER 2. REINFORCEMENT LEARNING

more general treatment, one can for instance consult chapter 5 of the book by

Powell (2007).

There is no general method to model a problem as an MDP. In fact, often

the best model will be dependent on which algorithm one wants to use and

the best algorithm for the job in turn depends on the model.

2.1.2.1 State space

Earlier work on MDPs often assumed that the states of the model are in some

way easily distilled from the problem that is to be solved (Bellman, 1957;

Puterman, 1994). The book by Powell (2007) gives more insight into this

issue, but explicitly assumes that the state variables are chosen in such a

way that the Markov property holds. Powell defines the state variable as

follows:

Definition 2.12 (Definition 5.4.1 from Powell, 2007). A state variable is the

minimally dimensioned function of history that is necessary and sufficient to

compute the decision function, the transition function, and the contribution

function.

We comment that in many cases this definition is stricter than absolutely

necessary. For instance, consider a problem in which there are many different

actions and each action has its own stochastic rewards and transitions to new,

different realities. Then, applying the definition above in a strict sense would

require us to model each of these realities in a different identifiable state.

However, when the same action is optimal in all states, modeling the problem

with a single abstract state would suffice to find an optimal solution for the

actual problem. Naturally, most algorithms would find the optimal action a

lot quicker in the simpler single-state model. In other words, we prefer the

following definition:

Definition 2.13. A state variable is the minimally dimensioned function of

history that is necessary and sufficient to compute the decision function.

These different definitions additionally show a potential advantage of model-

free approaches: since the second definition of the required or desired state

variable is weaker, a larger set of models fulfills the requirement. It is pos-

sible for a problem to be prohibitively hard to model or even impossible to

model precisely for a given state variable, while being far easier to approx-

imately solve. In a sense, human decision making is similar. People often

rely on heuristics to successfully make decisions in settings that would be far

too hard to solve if all the available state information would be taken into ac-

count and one would try to construct a reliable model. These heuristics can be

interpreted as the decision function from the definition. Of course, this does

2.1. MARKOV DECISION PROCESSES 23

not mean a model-free approach is better in all possible settings and there are

other examples in which the use of a model does help to reach better decisions.

If one is modeling a task with a low dimensional, continuous state space

there is the choice on whether to discretize the state space in the modeling

phase or to use an algorithm that can handle continuous state spaces. Many

algorithms that are designed to work in continuous state spaces do little more

than first find a suitable discretization of the state space and then solve the

resulting discrete MDP with a suitable discrete reinforcement learning algo-

rithm. This is similar as the example before: discretizing the state simplifies

the problem. However, the solution in the discretized model may not be op-

timal in the actual continuous case. We will encounter these issues in more

detail in Chapter 7.

2.1.2.2 Action space

The performance of most algorithms is very dependent on the number of

available actions, so it may be beneficial to limit this number in the modeling

phase, preferably without limiting the quality of the resulting solution. Sim-

ilar to the state space, one may encounter the choice between using a model

with continuous or discrete actions. A large majority of algorithms in the

field of reinforcement learning assume discrete, finite action sets. However,

in Chapter 7 we will discuss the continuous case.

2.1.2.3 Transitions and after states

The transition function may be the result of interactions with a physical or

simulated system and usually arises quite naturally when the models for the

state and action spaces are selected. However, these transitions can also be a

consideration in the modeling phase. For instance, some work has been done

on improving performance of some algorithms by considering the after state,

or post-decision state (Powell, 2007).

After states represent the known deterministic result of an action in a cer-

tain state. If the MDP is deterministic in its transitions and these transitions

are known, an after state is simply equal to the state preceding the present

state. However, in many cases the effect of an action may be split into two

parts: a known deterministic part and an unknown, possibly stochastic part.

In such cases it may be beneficial to process all the known effects of an ac-

tion, observe the resulting state and only then try to estimate the value of

this state. This can be accomplished by constructing after states explicitly in

the modeling phase. The resulting MDP can be seen as a copy of the original

MDP, but with one added state and action between each action and state. If

in the original MDP action a in state s would lead randomly to one of the

states in a set X , in the resulting MDP this action leads deterministically to

24 CHAPTER 2. REINFORCEMENT LEARNING

an after state s′ which incorporates all the deterministic effects of the action.

In this after state s′, the agent then has only a single action which leads ran-

domly to one of the states in X , as in the original process. For completeness,

we note that to make the two MDPs fully equivalent one would also need to

make small adaptations to the rewards and discount factor. Although these

MDPs are equivalent in terms of optimal policies and in terms of the values

that corresponding states would have, they are not necessarily equivalent in

terms of how long it takes any given algorithm to solve them.

2.1.2.4 Reward function

A very important consideration in the modeling phase is the choice of a re-

ward function. Remarkably, the reward function in the vast majority of re-

inforcement learning literature is assumed to be given. Some problems have

properties that lead naturally to a reward function. For instance, if the goal

in a certain problem is to maximize revenue, it is quite natural to use these

revenues as rewards. However, in other problems this is less trivial.

For instance, consider a maze problem where we want to use a value-

based reinforcement learning algorithm to learn how to escape this maze as

quickly as possible. A natural way to model goal states in a reward function

is to give a positive reward on reaching the goal state and zero reward on all

other steps. In the maze this would translate to a positive reward for exiting

the maze and zero reward on each other step. However, this reward function

would then require a discount factor strictly lower than one. Otherwise, any

action that eventually exits the maze is optimal and there is no incentive to

reach the exit quickly. An alternative method would be to set the reward

for each transition to some negative value and to use this as an incentive to

exit the maze quickly. Which of the two reward models results in the fastest

learning can be dependent on which algorithm is used and on the type of

exploration.

When selecting a reward function it is important to make sure that the re-

ward function, together with the discount factor, has the following two prop-

erties. First, optimizing the discounted cumulative reward should result in

the intended behavior. This seems trivial, but in some cases it is not so easy

to make sure that this holds. In particular, the most pure formulation of the

problem in terms of rewards and discount factor may be prohibitively diffi-

cult to solve. In many cases, it can be beneficial to add intermediate rewards

to speed up learning, but then care should be taken that these intermedi-

ate rewards do not influence the optimal policy. Second, the reward function

should have the Markov property. Again, this may seem trivial, but there

have been cases in which this requirement was not met. For instance, in

the reinforcement learning competition 2009 (Wingate et al., 2009) one of the

problem domains featured a simulated helicopter. The goal was to hover the

2.1. MARKOV DECISION PROCESSES 25

helicopter for at least 6.000 time steps, which equated to 10 minutes of sim-

ulated time. When the helicopter would crash sooner than that, a negative

reward was given that was relative to the remaining time until the 10 min-

utes had passed. Since the number of passed time steps was not part of the

state description, this reward function does not have the Markov property.

As a result, no method based on value functions performed well, because the

problem was ill-defined for these algorithms. This is noticeable in the results

of the competition, which show that only evolutionary methods that took the

cumulative result of a whole episode into account were successful.

Even a seemingly straightforward problem domain, such as aforemen-

tioned example with revenue is less trivial than it may at first seem. For

instance, assume that the problem is too large to solve optimally in reason-

able time. Then the question is what is more desirable: to reach reasonably

high revenues with high probability, or to reach very high revenues with lower

probability. Perhaps there are additional aspects that need to be taken into

account, such as a minimum amount of revenue that is absolutely necessary

in order to stay in business. In other words, if one simply uses revenue as a

reward function, a reinforcement learning agent will typically try to optimize

a linear function of these reward, but the actual goal may be a non-linear

function of the revenue. There may even be certain subgoals that need to

be reached within a certain amount of time, introducing the need to balance

short-term and long-term returns. This brings us to the last part of the model,

the discount factor.

2.1.2.5 Discount factor

The discount factor determines the value of an action or a state, together

with the reward function. Most reinforcement learning algorithms optimize

the discounted cumulative reward. Even if we compare different algorithms

in terms of their performance on average rewards per step, instead of in terms

of how they optimize the discounted rewards, in many cases algorithms that

use the discounted cumulative reward paradigm outperform algorithms that

explicitly try to optimize the average rewards.

It is somewhat surprising to see that often the discount factor is con-

sidered a given in the reinforcement learning literature. This differs from

the common practice in engineering and control theory, where anything not

present in the real world is considered part of the solution or—in other words—

of the algorithm. A problem with the discount factor is perhaps that this

single value serves different purposes.

First, one can consider it to be part of the problem, or perhaps more accu-

rately of the intended solution. In this case, one considers immediate rewards

more important than later rewards and expresses this with a discount factor

lower than one. An example of such a case would be a maze problem, where

26 CHAPTER 2. REINFORCEMENT LEARNING

a positive reward is given on exiting the maze and zero reward is given on

every other time step. A discount factor lower than one then implies that the

optimal behavior is to exit the maze as quickly as possible. Another impor-

tant example of such a discount factor occurs in problems in which an interest

rate x is present, where one can define the discount factor γ= 1/(1+ x).

Second, the discount factor is used to ensure that the value of any state or

action is finite, assuming that the reward on any step is finite. This is a useful

property in the analysis of algorithms which assume uniform boundedness of

values. Additionally, it avoids practical numerical issues in settings where

the undiscounted values might become very large.

Third, the discount factor can be shown to be of theoretical importance in

the convergence analysis of some algorithms. In these cases, it can be shown

that the algorithm’s convergence rate is dependent on the discount factor. Of-

ten, this is the case because the discount factor can be seen to function as a

contraction multiplier. The dependence is then such that a lower discount fac-

tor implies faster convergence, although this does not necessarily hold in all

cases. On the other hand, when average or total rewards are to be optimized,

high discount factors often result in a formulation closer to the problem that

we actually want to solve. Setting the discount factor too low may result in

fast convergence on the thus formulated MDP, but this MDP might not cor-

respond to the actual problem that we want to solve. For example, consider

a cleaning robot that has the choice of clearing some rubble for a low reward.

If the discount factor is too low, the robot will think it is optimal to clear the

rubble even if it is almost out of fuel and it will then not reach its docking

station in time. In settings where a range of choices for the discount factor

all correspond to the same optimal behavior, different algorithms can prefer

different discount factors in terms of their best performance (e.g., Wiering

and van Hasselt, 2009).

For a similar discussion on discount factors, we refer to the work by Schwartz

(1993), who proposes to use undiscounted average rewards as both a perfor-

mance criterion and as a goal for the value function. This then removes the

need of a discount factor in some problems which might otherwise suffer from

potentially infinite values. Average reward MDPs were investigated earlier

by Howard (1960) and algorithms to solve these MDPs were analyzed in more

detail later by Mahadevan (1996). We will not discuss average reward rein-

forcement learning in detail in this dissertation, since the discounted reward

setting is more extensively researched and better understood.

In summary, we believe the strict separation that is present in some of the

literature between the modeling phase and the choice of algorithm is an arti-

ficial one. For instance, there is no good reason why it would not be possible

for multiple agents to operate on the same problem with different objectives.

Agents with short term objectives might then use lower discount factors than

agents with long term objectives. It is even possible to specify completely

2.1. MARKOV DECISION PROCESSES 27

different objectives by specifying a different reward function for each agent.

Such a framework is called a stochastic game (Shapley, 1953) or a Markov

game (Zachrisson, 1964) and was investigated in the context of reinforcement

learning by Littman (1994), amongst others.

In single agent settings there are also design choices to be made for the

reward function and the discount factor. For instance, as mentioned above,

in a maze setting one indicates the desired behavior by specifying a reward

function that is positive when exiting the maze and zero everywhere else with

a discount factor strictly lower than one. Alternatively, one can give a nega-

tive reward on every step and use a discount factor equal to one. It is easily

checked that in both cases the optimal behavior is the same: exit the maze

as soon as possible. However, different algorithms may perform better with

different models. This implies that there is no one way to optimally model

a problem as an MDP: it depends on the interplay between model and algo-

rithm.

2.1.3 Value Functions

In reinforcement learning, the value of a state or an action plays a central

role. In some cases, one may be interested in the value of a certain policy

of behavior in a given problem. In most cases, one wants to optimize the

total return in terms of cumulative rewards. In this section, we formalize the

notion of value in terms of the structure of the MDP. This allows us to talk

about the value of a state, action or policy unambiguously in the remainder of

this dissertation. In the next section we discuss some methods to learn these

values, but first we introduce our notation and definitions.

2.1.3.1 State Values

When we are given an MDP and a policy π, it is possible to determine the

value Vπ of following this policy when starting in state s. This value is defined

as the cumulative discounted reward:

Vπ(s)=E

{

∞
∑

i=1
γi−1r t+i|st = s,π

}

. (2.1)

Sometimes one is interested in the value of some given policy, but more often

we will be interested in maximizing the value. The optimal value of a state is

the maximal possible value that can be obtained with any policy. We denote

this optimal value with V∗, where

V∗(s)=max
π

Vπ(s) . (2.2)

28 CHAPTER 2. REINFORCEMENT LEARNING

The goal is then to find the optimal, stationary policy π∗ that maximizes the

value for each state. By definition

Vπ∗
=V∗ . (2.3)

The value defined in equation (2.1) can also be defined recursively:

Vπ(s)=E
{

r t+1+γr t+2+γ2r t+3+ . . . |st = s,π
}

(2.4)

=E
{

r t+1+γ
(

r t+2+γr t+3+ . . .
)

|st = s,π
}

=E
{

r t+1+γVπ(st+1)|st = s,π
}

=
∑

a

π(s,a)
∑

s′
Ps′

sa

(

Rs′

sa+γVπ(s′)
)

.

This then specifies a linear system of |S| equations that can in principle be

solved to find the value of each state. Naturally, for this definition we assume

the set of states and the set of actions are of finite size. Similarly, the optimal

value function can also be described with a recursive definition:

V∗(s)=max
a

∑

s′
Ps′

sa

(

Rs′

sa+γV∗(s′)
)

. (2.5)

Unfortunately, this system of equations is non-linear due to the max operator.

Therefore, in general it is harder to solve analytically. Equation (2.5) is knwon

as the Bellman optimality equation (Bellman, 1957).

2.1.3.2 Action Values

Similar to state values, we can look at the value of a certain action in a state.

Formally, an action value of an action a in a state s under a policy π is defined

as the expected cumulative discounted reward when performing that action

and following policy π afterward. For historical reasons, action values are

often called Q values and we denote these Q(s,a), which is defined as

Qπ(s,a)=E

{

∞
∑

i=1
γi−1r t+i|st = s,at = a

}

. (2.6)

Similar to the state value in (2.4), we can also define this value recursively:

Qπ(s,a)=
∑

s′
Ps′

sa

(

Rs′

sa+γ
∑

a′
π(s′,a′)Qπ(s′,a′)

)

. (2.7)

Comparing equations (2.4) and (2.7), we see that the main difference is that

the policy is pushed inside expectation of the state transitions. A similar

property holds for the optimal action value function, which is defined with

the following set of non-linear equations:

Q∗(s,a)=
∑

s′
Ps′

sa

(

Rs′

sa+γmax
a′

Q∗(s′,a′)

)

. (2.8)

2.2. DYNAMIC PROGRAMMING 29

Storing action values requires more space than storing state values: |S×
A| compare to |S|. However, action values have the important advantage

over state values that when they are found the optimal policy can be easily

constructed, simply by selecting the action with the highest value in each

state. In contrast, when only state values are known one must solve equation

(2.5) for each state in order to find this optimal action. This difference is

especially important for model-free algorithms that approximate the state or

action values, since then equation (2.5) can not be solved since P and R are

not known.

2.2 Dynamic Programming

Dynamic programming is a collection of methods that assume the knowledge

of a full model of the environment and use this model to determine values or

optimal policies. Dynamic programming techniques can be seen as precursors

of many of the reinforcement learning techniques we will discuss later. In

this section, we shortly discuss some of the different methods to solve MDPs.

We will only look at methods that in some way use state or action values as

defined in the former section. In principle, it is also possible to search for an

optimal policy directly, if some proper criterion to be optimized is formulated.

Some of these policy-search algorithms will be discussed in Chapter 7.

The two main dynamic programming techniques we will discuss are value

iteration and policy iteration, but first we introduce some additional notation

and the concept of contraction mappings.

2.2.1 Contraction Mappings

The idea of dynamic programming and indeed of reinforcement learning is

that we can iteratively apply some update to the values of states or actions

which results in a better approximation of the true state. The obtained ap-

proximation can be better because the resulting value is closer to the true

value of the current policy, as defined by the Bellman equations (2.1) and

(2.6), or because it is closer to the optimal value, as defined in the Bellman op-

timality equations (2.5) and (2.8). Later, when considering simulation based

reinforcement learning, we introduce updates that only improve the values in

expectancy instead of on each step.

All these updates have in common that they adapt the value function.

These updates are therefore operators that map functions to functions. We de-

note such operators with T :RX →R
X , where R

X denotes a space of bounded

real-valued functions over a set X . Using this notation, we can define the

operator T
π :RS →R

S as the mapping

(T πV)(s)=
∑

a

π(s,a)
∑

s′
Ps′

sa

(

Rs′

sa+γV (s′)
)

. (2.9)

30 CHAPTER 2. REINFORCEMENT LEARNING

A fixed point of an operator T is a function f , such that T f = f . For operator

T
π as defined in (2.9) the fixed point is Vπ, since by definition

(T πVπ)(s)=Vπ(s) , (2.10)

of more concisely, T
πVπ =Vπ. Similarly, we can define T

∗ as

∀s ∈ S : (T ∗V)(s)=max
a

∑

s′
Ps′

sa

(

Rs′

sa+γV (s′)
)

, (2.11)

and note that its fixed point is V∗, since from equation (2.5) it follows that

T
∗V∗ =V∗.

An operator T : RX → R
X is called a contraction mapping with factor κ if

for any two functions f , g ∈R
X the following equation holds:

‖T f −T g‖ ≤ κ‖ f − g‖ , (2.12)

where ‖ f ‖ is a sup-norm defined as supx∈X | f (x)| and the domain X is implic-

itly given by the function f . If κ= 1, the mapping is called a non-expansion. If

κ< 1, the contraction has a unique fixed point, defined by the equation T f =
f . Furthermore, this fixed point is guaranteed to be reached by repeatedly

applying the mapping (Banach, 1922). Consider the distance ‖T n f −T
ng‖,

where T
n stands for applying the operator n times, i.e. T

2 f = T (T f),

T
3 f =T (T (T f)), and so on. Then, in general we have

‖T n f −T
ng‖ ≤ κ‖T n−1 f −T

n−1g‖ ≤ . . .≤ κn‖ f − g‖ .

Since this holds for arbitrary functions f ∈ R
X , this also holds when f is the

fixed point. By definition of the fixed point, we then have T
n f = f and we get

‖ f −T
ng‖ ≤ κn‖ f − g‖ .

Since g ∈ R
X is also arbitrary, this means that for any function g ∈ R

X , we

have

lim
n→∞

‖ f −T
ng‖ = 0 ,

when κ < 1. This shows that repeatedly applying a contraction mapping on

any function in its domain results in convergence to the fixed point of the

contraction mapping in the limit.

It is easy to prove that if you have a contraction mapping T1 with factor

κ1 and a contraction mapping T2 with factor κ2, the combined operator T1T2

is also a contraction mapping, with factor κ1κ2:

‖T1T2 f −T1T2g‖ ≤ κ1‖T2 f −T2g‖ ≤ κ1κ2‖ f − g‖ .

Contraction mappings are important in the theoretical analysis of rein-

forcement learning and dynamic programming algorithms. If we know that

2.2. DYNAMIC PROGRAMMING 31

Algorithm 1 Value Iteration

1: Initialize V0, choose ǫ, K .

2: repeat

3: for all s ∈ S do

4: Vk+1(s)= (T ∗Vk)(s)

5: end for

6: until either ‖Vk+1−Vk‖ < ǫ or k>K

an algorithm can be seen as a contraction mapping with a factor lower than

one and we know that the fixed point of the contraction is the Bellman opti-

mality equation, then we know that applying the algorithm will lead to opti-

mal values in the limit. If the contraction factor is known, an upper bound on

the rate of convergence can be given.

We will now discuss some model-based dynamic programming algorithms.

For convenience, we define an operator E :RS →R
S×A as follows

(EV)(s,a)=
∑

s′
Ps′

sa

(

Rs′

sa+γV (s′)
)

, (2.13)

and we note that (T πV)(s)=
∑

aπ(s,a)(EV)(s,a) and (T ∗V)(s)=maxa(EV)(s,a).

Since the domain and range of E are not equal, this operator can not be ap-

plied iteratively. It is only defined for notational convenience and can be in-

terpreted as a one step lookahead for a given state value function when the

state and action are both given.

2.2.2 Value Iteration

Value iteration is an iterative algorithm that can be used to find the optimal

value function, and thus the optimal policy (Bellman, 1957). The idea is to

repeatedly apply the operator T
∗, as defined in (2.11) on some initial finite

value function. The value iteration algorithm is shown in Algorithm 1.

We know T
∗ has a unique fixed point in V∗ that is obtained in the limit,

if we can show that the operator is a contraction with some factor κ< 1. This

is indeed the case:

‖T ∗V −T
∗V ′‖ =max

s∈S

∣

∣

∣

∣

∣

max
a

∑

s′
Ps′

sa

(

Rs′

sa+γV (s′)
)

−max
a

∑

s′
Ps′

sa

(

Rs′

sa+γV ′(s′)
)

∣

∣

∣

∣

∣

≤max
s∈S

max
a

∣

∣

∣

∣

∣

∑

s′
Ps′

sa

(

Rs′

sa+γV (s′)
)

−
∑

s′
Ps′

sa

(

Rs′

sa+γV ′(s′)
)

∣

∣

∣

∣

∣

≤max
s∈S

max
a

max
s′

∣

∣

∣

(

Rs′

sa+γV (s′)
)

−
(

Rs′

sa+γV ′(s′)
)∣

∣

∣

=max
s′∈S

∣

∣γV (s′)−γV ′(s′)
∣

∣

= γ‖V −V ′‖

32 CHAPTER 2. REINFORCEMENT LEARNING

Algorithm 2 Policy Iteration

1: repeat

2: Initialize V0, π0, k= 0, choose K , set stable= f alse.

3: solve ∀s ∈ S :Vk+1(s)= (T πkVk+1)(s)

4: for all s ∈ S do

5: πk+1(s,a)=
{

1/M if (EV)(s,a)= (T ∗V)(s) ,

0 otherwise ,
6: end for

7: if πk+1 =πk then

8: stable= true

9: end if

10: k= k+1

11: until either stable or k>K

We identify κ= γ and therefore value iteration converges to the optimal value

function in the limit if γ< 1. There are some other requirements on the MDP,

such as that any state must be reachable. In some specific cases, it can even

be guaranteed that the converges occurs after a finite number of iterations.

In this algorithm we introduce two possible stopping criteria. The algo-

rithm stops if either the maximal amount any value is changed in the last

iteration is lower than some threshold ǫ, or if the number of iterations tran-

scends K . After the algorithm has terminated, we can find the (approximate)

optimal policy with

π(s,a)=
{

1/M if (EV)(s,a)= (T ∗V)(s) ,

0 otherwise ,
(2.14)

where M is the number of actions that are optimal in state s according to V .

Value iteration is only applicable if the transition function P and reward

function R are known. Even if this is the case, the algorithm can be slow if

the state space is too large. For a more thorough treatment, for instance see

the books by Puterman (1994) or by Bertsekas (2007).

2.2.3 Policy Iteration

Similar to value iteration is the algorithm called policy iteration (Howard,

1960). The difference is that instead of using the operator T
∗, policy iteration

uses T
π, where π is the current policy. It can be shown that this operator

converges to the fixed point Vπ. The idea is to find this value function or an

approximation thereof, and then use it to improve the current policy. Then,

the value function will no longer be accurate and the procedure repeats itself.

The algorithm is shown in Algorithm 2.

In line 3 of Algorithm 2, we solve a |S| × |S| system of linear equations.

This can be done in O(|S|3) time, but this may be too costly if the state space

2.3. MODEL-FREE VALUE LEARNING 33

is large. Alternatively, it is also possible to use an iterative method, as in the

value iteration algorithm that computes

∀s ∈ S : Vl+1(s)= (T πkVl)(s)=
∑

s′
Ps′

sa

(

Rs′

sa+γVl(s
′)
)

,

for all s ∈ S until either ‖Vl+1−Vl‖ is smaller than some threshold, or L iter-

ations have been performed. Then Vk+1 = VL or, if the threshold condition is

met at iteration l, Vk+1 =Vl .

There are two ways in which the policy evaluation step can be relaxed.

First, only some of the state values may be updated. The most extreme ex-

ample of this is when only a single state is updated between each two policy

improvement steps. Second, if more than one state is updated, one may up-

date the values only partially towards Vπk , for instance by performing a fixed

number of iterations. The most extreme example of this is when only one up-

date is performed. Algorithms that only partially update the function Vk are

usually called generalized policy iteration or modified policy iteration (Por-

teus, 1971; Van Nunen, 1976; Puterman and Shin, 1978; van der Wal, 1978;

Sutton and Barto, 1998).

Interestingly, policy iteration generates an improving sequence of poli-

cies. This implies that Vπk+1(s) ≥ Vπk (s) for all s and all k ≥ 0 (Puterman,

1994; Bertsekas and Tsitsiklis, 1996). In practice, policy iteration may con-

verge in a fairly low amount of iterations, although like value iteration it can

be prohibitively slow is the state space is reasonably large and it requires

knowledge of R and P.

2.3 Model-Free Value Learning

The dynamic programming algorithms outlined in the former section have the

major disadvantage that they require a model. A good model of the problem

that needs to be solved may not be available, although we may have access to

a simulated or real physical system with which the agent can interact.

There are two extensions to the dynamic programming methods in the

former section that mitigate these issues. First, we can use asynchronous

updates that do not update the whole state space in every update. Second, we

can use simulated, possibly stochastic updates in place of the models.

2.3.1 Asynchronous Updates

In the methods that were outlined in the former section the whole MDP is

taken as a given input and the algorithms process this in some way to output

the policy. In most problems, there are parts of the state space that are more

interesting than other parts, since they would be visited more often by any

good policy, or since the potential rewards are higher. Therefore, it makes

34 CHAPTER 2. REINFORCEMENT LEARNING

sense to consider only updating a subset of the states in each iteration. The

most extreme case of asynchronous updates only updates the value of a single

state at a time.

2.3.2 Stochastic Updates

A stochastic update gives the result of a single experience of the agent when

it performs an action a in a state s. Stochastic updates are quite naturally

combined with asynchronous updates, since if we learn by looking at the ex-

perience of an agent, the experiences that are processed by the learning algo-

rithm will correspond to the state the agent happens to be in. Of course, the

learning algorithm will not necessarily process each experience immediately

when it is available, but in general it is a good idea to at least process some

of the information before the whole state space is visited or a terminal state

is reached, since this can take prohibitively long.

If we want to estimate the value Vπ of a given policy, there are in prin-

ciple two different types of experience that can be used. These two methods

correspond to two different ways to estimate the value that we want to know.

In Section 2.1.3 we discussed that Vπ(s) can equivalently be defined in two

different ways:

Vπ(s)=E

{

T−t
∑

i=1
γi−1r t+i|st = s,π

}

, (2.15)

Vπ(s)=E
{

r t+1+γVπ(st+1)|st = s,π
}

. (2.16)

where for simplicity we assume that the MDP is episodic, such that in at

most T steps the terminal state is reached. These definitions can be turned

into two different updates, which we will now discuss.

2.3.3 Monte Carlo Methods

For the first update, we use the actual sum of discounted rewards that are

obtained until the end of the current episode. The current value of each state

s can then be updated with this value in order to get a better estimate of

the value of the policy that was followed. Since in general the rewards can

contain noise and the state transitions may be stochastic, it is a good idea to

average different runs from each state. We denote the start of episode k with

tk and its end with Tk. The update to the value of the state then becomes

Vk+1(st)=Vk(st)+αk(st)

(

Tk−t
∑

i=1
γi−1r t+i−Vk(st)

)

. (2.17)

Here αk(s) ∈ [0,1] is a learning rate parameter and tk ≤ t < Tk. Note that we

effectively turned equation (2.15) into an update, where we use the learning

2.3. MODEL-FREE VALUE LEARNING 35

rate to average over the different outcomes we observe from a state in differ-

ent episodes. Such updates are generally referred to as Monte Carlo methods

(Michie and Chambers, 1968; Hastings, 1970).

If the MDP and the policy are fully deterministic, we can safely use αk(s)=
1, for all t and s since then any state can only occur once in each episode. If

either is not deterministic, the possibility exists that a state is visited more

than once in a single policy. One can then choose to update using only the

summed rewards after the first visit of the state, resulting in first-visit Monte

Carlo, or one can use the summed rewards after each visit, resulting in every-

visit Monte Carlo (Singh and Sutton, 1996).

For simplicity assume that no state is visited more than once.1 Then the

return after each episode is clearly an unbiased estimate for Vπ. Consider a

learning rate of αk(st) = 1/nk(st), where nk(s) is the number of times state s

will have been updated after the current update. Then, for each state Vk(s)

will be equal to the average over all the returns after visiting state s in the

first k episodes. If the number of times each state is visited increased, the

variance of Vk(s) decreases and the in the limit Vk converges: limk→∞Vk =Vπ.

A disadvantage of Monte Carlo methods is that the returns can have con-

siderable variance. If we reach a state that was already visited many times,

we might want to use its value, instead of the considerably noisier rewards

that actually result from performing the policy from that state onwards. This

can be done with temporal-difference learning, as outlined in the next subsec-

tion.

2.3.4 Temporal-Difference Learning

In temporal-difference (TD) learning (Sutton, 1984, 1988), each state value

gets updated with a one step Monte Carlo update, using the actual one-step

return and the value of the next state. Using the values of consecutive states

instead of waiting until the end of an episode is called bootstrapping (Sutton,

1988; Sutton and Barto, 1998) and has a number of advantages. First, it can

result in considerably lower variance than using the actual return of only

the present episode. Second, Monte Carlo methods are not easily extended to

non-episodic tasks, but for TD learning this is no problem.

For Monte Carlo methods equation (2.15) was turned into an update, in

TD learning equation (2.16) is used. When the model is not known, we can

sample an experience consisting of a state transition and a reward. Such a

sample can contain noise, so again we will use an update that averages over

the samples with a learning rate. This results in TD learning:

Vt+1(st)=Vt(st)+αt(st)
(

r t+1+γVt(st+1)−Vt(st)
)

. (2.18)

1This is the case when the MDP is acyclic, but that would be a stronger assumption. If the

MDP is acyclic, no state is visited more than once in an episode for any policy. We only require

that this holds for the policy under consideration.

36 CHAPTER 2. REINFORCEMENT LEARNING

This update can be viewed as a minimizing the expected TD error E{δt|st = s},

where the TD error δt is defined as

δt = r t+1+γVt(st+1)−Vt(st) .

When applied in a stationary ergodic MDP, this update can be shown to con-

verge in the sense that limt→∞Vt =Vπ (Sutton, 1988; Dayan, 1992; Jaakkola

et al., 1994; Tsitsiklis, 1994) as long as the learning rates are chosen such

that

∀s :
∞
∑

t=0
αt(s)=∞ ,

∞
∑

t=0
(αt(s))

2 <∞ . (2.19)

These conditions on the learning rates are often referred to as the Robbins-

Monro conditions (Robbins andMonro, 1951). The first condition ensures that

no matter how poor some samples are, the whole possible value function space

stays reachable. The second condition ensures that in the limit the updates

become small enough to ensure stability.

The update in (2.18) is not the only possible temporal-difference update.

In fact, in itself it is of limited use, since it only gives us the value of the

current policy and does not tell us what a good, or optimal policy would be.

In the next section we will discuss Q-learning, which can be used to estimate

the optimal action value function Q∗, and some variants.

2.3.5 Bias and Variance

We have discussed two different methods to approximate Vπ without using a

model: Monte Carlo methods and TD learning. We have specified some cases

in which TD learning is preferred, such as in non-episodic tasks since Monte

Carlo waits until the end of an episode before updating. This does not mean

that TD learning is a fully superior algorithm in all cases.

Following Sutton and Singh (1994), we assume for the moment that the

MDP is acyclic. We have already mentioned that Monte Carlo estimates are

unbiased estimates for Vπ. This can easily be checked, because Vπ(s) is de-

fined as the expected value of the discounted future return when following

policy π from state s. Monte Carlo methods simply sample such trajectories,

and must therefore be unbiased. On the other hand TD learning introduces

bias by using the state value of the next state in its estimate. Especially when

this state has not been visited yet, this value will be contentless and arbitrary

and will therefore introduce a bias toward the arbitrary initial initialization

of the values.

On the other hand, Monte Carlo methods can suffer from considerable

variance. Each update uses a sample from the whole trajectory following the

state that is to be updated and the variances of the consecutive random re-

wards are therefore compounded. In other words, if we assume the variance

of each reward is σ2, then the variance of a Monte Carlo update is between σ2

2.3. MODEL-FREE VALUE LEARNING 37

and σ2/(1−γ)2, depending on how many steps the episode on average takes

from the state under consideration. For TD learning the variance is then

always σ2, since it only uses a single stochastic reward for its updates. More-

over, the bias of all state values decreases under TD learning, ensuring that

the updates become better over time. In contrast, in Monte Carlo methods

the expected target of the update has the same variance independent on the

number of updates that have already occurred. For an example of an MDP in

which this implies faster convergence for TD learning than for Monte Carlo

methods see for instance the recent book by Szepesvári (2010). However, in

deterministic settings, Monte Carlo will converge must faster than TD learn-

ing because then the variance is no problem and it is unbiased.

2.3.6 Eligibility Traces

Many machine learning methods feature a parameter that can affect the

trade-off between bias and variance, and reinforcement learning is no excep-

tion. This trade-off can be accomplished with a so-called eligibility trace (Sut-

ton, 1984, 1988). For each state, we store an eligibility parameter e t(s) that

indicates how recent this state was visited. The more recent, the higher the

eligibility to receive an update to its value. Whenever a state is visited, the

eligibility is increased. For all other states the eligibility is decreased. This

has the result that updates can be propagated back towards earlier states.

The parameter that regulates the decrease of the eligibility traces is denoted

by λ, where λ ∈ [0,1]. The decrease per time step of the eligibility trace is

then λγ.

If we set λ to zero, we obtain normal TD learning as outlined in the former

subsection. Therefore, this method is often referred to as TD(0). On the other

hand, if we set λ to one, we obtain Monte Carlo methods, with the difference

that the present algorithm can already start updating before an episode has

ended and is therefore also applicable in non-episodic tasks. For any λ ∈ [0,1],

TD(λ) can be shown to converge to Vπ for any fixed policy π with probability

one (Peng, 1993; Dayan and Sejnowski, 1994; Tsitsiklis, 1994; Jaakkola et al.,

1994).

The algorithm is shown in Algorithm 3. Since a TD learning agent is

localized in a state, we need a distribution that tells us the probability of

each state for being the starting state. We denote this distribution with I :

S → [0,1], such that I(s) is the probability that the agent starts an episode

in state s. For simplicity, we assume that this probability distribution is the

same for each episode in episodic tasks. Earlier, we discussed an alternative

way to model episodic tasks with γ = 0 on transitions to a terminal state. If

then time t is the last time step of an episode, this would automatically lead

to e t+1(s)=λγte t(s)= 0 for all s, as required.

In Algorithm 3 we abstract over when to stop updating. This may be when

38 CHAPTER 2. REINFORCEMENT LEARNING

Algorithm 3 TD(λ)

1: Given γ, π, I and an MDP to act on.

2: Initialize V , s∼ I, ∀s : e(s)= 0.

3: repeat

4: Choose a∼π(s)

5: Perform a, observe r and s′

6: δ= r+γV (s′)−V (s)

7: e(s)= 1

8: for all s ∈ S do

9: V (s)=V (s)+α(s)e(s)δ

10: end for

11: if s′ is terminal then

12: for all s ∈ S do

13: e(s)= 0

14: end for

15: s∼ I

16: else

17: for all s ∈ S do

18: e(s)=λγe(s)

19: end for

20: s= s′

21: end if

22: until sufficient convergence

the updates become sufficiently small or after some fixed number of updates.

In line 7, we set the trace to one. This method is called replacing traces.

Alternatively, we could add one to the trace: e t+1(st)= e t(st)+1. This method

is called accumulating traces. For a discussion on these two methods we refer

to the paper by Singh and Sutton (1996).

Although Algorithm 3 updates the state values after each step, one could

also wait until an episode has ended to do so. These updates are then called

offline update—or batch updates—whereas updates that are performed after

each step are called online updates. It can be shown that when offline updates

are used with a proper choice of learning rate, accumulating eligibility traces

with λ= 1 are equivalent to every-visit Monte Carlo and replacing traces with

λ= 1 are equivalent to first-visit Monte Carlo (Singh and Sutton, 1996).

Intuitively, the equivalence between TD(λ) and Monte Carlo can be seen

by looking at each consecutive update. First, the value of a state st gets the

normal TD update. This means it is updated towards r t+1+γVt(st+1). Then,

new information about the value of the next state st+1 is received. The value

of this state is updated, but we can also use this information to update the

value of st. Assume λ= 1 and assume αt(s) is equal to some fixed value α for

2.3. MODEL-FREE VALUE LEARNING 39

all s. Then, at time t+2 the value of st is updated as follows:

Vt+2(st)=Vt+1(st)+αe t+1(st)
(

r t+2+γVt+1(st+2)−Vt+1(st+1)
)

.

For simplicity, assume for a moment that the MDP is acyclic and that there-

fore the value of st+2 was not updated since st was updated and Vt+1(st+2)=
Vt(st+2). Likewise, assume Vt+1(st+1) = Vt(st+1). We can then make the fol-

lowing derivation:

Vt+2(st)=Vt+1(st)+αe t+1(s)
(

r t+2+γVt+1(st+2)−Vt+1(st+1)
)

=Vt+1(st)+αγ
(

r t+2+γVt(st+2)−Vt(st+1)
)

=Vt(st)+α
(

r t+1+γVt(st+1)−Vt(st)
)

+αγ
(

r t+2+γVt(st+2)−Vt(st+1)
)

=Vt(st)+α
(

r t+1−Vt(st)
)

+αγ
(

r t+2+γVt(st+2)
)

=Vt(st)+α
(

r t+1+γr t+2+γ2Vt(st+2)−Vt(st)
)

.

We see that this is equivalent to using a two-step update in place of a one-

step update as in TD(0). Repeating this procedure, we can arrive at the more

general

Vt+n(st)+α
(n

∑

m=1
γm−1r t+m+γmVt(st+m)−Vt(st)

)

.

It is possible to show the aforementioned equivalence between Monte Carlo

and TD(1) under weaker conditions, but we will not do so here. For general

λ ∈ [0,1] we can view the total eligibility trace update for a state as a mixture

of different n-step updates, where n ∈ {1,2, . . .} (Sutton and Barto, 1998). Each

n-step return is denoted as R
(n)
t , which is defined as

R
(n)
t =

n
∑

i=1
γi−1r t+i+γnVt(st+n) .

The total λ return is then

Rλ
t = (1−λ)

T
∑

i=1
λi−1R(n)

t ,

which is a weighted sum of the n-step returns with a normalizing factor of

(1−λ) and where T is the time step on reaching the terminal state, or T =
∞ for non-episodic tasks. For any value of λ ∈ [0,1], TD(λ) can be shown

to converge in the limit to Vπ with probability one (Peng, 1993; Dayan and

Sejnowski, 1994; Tsitsiklis, 1994; Jaakkola et al., 1994).

In practice, often intermediate values of λ such as λ= 0.8 or λ= 0.9 seem

to work best. These values apparently result in a good trade-off between bias

and variance in many problems. However, it is not simple to find a general

40 CHAPTER 2. REINFORCEMENT LEARNING

procedure to set λ, because the ideal setting is problem dependent. For in-

stance, in a fully deterministic problem, there is no variance in the updates

and the best method is simply to use a single Monte Carlo estimate and up-

date all the way towards this estimate with λ = 1 and α = 1. In other cases,

it is potentially better to use an adaptive trace parameter. The fixed λ pa-

rameter is then replaced with a time- and state-dependent parameter λt(s).

It makes sense to set this parameter to one the first time a state is visited

and then to decrease it as more information is gathered about the value of

this state. Adaptive traces have been explored by Sutton and Singh (1994).

This has not immediately resulted in algorithms that are superior in every

sense, since the algorithms that are proposed that have better performance

on the problems they are tested on are more computationally expensive than

ordinary TD(λ).

2.3.7 Fast Eligibility Traces

In Algorithm 3, on every time step the value of all states is considered. One

could implement this more efficiently by storing information on which states

have non-zero traces, but this means we could still update many different val-

ues on each step. In a worst-case setting, the algorithm makes O(|S|) updates
every time step.

Wiering and Schmidhuber (1998) have proposed a way to make these up-

dates more efficient by observing that you do not need to update a state value

until its value is actually needed again. Therefore, you can wait until updat-

ing the value of a state until a transition to this state occurs and its value is

needed to determine the temporal-difference error. Furthermore, the trajec-

tory that is used to update all state values is the same for all states. The only

difference is the time step on which the relevant state is visited. This im-

plies one can store the value of the whole trajectory of an episode in a single

variable.

The resulting algorithm stores two global values L t and Dt that are up-

dated as follows

L t+1 =λγL t ,

Dt+1 =Dt+δtL t ,

where δt = r t+1+γVt(st+1)−Vt(st) is the state TD error at time t. If the values

are initialized as follows: L0 = 1 and D0 = 0, it is then easily verified by

induction that

L t = (λγ)t ,

Dt =
t

∑

i=1
(λγ)iδi .

2.3. MODEL-FREE VALUE LEARNING 41

Algorithm 4 Fast TD(λ)

1: Given γ, π, I and an MDP to act on.

2: Initialize V , s∼ I, D = 0, L= 1, ∀s : e(s)= 0,d(s)= 0.

3: repeat

4: if s is terminal or λγL< ǫM then

5: for all s ∈ S do

6: V (s)=V (s)+α(s)e(s)
(

D−d(s)
)

7: d(s)= 0

8: e(s)= 0

9: end for

10: L= 1

11: D = 0

12: s∼ I

13: else

14: Choose a∼π(s)

15: Perform a, observe r and s′

16: δ= r+γV (s′)+γα(s′)e(s′)
(

D−d(s′)
)

−V (s)

17: L=λγL

18: D =D+Lδ

19: e(s)= 1/L

20: s= s′

21: V (s)=V (s)+α(s)e(s)
(

D−d(s)
)

22: d(s)=D

23: end if

24: until sufficient convergence

The value of V0(s0)+α0(s0)Dt is then equal to the value of Vt(s0) if Algorithm

3 was used. In other words, the same state value can be calculated without

having to update the value of s0 on every time step. Of course, this only holds

for s0. Suppose we want to know the update for s1. Then, we can also use the

value of Dt if we note that the total update for s1 is equal to the total update

for s0, except that δ0 is not used and the total return for s0 was multiplied

once more with λγ. Therefore, if Dt is the total error for s0, then (Dt−δ0)/(λγ)

is the total error for s1. Equivalently, this can be written as (Dt−D1)/L1. It

can be shown that this holds in general (Wiering and Schmidhuber, 1998),

and therefore

Vt(st′)=Vt′(st′)+αt′(st′)
Dt−Dt′

L t′
,

for all 0 ≤ t′ ≤ t. To be able to use this, we need to store Dt′ for all st′ . But

this is easy, since that is the value of D at the time step on which that state

is visited. Therefore, in addition to the updates to Dt and L t we store e t(st)=
1/L t+1 to use later to update the value of st and we store dt(s)=Dt if V (s) is

42 CHAPTER 2. REINFORCEMENT LEARNING

updated at time t.

Putting this together yields the fast TD(λ) algorithm, which is shown in

Algorithm 4. If one stores the states visited in an episode, one can compute

lines 5–9 at most for these states instead of for all states. If further the ac-

tion selection in line 14 operates in O(1), the whole algorithm uses only O(1)

computation per time step.

On line 16, we use a slightly different TD error. The reason for this is

that because we postpone the updates, the value of V (s′) will not yet have

been updated since the last visit to this state. However, we know what the

update for this state would be, so we simply add this to the update. This

is equivalent to first updating V (s′) with the updates until the current time

step, as was done in the original approach. To ensure that V (s) is up to date,

then another update must occur to the value of state s. The update occurs at

line 21. The parameter ǫM on line 4 ensures that L never falls below machine

precision, which will otherwise often inevitably happen when λγ< 1.

We conclude this section by noting that the model-free Monte Carlo and

temporal-difference algorithms that we have discussed approximate Vπ. In

most cases, we will be more interested in the optimal values V∗ or Q∗, or

more specifically, in the optimal policy π∗. In the next section, we discuss

methods that can be used to approximate the optimal policy.

2.4 Learning Action Values

In this section, we discuss ways to learn the values of actions. In some cases,

we may be interested in the value function Qπ of a given policy π. However,

in many cases we will be more interested in the optimal value for each action

Q∗(s,a). If the action value functionQ∗ is known, it is easy to find the optimal

policy by simply selecting the highest valued action in each state.

We will start with a short revision of dynamic programming for action

values and then we will move to value-based model-free temporal-difference

algorithms, which will be the main topic of this dissertation.

2.4.1 Dynamic Programming For Action Values

As explained in Section 2.2, dynamic programming techniques adapt Bellman

equations to updates that are applied iteratively. If a single application of

this update is interpreted as an operator T , this procedure is guaranteed

to find the fixed point if T is a contraction mapping. If the discount factor

γ is smaller than one, T
π as defined in equation (2.9) and T

∗ as defined

in equation (2.11) are indeed such contraction mappings and applying these

operators iteratively respectively yields the fixed points Vπ and V∗.

Similar to state values, we define operators that implement the Bellman

equations for action values. The operator T
π : RS×A → R

S×A with fixed point

2.4. LEARNING ACTION VALUES 43

Qπ is defined as

(T πQ)(s,a)=
∑

s′
Ps′

sa

(

Rs′

sa+γ
∑

a′
π(s′,a′)Q(s′,a′)

)

. (2.20)

Similarly, we can define T
∗ : RS×A → R

S×A as the operator with fixed point

Q∗:

(T ∗Q)(s,a)=
∑

s′
Ps′

sa

(

Rs′

sa+γmax
a′

Q(s′,a′)

)

. (2.21)

We use the same notation as for the state value operators with fixed points

Vπ and V∗. These operators are very similar and it will be clear from the

context which one is intended.

It is easy to show that T
∗ is a contraction mapping with fixed point Q∗.

First we start by confirming that T
∗Q∗ = Q∗ is simply the Bellman opti-

mality equation for action values, and therefore Q∗ is a fixed point for T
∗.

Furthermore:

‖T ∗Q−T
∗Q′‖ =max

s∈S
max
a∈A(s)

∣

∣(T ∗Q)(s,a)− (T ∗Q′)(s,a)
∣

∣

=max
s∈S

max
a∈A(s)

∣

∣

∣

∣

∣

∑

s′
Ps′

sa

(

γmax
a′

Q(s′,a′)−γmax
a′

Q′(s′,a′)

)

∣

∣

∣

∣

∣

≤max
s′∈S

∣

∣

∣

∣

γmax
a′

Q(s′,a′)−γmax
a′

Q′(s′,a′)

∣

∣

∣

∣

≤max
s∈S

max
a∈A(s)

γ
∣

∣Q(s,a)−Q′(s,a)
∣

∣

= γ‖Q−Q′‖ .

This holds for all Q, Q′. Since T
∗Q∗ =Q∗, this implies

‖T ∗Q−Q∗‖ = ‖T ∗Q−T
∗Q∗‖ ≤ γ‖Q−Q∗‖ ,

which shows the convergence of Q to Q∗ under the max norm with a factor of

at most γ when applying operator T
∗. This means we could implement value

iteration with action values to approximate Q∗, with ensured convergence in

the limit.

Similarly, T
π is a contraction mapping with factor γ and fixed point Qπ.

This can be used as the policy evaluation step in a policy iteration algorithm

with action values. The policy improvement step can then be accomplished by

using a policy that is greedy in the action values. A greedy policy is defined

as follows:

Definition 2.14. [Greedy policy] An action a is greedy in a state s for an

action value function Q if Q(s,a) = maxa′Q(s,a′). A policy π is greedy when

in all states s the action selection probability π(s,a) is equal to zero for all

non-greedy actions.

44 CHAPTER 2. REINFORCEMENT LEARNING

Multiple actions may be greedy in a given state. Any policy that always

selects one of these actions is called greedy, regardless of how the probabilities

of selecting these multiple greedy actions are distributed. Naturally, we do

require that π is a proper policy distribution in the sense that in all states
∑

a∈A(s)π(s,a)= 1.

Although it is convenient to have action values, dynamic programming

with action values suffers from the same limitations as dynamic program-

ming with state values. The most important of these are the requirement of a

model and the computational requirements for larger state and action spaces.

Similar to the state values in Section 2.3, we can transform the Bellman

equations for action values into iterative, sampled updates. For clarity, we re-

peat the Bellman equations using the expectancy operator for bothQ∗ andQπ

and both for a one-step lookahead and for a full episode lookahead, resulting

in the following three equations:

Qπ(s,a)=E

{

T−t
∑

i=1
γi−1r t+i|st = s,at = a,π

}

, (2.22)

Qπ(s,a)=E
{

r t+1+γQπ(st+1,at+1)|st = s,at = a,π
}

, (2.23)

Q∗(s,a)=E

{

r t+1+γmax
a′

Q∗(st+1,a
′)|st = s,at = a,π

}

. (2.24)

We do not specify an equation for a backup over a whole episode for Q∗, since

this cannot be sampled, unless the policy is greedy in which case it is equiva-

lent to (2.22).

2.4.2 Monte Carlo Methods and Action Values

Equation (2.22) can be sampled with Monte Carlo methods, similar to how

we discussed in the case of state values. The difference with the algorithm

for state values is that the result is an approximation for Qπ rather than

Vπ. The disadvantage in this case of using action values is that all actions

that are not selected in an episode are not updated, which implies that if on

average there are M actions per state, wemay need M times as many episodes

to reach the same accuracy as when using state values. This difference in

convergence rate is additionally dependent on whether there are actions with

a zero probability of being selected, which can therefore effectively be ignored,

and whether there are actions with low probability of being selected, which

might take quite long to be approximated with reasonable accuracy.

2.4.3 Temporal-Difference Learning: Q-learning and Sarsa

We now turn to consider temporal-difference algorithms that can be distilled

from the Bellman equations (2.23) and (2.24). First we consider the update

2.4. LEARNING ACTION VALUES 45

corresponding to equation (2.23). We assume Qt is an increasingly good ap-

proximation for Qπ. Then, we can sample equation (2.23) and update using a

learning rate αt(st,at) ∈ [0,1] to average out stochastic noise to get

Qt+1(st,at)= (1−αt(st,at))Qt(st,at)+αt(st,at)
(

r t+1+γQt(st+1,at+1)
)

. (2.25)

This update was first investigated by Rummery and Niranjan (1994) and is

known under the name Sarsa, because it uses an experience sample consist-

ing of the tuple (st,at, r t+1, st+1,at+1) for each update. Similar to the conver-

gence of TD learning to Vπ, it can be shown that this algorithm converges

to Qπ, provided that all actions are selected according to a fixed policy π and

some technical restrictions on the learning rates. For this reason Sarsa is

called an on-policy algorithm.

Similarly, we can assume Q is an increasingly good approximation of Q∗

and sample (2.24) to get the Q-learning update which was first proposed by

Watkins (1989):

Qt+1(st,at)= (1−αt(st,at))Qt(st,at)+αt(st,at)
(

r t+1+γmax
a

Qt(st+1,a)
)

.

(2.26)

Q-learning can be shown to converge to the optimal value functionQ∗ (Watkins

and Dayan, 1992; Jaakkola et al., 1994; Tsitsiklis, 1994; Littman and Szepesvári,

1996). The conditions for convergence are that in every state every action is

eventually selected an infinite amount of times and the learning rates are

chosen such that

∀s,a :
∞
∑

t=0
αt(s,a)=∞ ,

∞
∑

t=0
(αt(s,a))

2 <∞ . (2.27)

In a sense these requirements are minimal, since any algorithm must adhere

to similar requirements in stochastic environments in order to converge.

Q-learning learns about the optimal policy regardless of the policy that is

being followed. For this reason Q-learning is called off-policy, which means

it learns about one policy while following another policy. Of course, if the

environment is stochastic, Q-learning will need to sample each action in every

state an infinite number of times to fully average out the noise, but in many

cases the optimal policy is learned long before the action values are highly

accurate. If the environment is deterministic, it is optimal to set the learning

rate equal to one. Then, Q-learning reduces to a form of value iteration, since

it performs an asynchronous update equal to (2.21).

If one uses Sarsa with a policy that slowly becomes greedy, Sarsa can

also be shown to converge to Q∗ (Singh et al., 2000). We will discuss the

proof for this statement in the next section, since we will use it later to prove

convergence of other temporal-difference algorithms.

46 CHAPTER 2. REINFORCEMENT LEARNING

2.4.4 Convergence

In some cases, we will prove that an algorithm converges to some fixed point.

For instance, it is good to know if it can be proven that the value function

converges to the optimal value function for a certain algorithm. To prove such

statements, we will use the following lemma that was proposed by Singh et al.

(2000). This lemma applies to stochastic processes, such as the Markov chains

that are obtained by interaction of an algorithm with an MDP. More general

results have been presented in the literature (Szepesvári and Littman, 1999;

Bertsekas, 2007), but the lemma below suffices for our purposes.

Lemma 2.1. Consider a stochastic process (ζt,∆t,Ft), where ζt,∆t,Ft : X → R

satisfy the equations

∆t+1(xt)= (1−ζt(xt))∆t(xt)+ζt(xt)Ft(xt) ,

where xt ∈ X and t= 0,1,2, Let Pt be a sequence of increasing σ-fields such

that ζ0 and ∆0 are P0-measurable and ζt,∆t and Ft−1 are Pt-measurable, t≥ 1.

Assume that the following hold:

1. the set X is finite,

2. ζt(xt) ∈ [0,1] ,
∑

t ζt(xt)=∞ ,
∑

t(ζt(xt))
2 <∞ w.p.1 and ∀x 6= xt : ζt(x)= 0,

3. ||E{Ft|Pt}|| ≤ κ||∆t||+ ct, where κ ∈ [0,1) and ct converges to zero w.p.1,

4. Var{Ft(xt)|Pt}≤K(1+κ||∆t||)2, where K is some constant,

where || · || denotes a maximum norm. Then ∆t converges to zero with proba-

bility one.

For a proof of this and similar lemmas, we refer to previous work (Jaakkola

et al., 1994; Littman and Szepesvári, 1996; Szepesvári and Littman, 1999;

Singh et al., 2000; Bertsekas, 2007).

The idea of the lemma is usually to apply it with X = S×A, ζ=α and ∆=
Q−Q∗. The maximum norm specified in the lemma can then be understood

as satisfying the following equation:

‖∆t‖ =max
s

max
a

|Qt(s,a)−Q∗(s,a)| . (2.28)

Often, the first, second and fourth assumption are easily adhered to, and

to apply the lemma we only need to show that the contraction in the third

assumption holds. We will see examples of this later in this dissertation.

2.4. LEARNING ACTION VALUES 47

2.4.5 Eligibility Traces

Both Sarsa and Q-learning can be extended with eligibility traces. If Sarsa

is used to approximate Qπ, convergence to this value function can be shown

quite straightforwardly for general λ ∈ [0,1]. For λ= 1, the algorithm reduces

to action value-based Monte Carlo, as briefly discussed in Section 2.4.2. For

λ = 0, the algorithm is the Sarsa algorithm described above. For intermedi-

ate λ, an action value is updated with a mixture of multi-step returns. In

Singh and Sutton (1996) it was suggested to implement replacing traces with

e t(st,at) = 1 and e t(st,a) = 0 for all a 6= at. Accumulating traces simply use

e t(st,at)= e t(st,at)+1.

For Q-learning, eligibility traces are less straightforward. There exist at

least three variants. All variants compute something like

∀s ∈ S,a ∈ A(s) : Qt+1(s,a)=Qt(s,a)+αt(s,a)e t(s,a)δt ,

but they differ in the definition of δt and in the update to e t(s,a). A naive

method simply uses

δt = r t+1+γmax
a

Qt(st+1,a)−Qt(st,at) ,

for all (s,a). Another variant is Watkins’ Q(λ) (Watkins, 1989), that was the

first method to be proposed. It performs the same update as the naive meth-

ods, but sets all the traces in the current state to zero if an exploratory action

is chosen. This ensures that Q-learning only uses trajectories that follow the

greedy policy, but this does limit the use of the traces to speed up learning,

since all traces are cut short when an exploratory action is taken. The last

variant we discuss was proposed by Peng and Williams (1996). This variant

uses a different TD error δ′t for all state-action pairs except the current one.

This update for this version is

∀s ∈ S,a ∈ A(s), (s,a) 6= (st,at) : Qt+1(s,a)=Qt(s,a)+αt(s,a)e t(s,a)δ
′
t ,

where

δ′t = r t+1+γmax
a

Qt(st+1,a)−max
a

Qt(st,a) .

The current state-action value Qt(st,at) is updated simply according to equa-

tion (2.26). This update makes intuitive sense, since the sum of consecutive

TD errors then telescopes if λ = 1 and the maximum action in state st does

not change between t and t+1, for instance because updates are deferred un-

til later such as when using offline updates. Then the method yields similar

results as Monte Carlo update. This telescoping does not occur for naive Q(λ).

2.4.6 Exploration Techniques

So far we have stated that action values can be used to construct a policy,

but we have not discussed in any detail how such a policy is constructed. In

48 CHAPTER 2. REINFORCEMENT LEARNING

definition 2.14, we defined the greedy policy as the policy that chooses the

highest valued action in each state. Therefore, this policy can be constructed

by setting the probability of all actions that do correspond to the highest ac-

tion value to zero. However, this policy is of limited use in combination with

a model-free algorithm, since the samples it yields will usually be limited to

a small part of the state space. In general, one should balance the exploita-

tion of the knowledge obtained so far, which can be done by choosing greedy

actions, and the exploration of the state and action space in order to find new

interesting actions.

So, we need policies that explore. The most extreme example is the ran-

dom policy, which selects a random action on each step. One way to regu-

lated the trade off between exploration and exploitation is to use a parameter

ǫ ∈ [0,1], which represents the probability of using the random policy. Then a

greedy action is selected with probability (1− ǫ). This yields ǫ-greedy explo-

ration, which is defined as follows:

Definition 2.15 (ǫ-greedy). A policy is ǫ-greedy if it selects a random action

with probability ǫ ∈ [0,1] and selects a greedy action with probability (1−ǫ).

A requirement for the convergence of some algorithms is that the explo-

ration policy is greedy in the limit with infinite exploration. These properties

can be formalized as follows.

Definition 2.16 (Greedy in the limit). A policy πt is greedy in the limit with

respect to some action value function Qt if for all states s it holds that

lim
t→∞

∑

a

πt(s,a)Qt(s,a)=max
a

Qt(s,a) .

Definition 2.17 (Infinite exploration). A policy πt ensures infinite exploration

if for all s and a it holds that
∑∞

0 πt(s,a)=∞.

Note that a policy can be greedy in the limit for a stationary value func-

tionQ, but also for a non-stationary value functionQt. An example of a family

of policies that is greedy in the limit with infinite exploration in a finite er-

godic MDP is an ǫ-greedy policy where ǫt = 1/nt(st)
x, where nt(st) denotes the

number of times state st was visited in the first t time steps and x ∈ (0,1].

In practice, ǫ-greedy exploration works fine, but not great. The main prob-

lem is that it does not differentiate between potentially good actions that are

not greedy at the moment and actions that are known to be worthless. A bet-

ter type of exploration can take into account the values of different actions.

An action with a larger value should have a larger probability of being se-

lected and actions that are known to have very low values may be neglected.

One way to do this is to use a so-called Boltzmann distribution that yields the

following policy:

πt(s,a)=
eQt(s,a)/τ

∑

b e
Qt(s,b)/τ

.

2.4. LEARNING ACTION VALUES 49

This definition fulfills the desired properties and requirements we have of a

policy: the action selection probabilities sum to one and higher values cor-

respond to larger selection probabilities. The τ parameter is called the tem-

perature and regulates how greedy the policy is. When τ decreases towards

zero, the policy becomes more greedy and when it increases toward infinity,

the policy becomes more random.

A practical issue associated to consider with the implementation of Boltz-

mann exploration involves the possibility of numerical problems in someMDPs.

When τ is fairly low, Qt(s,a)/τ may become quite large. For instance, for

Qt(s,a) = 10 and τ = 0.1, the value of eQt/τ is already larger than 1043. To

distinguish between actions with fairly close values, the value of τ must be

small enough, so it is not an option simply to always set τ above some thresh-

old. Additionally. in some problems the action values may be much larger

still. However, the numerical problems can quite easily be avoided with use

of the following observation:

exi /y

∑

j e
x j /y

=
ez/y

ez/y

exi /y

∑

j e
x j /y

=
exi /y+z/y

∑

j e
x j /y+z/y

=
e(xi+z)/y

∑

j e
(x j+z)/y

,

which holds for all xi, y and z. This implies that if we add some value to all

action values, the policy stays unchanged. It makes sense to use the max-

imal action value for this, or some constant if the range of action values is

approximately known. The adapted Boltzmann exploration then becomes

πt(s,a)=
e(Qt(s,a)−maxcQt(s,c))/τ

∑

b e
(Qt(s,b)−maxcQt(s,c))/τ

. (2.29)

The range of e(Qt(s,a)−maxaQt(s,a))/τ is (0,1] compared to (0,∞) for the unadapted

values of eQt(s,a)/τ. Therefore, with this adaptation the numerical issues are

prevented.

As an illustration of this problem and our proposed solution for it, as-

sume that we are in a state with two actions that the discounted cumulative

return for the optimal action is equal to Q(s,a1), while the discounted cumu-

lative return for the suboptimal action is equal toQ(s,a2), where by definition

Q(s,a1) >Q(s,a2). Assume for a moment that we have access to these exact

values or to fairly good approximations therefore and we are using Boltzmann

exploration. The probability of selecting a1 is then equal to

π(s,a1)=
eQ(s,a1)/τ

eQ(s,a1)/τ+ eQ(s,a2)/τ
.

Suppose we want to select the optimal action with a probability of at least p.

Then, the value of τ should be at most

τ≤
Q(s,a1)−Q(s,a2)

log(p)− log(1− p)
.

50 CHAPTER 2. REINFORCEMENT LEARNING

If Q(s,a1) = 100 and Q(s,a2) = 99, this means that τ ≤ 1/log(9) ≈ 0.455. But

then eQ(s,a1)/τ ≥ e219 ≥ 1095. If we want the policy to become greedy, the value

of τ needs to decrease even further and quickly the values used in the naive

Boltzmann implementation can become huge.

In contrast, our alternative solution in equation (2.29) uses

e(Q(s,a1)−maxaQ(s,a))/τ = e0 = 1 ,

for any desired greediness of the policy and for any action values. Using this

formulation, it becomes more likely that the value of the suboptimal action

falls below machine precision. However, this only happens if the probability

of selecting this action falls below this precision, so this is not a problem at

all in practice.

2.5 Conclusion

In this chapter, we have introduced a number of core topics in reinforcement

learning which will be important in the rest of this dissertation. These in-

clude dynamic programming, Monte Carlo methods and temporal-difference

learning both for prediction and control. The problem of prediction is defined

as the problem of finding the value Vπ or Qπ of a given policy. The prob-

lem of control is the problem of finding the optimal policy π∗, which can be

accomplished by finding the optimal action value function Q∗.

In the next chapters, we will continue with model-free temporal-difference

algorithms, such as Q-learning and Sarsa. We will also present some new al-

gorithms and will discuss the properties and merits of all these approaches.

However, in Chapter 3 we first discuss an estimation bias that occurs in op-

timization algorithm such as Q-learning. This discussion is later used to ex-

plain why Q-learning can suffer from large overestimation of the action val-

ues, which was not realized before.

CHAPTER 3

ESTIMATION BIASES IN MAXIMIZATION

Reinforcement learning for control, the main topic of this dissertation, is con-

cerned with finding the best action in every situation. This naturally implies

some maximization process is involved. In some cases, this maximization is

explicit, such as in the value iteration algorithm depicted in Algorithm 1 in

Chapter 2 that uses the optimal Bellman operator T
∗. With explicit max-

imization, we mean that the algorithm at some point selects the maximal

element from some set. Other examples of explicit maximization in reinforce-

ment learning include the Q-learning update in equation (2.26) and (ǫ-)greedy

policies, where the greedy action is determined by a maximization over the

values of the available actions.

It is straightforward to select the maximum from a finite set with deter-

ministic values. However, if one needs the maximal expected value from a

set of random variables and the only available information is a set of noisy

estimators for these random variables, the estimation process can be biased.

In this chapter we discuss two such biases. The first bias occurs when one

simply uses the maximum from the set of estimates as an estimate for the

maximal expected value. This bias is positive, which implies that one can

expect to overestimate the actual maximal expected value. The second bias

occurs when one uses a second set of estimates to get an unbiased approxi-

mation for the value of the maximal element from the first set. We will show

that this bias is negative. This last result seems to be new. In Chapter 4, we

will use these results to show why Q-learning overestimates the action values

by large amounts in some settings. In that chapter we will also construct the

Double Q-learning algorithm, a variant of Q-learning that uses the second

approach and will therefore in some cases underestimate the action values.

3.1 Introduction

In this chapter, we analyze two methods to find an approximation for the max-

imum expected value of a set of random variables. The first method, which

we call the single estimator, simply uses the maximum of a set of estimators

as an approximation. A method that uses this approach to approximate the

value of the maximum expected value will be positively biased. This result

in itself is not new, having been discussed in settings that assumes human

agents, such as economics (Van den Steen, 2004) and decision making (Smith

and Winkler, 2006). It is a bias related to the so called Winner’s Curse in

51

52 CHAPTER 3. ESTIMATION BIASES IN MAXIMIZATION

auctions (Capen et al., 1971; Thaler, 1988) and as we will see, it can be shown

to follow from Jensen’s inequality (Jensen, 1906).

The second method, which we call the double estimator, uses two esti-

mates for each variable and can therefore uncouple the selection of an estima-

tor and its value. Although this method is simple to implement, we are aware

of only one previous paper that discusses a similar approach in the context of

reinforcement learning (Mannor et al., 2007). In that paper, a model-building

approach is discussed that approximates the reward function R and the state

transition function P from observed experiences in order to approximate the

value function for MDPs. These estimates will contain noise. Then, when in

the control case the value of the maximal action is considered, a similar bias

occurs as the one we will shortly discuss in the single estimator. To solve this

issue, Mannor et al. (2007) propose to split the experiences used to update the

model in a calibration set and a validation set. It is claimed this removes the

bias. However, we will shortly prove that this is not the case. Rather, instead

of a positive bias, a negative bias can result from this approach. We will prove

this below in Lemma 3.3.

The double estimator approach that we will discuss is similar to the prac-

tice of using a validation set as part of the training procedure in many ma-

chine learning applications. The performance on such a validation set is an

unbiased estimate for the actual performance of the algorithm. However, in

the context of maximization, the estimate obtained by the double estimator

is not an unbiased estimate for the maximum of a stochastic set, as we will

show later in this chapter. We do not know of any earlier work that discusses

this bias.

In Section 3.2, we will first introduce some notation that will be useful

later on. In Sections 3.3 and 3.4, we will discuss the single and double estima-

tor. The remaining sections of this chapter will compare the two approaches

and examine how the biases are dependent on the number of samples and

the number of variables. In general, Q-learning is slightly better in fully de-

terministic enviroments, but in Chapters 4 and 5 we will see that in noisy

settings Double Q-learning often performs better. Because the double estima-

tor approach that we discuss in this chapter is not unbiased, there also exist

MDPs in which the related Double Q-learning algorithm performs less well

because of the estimator bias. However, we will see in this chapter that the

bias of the double estimator is often less than the bias of the single estimator

approach that Q-learning is based on. As a result, we will see that in many

settings Double Q-learning performs far better than Q-learning.

3.2. PRELIMINARIES 53

3.2 Preliminaries

Let Y = {Y1, . . . ,YM} denote a set of M random variables. Throughout this

chapter, we will use M to stand for the size of a set of random variables. When

applicable, we use N to denote the number of samples that are observed. The

main general goal is to determine the maximal expected value of the set Y :

max
i

E{Yi} .

Without knowledge of the functional form and parameters of the underlying

distributions of the variables in Y , it is impossible to determine this value

exactly. However, we can approximate this value by using sample estimate to

construct approximations for E{Yi} for all i.

3.2.1 Samples and Estimators

Let X =
⋃M

i=1 X i denote a set of samples, where X i is the subset containing

samples for the variable in Yi. We assume that the samples in X i are inde-

pendent and identically distributed (iid) for all i. Furthermore, we assume

that each sample in x ∈ X i is an unbiased estimate for Yi, such that

E{x|x ∈ X i}=E{Yi} .

In the literature, the expected value is often called the mean and denoted

with µ. We will use the same convention here, such that for all i

µi =E{Yi} .

Unbiased estimates for the expected values can be obtained, simply by com-

puting the sample average for each variable:

µi =E{mi}≈mi(X)
def=

1

|X i|
∑

x∈X i

x .

Here mi denotes an unbiased estimator for variable Yi and mi(X) denotes the

estimate resulting from this estimator for a given set of samples X . In other

word, mi(X) is an unbiased noisy estimate for µi.

For Q-learning, the samples we will consider are the action valuesQt(s,a).

In a reinforcement learning setting, it may seem like a strong assumption

that the samples are iid, but we stress that one should interpret Qt(s,a) as

a sample for the action value at time t under the assumption of a certain

algorithm. If the experiment is run multiple times, these action values can

indeed be interpreted as iid samples for the expected value of the action value

at this time step, given the problem and the algorithm that is used to update

the values.

54 CHAPTER 3. ESTIMATION BIASES IN MAXIMIZATION

The approximation of mi is unbiased since every sample x ∈ X i is itself

an unbiased estimate for the value of µi. If for simplicity we assume a fixed

sample size Ni = |X i|, this follows easily from the linearity of the expectancy

operator:

E{mi}=E

{

1

Ni

∑

x∈X i

x

}

=
1

Ni

∑

x∈X i

E { x|x ∈ X i}=
1

Ni

Ni
∑

k=1
µi =µi .

Any error in the approximations therefore results solely from the variance in

the estimators. As we obtain more samples the variance of the estimators will

decrease and therefore the error will decrease as well. For simplicity, we will

usually assume that X i is non-empty for all i, such that Ni > 0.

As a special case, we might have a single estimation sample xi for each

element in Y . Then, we can simply use the value of each sample as an un-

biased estimate for value of the corresponding element, such that mi(X)= xi
and:

E{xi}=µi .

We will consider this special case when we discuss the reinforcement learning

setting in Chapter 4.

3.2.2 Optimal and Maximal Estimators

We define an optimal estimator as an estimator that corresponds to a random

variable that has the highest expected value.

Definition 3.1. [Optimal estimators] An estimator m j and the corresponding

random variable Y j with expected value µ j = E{Y j} are called optimal for a

given set of random variables Y if µ j = maxiµi. An index j ∈ {1, . . . ,M} is

called optimal if the corresponding random variable Y j is optimal. The set of

optimal indices is denoted by O and is thus defined by

O
def=

{

j

∣

∣

∣

∣

µ j =max
i

µi

}

. (3.1)

Note that there are potentially multiple optimal estimators and that the

optimality of an estimator is independent on the set of samples X and the

corresponding values of the estimates mi(X).

The problem of course is that it is usually unknown which estimators are

optimal. Rather, we can observe which estimator has the highest value of all

estimators. For a given set of samples, an estimator is called maximal if its

estimate is at least as large as all the other estimates.

Definition 3.2. [Maximal estimators] An estimator m j is called maximal for

a given set of samples X if the corresponding estimate m j(X) is at least as large

as all the other estimates, i.e. if m j(X)≥mi(X) for all i. An index j ∈ {1, . . . ,M}

3.2. PRELIMINARIES 55

is called maximal if the corresponding estimator is maximal and the set of

maximal indices is denoted by

M (X)
def=

{

j

∣

∣

∣

∣

m j(X)=max
i

mi(X)

}

. (3.2)

Note and that an optimal estimator is not necessarily a maximal estima-

tor and a maximal estimator is not necessarily an optimal estimator. Further-

more, in contrast with the set of optimal indices, the set of maximal indices is

dependent on the set of samples.

If any optimal index has a non-zero a priori probability of not being maxi-

mal, this property holds for all optimal estimators. Equivalently, there exists

an optimal estimator that is maximal for any set of samples if and only if all

optimal estimators are maximal for any set of samples. This result will be

used later to show in which cases the maximal estimate is a biased estimator

for the maximal expected value. We prove this in the following lemma.

Lemma 3.1. Let m = {m1, . . . ,mM} denote a set of unbiased independent es-

timators for a set of independent random variables Y = {Y1, . . . ,YM} with ex-

pected values µ1, . . . ,µM , such that E{mi} = µi = E{Yi}, for all i ∈ {1, . . . ,M}.

Then, if at least one of the optimal estimators is not maximal for at least one

possible sample set, then all optimal estimators are not maximal for at least

one possible sample set, i.e.

(∃ j ∈O : P(j ∈M)< 1)↔ (∀ j : P(j ∈M)< 1) ,

where the probabilities span over all possible sample sets.

Equivalently, an optimal estimator is maximal for all possible sample sets

if and only if all optimal estimators are maximal for all possible sample sets.

(∃ j : P(j ∈M)= 1)↔ (∀ j ∈O : P(j ∈M)= 1) .

The proof for Lemma 3.1 is given in Section 3.10.1.

3.2.3 Probability Distributions

We will use the following notations, regarding the probability distributions

of the random variables: Di denotes the measurable domain of the random

variable Yi, f i :Di →R denotes the corresponding probability density function

(PDF) and Fi :Di → [0,1] denotes the cumulative distribution function (CDF)

of this PDF. Often, one can assume that the domain Di is the set of real-values

numbers R. Then, the CDF of Yi is given by

Fi(x)=
∫x

−∞
f i(y) dy , (3.3)

56 CHAPTER 3. ESTIMATION BIASES IN MAXIMIZATION

and the expected value of Yi is given by

µi =
∫∞

−∞
x f i(x) dx .

The maximum expected value that we are looking for can be expressed in

closed form in terms of the underlying PDFs as

max
i

µi =max
i

∫∞

−∞
x f i(x) dx , (3.4)

where, as noted before, in general the problem is that the distributions f i are

not known.

Later in this chapter, we will consider some specific distributions such as

the uniform distribution u(x, y, z) and the Gaussian distribution g(x,m,σ2).

These PDFs are defined by

u(x, y, z)=
{

1
z−y

if y≤ x≤ z ,

0 otherwise ,
(3.5)

g(x,m,σ2)=
1

p
2πσ

e−(x−m)2/(2σ2) . (3.6)

The corresponding CDFs will be denoted U(x, y, z) and G(x,m,σ2), respec-

tively. Their definitions follow from (3.3) and the definitions of the corre-

sponding PDFs.

The expected value of an estimator is defined over all possible sets of sam-

ples

E{mi}=
∫

P (D i)
P(X)mi(X) dX ,

where P (Di) denotes the power set of the domain Di and P(X) is the prob-

ability on observing sample set X . We will often discuss the expected value

of an estimator, given an unknown set of samples of a given size. Then, the

integral that defines the expected value is assumed to span over the family of

all possible sets of samples of this size. To avoid cluttering the notation, we

use the same notation E{mi} in this case and assume the size of the sample

set is clear from the context. As discussed, for any non-empty set of samples

X i, we have E{mi}= µi where we assume the estimator mi(X) is the sample

average of the set X i. The PDF and CDF of the ith estimator will be denoted

f m
i

and Fm
i
. These functions depend on the size of the sample set X i, which

will be assumed to be clear from the context. In general, f m
i

is equal to f i
only when only a single sample has been obtained for the random variable Yi.

As the number of samples increases, by the central limit theorem (de Moivre,

1718; Laplace, 1810; Liapunov, 1901) the variance of f m
i

will become smaller

and the distribution will become more strongly peaked close to µi. We will

investigate the effect of this for a specific setting in Section 3.7.

The next two sections give two methods that use estimators to approxi-

mate the maximum expected value.

3.3. THE SINGLE ESTIMATOR 57

Figure 3.1: This figure depicts some arbitrary function and noisy unbiased

samples of this function. The horizontal solid line runs through the largest

noisy sample. The horizontal dotted line runs through the maximum of the

function, which is the maximal expected value. For this sample, the maximal

noisy sample is clearly much larger than the maximum expected value.

3.3 The Single Estimator

One fairly obvious way to approximate the maximum expected value maxiµi

is to simply use the value of the maximal estimator:

max
i

µi =max
i

E{mi}≈max
i

mi(X) . (3.7)

Because we will contrast this method later with a method that uses two esti-

mators for each variable, we call this method the single estimator.

The single estimator method is often used in practice. For instance, Q-

learning uses this method to approximate the value of the next state by max-

imizing over the estimated action values in that state. In this case, the action

values in the next state can be interpreted as random variables that are de-

pendent on the MDP and the past experiences. For a given MDP and Monte

Carlo chain of experiences, the action values may differ from one run of the

experiment to the next if the MDP contains noise. Then, the action values

can be interpreted as unbiased samples of random variables that represent

the expected action values for Q-learning on the given MDP and time step.

This setting and the resulting overestimation that Q-learning can experience

is discussed at length in Chapter 4. In this section, we discuss the single

estimator approach in general.

3.3.1 The Overestimation of the Single Estimator

We will formally discuss and prove the overestimation bias of the single esti-

mator. To get an intuition, observe Figure 3.1. This figure shows some arbi-

trary function and noisy samples of many points of this function. These noisy

samples were created simply by adding Gaussian noise to the function at all

the sampled points. Even though each sample is unbiased, the maximum

sample will often be larger than the maximum of the function.

58 CHAPTER 3. ESTIMATION BIASES IN MAXIMIZATION

The maximal estimator maximi(X) is distributed according to some PDF

f mmax that is dependent on the PDFs of the estimators f m
i
. To determine this

PDF, consider the CDF Fm
max(x), which gives the probability that the maxi-

mum estimate is lower or equal to x. This probability is equal to the proba-

bility that all the estimates are lower or equal to x:

Fm
max(x)

def= P(max
i

mi ≤ x)=
M
∏

i=1
P(mi ≤ x)

def=
M
∏

i=1
Fm
i (x) .

This means that the PDF of the maximal estimate is equal to

f mmax(x)
def=

d

dx
Fm
max(x)=

d

dx

M
∏

i=1
Fm
i (x)=

M
∑

i=1
f mi (x)

M
∏

j 6=i

Fm
j (x) .

It is straightforward to show that the maximal estimate maximi(X) for a set

of samples X is an unbiased estimate for the expected value of the maximal

estimator E{maximi}. However, we are interested in the maximal expected

value maxiE{mi} = maxiµi, where the order of the max operator and the

expectancy operator is the other way around. Since the max operator is non-

linear, these quantities are in general not equal. Therefore, the maximal

estimator maximi(X) is a biased estimate for maxiµi. The expected value of

the approximation by the single estimator is given by

E{max
i

mi}=
∫∞

−∞
x f mmax(x) dx =

M
∑

i=1

∫∞

−∞
x f mi (x)

M
∏

j 6=i

Fm
j (x) dx . (3.8)

Indeed, this closed form expression is quite different from the maximal ex-

pected value, as shown in (3.4). We will prove formally that the value in (3.8)

is larger or equal to the maximal expected value in (3.4) and we will give

general conditions under which it is strictly larger, but first we give a small

example.

Consider two standard dice. Each die yields an random integer between

1 and 6 with equal probabilities, resulting in an expected value of 31
2 . We

throw both dice and examine the value for the highest die. There is only

a 1 in 36 probability that both dice are equal to 1, but in 11 out of the 36

possible combinations the maximum die will be 6. If we denote the outcome

of both dice as random variables Y1 and Y2, this indicates that the expected

maximum value E{max{Y1,Y2}} is larger than the maximum expected value

max{E{Y1},E{Y2}}. Because the exact probabilities are known, we can easily

calculate the difference:

E{max{Y1,Y2}}= 1
1

36
+2

3

36
+ . . .+6

11

36
= 4

17

36

> 3
1

2
=max{E{Y1},E{Y2}} .

3.3. THE SINGLE ESTIMATOR 59

In the following lemma we prove in a more general sense that the approx-

imation in (3.7) can result in an overestimation. This lemma is a generaliza-

tion of Proposition 1 in Smith and Winkler (2006).

Lemma 3.2. Let Y = {Y1, . . . ,YM} be a set of random variables with expected

values µi, . . . ,µM and let m= {m1, . . . ,mM} be a set of unbiased estimators such

that E{mi}=µi, for all i. Assume that a set of samples X contains at least one

sample for each of the variables in Y . Let O be the set of optimal estimators as

defined in Definition 3.1 and let M (X) be the set of maximal indices for X as

defined in Definition 3.2. Then

∀ j ∈O : E{max
i

mi}≥E{m j}=µ j =max
i

µi . (3.9)

Furthermore, the inequality is strict if and only if there is a non-zero probabil-

ity that any optimal index j is not maximal, i.e.

E{max
i

mi}>max
i

µi ↔ ∃ j ∈O : P(j ∉M)> 0 . (3.10)

We proof this lemma in Section 3.10.2. Equation (3.9) can also be inter-

preted as a consequence of Jensen’s inequality (Jensen, 1906), that states that

E{ f (X)}≥ f (E{X }) , (3.11)

for any concave function. The max operator is linear when always the same

estimators are maximal. This is only the case when there is only one esti-

mator that is maximal for all possible sets of samples, or when all optimal

estimators are constant and no suboptimal estimator can yield larger esti-

mates than the optimal estimators. In all other cases, the max operator is

strictly concave and the inequalities in (3.9) and (3.11) are strict.

Going back to the example with the two dice, we can conclude that both

dice are optimal and that each die has a non-zero probability of not being

the maximal die. And indeed we have seen that the inequality between the

expected maximal value and the maximal expected value was strict. We will

discuss other, more general examples later in this chapter.

3.3.2 An Upper Bound on the Size of the Overestimation

Uppers bounds for the expected overestimation have been established in pre-

vious work on order statistics (Clark, 1961; David and Nagaraja, 2003; Arnold

et al., 2008). For instance, a relatively simply upper bound for M random vari-

ables with arbitrary expected values and variances is given by Aven (1985) as

E{max
i

mi}≤max
i

µi+

√

√

√

√

M−1

M

M
∑

i

σ2
i
,

60 CHAPTER 3. ESTIMATION BIASES IN MAXIMIZATION

where σ2
i
is the variance of the estimator mi. A special case of this bound is

found when the estimators are iid such that E{mi} =maxiµi and variances

σi =σ for all i. Then

E{max
i

mi}≤max
i

µi+σ
p
M−1 . (3.12)

This bound is tight, since a distribution can be constructed that achieves it

(Arnold and Groeneveld, 1979). The fact that the bound is tight when the

variables have identical means indicates that this is a worst case setting for

the single estimator. Others bounds have been formulated (e.g., Bertsimas

et al., 2006), but we are mainly interested in the linear dependence of the bias

on σ
p
M, which is the same in those bounds.

For specific distributions, the expected overestimation of the single esti-

mator can be calculated or approximated numerically, using (3.8). A non-

trivial general lower bound for (3.8) does not exist. General results such

as Hoeffding’s bound (Hoeffding, 1963) and Chebyshev’s inequality can be

used to find upper bounds on the probability that a random variable devi-

ates more than a specified amount from its expected value. However, to get

a general lower bound on the expected overestimation, we would additionally

need lower bounds on these expected deviations. Non-trivial lower bounds are

not available in general, since there exist combinations of PDFs with positive

variance for which no overestimations occur. Trying to establish a tight non-

trivial lower bound for the expected overestimation based on specific proper-

ties of the underlying distributions is beyond the scope of this dissertation.

However, later in this chapter, we will investigate approximations for the ex-

pected overestimations for some specific distributions.

3.4 The Double Estimator

We will later see that the overestimation that results from the single estima-

tor approach can have a large negative impact on algorithms that use this

method, such as Q-learning. Therefore, we will look at an alternative method

to approximate the value of maxiµi.

3.4.1 The Definition of the Double Estimator

We obtain this second approximation by using two sets of estimators mA =
{mA

1 , . . . ,m
A
M
} and mB = {mB

1 , . . . ,m
B
M
}. Therefore, we will refer to this method

as the double estimator. We will use this approach in Chapter 4 to construct

an alternative reinforcement learning algorithm that we will call Double Q-

learning. Here we explain how this method approximates the value of the

maximal expected value maxiE{X i}.

3.4. THE DOUBLE ESTIMATOR 61

Both sets of estimators are updated with a subset of the samples we draw,

such that X = X A∪XB and X A∩XB =; and

mA
i (X)=

1

|X A
i
|

∑

x∈X A
i

x , mB
i (X)=

1

|XB
i
|

∑

x∈XB
i

x .

Like the single estimator mi, both mA
i
and mB

i
are unbiased if we assume that

the samples themselves are unbiased and they are split in a proper manner,

for instance randomly, over the two sets of estimators. Then

E{mA
i }=E{mB

i }=µi .

The idea of the double estimator is to make use of the two unbiased sets

of estimators as follows. We determine our best guess for the maximal index

by selecting the maximal element from one set, but then we use the other

set to determine the value of this element. This way, we avoid the overes-

timation of the single estimator. Even if we select an element because it by

chance received a vastly overestimated value, the value for this element from

the second set of estimators will be unbiased, although of course it can be

noisy. Unfortunately, this does not mean the value we obtain is an unbiased

approximation for the maximal expected value. The reason for the bias of

the double estimator is that there is a probability that the index we select is

not an optimal index. Then, although the obtained value is unbiased for this

index, it can be an underestimation for the desired maximal expected value.

We formalize and prove these statements in the remainder of this section.

3.4.2 The Underestimation of the Double Estimator

Before we prove formally that the double estimator is biased, we can observe

the reason for this bias in Figure 3.1. The horizontal solid line goed through

the maximal noisy sample. However, note that this sample is slightly to the

left of the position of the maximum of function. If we then obtain an unbi-

ased sample by using a second sample of the element that corresponds to the

maximal sample, we will obtain an unbiased estimate of the function value

at that position. This means we obtain an unbiased sample of a value that is

slightly lower than the actual maximum of the function and therefore we can

underestimation this value.

Let M
A(X) be the set of maximal indices in mA(X), where maximal in-

dices are further defined as in Definition 3.2. By Lemma 3.2, we have E{mA
j
| j ∈

M
A} ≥maxiµi. Since mB is an independent unbiased set of estimators, we

have E{mB
j
}= µ j for all j, including all j ∈M

A. Let a∗ ∈M
A be maximal for

mA, such that

mA
a∗(X)

def= max
i

mA
i (X) . (3.13)

62 CHAPTER 3. ESTIMATION BIASES IN MAXIMIZATION

Then we can use mB
a∗ as an estimate for maxiE{mB

i
} and therefore also for

maxiµi and we obtain

max
i

µi =max
i

E{mB
i }≈mB

a∗ . (3.14)

If there are multiple estimators that maximize mA, we can for instance pick

one at random, or we can determine the value of all maximal estimators and

average these, to obtain

max
i

µi =max
i

E{mB
i }≈

1

|M A|
∑

j∈M A

mB
j .

Compare the approximation in (3.14) to the approximation by the sin-

gle estimator as given in (3.7). In the single estimator, the approximation is

obtained by taking a maximal estimator and then using its estimate as an

approximation. In Lemma 3.2, this approximation was shown to be positively

biased. In the double estimator, the maximal estimator in mA is selected, but

then an unbiased estimate for the expected value of this estimator is obtained

by using the corresponding estimate in mB. Although mB
a∗ is a unbiased esti-

mate for E{Xa∗}, there is a non-zero probability that a∗ is not optimal. There-

fore, the double estimator can suffer from underestimations. We will prove

this formally below in Lemma 3.3. Similar to the single estimator, as we gain

more samples for each estimator the variance of the estimators will decrease.

In the limit, mA
i
(X) and mB

i
(X) converge to µi for all i and therefore the ap-

proximation in (3.14) also converges to the correct result.

For simplicity, assume for a moment that the underlying probability dis-

tributions are continuous. Then the probability that two samples have the

same value is zero. This implies that M
A(X) contains a single element with

probability one for any X and thus a∗ is uniquely defined and P(j = a∗) =
P(j ∈ M

A) for all j. The probability that an arbitrary index j is maximal in

mA is equal to the probability that all other estimators in mA give lower or

equal estimates than mA
j
. Thus mA

j
(X) = x is maximal for any value x with

probability
∏M

i 6= j
P(mA

i
≤ x). Integrating out all possible values for x gives

P(j = a∗)=
∫∞

−∞
P(mA

j = x)
M
∏

i 6= j

P(mA
i ≤ x) dx

=
∫∞

−∞
f Aj (x)

M
∏

i 6= j

FA
i (x) dx ,

where f A
i

and FA
i
are the PDF and CDF of estimator mA

i
. The expected value

3.4. THE DOUBLE ESTIMATOR 63

of the approximation by the double estimator can then be given by

M
∑

j=1
P(j = a∗)E

{

mB
j

}

=
M
∑

j=1
P(j = a∗)µ j

=
M
∑

j=1
µ j

∫∞

−∞
f Aj (x)

M
∏

i 6= j

FA
i (x) dx . (3.15)

Note that the difference to (3.8) consist mainly of the presence of µ j outside

the integral, in place of x within the integral. The single estimator can over-

estimate since x is in the integral and correlates with the monotonically in-

creasing product
∏

i 6= j F
m
i
(x). The double estimator underestimates because

its approximation is a weighted average of the expected values µ j, where the

weights correspond to the probabilities that j is maximal for all j. A weighted

average of the values in a set can of course never be larger than the largest

value in the set. If at least one of the weights for suboptimal estimators is

positive, the inequality is strict and the double estimator can underestimate.

For discrete PDFs, the formulae are slightly different, since we would

have to take into account the probability that two or more estimators have

the same value. Also, the integrals should then be replaced with sums over

all the possible values of x. These changes are relatively straightforward.

Returning to the two dice, the probability for each die to yield the highest

estimate is equal at 1
2 if we assume ties are broken randomly. Then, the value

in (3.15) is equal to

P(j = 1)E{Y1}+P(j = 2)E{Y2}=
1

2
(3

1

2
)+

1

2
(3

1

2
)= 3

1

2
.

In other words, in contrast to the approximation by the single estimator, the

approximation by the double estimator is unbiased for the case of two stan-

dard dice. In fact, when the expected values of the random variables are

equal, the double estimator will always yield an unbiased estimate, as we

will prove below. However, in the following lemma, we show the estimate

E{mB
a∗} is not an unbiased estimate of maxiµi in general. This lemma holds

both for continuous and discrete random variables.

Lemma 3.3. Let Y = {Y1, . . . ,YM} be a set of random variables with expected

values µ1, . . . ,µM and let mA = {mA
1 , . . ., m

A
M
} and mB = {mB

1 , . . . ,m
B
M
} be two

sets of unbiased estimators such that E{mA
i
} = E{mB

i
} = µi for all i. Let a∗ ∈

M
A(X) denote a maximal element in mA(X) and let O be the set of optimal

indices, as defined in Definition 3.1. Then

E{mB
j | j ∈M

A}=E{Ya∗}≤max
i

µi . (3.16)

64 CHAPTER 3. ESTIMATION BIASES IN MAXIMIZATION

Furthermore, the inequality is strict if and only if there is a non-zero probabil-

ity that a∗ is suboptimal:

(

E{mB
j | j ∈M

A}<max
i

µi

)

↔
(

∃ j ∉O : P(j ∈M
A)> 0

)

. (3.17)

The proof for Lemma 3.3 is given in Section 3.10.3. The lemma shows

that the approximation by the double estimator gives an underestimation if

and only if there is a non-zero probability that a suboptimal element j ∉ O is

maximal according to mA.

Note that by symmetry of mA and mB, we can also use mA
b∗ , where b∗

maximizes mB. This means that we have access to two approximations in-

stead of one. There are several ways these approximations can be combined,

the simplest of which perhaps is to average them: maxiµi ≈ (mB
a∗ +mA

b∗)/2.

This improves the approximation by lowering the variance. Compared to the

single estimator this is not an important advantage, since the variance of

both mA and mB will normally be larger than that of the single estimator m,

since both only use a subset of the samples.

3.4.3 An Upper Bound on the Size of the Underestimation

As with the single estimator, there exists no general non-trivial lower bound

for the underestimation, since there exist non-trivial sets of random variables

for which there is no underestimation. For instance, when the random vari-

ables are iid, no underestimation bias will occur. Additionally, we do not know

of any general upper bounds in the literature. To get some idea of the worst

case underestimation, we prove the following lemma.

Lemma 3.4. Let Y = {Y1, . . . ,YM} be a set of random variables with expected

values µ1, . . . ,µM and let mA = {mA
1 , . . ., m

A
M
} and mB = {mB

1 , . . . ,m
B
M
} be two

sets of unbiased estimators such that E{mA
i
} = E{mB

i
} = µi for all i. Let j ∈ O

denote an optimal estimator and further assume that

1. all variances of all estimators are equal to σ, where σ<∞,

2. all non-optimal estimators are iid with expected value µi <µ j.

The expected underestimation defined by µ j −E{mB
i
|i ∈ M

A} is then bounded

by

µ j−E{mB
i |i ∈M

A}<
9

4
σ
p
M−1 .

The proof for Lemma 3.4 is given in Section 3.10.4. This lemma gives an

upper bound for the magnitude of the underestimation that is a factor 9/4

larger than the bound we discussed for the overestimation of the single es-

timator. However, the additional factor is more likely due to the very rough

3.5. COMPARING THE SINGLE AND DOUBLE ESTIMATOR 65

Table 3.1: The conditions for a bias to occur for the single and double estima-

tor.

condition for bias

single estimator ∃ j ∈O : P(j ∉M)> 0

double estimator ∃ j ∉O : P(j ∈M
A)> 0

approximations in the proof of the lemma than an actual worse bias for the

double estimator. It is important to note that again we obtain a linear depen-

dence on σ
p
M.

In the remainder of this chapter we will demonstrate that often the un-

derestimation of the double estimator is smaller than the overestimation of

the single estimator. Unfortunately, this does not hold in general and there

even exist settings in which the single estimation experiences no bias, while

the double estimator on average underestimates the maximal expected value.

3.5 Comparing the Single and Double Estimator

Comparing the conditions for a bias to occur for the single and the double es-

timator, one may get the impression that these methods are mirror images in

a sense. In formula (3.10) it is stated that the single estimator overestimates

when an optimal index that a non-zero probability of not being maximal. In

the formula for the double estimator, given in (3.17), these conditions are re-

versed since it underestimates when there is a index that is not optimal that

has a non-zero probability of being maximal. This is summarized in Table

3.1.

Although the conditions are related, there exist settings in which both,

none, or only one of the estimators is biased. When the variables are iid with

non-zero variance, only the condition of the single estimator holds. All the

estimators are then optimal and the double estimator is therefore unbiased.

An example of such an iid setting is the approximation of the maximum of the

expected value of two normal dice, as we have seen before.

When there is a non-zero probability that a suboptimal estimator is max-

imal, the double estimator has a negative bias. If additionally all optimal es-

timators are always maximal, the single estimator is unbiased. An example

includes estimating the maximal of a normal die and a die that always rolls

six. Then, the single estimator always correctly gives six as its estimate for

the maximal expected value. However, if we assume a random die is chosen

when they both roll six, the double estimator can incorrectly pick the normal

die with probability 1/12. Then, the second estimate, obtained by throwing

the chosen die again, yields on average 31
2 . Therefore, the expected estimate

66 CHAPTER 3. ESTIMATION BIASES IN MAXIMIZATION

by the double estimator in this case will be

11

12
(6)+

1

12

(

3
1

2

)

= 6−
1

12

(

2
1

2

)

≈ 5.79 .

The expected underestimation in this case is quite small and will be even

smaller if we allow the choice of die to depend on more than a single throw.

For instance, if we throw each die twice and we use the averages to determine

which die to throw one final time to get our estimate there is only a probability

of 1/72 that we pick the normal die. Then, the expected estimate by the double

estimator already increases to 6− (21
2)/72≈ 5.97.

A trivial setting in which both approaches are unbiased is when there

is only one random variable. There are also many settings in which both

approaches are biased. In the next sections, we will present some examples

and intuitions about when to expect a bias.

3.6 A Comparison on Uniform Variables

The approximations resulting from the single and double estimator can both

contain bias and will both become closer to the value maxiµi as we obtain

more samples. This raises the question when which approach works better.

To shed some light on this issue, in the rest of this section we look at both

methods in more depth in specific settings.

The rate of convergence is dependent on the distributions of the random

variables. Usually convergence will be faster when the variances are smaller,

which translates to less noise in the samples. Less variance can imply smaller

probabilities that the optimal estimators are not maximal for the single esti-

mator and smaller probabilities that the maximal estimators are not optimal

for the double estimator. Similarly, for a given amount of variance, the ap-

proximations by the single estimator are usually better when the differences

between the means of the estimators are large, again because then the proba-

bility that an optimal estimator is not maximal is usually smaller. The double

estimator can experience two effects for large differences in the means. The

larger the difference, the smaller the probability that the maximal index is

suboptimal. This can result in less underestimation on average. However,

when a suboptimal index is maximal the resulting underestimation will be

larger. In other words, for the double estimator the probability of selecting

a suboptimal estimator may decrease, but when it is selected the resulting

approximation error is larger. We will illustrate these effects by examining

an example in depth.

Assume we have two uniformly distributed variables Y1 and Y2 and we

obtain a single sample for each of our estimators. This means that we as-

sume we obtain one independent sample for each of the four estimators of

the double estimator mA
1 , m

A
2 , m

B
1 and mB

2 as well as one for each of the two

3.6. A COMPARISON ON UNIFORM VARIABLES 67

Figure 3.2: The first row shows three cases of PDFs of two uniformly dis-

tributed random variables. The parts where the PDFs overlap are shown in

black. The second row shows the PDFs of the expected approximation by the

single estimator. The third row shows the PDFs that result from the double

estimator. In all cases, the dotted vertical line is the true maximum expected

value maxiµi = 1/2, and the solid vertical lines indicate the expected values

for each approximation of this value.

estimators m1 and m2 in the single estimator. In this example the double

estimator uses twice the number of samples, but we nullify this advantage

by only considering a single approximation mB
a∗ instead of the average of mA

b∗

and mB
a∗ that was discussed at the end of the former section.1

We analyze the overestimation of the single estimator and the underesti-

mation of the double estimator. The first row of Figure 3.2 shows the PDFs

of two otherwise identical uniform random variables Y1 and Y2 with different

separations between their expected values. In the left column, the two PDFs

overlap fully. In the middle column there is some overlap and in the right

column, the PDFs are separated completely, which implies that samples for

one of the variables will always be larger than those for the other variable.

The second and third row respectively show the PDFs for the approximations

when using a single estimator and when using a double estimator. These

PDFs were constructed analytically. The solid vertical lines in the plots show

the corresponding expected approximation of the maximum expected value

for the two methods.

The second plot in the left column shows that the expected approximation

of the single estimator is an overestimation when the PDFs fully overlap. The

intuitive explanation is that on average in three out of four cases at least one

of the estimates will be larger than the expected value of 1/2, while in only

one out of four cases both estimates will be smaller than 1/2. This indicates

1Note that in this case the double estimator only uses three of the four samples. For

instance, if a∗ = 1, we will only need mB
1 and not mB

2 . All four samples are needed if both mB
a∗

and mA
b∗ are used, but the estimate by the double estimator will then be better because its

variance will be lower.

68 CHAPTER 3. ESTIMATION BIASES IN MAXIMIZATION

that the maximum of the two values will be an overestimation more often

than it will be an underestimation. The formal reason there is a positive bias

is that there is a non-zero probability that one of the optimal estimators is

not maximal. In fact, in this case the probability is close to one. The third

plot in the left column shows the double estimator is unbiased and on average

returns the true value. This happens because both variables are optimal and

if there exist no suboptimal values, the probability that a suboptimal value is

maximal is of course equal to zero.

The second plot in the central column shows that when the overlap be-

tween the distributions becomes less, the expected overestimation by the sin-

gle estimator decreases. This results from a decrease in the probability that

the optimal estimator is not maximal. The third plot in the central column

shows that the double estimator now gives an underestimation of the true

maximal expected value. This happens because the probability of selecting

a suboptimal estimator is no longer zero, since in contrast with the overlap-

ping PDFs in the left column now there exists a suboptimal estimator. The

step-wise shape of the PDF is the result of a weighted addition of the two

PDFs.

The right column shows that when the PDFs do not overlap, both ap-

proaches yield the unbiased, correct result. In this scenario, both the single

estimator and the double estimator exploit the fact that the optimal estimator

is always maximal.

It is interesting to note that there is no underestimation by the double

estimator when the PDFs fully overlap. Conversely, the single estimator ap-

proach has a large positive bias in this case.

In a simple case as this, we can analytically determine the expected over-

and underestimations for various amounts of separation between the expected

values of the two distributions. Let Y1 ∼ u(x,0,1) and Y2 ∼ u(x,−D,1−D),

with D ∈ [0,1], be two uniformly distributed random variables. Note that

maxiµi = E{Y1} = 1
2 for all D ∈ [0,1]. We can then use (3.8) and (3.15) to ob-

3.6. A COMPARISON ON UNIFORM VARIABLES 69

Figure 3.3: Approximations by the single and double estimator to the value

of maxiE{Y1,Y2}= 1/2. The left plot shows analytical expected values where

Y1 ∼ u(x,0,1) and Y2 ∼ u(x,−D,1−D), for 0 ≤ D ≤ 1, the center plot shows

empirical results for these variables. The right plot shows empirical results

for Gaussian PDFs with the same mean and variance: Y1 ∼ g(x,0.5, 1
12) and

Y2 ∼ g(x,0.5−D, 1
12). The center and right plots are averaged over 10,000 sets

of samples.

tain

E{max
i

mi}=
∫∞

−∞
x

(

d

dx
U1(x)U2(x)

)

dx

=
∫1−D

0
x

(

d

dx
x(x+D)

)

dx +
∫1

1−D
x

(

d

dx
x

)

dx

=
1

2
+
(1−D)3

6
,

2
∑

i=1
P(i = a∗)E{mB

i }=
∫∞

−∞
u1(x)U2(x)E{Y1}+U1(x)u2(x)E{Y2} dx

=
∫∞

−∞
u1(x)U2(x)

(

1

2

)

+U1(x)u2(x)

(

1

2
−D

)

dx

=
∫1−D

0
(x+D)

(

1

2

)

+ x

(

1

2
−D

)

dx +
∫1

1−D

(

1

2

)

dx

=
1

2
−
D(1−D)2

2
.

These values are plotted in the leftmost plot in Figure 3.3 for separations

D of 0 (full overlap) to 1 (no overlap). The overestimation by the single esti-

mator is clearly visible when there is little separation between the expected

values of the random variables. The larger the separation, the lower this

overestimation. The magnitude of the underestimation related to the double

estimator approach first grows, because selecting the suboptimal estimator

becomes more harmful. For larger D this underestimation shrinks again,

since selecting the suboptimal estimator becomes less likely. For D ≥ 1, the

PDFs no longer overlap and the single estimator and the double estimator are

70 CHAPTER 3. ESTIMATION BIASES IN MAXIMIZATION

both unbiased.

The worst biases can be found analytically for this simple case: these

occur at D = 0 for the single estimator, for an expected overestimation of 1
6

and at D = 1
3 for the double estimator for an expected underestimation of − 2

27 .

The upper bounds we found earlier in this case reduce to σ
p
M−1= 1/

p
12=

(1/6)
p
3 for the single estimator and −(9/4)σ

p
M−1=−(3/8)

p
3 for the double

estimator. We see that in this case the general bound for the single estimator

is fairly tight, at
p
3 times the actual bound for the uniform distributions.

The bound for the double estimator is much looser, at more than 8 times the

actual worst underestimation. This confirms our suspicion that the general

bound for the double estimator is quite loose.

Also shown in the figure are empirical results for both the uniform case

and for two Gaussian variables with the same means and variances. Be-

sides showing that our analysis so far is correct, the fact that the center and

right plot are almost identical shows that the estimates for Gaussian vari-

ables are very similar to the estimates for corresponding uniform variables.

The main difference is that for a separation of D ≥ 1, the Gaussian PDFs will

still slightly overlap, resulting in a slight over- and underestimation.

3.7 The Effect of More Samples

The former section assumes fixed uniform PDFs and looks at different sepa-

rations of the mean. In practice, for a given problem the difference between

the expected values of the random variables is fixed. This does not mean that

the approximation biases of the single and double estimator are stable, since

the variance of each estimator decreases as more samples are observed. How

this affects the biases of the single and double estimator is important, since

this tells us something about the data efficiency in general of both methods.

A decreasing variance has two relevant effects. First, estimators with

different means will have PDFs with less and less overlap and thus the prob-

ability that the maximal estimator is also optimal increases. Second, for all

estimators the expected deviation from their true mean becomes less. The

effects improve the estimation for both the single and the double estimator

but it is not immediately clear how large these improvements are.

Considering the worst case settings we discussed in Sections 3.3 and 3.4,

we can simply state that the upper bound on the bias decreases with 1/
p
N.

This is the results of the central limit theorem, that implies that the random

variable that represents an estimator that is the average of N samples for

a random variable with variance σ2 will become more similar to a Gaussian

with variance σ2/N for increasing N. We will not redo the analysis in full,

but the upper bounds for the over- and underestimations can then be given

as σ
p
(M−1)/N and (9/4)σ

p
(M−1)/N, respectively.

3.7. THE EFFECT OF MORE SAMPLES 71

Suppose we increase the used number of samples in the case of two uni-

form variables, as considered in the previous section. Then, the resulting

PDFs for the estimators are no longer uniformly distributed and due to the

central limit theorem they become more and more similar to Gaussian distri-

butions. Given that a uniform distribution u(x, y, z) has variance
(z−y)2

12 , we

know that an estimator for a variable u(x,−1
2 ,

1
2) will be approximately dis-

tributed according to a Gaussian gN (x) = g
(

x,0, 1
12N

)

after N samples have

been obtained for that estimator. Similarly, the PDF for an estimator for

a variable with PDF u(x,−1
2 −D, 12 −D) will be approximately gN (x+D) =

g
(

x,−D, 1
12N

)

.

Assume all estimators have received N samples for the corresponding

variable and that N is sufficiently large that the PDFs of the estimators be-

come approximately Gaussian in shape. Again, to avoid unfairly advantag-

ing the double estimator approach, we only look at a single approximation

due to mB
a∗ and ignore mA

b∗ . Figure 3.3 indicates that the uniform expres-

sions we derived earlier give a fairly good approximation of these Gaussian

values. So instead of calculating the expected over- and underestimation di-

rectly for the Gaussians, we give the uniform approximations. The corre-

sponding uniform PDFs are defined as uN = u
(

x, −1
2
p
N
, 1

2
p
N

)

and uN (x+D) =

u
(

x, −1
2
p
N
−D, 1

2
p
N
−D

)

. It is easily verified that the variance of these distri-

butions is equal to 1
12N , as required. Note that maxiµi = E{u0,N } = 0. The

oveestimation bias due to the single estimator can then be approximated by

E{max
i

Yi}=
∫∞

−∞
x

(

d

dx
GN (x)GN (x+D)

)

dx

≈
∫∞

−∞
x

(

d

dx
UN (x)UN (x+D)

)

dx

=

(

1p
N
−D

)3

6
N

, (3.18)

Similarly, the underestimation bias of the double estimator can be approxi-

mated with

2
∑

i=1
P(i = a∗)E{mB

i }=
∫∞

−∞
gN (x)GN (x+D)µ1+GN (x)gN (x+D)µ2 dx

=
∫∞

−∞
−DGN (x)gN (x+D) dx

≈
∫∞

−∞
−DUN (x)uN (x+D) dx

=−
D

(

1p
N
−D

)2

2
N

. (3.19)

72 CHAPTER 3. ESTIMATION BIASES IN MAXIMIZATION

Uniform approximation

single estimator double estimator

D 0 0.01 0.03 0.1 0.01 0.03 0.1

N = 1 0.167 0.162 0.152 0.121 −0.005 −0.014 −0.040
N = 10 0.053 0.048 0.039 0.017 −0.005 −0.012 −0.023
N = 102 0.017 0.012 0.006 0 −0.004 −0.007 0

N = 103 0.005 0.002 0.000 0 −0.002 −0.000 0

N = 104 0.002 0 0 0 0 0 0

Empirical results

single estimator double estimator

D 0 0.01 0.03 0.1 0.01 0.03 0.1

N = 1 0.173 0.164 0.150 0.122 −0.007 −0.010 −0.041
N = 10 0.053 0.047 0.040 0.017 −0.004 −0.011 −0.022
N = 102 0.016 0.012 0.006 0.001 −0.004 −0.007 −0.001
N = 103 0.005 0.002 0.000 −0.000 −0.002 −0.000 0.000

N = 104 0.002 0.000 0.000 0.000 −0.000 0.000 −0.000

Table 3.2: The under- and overestimations according to the single and double

estimator for different separations between the means of two uniform random

variables after finding N samples for each variable. The upper half shows the

results obtained by the approximations in (3.18) and (3.19). The lower half

shows the average over- and underestimations obtained by using each method

to approximate the maximal expected value using actual random data. The

results in the lower half were obtained by averaging over 10,000 sample sets

for each combination of D and N.

Note that these expressions only hold for D ≤ 1p
N

since for larger D both

approaches will be unbiased because the distributions then no longer overlap.

Although it is an approximation of the actual bias, it is interesting to have

these expressions for higher numbers of samples for each estimator. For N =
1, these results reduce to those given in the former section. For general N ∈N,

N ≥ 1, the worst approximation for the single estimator continues to occur at

D = 0, for an overestimation of 1

6
p
N
. For the double estimator, the worst

separation depends on N and occurs at D = 1

3
p
N

for an underestimation of

− 2

27
p
N
.

Table 3.2 gives some values for the under- and overestimations when

there are two uniform distributions with equal variance. We see that for most

shown combinations of differences in the mean D and numbers of samples N

the bias of the double estimator is closer to zero, while for some combinations

the bias of the single estimator is closer to zero. However, in general the

bias of the double estimator often is smaller than that of the single estimator,

3.8. THE EFFECT OF MORE VARIABLES 73

sometimes by a large margin.

The bottom half of Table 3.2 contains an empirical verification of the ap-

proximation we used. For this, each method was used 10,000 times to approx-

imate the maximal expected value for each combination of D and N. These

10,000 results were then averaged to get the results in the table. Results

for the double estimator when D = 0 are not shown, since then the double

estimator has no bias.

Recall that the average over multiple samples of a uniform distribution

will tend towards a Gaussian and we have used (3.18) and (3.19) to approx-

imate this Gaussian with a uniform PDF with the same variance. The table

shows that this approximation is quite accurate. Differences between the

upper and lower half of the table are mostly due to the variance in the em-

pirical results that is not present in the approximations. This explains why

the differences are the largest for N = 1, although then formulas (3.18) and

(3.19) are exact. For larger N, the variance is smaller and this has a larger

effect than any approximation error that is introduced by using the uniform

approximation. For any single sample, the variance will often obscure the

biases, which is probably why these biases are often not noticed.

It is useful that the uniform approximations from (3.18) and (3.19) appar-

ently are good approximations for Gaussian variable, since the distribution of

any estimator will tend to a Gaussian if more samples are obtained. Undoubt-

edly better approximations for any probability distribution can be obtained,

but an analysis of the accuracy of the present approximations and possible

improvements lie beyond the scope of this chapter. Rather, we attempt to give

a general idea of the size of the biases and in which settings each bias can be

expected to occur.

3.8 The Effect of More Variables

Sections 3.6 and 3.7 specifically assume two random variables. In this sec-

tion we will find fairly general approximations for the worst case bias of the

single estimator and double estimator when there are more than two random

variables.

The worst expected overestimation for the single estimator occurs when

the variables are iid. For M iid uniform PDFs with parameters y and z, the

74 CHAPTER 3. ESTIMATION BIASES IN MAXIMIZATION

expected maximal sample is

E{max
i

mi}=
∫∞

−∞
x

(

d

dx

M
∏

i

U(x, y, z)

)

dx

=
∫z

y
x

(

d

dx

(

x− y

z− y

)M
)

dx

=
Mz+ y

M+1
, (3.20)

which is an overestimation of

E{max
i

mi}−max
i

E{mi}=
Mz+ y

M+1
−

z+ y

2
=

M−1

M+1

z− y

2
.

The iid uniform distributions have a standard deviation equal to σ = (z−
y)/

p
12. Therefore, the overestimation for multiple uniform distributions with

identical means and standard deviations of σ can be rewritten as

E{max
i

mi}−max
i

E{mi}=
M−1

M+1
σ
p
3 .

This precise overestimation for the uniform is quite a lot smaller than the

upper bound of σ
p
M−1, especially for large M.

Similar to the former section, we can use the uniform case as an approxi-

mation for the overestimation for M Gaussian distributions. Due to the cen-

tral limit theorem, we can assume that any estimator with N samples from

a random variable with variance σ2 will tend to a Gaussian distribution with

variance σ2

N
for large enough N. Further, from the last section we know that

the overestimation for the Gaussian distribution is very similar to the over-

estimation for the uniform distribution. Therefore, we hypothesize that the

maximal overestimation for M iid variables with any distribution will be ap-

proximately

E{max
i

mi}−max
i

E{mi}≈
M−1

M+1
σ

√

3

N
, (3.21)

where N is the number of samples obtained for each of the variables. We will

not test the accuracy of this approximation, but preliminary tests show that

it gives a good general idea of the size of the overestimation.

The double estimator in the iid case gives no underestimation since then

µ j =maxiµi, for all j and therefore

M
∑

j=1
P(j = a∗)E{mB

j }=
M
∑

j=1

1

M
µ j =

M
∑

j=1

1

M
max

i
µi =max

i
µi .

The worst underestimation for multiple PDFs which only differ in their means

occurs when there is a single optimal variable and all other variables have

3.8. THE EFFECT OF MORE VARIABLES 75

single estimator double estimator

U G U G

M = 2 0.577σ 0.569σ −0.257σ −0.241σ
M = 3 0.866σ 0.854σ −0.402σ −0.375σ
M = 4 1.039σ 1.030σ −0.494σ −0.450σ
M = 10 1.417σ 1.546σ −0.702σ −0.736σ
M = 100 1.698σ 2.505σ −0.849σ −1.322σ
M = 1000 1.728σ 3.243σ −0.864σ −1.594σ
M→∞

p
3σ ∞ −

p
3σ/2 −∞

Table 3.3: The maximal under- and overestimations according to the single

and double estimator for different numbers of uniform random variables after

obtaining 1 sample for each variable. Analytical results for M uniform vari-

ables with variance σ2 (columns with label U) and empirical results for M

Gaussian variables with variance σ2 (columns with label G) are shown. The

positive and negative infinity in the last row only hold when σ > 0. If σ = 0,

all values are equal to zero.

equal lower expected values. The reason is that if the expected values of the

other variables are at a suitable distance from the optimal expected value,

there will be a reasonable high probability that they are maximal, while they

still ensure a relatively large underestimation. For instance, for M uniform

PDFs with a variance of σ2, the underestimation can then be calculated with

use of (3.15) to get

E{mB
j | j ∈M

A}−max
i

E{mi}=−D
(

1

M

(p
12D

σ

)M

−
p
12D

σ
+

M−1

M

)

.

It is non-trivial to find a closed form expression for the distance D that min-

imizes this expression and therefore gives the largest underestimation. Like

the single estimator, the underestimation will decrease linearly as a function

of
p
N as more samples are obtained. Furthermore, for specific values of M,

it is easy to calculated the worst underestimation.

In Table 3.3, we compare the worst over- and underestimations for the

single and double estimator for different numbers of uniform PDFs and N = 1.

Both methods were also used to estimate the maximal expected value for M

Gaussian variables. The averages of these estimates over 10,000 trials are

shown in the Table.

Table 3.3 shows that the maximal bias for the single estimator is about

twice that of the double estimator. Of course, in many cases the variables will

not be distributed in a worst case manner and the actual over- and underesti-

mations will be less severe. However, if there are sufficiently many variables,

the bias of each approach can be significant.

76 CHAPTER 3. ESTIMATION BIASES IN MAXIMIZATION

Finally, we note that although the bias for the Gaussian variables conti-

nues to increase with larger M, the bias is far smaller than the upper bounds

we have formulated before. For instance, for M = 1000, the upper bound

we formulated for the single estimator is approximately 31.6σ, while that of

the double estimator is approximately −71.1σ. For smaller values of M, the

bounds are sharper. More specifically, the uniform bias grows with a factor of

(M−1)/(M+1) rather than
p
M and the Gaussian bound seems to grow with

a logarithmic rate.

3.9 Conclusion

In this section we summarize our results and point out directions for future

research.

3.9.1 Summary and Discussion

We have shown that there exist at least two approaches to determine an es-

timate for the maximal expected value of a set of random variables. We have

proven that both approaches are biased. The single estimators approach,

which simply estimates the maximal expected value by taking the maximal

value from a set of unbiased estimators, on average overestimates the max-

imal expected value. Conversely, the double estimator uses the set of esti-

mators only to determine the likely identity of the maximal random variable.

Then, the value of an independent unbiased estimate for this element is used

as an estimate for the maximal expected value. This approach can underes-

timate this value, if there is a chance we have selected the wrong element in

the first step.

We have formulated worst-case upper bounds for the single and double

estimator and we have shown that for both approaches these upper bounds

increase at most linearly in σ
p
M, where σ is the variance of the variables and

M is the number of variables. If the shape of the distributions are known, it

becomes possible to calculate the bias more accurately and we have done so

for the uniform distribution. This way we could show in which manner the

bias depends on the mean of the distributions, the number of samples and the

number of random variables. Additionally, we have shown that the biases as

calculated when assuming uniform distributions are a fairly good estimate for

the biases when the random variables are distributed according to a Gaussian

distribution in some cases. When the number of variables increases, this

approximation because less accurate. For any given set of distributions, one

can obtain better estimates of the expected bias by numerical integration, as

for instance proposed by Ross (2010) in a setting with Gaussian variables.

This is not always particularly useful, since the distributions in general will

not be known.

3.9. CONCLUSION 77

Our analysis shows that in many cases the double estimator has a lower

bias than the single estimator. Additionally, both approaches obtain their

worst behavior in somewhat different settings. The single estimator has the

largest overestimation in settings with many iid variables. The double esti-

mator has the largest underestimation when there is a single optimal variable

and many suboptimal variables with values that are neither too close nor too

far from the optimal variable.

Since the direction of the bias for the approaches is opposite, one could en-

vision averaging the results of both to get better estimates. However, because

the approaches are not fully mirror images of each other, such an approach

would either overestimate or underestimate, depending on the precise distri-

butions of the random variables.

We have seen that the bias of the double estimator is often smaller for

small sample sizes. For instance, see the first row of Table 3.2 for an example

with two uniform or Gaussian variables. Therefore, in the next chapter we

will investigate whether a form of Q-learning that uses a double estimator

approach is also has a lower bias than normal Q-learning in Chapter 4.

The overestimation bias of the single estimator is similar to the overfit-

ting that can occur when fitting a model to data. When one optimizes the

parameters of a model and then uses the prediction of this same model as an

estimator of the performance of the model, the model will be overly optimistic.

The bias here is essentially the same as for the single estimator. The double

estimator is then similar to a 2-fold cross validator. This indicates a possible

direction of improvement for the double estimator approach to a N-fold cross

validator. This is discussed at the end of the future work section below.

3.9.2 Future Work

Interesting future work can include trying to find an unbiased estimator for

the maximal expected value of a set. Probably, this goal is not reachable in

general, since we assume the distributions of the random variables are not

known. Sometimes, rather than trying to determine the maximal expected

value directly one could try to estimate the distributions. For instance, if the

samples do not seem to contradict this, we can assume normal distributions

for the random variables. Then, we can find unbiased estimates for the means

and variances of these distributions. Using the obtained unbiased estimates

for the actual distributions, we can find the expected maximal value by nu-

merical integration. Then we can construct an estimate of the overestimation

and deduct this from the found maximal value. Naturally, the obtained result

will not be unbiased in general since we made the explicit choice for the shape

of the distribution. The same holds if we admit different choices of distribu-

tion shapes. Additionally, one would want to use different sets of samples to

determine the distributions and to determine the maximal estimator, since

78 CHAPTER 3. ESTIMATION BIASES IN MAXIMIZATION

the estimate will gain bias if these values are not independent. However, for

large enough numbers of samples this may give accurate results.

A limitation of such an approach is that in many applications the number

of samples may be too small to obtain a reliable estimation of the distribu-

tion. For instance, if a reinforcement learning agent that uses Q-learning

visits a state, it must make an estimate for the maximal action value in that

state based only on a single sample for each action. One cannot even reuse

these samples when the state is visited again, since the action values may

have changed based on later information. It is important to stress this point:

the action values in a state should be interpreted as samples from an un-

known distribution, where this distribution depends on the whole experience

of the agent, on the learning algorithm and on the MDP. Even if the MDP

and the learning algorithm are assumed to be stationary, at the next visit to a

state the experience of the agent will be different and therefore the unknown

distributions of the action values may have changed. In general it is even

impossible to obtain more unbiased samples if we assume we have more than

one learning agent, since stochastic state transitions may make it impossible

to reach the same state with the same experience.

Another interesting topic for future work is the extension of the double

estimator approach. The double estimator is one way to avoid the overesti-

mation of the single estimator, but perhaps it is better not to use more than

two sets of samples. For instance, if we have N samples for each variable, we

can average N −1 of these samples to obtain an estimator that we can use

to obtain the maximal element. In the double estimator approach as we de-

scribed it in this chapter, only N/2 samples are used for this. This means that

the probability decreases that we choose a suboptimal estimator and when we

do choose a suboptimal estimator the probability that its value is fairly close

to the optimal value is larger. Of course, we then have only a single sample

left to get an unbiased estimate for the variable that we select. Therefore,

its variance will be larger. However, we can then repeat the procedure for all

N samples to obtain N different estimates. These can then be combined to

obtain a sample with the same low variance as the estimate by the single es-

timator. The estimate for the N-fold estimator will still have a negative bias,

but the magnitude of this bias will be lower than the underestimation by the

double estimator. However, this approach does assume that multiple samples

are available for each variable. In reinforcement learning, this is normally

not the case as most methods only store a single action value function. We

will discuss the application of the double estimator to Q-learning in the next

chapter.

3.10. PROOFS 79

3.10 Proofs

This section contains the proofs for the lemmas contained in this chapter.

3.10.1 Proof for Lemma 3.1

Proof. Assume

P(j ∈M)< 1 , (3.22)

for some j ∈O . If m j is the only optimal estimator, we immediately reach our

desired conclusion that ∀ j ∈ O : P(j ∈M)< 1. Therefore, we will focus on the

case where m j is one of multiple optimal estimators.

Assumption (3.22) implies that there is at least one estimator that yields

a higher estimate than m j for some sample sets. In other words, at least one

estimator has a non-zero probability of yielding a higher estimate than m j:

∃i : P(mi >m j)> 0 . (3.23)

Then, since m j is optimal, m j must also sometimes yield higher estimates

than this estimator. Otherwise, the expected value of mi is larger than that

of m j, which contradicts the optimality of m j. Therefore

∀ j ∈O∀i :
(

P(mi >m j)> 0 → P(mi <m j)> 0
)

. (3.24)

Furthermore, in general no estimator can yield estimates that are larger than

the maximal expected value for all sample sets. Otherwise, this estimator

would have a larger expected value than the maximal expected value, which

contradicts our general assumption that the individual estimators are unbi-

ased. This implies that

∀ j ∈O∀k : P(mk ≤m j)> 0 . (3.25)

We will now consider two different cases.

First, in addition to assumption (3.22), assume that m j never overesti-

mates the maximal expected value:

P(m j ≤max
i

µi)= 1 . (3.26)

Since j is optimal and unbiased, this implies that m j also never underes-

timates the maximal expected value and therefore P(m j = maxiµi) = 1. In

other words, assumption (3.26) implies that m j is a constant estimator that

yields the same estimate for any set of samples. In this case, equation (3.23)

can be rewritten as

∃i : P(mi >max
i

µi)> 0 . (3.27)

Now, assume mi is some specific estimator for which (3.27) holds and consider

an arbitrary other index k 6= i. The probability that k is not maximal is at

80 CHAPTER 3. ESTIMATION BIASES IN MAXIMIZATION

least as high as the probability that mi gives a larger estimate than mk. This

implies

P(mk ∉M)≥ P(mi >mk)≥
(

P(mi >max
i

µi)P(max
i

µi ≥mk)

)

, (3.28)

where the second inequality uses our general assumption that the estimators

are independent. By equation (3.25) and our assumption that (3.27) holds for

mi, the elements of the product on the right hand side or inequality (3.28)

are strictly positive. Since k was chosen arbitrarily, this then holds for all

k 6= i. Finally, by equation (3.24) we know that P(mi ∉M)> 0. Together, this

implies that assumptions (3.22) and (3.26) lead to the conclusion that

∀k : P(mk ∉M)> 0 .

Since this holds for all k, it naturally holds for all optimal estimators and

therefore assumption (3.26) that m j never overestimates the maximal ex-

pected values leads to the desired result.

Next, we assume the negation of assumption (3.26). In other words, we

assume that m j sometimes overestimates the maximal expected value:

P(m j >max
i

µi)> 0 . (3.29)

This immediately implies that m j must also sometimes underestimate the

maximal expected value, because otherwise m j would not be unbiased:

P(m j <max
i

µi)> 0 . (3.30)

For any k 6= j we have

P(mk ∉M)≥ P(m j >mk)≥
(

P(m j >max
i

µi)P(max
i

µi ≥mk)

)

,

where the second inequality again holds by independence of the estimators.

By equations (3.29) and (3.25), both elements in the product in the last equa-

tion must be strictly positive. Add to this the assumption (3.25) itself and we

obtain

∀k : P(mk ∉M)> 0 .

We have now shown that assumption (3.25) leads to the conclusion that

P(mk ∉ M) > 0 for all k both when we assume (3.26) and when we assume

its negation, (3.29). By the law of the excluded middle (Aristotle, 350BC),

this concludes our proof and shows that if P(j ∉ M) > 0 for any j ∈ O , then

P(k ∉M)> 0, for all k ∈O .

3.10. PROOFS 81

3.10.2 Proof for Lemma 3.2

Proof. Assume j ∈ O , such that by Definition 3.1 m j is an optimal estimator.

Then

E

{

max
i

mi

}

= P(j ∈M)E

{

max
i

mi

∣

∣

∣

∣

j ∈M

}

+P(j ∉M)E

{

max
i

mi

∣

∣

∣

∣

j ∉M

}

= P(j ∈M)E
{

m j

∣

∣ j ∈M
}

+P(j ∉M)E

{

max
i

mi

∣

∣

∣

∣

j ∉M

}

≥ P(j ∈M)E
{

m j

∣

∣ j ∈M
}

+P(j ∉M)E
{

m j

∣

∣ j ∉M
}

=E
{

m j

}

=µ j =max
i

µi .

By definition of M we have E{maximi| j ∉ M } > E{m j| j ∉ M }, for any j.

Therefore, the inequality is strict if and only if P(j ∉ M) > 0, for some j ∈ O .

By Lemma 3.1, we know that if we find one j ∈O such that P(j ∉M)> 0 then

this holds for all j ∈ O . If we can not find one such optimal estimator, then

we do not know if the inequality in is strict and therefore in general we write

E{maximi}≥maxiµi.

3.10.3 Proof for Lemma 3.3

Proof. Assume a∗ is optimal, such that a∗ ∈ O . Then, because mB
a∗ is an

unbiased estimator for µa∗ and by definition of O

E
{

mB
a∗

∣

∣

∣a∗ ∈O

}

=E
{

µa∗
∣

∣a∗ ∈O
}

=max
i

µi .

Now assume a∗ is not optimal, such that a∗ ∉O . Then

E
{

mB
a∗

∣

∣

∣a∗ ∉O

}

=E
{

µa∗
∣

∣a∗ ∉O
}

<max
i

µi .

Naturally, one of these cases must hold, so in general

E
{

mB
a∗

}

≤max
i

µi .

The inequality is strict when there is a non-zero probability that a∗ is not

optimal. This can occur when there is a non-zero probability that an estimator

that is not optimal yields a maximal estimate, i.e.

(

∃ j ∉O : P(j ∈M
A)

)

→
(

E
{

mB
a∗

}

<max
i

µi

)

.

If E{mB
j
} is lower than maxiµi for some j, this immediately implies that j is

not optimal. Therefore, if the maximal element a∗ has a lower expected value

than the maximal expected value, then

E
{

mB
a∗

}

<max
i

µi ↔ ∃ j ∉O : P(j ∈M
A) .

82 CHAPTER 3. ESTIMATION BIASES IN MAXIMIZATION

3.10.4 Proof for Lemma 3.4

In a worst case setting, there can only be one optimal estimator, since if there

are multiple optimal estimators, the probability of selecting an optimal esti-

mator must decrease if we remove one. The probability of selecting a non-

optimal estimator is equal to the probability that the maximum of all non-

optimal estimators yields a larger estimate than the optimal estimator. In

other words, if j ∈O is the only optimal estimator, then

P(a∗ ∈O)= P(j = a∗)= P(m j >max
i 6= j

mi) .

We define a new estimator

m̂(X)=max
i 6= j

mi(X)

In other words, the value of this estimator is the maximum value of all non-

optimal estimators. Since there are M estimators in total and we assume

that all M−1 non-optimal estimators are iid with mean µi and variance σ,

we know from inequality (3.12) that the expected value of this new estimator

is bounded by

µ̂≤µi+σ
p
M−2 .

Furthermore, it can be shown that the variance σ̂2 of this estimator is bounded

by σ̂2 < (M−1)σ2 (Papadatos, 1995).

Assume now for a moment that µ̂ is smaller than µ j. Without loss of

generality, we can then assume that the difference between µ̂ and µ j is given

by

µ j− µ̂= kσ̂< kσ
p
M−1 .

There is now a trade-off. When k increases, the probability decreases that

a suboptimal estimator is maximal, but the underestimation when this hap-

pens increases. We will determine the worst case value of k and quantify an

upper bound for the resulting underestimation.

We will use Chebyshev’s inequality, that states that

P(X ≥µ+kσ)≤
1

1+k2
,

for any random variable X with expected value µ and variance σ. Specifically,

we will use the equivalent reversed inequality:

P(X ≤µ+kσ)≥
k2

1+k2
,

Then, the probability that m̂ is smaller than or equal to m j is at least

P(m̂≤m j)≥ P(m̂≤ µ̂+kσ̂/2)P(m j ≥µ j−kσ̂/2)

> P(m̂≤ µ̂+kσ̂/2)P(m j ≥µ j−kσ
p
M−1/2) .

3.10. PROOFS 83

In other words, the probability that m̂ is smaller than m j is larger than the

probability that both estimate do not deviate past some given value in be-

tween the two expected values. We can then apply Chebyshev’s inequality

twice to obtain

P(m̂≤m j)≥
(

k2

4+k2

)(

k2(M−1)

4+k2(M−1)

)

≥
(

k2

4+k2

)2

,

where the second inequality holds since M ≥ 1. The probability that m̂ is

larger than m j is then bounded by

P(m̂>m j)< 1−
(

k2

4+k2

)2

. (3.31)

If the maximal non-optimal estimate is larger than the optimal estimate, the

underestimation is bounded by

µ j−µi ≤µ j− µ̂+σ
p
M−2< kσ

p
M−1+σ

p
M−2< (k+1)σ

p
M−1 .

The probability that this happens in bounded in (3.31), giving an upper bound

for the expected underestimation of

µ j−E{ma∗}<
(

1−
(

k2

4+k2

)2
)

(k+1)σ
p
M−1 .

If we maximize this for k we get

max
k

(

1−
(

k2

4+k2

)2
)

(k+1)=
9

4
,

and therefore

µ j−E{ma∗}<
9

4
σ
p
M−1 .

For the former bound we assumed µ̂ is smaller than µ j. If we assume that

µ̂ is larger than µ j we obtain

µ j−µi ≤µ j− µ̂+σ
p
M−2≤σ

p
M−2 .

Since this bound is tighter than when µ̂ is smaller than µ j, we can adopt the

looser bound as a general result and our proof is concluded.

CHAPTER 4

THE OVERESTIMATION OF Q-LEARNING

In Chapter 2, we discussed methods to solve the prediction problem of finding

the policy action value function Qπ and the control problem of finding the

optimal action value function Q∗. The definitions of V∗ and Q∗ are given

in equations (2.5) and (2.8) and are repeated here in expectancy notation for

clarity:

V∗(s)=max
a

E
{

r t+γV∗(st+1)|s= st,a= at

}

, (4.1)

Q∗(s,a)=E

{

r t+γmax
a′

Q∗(st+1,a
′)|s= st,a= at

}

. (4.2)

The equation for the optimal action value function can alternatively be writ-

ten in operator notation as

Q∗ =T
∗Q∗ , (4.3)

where the operator T
∗ : RS×A → R

S×A is defined as in (2.21), which we also

repeat here:

∀s ∈ S,a ∈ A(s) : (T ∗Q)(s,a)=
∑

s′
Ps′

sa

(

Rs′

sa+γmax
a′

Q(s′,a′)

)

. (4.4)

For any starting value function, repeated application of the operator T
∗ will

bring the value of the value function closer to Q∗, until the fixed point in

(4.3) is reached. However, direct application of T
∗ requires a known model

for P and R, which we do not want to assume in general. Therefore, many

reinforcement learning techniques use samples to approximate this mapping.

It is not possible to directly sample a value to approximate the mapping

used for the state value, for which the fixed point is shown in (4.1), because

of the max operator. However, it is possible to sample Q∗ as given in (4.2).

This results in the Q-learning algorithm which was first proposed by Watkins

(1989):

Qt+1(st,at)=Qt(st,at)+αt(st,at)
(

r t+1+γmax
a

Qt(st+1,a)−Qt(st,at)
)

, (4.5)

where αt(s,a) ∈ [0,1] is a step-size parameter that averages over the ran-

domness in the rewards and state transitions. In Chapter 2, we discussed

Q-learning and its on-policy variant Sarsa.

In Chapter 3, we have seen that choosing the maximal element from a set

of random variables can result in an overestimation of the maximal expected

85

86 CHAPTER 4. THE OVERESTIMATION OF Q-LEARNING

value. In this chapter, we apply that analysis to Q-learning and show that Q-

learning can suffer from large overestimations. We present a new algorithm

based on the double estimator approach that was introduced in Section 3.4

and we show that it performs much better on some problems, even though it

is shown to underestimate the action values in some cases.

4.1 Context and Contributions

Q-learning and Sarsa have been used to find solutions on many problems

(Crites and Barto, 1996; Randløv and Alstrøm, 1998; Smart and Kaelbling,

2002; Naghibi-Sistani et al., 2006; Wiering and van Hasselt, 2008) and es-

pecially Q-learning was an inspiration to similar algorithms, such as Phased

Q-learning (Kearns and Singh, 1999), Fitted Q-iteration (Ernst et al., 2005)

and Delayed Q-learning (Strehl et al., 2006), to name some. These varia-

tions have mostly been proposed in order to speed up theoretical or empirical

convergence rates compared to the original algorithm. Szepesvári (1998) has

shown that the convergence rate of Q-learning can be exponential in the num-

ber of experiences, while Even-Dar and Mansour (2003) have shown this to be

dependent on the learning rates that are used and that with a proper choice

of learning rates convergence in polynomial time can be obtained. All the

variations named above can claim polynomial time convergence.

4.1.1 Contributions

Our work extends the aforementioned previous work by showing that the

performance of Q-learning can suffer from a large overestimation bias caused

by the single estimator approach to determine the maximal action value in

the next state. Previous work seems to have presumed this bias either does

not exist, or is too small to be of relevance. We will show that this bias alone

is enough to explain the upper bounds on the convergence rates proposed in

earlier work. This implies that these upper bounds on the convergence rates

are not merely a theoretical curiosity and that they are tight. Additionally,

we link the poor performance to specific types of MDPs, where the worst case

settings include MDPs with noisy recurrent connections in the state space.

In some settings the bias is severe enough to remove all practical use for

the Q-learning algorithm, because it takes too long before reasonable action

values are learned. We demonstrate this on some small problems to show that

Q-learning can be extremely slow to converge even on problems with just a

single state.

We will see that if we remove the overestimation from the algorithm the

performance is greatly improved on some of these MDPs. We propose to use

an alternative method to find an estimate for the maximum value of a set of

stochastic values which we call the double estimator. This methods was dis-

4.1. CONTEXT AND CONTRIBUTIONS 87

cussed in Chapter 3 where it was shown that this method sometimes under-

estimates rather than overestimates the maximum expected value. Based on

this double estimator method, we present a newmodel-free off-policy temporal-

difference algorithm called Double Q-learning (van Hasselt, 2010). To the

best of our knowledge, this is the first off-policy reinforcement learning algo-

rithm that approximates Q∗, but does not have a positive bias in estimating

the action values in stochastic environments. We show on some examples

that it does not on average overestimate the action values, but that it can

suffer from underestimations. Additionally, we conduct some experiments to

highlight the strengths and weaknesses of the different approaches and we

give pointers to future research.

In our analysis, we consider the average case convergence rates and not

the often used probably approximately correct (PAC) convergence rates (Even-

Dar and Mansour, 2003; Strehl et al., 2009). Both approaches have advan-

tages. The advantage of an average case analysis is that some problems are

not approximately correct to a given degree within a given amount of time,

while they still have reasonably good expected values. An example of such a

case is any reinforcement learning algorithm with fixed learning rates. For

any fixed learning rate, there exists an accuracy that can not be attained

because of the sustained noise in the update, although the finite time perfor-

mance may be quite good.

4.1.2 Q-learning as Biased Value Iteration

In Chapter 2, we discussed the dynamic programming operator T
π as given

in equation (2.9). This operator is defined as

∀s ∈ S : (T πV)(s)=
∑

s′
Ps′

sa

(

Rs′

sa+γV (s′)
)

. (4.6)

Asynchronous policy evaluation works by applying this operator on one state

at a time. As discussed in Section 2.3.4, we can sample this mapping each

time step and obtain the TD learning update

Vt+1(st)=Vt(st)+βt(st)
(

r t+1+γV (st+1)−Vt(st)
)

. (4.7)

If we assume we apply operator T
π to Vt, the target used in update (4.7) is

an unbiased sample for the value in (4.6) for state st, although it may contain

noise due to the stochastic rewards and state transitions. In other words,

TD-learning is an unbiased sample based alternative for policy evaluation.

Similarly, Q-learning can be interpreted as a sample based alternative for

asynchronous action value iteration, as obtained by applying operator T
∗ as

defined in (4.4) to some action value function for one state action pair at a

time. This asynchronous value iteration update is defined as

Qt+1(s,a)=
∑

s′
Ps′

sa

(

Rs′

sa+γmax
a′

Qt(s
′,a′)

)

. (4.8)

88 CHAPTER 4. THE OVERESTIMATION OF Q-LEARNING

This update can be shown to converge to Q∗ under mild conditions on the

selection of s and a. If we assume s and a are selected deterministically, the

action function Qt is deterministic as well.

However, the Q-learning update in (4.5) is not an unbiased sample for the

asynchronous value iteration update in (4.8). More specifically, Q-learning

can experience a positive bias in estimating the maximal action values. The

reason is that the action values as obtained by Q-learning can be interpreted

as noisy samples of the action values that would be obtained by asynchronous

value iteration. As such, the expected value of the maximal action value,

as used in update (4.5) can be an overestimation for the maximal expected

value as used in (4.8). This is a direct result of the overestimation bias of the

single estimator that we discussed in Chapter 3. Moreover, the bias can be

cumulative, since the biased updated bootstraps on other action values that

may already have accrued a positive bias.

In Chapter 3, we showed that overestimations occur when the values in

a set that is maximized are noisy estimators for the expected values of the

set.1 In our settings, this translates to the fact that maxaQt(s,a) can contain

a bias when Qt(s,a) is not deterministically determined by the algorithm, the

time step t and the state and action. In practice, this means we can expect

overestimations when we use Q-learning on a stochastic MDP. Other reasons

for noisy action values can also result in overestimations, such as when the

initial action values are sampled from some random distribution or when the

action values are stored in a noisy manner. In this chapter, for simplicity we

will only focus on MDPs with stochastic rewards as a reason for noise in the

action values.

In this chapter we will look at the overestimation bias of Q-learning in

detail. The main ideas also apply to similar algorithms, such as Sarsa. When

Sarsa is used with a fixed policy that is not dependent on the action val-

ues, no implicit maximization occurs and there will be no overestimation.

However, Sarsa often implicitly uses a max operator, for instance when it is

used in combination with an ǫ-greedy policy or even with Boltzmann explo-

ration, since these exploration procedures give the highest selection probabil-

ity to the highest valued action. For instance, we can say that in stochastic

MDPs Q-learning overestimates the optimal action values, while Sarsa with

ǫ-greedy exploration overestimates the ǫ-optimal values, where these are de-

fined as the optimal values under an ǫ-greedy policy. We will not consider

Sarsa explicitly in the rest of this Chapter.

1Although intuitive, this statement is a bit loose. Formally, overestimations occur when

there is a non-zero probability that an optimal estimate is not maximal, as proven in Lemma

3.2.

4.2. OVERESTIMATIONS IN BANDIT PROBLEMS 89

4.1.3 Organization of the Chapter

The chapter is organized as follows. We use the results from Chapter 3 in

Section 4.2 to find approximations for the average case overestimation of the

value of the maximum arm in multi-armed bandit problems. We compare

this with the proposed upper bounds from Chapter 3 and discuss the accu-

racy of some approximations of the overestimation. This analysis is extended

to simple MDPs in Section 4.3 to show that the convergence of Q-learning

can suffer from this overestimation. In Section 4.4 we present the Double

Q-learning algorithm that extends our analysis in Section 3 and avoids this

overestimation. The new algorithm is proven to converge to the optimal so-

lution in the limit, although it can experience underestimations of the action

values before converging. In Section 4.5 we show the results on some exper-

iments to compare these algorithms. Some general discussion and related

work is presented in Section 4.6.1 and Section 4.6 concludes the chapter with

some pointers to future work.

4.2 Overestimations in Bandit Problems

In Chapter 3 we have looked at the problem of estimating the maximum ex-

pected value of a set of random variables. In this section we look at a very

similar problem: that of determining the value of the maximal arm in a multi-

armed bandit problem (Robbins, 1952; Berry and Fristedt, 1985).

The purpose of this section is to connect the discussion in the previous

chapter to the reinforcement learning setting. We do this by first consider-

ing the simpler multi-armed bandit setting that will be explained in the next

subsection. Then we will discuss the bias caused by the single estimator ap-

proach that is commonly used for these types of problems. We will find a us-

able approximation for this bias and use this to determine how many samples

are needed before the estimator values converge with a satisfactory accuracy.

These results will be used in the next section to show why Q-learning can

overestimate the action values in certain MDPs by a wide margin. In Sec-

tion 4.4 we will reconsider the double estimator in a reinforcement learning

context, but in this section we focus only on the single estimator.

Earlier work has focused on the convergence rates in Bandit problems,

for instance giving the complexity in a probably approximate correct (PAC)

manner (Even-Dar et al., 2002) or focusing on exploration (Auer et al., 2002;

Mannor and Tsitsiklis, 2004). This previous work shows a quadratic depen-

dence on relevant parameters of the model, demonstrating that convergence

rates are in the order of Ω(1
ǫ2
), when we only consider the dependence on a

given approximation error ǫ to the true value. We will rederive this quadratic

dependence and additionally give analytic approximations of the average dis-

tance as a function on the number of trials. Rather than just considering

90 CHAPTER 4. THE OVERESTIMATION OF Q-LEARNING

the abstract convergence rate, this analysis gives a direction to this distance,

since we show it will in general be an overestimation.

4.2.1 Multi-Armed Bandits

In a multi-armed bandit problem there is a set of M arms A = {a1, . . . , aM}.

Each arm ai results in some stochastic immediate reward r(ai), where the ex-

pectancy of this reward is some constant Ri =E{r(ai)}. The aim for a learning

agent is to find the arm j that maximizes the expected reward, such that

R j =max
i

Ri . (4.9)

Additionally, we want the agent to estimate the expected value R j for this

optimal arm. This value will be important when we consider value-based

reinforcement learning in Markov decision processes in Section 4.3. For sim-

plicity, we will assume that the rewards have a binomial distribution and can

only be 0 (failure) or 1 (success) as a running example. We will also consider

the general case, although the general bounds necessarily will be quite loose.

The task is then to find the arm with the highest chance of success.

In the following, in order to be consistent with the reinforcement learning

terminology we will talk about actions rather than arms. Furthermore, we

will use the shorter term bandits to refer to multi-armed bandits.

To get estimates of the rewards, the agent tries different actions. The

obtained rewards are then used to update estimators. We will denote the

estimate for the reward of action a by Qt(a), where Qt : A→R is an adaptable

action value function. The estimator is then updated by

Qt+1(at)=Qt(at)+αt+1(at)(r t+1(at)−Qt(at)) , (4.10)

where r t(a) is the stochastic reward for action at in trial t.

Often, exploration is an important topic in the bandit settings. In this

section, we will abstract over the exploration issues and will simply talk about

trials, where in each trial every action gets selected exactly once. In other

words, we assume synchronous updates to the action values. Note that the

number of trials needed to converge to a certain solution is a lower bound

to the number of actions needed to obtain similar convergence. We use the

letter N to denote the number of trials. For now, we assume a learning rate

parameter of αN (a) = 1
N
, where N is the number of times the action a has

been selected. Such a learning rate is optimal for stationary bandit problems.

Then, we obtain

∀a :QN (a)=
1

N

N
∑

i=1
rN (a) ,

such that QN (a) is simply the average of N rewards obtained for arm a.

4.2. OVERESTIMATIONS IN BANDIT PROBLEMS 91

4.2.2 Overestimations for Binomial Bandits

In this subsection we will analyze the convergence rate as a function of the

number of actions and the number of trials for a bandit problem where the

rewards are Boolean. We will consider the worst case performance of the sin-

gle estimator approach. As noted in the former section, the bias of the single

estimator is the largest when the different estimators are iid and the bias is

related to the size of the variance. We will compute the expected maximal

action value in our running example and compare it to the upper bound of

σ
p
(M−1)/N that we obtained in Sections 3.3 and 3.7. According to this up-

per bound, the expected number of trials before the overestimation falls below

some value ǫ is

N <σ2 (M−1)2

ǫ
. (4.11)

In our running example we assume that each action yields a reward of −1
or 1 according to a Bernoulli distribution with equal probabilities p= (1−p)=
1/2 for both success and failure. Then the rewards are iid and the variance

is maximal for the given reward range. The values of −1 and 1 were chosen

rather then the more common values of 0 and 1 because of convenience, since

then the expected value is equal to zero and the variance is equal to one.

Then the expected value of the maximal arm corresponds one to one to the

overestimation bias. The probability distribution of total number of successes

x after N trials then behaves as a binomial distribution b(x,N, p), where p =
1/2 is the probability of success on each trial.

The expected maximal value, also known as the maximal order statistic,

of a set of random variables Y distributed according to a binomial distribution

is equal to

E

{

max
i

Yi

∣

∣

∣

∣

N,M, p

}

=N−
N−1
∑

x=0
B(x,N, p)M , (4.12)

where B(x,N, p) is the CDF of the binomial distribution, N is the number of

trials, M is the number of actions and p is the probability of success (Gupta

and Panchapakesan, 1967; David and Nagaraja, 2003; Arnold et al., 2008).

The expected maximum action value in our example then is

E
{

max
a

QN (a)
∣

∣

∣M
}

=
2E

{

maxiYi|N,M, 12
}

−N

N
(4.13)

= 1−
2

N

N−1
∑

x=0
B

(

x,N,
1

2

)M

,

which is simply a rescaling of (4.12) to the interval [−1,1] under the assump-

tion p = 1/2. Since we will assume these rewards and success probabilities

throughout our example, the expected maximal action value is conditioned

only on the number of actions M and the number of sample N. We will now

92 CHAPTER 4. THE OVERESTIMATION OF Q-LEARNING

examine the size of the overestimation and give two useful approximations to

this value.

Using (4.13), we obtain for respectively 2 and 3 actions

E
{

max
a

QN (a)
∣

∣

∣2
}

= b

(

N,2N,
1

2

)

,

E
{

max
a

QN (a)
∣

∣

∣3
}

=
3

2
b

(

N,2N,
1

2

)

,

both of which can be proven algebraically (Calkin, 1994). Expressions for

M > 3 are more complex and to the best of our knowledge no closed form

expressions simpler than (4.13) exist. However, we can give a simple approx-

imate expression for the overestimation. We can rewrite the values as

E
{

max
a

QN (a)
∣

∣

∣M
}

=CM(N)

(

2N

N

)

4−N , (4.14)

where C1(N) = 0, C2(N) = 1 and C3(N) = 3/2. For M ≥ 4, CM(N) is an un-

known function that increases in N. We can approximate (4.14) with Stir-

ling’s formula to obtain

E
{

max
a

QN (a)
∣

∣

∣M
}

≈
CM(N)
p
πN

. (4.15)

Although CM(N) increases in N, the approximation in (4.15) is a decreasing

function of N, for any M ≥ 2.

For M ∈ {2,3}, the approximation in (4.15) is a good approximation for the

overestimation of M Gaussian random variables with variance 1/N. In that

case the known expected overestimations are 1/
p
πN for M = 2 and 3/(2

p
πN)

for M = 3 (David and Nagaraja, 2003; Arnold et al., 2008). A closed form

expression for CM(N) for general N and M seems to be an open question in

order statistics. However, it can be verified numerically that CM(N) increases

roughly logarithmically in N for M ≥ 4.

We will now construct an approximate lower bound to how many trials it

takes for a given ǫ before the overestimation on average falls below this value.

Because we have no general closed form expressions for CM(N), we will use

CM(1):

CM(1)=
4

(

1−2B
(

0,1, 12
)M

)

(2
1

)
=

4
(

1−21−M
)

2
= 2−22−M .

Since CM(N) increases in N, we known that in general CM(1)≤CM(N) for all

M and N. Using CM(1) in place of CM(N), we get

E
{

max
a

QN (a)
∣

∣

∣M
}

>≈
2−22−M

p
πN

. (4.16)

4.2. OVERESTIMATIONS IN BANDIT PROBLEMS 93

Exact (with equation (4.13))

M 2 3 4 8 16 32 64

N 3183 7161 10596 20267 31187 42835 54931

Approximations

M 2 3 4 8 16 32 64

(4.17) N 3183 7161 9748 12534 12731 12732 12732

(4.19) N 3333 7500 10800 18148 23356 26473 28182
3
π
(4.19) N 3183 7161 10313 17330 22303 25280 26912

Upper bound (4.11)

M 2 3 4 8 16 32 64

N 10000 20000 30000 70000 150000 310000 630000

Table 4.1: Average number of trials before the maximum of M actions is

within ǫ= 0.01 of the actual value in a bandit problem with Bernoulli (p= 1/2)

distributions with reward of −1 or 1 for each action. Shown are exact nu-

merical results using (4.13), approximations using (4.17), (4.19) and (4.19)

multiplied with a factor 3/π. Also shown is the upper bound obtained with

ǫ=σ
p
(M−1)/N.

We can restrict the overestimation to ǫ and then solve (4.16) for N to get

what we could call an approximate underestimation of the number of required

trials

N >≈
1

π

(

2−22−M

ǫ

)2

. (4.17)

Alternatively, we can use the uniform approximation from (3.21) to obtain

E
{

max
a

QN (a)
∣

∣

∣M
}

≈
M−1

M+1

√

3

N
, (4.18)

where we have used σ = 1, as is the case in our example. For M = 2 and

M = 3, (4.16) and (4.18) are very similar: 1/
p
πN and 3/(2

p
πN) for (4.16)

compared to 1/
p
3N and 3/(2

p
3N) for (4.18). The only difference is a factor ofp

3 instead of
p
π in the denominator. We can solve (4.18) for N to find how

long it takes before the expected overestimation falls below ǫ according to the

uniform approximation. This gives our second approximation

N ≈ 3

(

M−1

ǫ(M+1)

)2

. (4.19)

To get an idea of the impact of the overestimation bias and to check our

approximations we compare our results with the analytical numerical results,

as can be obtained by use of (4.17). Table 4.1 gives approximations for the

number of trials needed to limit the overestimation to ǫ= 0.01 for various M

94 CHAPTER 4. THE OVERESTIMATION OF Q-LEARNING

according to (4.17) and (4.19). The actual numerical values obtained with use

of (4.13) are also shown. Additionally, the values of the second approximation

are shown if we multiply the approximation in (4.19) with a factor 3/π.

In Table 4.1, we see that the approximations are accurate for small val-

ues of M. For larger M the numerical results and the approximations start

to differ. However, for a lower bound the approximations due to (4.19) are

very useful. The general upper bound, which was not restricted to binomial

distributions, is clearly quite loose in this case.

The approximation that gives the closest result without overestimating

the number of trials for any M is

E
{

max
a

QN (a)
∣

∣

∣M
}

≥
3σ

p
πN

M−1

M+1
, (4.20)

as used for the last approximation in Table 4.1. This approximation underes-

timates the exact numerical results for all M ≥ 4, which implies that we can

use these results as a lower bound for the setting multiple iid actions with

equiprobable Boolean rewards, without any risk of exaggerating the prob-

lems associated with the found overestimation. We will use this in the next

section to analyze the average convergence rate of Q-learning and examine

how it is affected by the different relevant parameters.

We have seen that in the iid binomial and iid uniform case the lower bound

on the overestimation is linear in σ/
p
N. The same holds for the upper bound,

so in general we can assume that for a set of M iid values with an arbitrary

distribution with variance σ2, the overestimation is equal to

E
{

max
a

QN (a)
∣

∣

∣M
}

= xM
σ

p
N

, (4.21)

where xM ∈ o(M) is an unknown value that increases in M and that is strictly

positive for M > 1. The important thing to note is that xM does not depend

on N. Now, if we want a lower or an upper bound, we can simply replace xM
with the relevant quantity.

4.3 Convergence Rates of Q-learning

In the previous section we have analyzed the overestimation of a single es-

timator approach in multi-armed bandit problems with only direct rewards.

In this section, we will use this analysis to look at the convergence rates of

Q-learning.

We will construct MDPs where Q-learning suffers a big performance penalty

because of this bias. An analysis of these problems is more involved, because

of the possible dependence of state-action values on each other, but the main

principle is similar. However, we will see that the quadratic dependence of

4.3. CONVERGENCE RATES OF Q-LEARNING 95

Figure 4.1: Episodic MDP.

the number of required trials to get below a certain overestimation trans-

forms into an exponential dependence when there are recurrent connections.

We will extend our analysis on the bandit problems to episodic and recur-

rent MDPs. This allows us to give examples of how many steps it can take

in some very simple settings before Q-learning converges to any meaningful

approximation of the true action values.

4.3.1 Episodic Bandit MDP

In this subsection we look at an MDP that is fairly easy to analyze, since it is

a simple extension of a multi-armed bandit. The MDP is shown in figure 4.1.

In order to keep the figures simple, we do not show the actions explicitly as

we did before. Rather, each line depicts both an action and a state transition.

State A is the starting state and the squares represent terminal states. State

B is in essence a bandit problem, with multiple actions all leading to a ter-

minal state T. All actions in state B yield a stochastic reward with expected

value of zero and a variance of σ2. The action aB leads from state A to B and

yields a reward of zero. The action aT leads from A to T and yields some pos-

itive reward and is therefore the optimal action. We will discuss this action

later, but we will first focus on the estimation of the value of aB.

For simplicity of the analysis, we will consider the case in which the value

of this action is updated with ordinary Q-learning with a learning rate of

1/N, where N is the number of times the relevant action has been selected.

Furthermore, we assume synchronous Q-learning, such that all actions are

updated at the same time. By doing this we abstract over any exploration

issues.

The expected value of the maximum of the actions in state B as a function

of the number of trials N is given in equation (4.21), where M = |A(B)| is the

number of actions that lead from state B to state T. If we assume a learning

rate of 1/N, the value of QN (A,aB) is:

QN (A,aB)= γ
1

N

N−1
∑

n=0
max

a
Qn(B,a) . (4.22)

Assume all values are initialized at zero. Then, using (4.21) we can obtain

96 CHAPTER 4. THE OVERESTIMATION OF Q-LEARNING

Figure 4.2: Episodic MDP.

the following general overestimation:

E
{

QN (A,aB)
}

= γ
1

N

N−1
∑

n=0
E

{

max
a

Qn(B,a)
}

=
γ

N

N−1
∑

n=1

xMσ
p
n

≥
γxMσ
p
N

,

where the inequality holds for all N > 3. We are interested how long it takes

on average before this value is within ǫ of the actual value, so we assert ǫ =
E{QN (A,aB)} and solve for N to get

N ≥
(γxMσ

ǫ

)2
. (4.23)

Although this is a lower bound, the quadratic dependence on the relevant

parameters seems manageable and scalable.

Equation (4.23) seems to indicate that lower discount factors lead to faster

convergence to the optimal policy. This is not necessarily the case in general,

as the next example will demonstrate. Consider the MDP in Figure 4.1 and

assume that the optimal action in state A is aT, for some positive average

reward of Q(A,aT) = ǫ. Equation (4.23) then gives the approximate average

number of trials until the value of the ‘right’ action is less than this value and

the optimal policy is found. Indeed, this value decreases when the discount

factor γ decreases. Now consider the similar MDP in Figure 4.2, where the a1

yields a reward of zero and leads to a different state A1. This state only has a

single action that leads to yet another state A2, again with a reward of zero.

This continues until eventually state Ak is reached, where a single action

yields some positive reward ǫ and a terminal state is reached. This implies

that the value of a1 from the original state A is γkǫ. Then, the amount of

trials before it can be determined on average that a1 is preferred to aB in

state A then is at least

N ≥
(

γxMσ

γkǫ

)2

=
(

xMσ

γk−1ǫ

)2

,

which increases when γ decreases for all k ≥ 2. This shows that it is by no

means trivial when modeling a problem as an MDP to select a discount fac-

tor that in general aids the convergence of an algorithm such as Q-learning.

4.3. CONVERGENCE RATES OF Q-LEARNING 97

Figure 4.3: An MDP with reflexive actions that yield stochastic rewards.

Based only on the γ-contraction in the proof of convergence, one would as-

sume that lower γ always results in faster convergence. Although this is true

when only considering the action values, the policy may converge faster when

γ is larger, as in our example in Figure 4.2. Also note that the average conver-

gence rate is no longer necessarily quadratic in all the relevant parameters,

as the exponent of γ now depends on the length of the sequence A1, . . ., Ak.

4.3.2 Loop Bandit MDP

In our next example, we are again dealing with a bandit-type state, but this

time multiple actions lead back to the same state. For completeness, there

is also a terminal state that can be reached, but we will defer discussion

about this option until later, so for now we ignore the corresponding action.

The MDP is shown in Figure 4.3. We will demonstrate that in this MDP Q-

learning obtains the theoretical worst-case bound of O(1/N1−γ) as found in

the asymptotic case by Szepesvári (1998) and as found for finite sets of ex-

periences by Even-Dar and Mansour (2003). Although simple in structure,

the MDP in Figure 4.3 can therefore be considered a difficult problem for Q-

learning.

After N trials, we have the following value for any arbitrary action a:

QN (A,a)=
N−1

N
QN−1(A,a)+

1

N

(

rN (a)+γmax
b

QN−1(A,b)

)

= . . .

=
1

N

N
∑

n=1

(

rn(a)+γmax
b

Qn−1(A,b)

)

,

where rn(a) is the reward received by action a on trial n. In this section, M

denotes the number of actions that lead from state A back to itself.

Since all actions loop back to the same state, the expected maximum over

these values can be found as follows:

E
{

max
a

QN (A,a)
}

=E

{

max
a

(

1

N

N
∑

n=1

(

rn(a)+γmax
b

Qn−1(A,b)

)

)}

=E

{

max
a

1

N

N
∑

n=1
rn(a)

}

+E

{

γ

N

N
∑

n=1
max

b
Qn−1(A,b)

}

, (4.24)

98 CHAPTER 4. THE OVERESTIMATION OF Q-LEARNING

where the first term is equal to the expected average value of the maximal

action in a bandit problem

E

{

max
a

1

N

N
∑

n=1
rn(a)

}

=
xMσ
p
N

.

The derivation in (4.24) shows that the expected maximum value is re-

lated over different time steps in the same way as the following process:

q(N)=
xMσ
p
N

+
γ

N

N−1
∑

n=0
q(n)

We construct an approximation to the derivative of q(N):

d

dN
q(N)=

(

d

dN

xMσ

2
p
N

)

+
(

d

dN

γ

N

)N−1
∑

n=0
q(n)+

γ

N

(

d

dN

N−1
∑

n=0
q(n)

)

≈−
xMσ

2N
p
N

−
γ

N2

N−1
∑

n=0
q(n)+

γ

N
q(N)

=−
xMσ

2N
p
N

−
1

N

(

q(N)−
xMσ
p
N

)

+
γ

N
q(N)

=
xMσ

2N
p
N

−
1−γ

N
q(N)

where we used the discrete approximation

d

dN

N−1
∑

n=0
q(n)≈ (

N
∑

n=0
q(n))− (

N−1
∑

n=0
q(n))= q(N) .

This shows that the derivative of the expected maximal action value approx-

imately has the structure of the ordinary differential equation (ODE)

q′(N)=
xMσ

2N
p
N

−
1−γ

N
q(N) .

We solve the ODE to get the approximation

E
{

max
a

QN (A,a)
}

≈KNγ−1−
xMσ
p
N

1

2(γ−1/2)
,

where K is a constant due to the integration needed to find the solution of the

ODE. The overestimation for N = 1 is equal to xMσ and we use this to find

K = γxMσ/(γ−1/2). This means we have the approximation

E
{

max
a

QN (A,a)
}

≈
xMσ

γ−1/2

(

γNγ−1−
1

2
p
N

)

. (4.25)

4.3. CONVERGENCE RATES OF Q-LEARNING 99

We cannot easily find an analytical function of N that tells us how long it

takes before the overestimation falls below some ǫ, but we can investigate the

different parameters and observe their influence on the time before conver-

gence. We start by noting that the values for γ= 0 and γ= 1 are respectively

E
{

max
a

QN (A,a)
∣

∣

∣γ= 0
}

≈
xMσ
p
N

,

E
{

max
a

QN (A,a)
∣

∣

∣γ= 1
}

≈ xMσ

(

2−
1

p
N

)

.

The first result shows that if the discount factor is zero, the approximation re-

duces to the same value as in the direct reward case described in the former

section, as one would expect. The second result implies that when γ= 1, the

overestimation strictly increases from xMσ to 2xMσ for increasing N. There-

fore, with γ = 1 we do not have convergence. This is not an artifact of the

approximation; the true value of all actions is zero, so we can deduce that any

overestimation must be positive. Because none of these overestimations get

discounted when γ = 1, they continue to be represented in the action values,

resulting in a lack of convergence. Approximation (4.25) is not defined for

γ= 1/2, although it is continuous in the region. Solving the ODE directly for

γ= 1/2, we get:

E
{

max
a

QN (A,a)
∣

∣

∣γ= 1/2
}

≈
xMσ
p
N

(

1+ log
p
N

)

(4.26)

Another way to interpret the approximation in equation (4.25) is by noting

that for γ ∈ (1/2,1) the term Nγ−1 decreases with a slower rate than 1/
p
N.

That implies that if N is large enough, the approximation behaves roughly

as:

E

{

max
a

QN (A,a)
∣

∣

∣γ ∈
(

1

2
,1

)

,N ≫ 1

}

≈ xMσ
γNγ−1

γ−1/2
.

If we want to know how long it approximately takes before the value of the

maximum action falls below some other value ǫ, we can solve this to get

N ≈
(

xMσ
γ

ǫ(γ−1/2)

)1/(1−γ)
.

This can be an overestimation of the true number of trials since we ignored

the negative second term in equation (4.25). However, N becomes sufficiently

large for small values of ǫ that it does give an accurate idea of the rate of

convergence. This value can become very large when γ is close to one.

The slow rate of convergence is also apparent when using the previous,

more accurate approximation from (4.25). Table 4.2 shows the approxima-

tions for N for a few combinations of M,γ and ǫ. We used the uniform lower

bound of xM = (3/
p
π)(M−1)/(M+1) and a variance of σ2 = 1. Consider the

100 CHAPTER 4. THE OVERESTIMATION OF Q-LEARNING

Value of N, according to approximations (4.25) and (4.26)

ǫ 0.5 0.1 0.01

γ= 0
M = 2 2 32 3,183

M = 10 8 192 19,178

γ= 0.5
M = 2 4 550 154,867

M = 10 78 5,377 1,230,936

γ= 0.9
M = 2 9,649 1.09×1010 1.09×1020

M = 10 88,000,282 8.63×1013 8.63×1023

γ= 0.95
M = 2 34,472,155 3.30×1020 3.30×1040

M = 10 2.18×1014 2.08×1028 2.08×1048

Table 4.2: Approximations for the number of steps N until Q-learning con-

verges within ǫ of the actual value in a reflexive stochastic MDP (without

terminal state) for different numbers of reflexive actions M and discount fac-

tors γ.

values of N for ǫ = 0.1 and ǫ = 0.01 for the higher discount factors. When ǫ

decreases with a factor 10, the value of N increases with a factor 101/(1−γ) .

Furthermore, when the number of actions becomes fairly large, the number of

trials to get within a meaningful region around the actual value becomes too

high to be of practical use. A setting with 10 actions and a discount factor of

0.9 is by no means uncommon. However, if the MDP contains a loop, such as

the one in Figure 4.3 with iid stochastic rewards, we see it can take millions

of visits to this state before the overestimation by Q-learning of the highest

valued action in this state reduces below 0.5. This will rarely be accurate

enough.

As a verification of the approximations used to construct Table 4.2 we

conduct a small experiment. We ran Q-learning on the loop MDP for N =
1,000, N = 2,000 and N = 4,000 trials with a discount factor of γ= 0.9 and a

uniform random reward between −1/
p
3 and 1/

p
3 on each transition. For M =

2 actions, this resulted in overestimations of respectively ǫ= 0.611, ǫ= 0.575

and ǫ= 0.540, showing slow convergence towards 0.5 at more or less the same

rate as predicted. For M = 10 actions the overestimations were ǫ = 1.585,

ǫ = 1.492 and ǫ = 1.402. These values are averages over 1,000 experiments.

The decrease for M = 10 is approximately constant for each doubling in the

number of trials. We can extrapolate these values to find that for M = 10 it

would take approximately 4 million trials to reach 0.5. This is faster than

the value of 88 million shown in the Table 4.2—which may be due to the

extrapolation—but it is much too long to be of practical use.

The analysis and the resulting approximations for the number of steps in-

dicate that one should be careful when using Q-learning on problems with

4.4. DOUBLE Q-LEARNING 101

a somewhat large discount factor, even if these problems look deceptively

simple. However, as we saw before some problems need models with a high

discount factor to be able to reach the desired optimal policy. For instance,

consider the case where the optimal action does not lead to a high reward

immediately, but rather only after k steps, similar to the episodic MDP in

Figure 4.2. Suppose that a state has reflexive connections, similar to state

A in Figure 4.3, but that the intended behavior is to select an action that

leads to a reward of 1 in k steps. Now assume there is also a distractor action

which leads to a reward of 1
2 in m steps. If m < k the discount factor should

be at least 1/(21/k−m) for the optimal policy in the MDP to correspond to the

intended behavior that leads to the reward of 1. This translates to a required

discount factor larger than 0.9 for k−m ≥ 7 and a required discount larger

than 0.95 when k−m ≥ 22. If the discount factor is chosen to be lower, the

intended behavior will no longer be optimal in the resulting MDP and will

therefore not be learned.

These results imply that there exist problems in which Q-learning takes

a prohibitive long time to converge to any meaningful policy. This result is

similar to the asymptotic bound of O(1/N1−γ) found by Szepesvári (1998) and

the result that there exist MDPs such that after N =Ω((1/ǫ)1/(1−γ)) steps the

maximum Q value is further than ǫ from the optimal value as described by

Even-Dar and Mansour (2003). However, we have shown that the overesti-

mation bias can cause Q-learning to attain these upper bound convergence

rates in very simple MDPs, causing unacceptable slow convergence.

Since we have analyzed the overestimation as a cause for the poor conver-

gence rates, we can devise of a way to solve these issues. In the next section

we present a version of Q-learning that is inspired by the double estimator

we presented in Chapter 3.

4.4 Double Q-learning

Q-learning uses the single estimator to estimate the value of the next state:

maxaQt(st+1,a) is an estimate for E{maxaQt(st+1,a)}, which in turn approx-

imates maxaE{Qt(st+1,a)}.
2 In the last section we have seen this can cause

overestimations that result in slow convergence. In the next section we will

verify empirically on some simple problems that the overestimations can be

substantial. Therefore, in this section we present an algorithm to avoid these

overestimation issues. The algorithm is based on the double estimator ap-

proach and therefore it is called Double Q-learning (van Hasselt, 2010).

2The expectation should be understood as averaging over all possible runs of the same ex-

periment and not—as it is often used in a reinforcement learning context—as the expectation

over the next state, which we will encounter in the next subsection as E{·|Pt}.

102 CHAPTER 4. THE OVERESTIMATION OF Q-LEARNING

Algorithm 5 Double Q-learning

1: Given an initial state distribution I and an MDP.

2: Initialize QA,QB,s∼ I

3: repeat

4: Choose a, based on QA(s, ·) and QB(s, ·)
5: Observe r, s′

6: Choose (e.g. random) either UPDATE(A) or UPDATE(B)

7: if UPDATE(A) then

8: Define a∗ = argmaxaQ
A(s′,a)

9: QA(s,a)←QA(s,a)+α(s,a)
(

r+γQB(s′,a∗)−QA(s,a)
)

10: else if UPDATE(B) then

11: Define b∗ = argmaxaQ
B(s′,a)

12: QB(s,a)←QB(s,a)+α(s,a)(r+γQA(s′,b∗)−QB(s,a))

13: end if

14: s← s′

15: until end

Double Q-learning is shown in Algorithm 5. Two action value functions

are stored: QA and QB. Each action value function is updated with a value

from the other action value function for the next state. To be more pre-

cise, the action a∗ in line 8 is the maximal valued action in state s′, accord-

ing to the action value function QA. However, instead of using the value

QA(s′,a∗)=maxaQ
A(s′,a) to update QA, as Q-learning would do, we use the

value QB(s′,a∗). Since QB was updated on the same problem, but with a dif-

ferent set of experience samples, this can be considered an unbiased estimate

for the value of this action. A similar update is used for QB, using b∗ and

QA . It is important that both Q functions learn from separate sets of experi-

ences, so is why we suggest choosing one of the values functions to update at

random on each time step. One could also update the action values functions

in turn, such that if QA(s,a) is updated, QB(s,a) will be updated the next

time the agent selects action a in state s. However, this would require extra

bookkeeping, which is why we prefer the random approach.

To select an action to perform, one can use both value functions, for in-

stance by simple averaging Qt(s,a) = (QA
t (s,a)+QB

t (s,a))/2. Then, the ob-

tained value function Qt uses all the available experiences up to time t. In

this way, Double Q-learning is as data-efficient as Q-learning, which would

not be the case if we would only use QA or QB for the action selection since

each of these only uses approximately half of the experiences. In our experi-

ments, we calculate the average of the two value functions for each action and

then perform ǫ-greedy exploration with the resulting averaged action values.

Double Q-learning is not a full solution to the problem of finding the max-

imum of the expected values of the actions. Similar to the double estimator

4.4. DOUBLE Q-LEARNING 103

in Chapter 3, action a∗ may not be the action that maximizes the expected

Q function maxaE{QA(s′,a)}. In general E{QB(s′,a∗)}≤maxaE{QB(s,a)}, and

underestimations of the action values can occur. We will see an example MDP

in which this causes some underestimation of the action values later in this

chapter. However, in some of the settings in which Q-learning performs very

poorly, Double Q-learning shows fast convergence, making it an interesting

algorithm for further consideration.

Similar to the action selection, one could imagine using both Q functions

to determine the value of the next state for each of the updates. However,

using the average of QA(s′,b∗) and QB(s′,a∗) to update both of the values

functions would not be a good idea. The value-functions would become equal,

and the resulting algorithm would be similar to Q-learning with the associ-

ated overestimation problems. Possibly, one could use a weighted average of

QA(s′,a∗) and QB(s′,a∗) to update QA and a weighted average of QA(s′,b∗)

and QB(s′,b∗) to update QB. This would result in a hybrid algorithm between

Q-learning and Double Q-learning, which in some cases overestimates and

in some cases underestimates the action values. Although interesting, we

do not consider this variant further. For completeness, we note that using

QA(s′,b∗) for QA and QB(s′,a∗) for QB yields a very similar algorithm to the

one described in Algorithm 5, with similar performance.

4.4.1 Convergence in the Limit

In this section we show that in the limit Double Q-learning converges to the

optimal policy. Intuitively, this is what one would expect: Q-learning is based

on the single estimator and Double Q-learning is based on the double estima-

tor and in Chapter 3 we showed that the estimates by the single and double

estimator both converge to the same answer in the limit. However, this argu-

ment does not transfer immediately to bootstrapping action values, so we will

prove the convergence of Double Q-learning formally, making use of Lemma

2.1 that was introduced in Section 2.4.4.

The conditions for convergences for Double Q-learning are similar to those

for Q-learning. This includes some conditions on the learning rates and the

exploration, but these conditions are minimal in the sense that any stochastic

approximation process must have similar conditions to ensure convergence

with probability one. Our theorem is as follows:

Theorem 4.1. Assume the conditions below are fulfilled. Then, in a given

ergodic MDP, both QA and QB as updated by Double Q-learning as described

in Algorithm 5 will converge to the optimal value function Q∗ as given in the

Bellman optimality equation (4.2) with probability one if an infinite number

of experiences in the form of rewards and state transitions for each state action

pair are given by a proper learning policy. The additional conditions are:

104 CHAPTER 4. THE OVERESTIMATION OF Q-LEARNING

1. The MDP is finite, i.e. |S×A| <∞,

2. γ ∈ [0,1),

3. the action values are stored in a lookup table,

4. both QA and QB receive an infinite number of updates,

5. αt(s,a) ∈ [0,1] ,
∑

tαt(s,a) = ∞ ,
∑

t(αt(s,a))
2 < ∞ w.p.1, ∀s,a 6= st,at :

αt(s,a)= 0,

6. ∀s,a, s′ :Var{Rs′
sa}<∞.

A ‘proper’ learning policy ensures that each state action pair is visited

an infinite number of times. For instance, in a communicating MDP proper

policies include a random policy. It is easy to extend the proof to non-ergodic

MDPs, as long as we have some way to obtain an infinite number of experi-

ences for each state-action pair. Also, the proof can be extended to episodic

undiscounted MDPs. For conciseness, we do not explicitly discuss the adapta-

tions needed to prove these additional cases, but the changes to the proof are

straightforward. The proof is shown in Section 4.7.1.

4.4.2 Variants of Double Q-learning

Although we will not consider them here in any detail, any variant of Q-

learning can be transformed into a Double Q-learning variant. This includes

algorithms such as Fitted Q-iteration (Ernst et al., 2005), Delayed Q-learning

(Strehl et al., 2006) and Greedy-GQ (Maei et al., 2010). Additionally, other

standard extensions to Q-learning such as function approximation in large

state spaces are straightforward to implement. In short, using the double es-

timator in place of the single estimator does not cause significant limitations

in the use of the algorithm. Therefore, we focus the rest of our analysis on the

potential difference in performance that may result from this adaptation.

4.5 Experiments

This section will show results on three small experimental settings. This

will be useful as a check that our analyses are valid, as an illustration of the

bias of Q-learning and as a first practical comparison with Double Q-learning.

The settings are purposefully kept simple, because in simple settings it is

easier to analyze the precise behavior and the reasons for this behavior for

the algorithms. In a large complex setting other issues than the ones we

are focusing on may weigh more heavily on the performance. Furthermore,

since Double Q-learning shares the same scalability issues and remedies as

Q-learning does, we do not feel complex experiments would aid much to our

4.5. EXPERIMENTS 105

Figure 4.4: A small grid MDP.

comparison of the virtues of both algorithms. As mentioned, any variant of Q-

learning can also be transformed into a similar variant of Double Q-learning.

In our view, this stresses the importance of a good understanding of the basic

algorithm, and these experiments are intended to help build some intuitions.

The settings are the gambling game of Roulette, a small grid world and a

small episodic task. In the first two tasks, there is considerable randomness

in the rewards, and as a result we see that indeed Q-learning performs quite

poorly. The third task serves as an illustration of an MDP in which Double

Q-learning is outperformed by Q-learning.

4.5.1 Grid World

We start with a very small grid world MDP as shown in Figure 4.4. In each

state there are 4 actions, corresponding to the directions the agent can go.

The starting state is in the lower left position and the goal state is in the

upper right. There are no obstacles and each time the agent selects an action

that would walk off the grid, the agent stays in the same state. The agent

receives a random reward of −11 or +9 with equal probability. In the goal

state every action always yields +5 and ends an episode. The optimal policy

ends an episode after five actions, so the optimal average reward per step is

+0.2. The discount factor was set to 0.95.

We conducted two experiments on this MDP, varying the learning rates.

The learning rate was either linear: α(s,a)= 1/n(s,a), or polynomial α(s,a)=
1/n(s,a)0.8. The learning rates for Double Q-learning were dependent on the

number of times the relevant action values function had been updated. For

instance, if in the linear case QA was to be updated, the learning rate was

α(s,a) = 1/nA(s,a), where nA(s,a) is the number of updates to QA(s,a) up to

and including the present update.

Exploration was ǫ-greedy, selecting the greedy action with probability

(1− ǫ) and a random action otherwise. The exploration parameter was ǫ(s)=
1/
p
n(s), assuring infinite exploration in the limit which is a theoretical re-

quirement for the convergence of Q-learning and Double Q-learning. Figure

4.5 shows the average rewards in the first row and the maximum action value

in the starting state of the MDP in the second row.

The performance of Double Q-learning as measured in average rewards

was clearly much better than that of Q-learning in this setting. However,

106 CHAPTER 4. THE OVERESTIMATION OF Q-LEARNING

Figure 4.5: Results in the grid world for Q-learning and Double Q-learning.

The first row shows average rewards for the stochastic setting with rewards

of −12 or +10. The second row shows the maximal action value in the starting

state S for the stochastic setting. Averaged over 10,000 experiments.

the fact that Double Q-learning obtains better average rewards than normal

Q-learning does not necessarily imply that their estimations of the action

values are more accurate. We examined the value of the maximally valued

action in the starting state, which was almost always the up or right action, as

expected. Note that the optimal value of this action would be 5γ4−
∑3

k=0γ
k ≈

0.36, which is depicted in the second row of Figure 4.5 with a dotted line.

We see that despite its better average rewards, Double Q-learning gets only

slightly closer to this value in 10,000 learning steps than Q-learning.

The obvious question is why Double Q-learning performs so much better

when its action values are not necessarily much more accurate. The answer

lies in the direction of the bias. If actions that are selected often suffer from

overestimations, these actions will only get selected more and more. On the

other hand, if actions that are selected suffer from underestimations, this

will give an incentive to the algorithm to try other actions. In this simple

grid world, this translated to good policies for Double Q-learning, that may

underestimate the values of its actions, but still quickly favors the actions

that result in high rewards above actions that do not. For Q-learning, the be-

havior was typical for the overestimation. Often, the Q-learning agent would

walk to a corner and there is would bump into the corner. The state then

does not change, making the setting similar to the single state loop MDP we

discussed earlier. Eventually, Q-learning may learn that the corner state is

not as highly valued as it thought it was, but then there are still plenty of

other places to bump into the wall, resulting in very slow convergence to the

desired behavior, even when polynomial learning rates are used.

4.5. EXPERIMENTS 107

4.5.2 Roulette

In the game of roulette, a small ball is thrown into a rotating wheel in which

there are 38 compartments. Each compartment has a color and a number

associated with it. The numbers 00 and 0 are green, the numbers 1-36 are

each either black or red. The player can choose between 170 different betting

actions, including placing a bet on any of the numbers, on either of the colors

black or red, on either of the odd or even numbers, and so on. Although the

winning probabilities differ between certain bets, the payoff for winning each

of these bets is chosen such that almost all bets have an expected payout of
1
38$36 = $0.947 per dollar bet, resulting in an expected loss of -$0.053 per play

if we assume the player bets $1 every time.3 In addition to the betting actions,

we introduce an action that stops playing. This action yields a reward of $0

and ends the episode. Naturally, the optimal policy is to stop playing as soon

as possible.

We modeled roulette as an MDP with one state and 171 actions, of which

one terminates the episode, similar to the MDP in Figure 4.3. The discount

factor was 0.95. We ignore the available funds of the player as a factor and

assume he bets $1 each turn.

One may rightfully note that roulette is perhaps better modeled as a ban-

dit problem, without any state transitions and discount factor. However, we

still feel the problem is interesting to discuss as a discounted MDP, since such

settings may occurs as part of a larger MDP. As we will see, Q-learning will

have difficulty walking away from the table. In a larger MDP this may lead to

unexpected behavior. If a roulette-type setting is part of the larger MDP, one

may observe that the performance of Q-learning on the larger MDP is very

poor. Without the analysis of the subproblems, it could then be hard to find

out where this poor performance stems from. Perhaps this has even occurred

in the application of Q-learning to real-world problems, resulting in people

thinking unfavorably about the algorithm, although in fact the poor behavior

is only the result of a rarely noticed bias that actually can be prevented.

Figure 4.6 shows the mean action values over all actions, as found by Q-

learning and Double Q-learning as a function of the number of trials. Each

trial consisted of a synchronous update of all 171 actions, using the previ-

ous action values. After 1 million trials, Q-learning with a linear learning

rate values all actions at more than $20 and there is little progress in the

convergence towards the real value. Considering that the agent only bets

$1 per turn and only a limited set of the actions have a maximal possible

reward which is larger than $20, the overestimation is huge. When we use

polynomial learning rates, the performance increases, but Double Q-learning

converges close to the actual average action values much more quickly. Fur-

3Only the so called ‘top line’ which pays $6 per dollar when 00, 0, 1, 2 or 3 is hit has a

slightly lower expected value of -$0.079 per dollar.

108 CHAPTER 4. THE OVERESTIMATION OF Q-LEARNING

Figure 4.6: The average action values according to Q-learning and Double Q-

learning when playing Roulette with a ‘walk-away’ action worth $0. Averaged

over 10 experiments.

thermore, the overestimation after 100,000 steps is still approximately $10 on

average, which is almost 200 times the actual difference between the value of

the optimal action and the values of the suboptimal actions.

4.5.3 Episodic Bandit MDP

As a last experiment, we look at a setting where Q-learning performs better

than Double Q-learning. We revisit a version of the episodic MDP in Figure

4.1. Assume there is one ‘right’ action in state A that yields zero reward,

and leads to state B. In state B there are two actions leading to the termi-

nal state T. In our first setting, one of the actions in B has a deterministic

reward of −1, the other a deterministic reward of 1. In our second setting, we

construct a somewhat worst-case setting for Double Q-learning. In Section

3.6 we established that when we want to obtain the maximum of two uni-

form distributions, the double estimator has the largest underestimation if

the means of these distributions lie one third of the width of the PDFs apart.

Therefore, we construct an MDP with the same average rewards as before,

but with exactly this overlap of the distributions. One action then yields a

uniform random value between −4 and 2, while the other action yields a uni-

form random value between −2 and 4. In both cases the discount factor is

0.95 and exploration is ǫ-greedy with ǫ(s)= 1/
p
n(s).

The results of experiments on the two MDPs described above are shown

in Figure 4.7. The figure shows the average value of the action ‘right’ in state

A. The first row shows the results in the deterministic MDP. The second row

shows the results for the stochastic MDP. As predicted, Q-learning performs

best in this setting and even in the stochastic setting only experiences mild

overestimations during learning.

Although Double Q-learning performs worse than Q-learning, the differ-

ences are not as large as in the previous two settings and Double Q-learning

does not perform terribly. This is largely due to the smaller number of actions.

However, if we increase the number of suboptimal actions the performance of

4.6. CONCLUSION 109

Figure 4.7: Average action values for the ‘right’ action in state A according

to Q-learning and Double Q-learning for the episodic MDP. The first row has

deterministic reward of −1 and 1 in state B, the second has stochastic rewards

with PDFs u(x,−4,2) and u(x,−2,4). Optimal value is equal to the discount

factor of 0.95. Averaged over 1,000 experiments.

Q-learning also deteriorates. We did not find a setting in which the advantage

for Q-learning was as striking as the advantage for Double Q-learning in the

grid world and in the roulette task.

4.6 Conclusion

The first aim of this chapter is to show that the popular reinforcement learn-

ing algorithm Q-learning can sometimes perform very poorly and why this

is the case. Our analysis shows that an important reason for this poor per-

formance lies in the overestimation that Q-learning can experience on each

update, when the value of the maximum action in the next state is consid-

ered. This is especially relevant in problems in which multiple actions yield

stochastic, overlapping rewards. The second aim of this chapter is to present,

analyze and empirically test the new algorithm called Double Q-learning,

that results from applying the double estimator from Chapter 3 to Q-learning.

Double Q-learning can be used as an alternative for Q-learning, since it can

perform quite well in settings in which Q-learning suffers from prohibitively

large overestimations. However, our analysis shows that Double Q-learning

also has a bias that can affect performance, so more research is still in order.

4.6.1 Discussion

There is an important difference between the well-known heuristic explo-

ration technique of optimism in the face of uncertainty (Kaelbling et al., 1996;

110 CHAPTER 4. THE OVERESTIMATION OF Q-LEARNING

Sutton and Barto, 1998) and the overestimation bias that is discussed in this

chapter. In short, overestimation of action values can be a good idea if it rep-

resents an optimistic view on uncertain events. However, as is for instance

clearly visible in the roulette task that we discussed, Q-learning can easily

overestimate values on which already much information is gathered. Addi-

tionally, the overestimated value can be far larger than is practical useful to

encourage exploration. In contrast, although Double Q-learning can underes-

timate the value of experienced actions, it is in principle quite feasible to set

the initial action values optimistically enough to ensure optimism for actions

that have experienced limited updates. Therefore, the use of the technique of

optimism in the face of uncertainty can be thought of as an orthogonal concept

to the over- and underestimation that is the topic of this chapter.

Although we have not focused on this in depth, a similar overestimation is

experienced by Sarsa when the exploration policy becomes more greedy. How-

ever, in contrast to Q-learning, eligibility traces for Sarsa are well defined

and unambiguously implementable (Rummery and Niranjan, 1994). Sup-

pose a greedy selection of an action yields a certain, positively biased value.

This value will then probably be decreased through the eligibility traces of

that action in the next few steps, if indeed the value was an overestimation.

When the traces parameter is set close to one, the procedure resembles a

Monte Carlo method, which indeed is unbiased. However, the variance in

the updates may increase, which may result in poor behavior. This in part

explains why intermediate eligibility trace parameters work best in practice:

in a sense this is a trade-off between bias and variance (Sutton and Singh,

1994).

We have not mentioned in detail many of the other approaches to polyno-

mial time reinforcement learning. Some interesting model-based algorithms

with known, polynomial bounds include E3 (Kearns and Singh, 2002), R-max

(Brafman and Tennenholtz, 2003) and MBIE (Strehl and Littman, 2005). The

model-free, related algorithm of Delayed Q-learning (Strehl et al., 2006) has

already been mentioned above. For an overview of these algorithms see the

work by Strehl et al. (2009).

The analysis in this chapter is not only applicable to Q-learning. For in-

stance, in a recent paper on multi-armed bandit problems, methods were pro-

posed to exploit structure in the form of the presence of clusters of correlated

arms in order to speed up convergence and reduce total regret (Pandey et al.,

2007). The value of such a cluster in itself is an estimation task and the

proposed methods included taking the mean value, which would result in an

underestimation of the actual value, and taking the maximum value, which

is a case of the single estimator and results in an overestimation as can be

shown using the results in Section 4.2. If for instance the PDFs of the ran-

dom variables are known to be binomial, the performance of the resulting

hierarchical algorithm can potentially greatly be improved by being aware of

4.6. CONCLUSION 111

the overestimation and trying to analytically determine an estimate of said

overestimation in order to get a more unbiased estimate of the value of such

a cluster of bandits.

As a final remark, we would like to mention that our analysis on the con-

vergence rates for Q-learning is not limited to MDPs with stochastic reward

functions. When the rewards are deterministic, but the state transitions are

stochastic, the same pattern of overestimations due to this noise can occur

and the same analysis as for stochastic rewards holds, although the MDPs on

which Q-learning is most affected will look somewhat different. This exten-

sion is relatively straightforward and we leave it for future work.

4.6.2 Future Work

There are a couple of pointers to future work. We believe the most interesting

of these is the extension of the discussion in this chapter to a fully unbiased

form of Q-learning. For this, the analysis in Chapter 3 can be useful, since it

gives some indications on how large the overestimation and underestimation

biases of the single and double estimator are. For instance, we have given a

precise value of the overestimation bias for independent and identically uni-

formly distributed random variables with known parameters. In principle,

one could estimate, for instance in a Bayesian manner (Smith and Winkler,

2006), the PDFs of the different random variables and then make an unbiased

estimate on the overestimation itself. When the parameters and distribution

are not known, one can for instance assume Gaussian distributions and then

determine the expected means and variances for the given data. The maxi-

mum of a large number of Gaussians is hard to find analytically, but it can be

approximated by eliminating pairs of Gaussians and assuming the resulting

distribution of the maximum of such a pair is again Gaussian in shape (Clark,

1961). More sophisticated methods can also be used, although care must be

taken in the reinforcement learning setting that the PDFs of the random vari-

ables that are to be modeled are not stationary. This complicates the analysis

and it is not clear if there is a reliable way to estimate the bias in general.

Perhaps the best option to reduce the bias further is to use an N-fold

version of Double Q-learning, which stores N Q functions, rather than just

two. Then, similarly to cross-validation, the bias can be reduced at the cost of

some more computations per step. These variants of Double Q-learning still

needs to be investigated to see if it is a real improvement over the standard

Double Q-learning algorithm.

Furthermore, we believe more analysis on the performance of Q-learning

and related algorithms such as Fitted Q-iteration (Ernst et al., 2005) and

Delayed Q-learning (Strehl et al., 2006) is relevant. For instance, we believe

Delayed Q-learning can suffer from the same overestimation, although it does

attain polynomial convergence bounds. We believe this is similar to the poly-

112 CHAPTER 4. THE OVERESTIMATION OF Q-LEARNING

nomial learning rates: although performance is improved from an exponen-

tial to a polynomial dependence on the relevant parameters, the algorithm

still suffers from the inherent overestimation bias due to the single estimator

approach.

Finally, more research is desirable on the Double Q-learning algorithm

and its potential variants, such as Fitted Double Q-learning and Delayed

Double Q-learning. Thus far, Double Q-learning’s performance seems promis-

ing, but we have seen that in some cases Q-learning performs better. In the

next chapter, we will introduce some other alternatives to Q-learning and

we will see that Double Q-learning sometimes performs better than these al-

ternatives and sometimes it does not. However, as far as we know, Double

Q-learning is the only off-policy reinforcement learning algorithm without a

positive bias in its action values, which makes it an interesting topic for fur-

ther research.

4.7 Proofs

This section contains the proof for Theorem 4.1.

4.7.1 Proof for Theorem 4.1

Proof. Because of the symmetry in the updates on the functions QA and QB

it suffices to show convergence for either of these. We will apply Lemma 2.1

with Pt = {QA
0 , Q

B
0 , s0, a0, α0, r1, s1, . . ., st, at}, X = S×A, ∆t =QA

t −Q∗, ζA =α

and

Ft(st,at)= r t+γQB
t (st+1,a

∗)−Q∗
t (st,at) ,

where a∗ = argmaxaQ
A(st+1,a). It is straightforward to show the first two

conditions of the lemma hold. The fourth condition of the lemma holds as

a consequence of the boundedness condition on the variance of the rewards

in the theorem. This, together with the condition that the discount factor is

lower than 1, ensures that the Q values are bounded. The theorem can be ex-

tended to undiscounted MDPs that have a non-zero probability of eventually

terminating for all states and actions, but we do not consider this extension

here.

This leaves to show that the third condition on the expected contraction

of Ft holds. We can write

Ft(st,at)= F
Q
t (st,at)+γ

(

QB
t (st+1,a

∗)−QA
t (st+1,a

∗)
)

,

where

F
Q
t = r t+γQA

t (st+1,a
∗)−Q∗

t (st,at) ,

4.7. PROOFS 113

is the value of Ft if normal Q-learning would be under consideration. It is

well-known that E{F
Q
t |Pt}≤ γ||∆t||, so to apply the lemma we identify

ct = γE
{

QB
t (st+1,a

∗)−QA
t (st+1,a

∗)
∣

∣

∣Pt

}

.

We define a new function

∆
BA
t (s,a)=QB

t (s,a)−QA
t (s,a) .

Then to prove convergence of ct to zero, it is sufficient to show that ∆BA
t con-

verges to zero.

Depending on whether QB or QA is updated, the update of ∆BA
t at time t

is either

∆
BA
t+1(st,at)=∆

BA
t (st,at)+αt(st,at)F

B
t (st,at) , or

∆
BA
t+1(st,at)=∆

BA
t (st,at)−αt(st,at)F

A
t (st,at) ,

where

FA
t (st,at)= r t+γQB

t (st+1,a
∗)−QA

t (st,at) and

FB
t (st,at)= r t+γQA

t (st+1,b
∗)−QB

t (st,at) .

Then

E
{

∆
BA
t+1(st,at)

∣

∣

∣Pt

}

=∆
BA
t (st,at)+

αt(st,at)

2
E

{

FB
t (st,at)−FA

t (st,at)
∣

∣

∣Pt

}

= (1−ζBA
t (st,at))∆

BA
t (st,at)+ζBA

t (st,at)E
{

FBA
t (st,at)

∣

∣

∣Pt

}

,

where ζBA
t (s,a)=αt(s,a)/2 and

E{FBA
t (st,at)|Pt}= γE

{

QA
t (st+1,b

∗)−QB
t (st+1,a

∗)|Pt

}

.

This means we are done if we can show that ‖E
{

FBA
t

∣

∣Pt

}

‖ ≤ κ‖∆BA
t ‖ for κ ∈

[0,1). To show this, we will consider two mutually exclusive cases.

Assume E{QA
t (st+1,b

∗)|Pt} ≥ E{QB
t (st+1,a

∗)|Pt}. By definition of a∗ as

given in line 6 of Algorithm 5 we haveQA
t (st+1,a

∗)=maxaQ
A
t (st+1,a)≥QA

t (st+1,b
∗)

and therefore

∣

∣

∣E{FBA
t (st,at)|Pt}

∣

∣

∣= γE
{

QA
t (st+1,b

∗)−QB
t (st+1,a

∗)|Pt

}

≤ γE
{

QA
t (st+1,a

∗)−QB
t (st+1,a

∗)|Pt

}

≤ γ
∥

∥

∥∆
BA
t

∥

∥

∥ .

114 CHAPTER 4. THE OVERESTIMATION OF Q-LEARNING

Now assume E{QB
t (st+1,a

∗)|Pt} > E{QA
t (st+1,b

∗)|Pt} and note that by defini-

tion of b∗ we have QB
t (st+1,b

∗) ≥ QB
t (st+1,a

∗). Then

∣

∣

∣E{FBA
t (st,at)|Pt}

∣

∣

∣= γE
{

QB
t (st+1,a

∗)−QA
t (st+1,b

∗)|Pt

}

≤ γE
{

QB
t (st+1,b

∗)−QA
t (st+1,b

∗)|Pt

}

≤ γ
∥

∥

∥∆
BA
t

∥

∥

∥ .

Clearly, one of the two assumptions must hold at each time step. Since

FBA
t (s,a)= 0 for all (s,a) 6= (st,at) we obtain the desired result that ‖E{FBA

t |Pt}‖ ≤
γ‖∆BA

t ‖. Applying the lemma yields convergence of ∆BA
t to zero, which in turn

ensures that the original process also converges in the limit.

CHAPTER 5

ACTION VALUE ALGORITHMS

In this chapter, we will dive deeper into the subfield of reinforcement learning

that considers model-free temporal-difference algorithms. These algorithms

have the advantage that they can learn through simulation, without the need

of models for the reward function and the transition probabilities. Addition-

ally, the algorithms are computationally efficient and can learn online, which

implies that they can be used in non-stationary environments.

In the former chapters, we have discussed Q-learning (Watkins, 1989) and

Sarsa (Rummery and Niranjan, 1994), which are two prominent examples

of such reinforcement learning algorithms. We also introduced Double Q-

learning as an alternative for Q-learning. However, these are by no means the

only possible algorithms. In this chapter, we discuss some possible variants.

5.1 Introduction

In Chapter 2, we noted that Q-learning and Sarsa can be thought of as aver-

aging sampled updates of Bellman equations. We repeat those equations here

for clarity.

Qπ(s,a)=E
{

r t+1+γQπ(st+1,at+1)
∣

∣ st = s,at = a,π
}

, (5.1)

Q∗(s,a)=E

{

r t+1+γmax
a′

Q∗(st+1,a
′)

∣

∣

∣

∣

st = s,at = a,π

}

. (5.2)

Sarsa uses a sampled version of the first update, yielding:

Qt+1(st,at)= (1−αt(st,at))Qt(st,at)+αt(st,at)
(

r t+1+γQt(st+1,at+1)
)

, (5.3)

whereas Q-learning uses a sampled version of the second update:

Qt+1(st,at)= (1−αt(st,at))Qt(st,at)+αt(st,at)
(

r t+1+γmax
a

Qt(st+1,a)
)

.

(5.4)

The main difference is that Q-learning is off-policy, which means it can learn

about the optimal policy while following some exploratory policy. Sarsa is

on-policy, which implies that it learns the value of the current policy. For a

fixed policy π, the action values updated by Sarsa converge to Qπ, while those

updated by Q-learning converge to Q∗, under some conditions on the learning

rates, the policy and the MDP. Sarsa converges to Q∗ rather than to Qπ if the

policy is slowly made greedy during the learning phase (Singh et al., 2000).

115

116 CHAPTER 5. ACTION VALUE ALGORITHMS

Note that Sarsa does not converge if the policy is simply made greedy right

away, since then no exploration occurs.

Both Q-learning and Sarsa converge very slowly in some settings. We ana-

lyzed why this happens and presented a partial solution in Chapter 4. In this

chapter, we discuss some other model-free temporal-difference algorithms for

control. We discuss Expected Sarsa in Section 5.3, General Q-learning in Sec-

tion 5.4, QV-learning in Section 5.5, Actor Critic methods in Section 5.6 and

Actor Critic Learning Automata in Section 5.7. These are not all possible

or even all known model-free action value algorithms and we will give some

pointers to other variants where relevant. In Section 5.8 we show the results

for some experiments to give an indication on how the algorithms compare to

each other. These experiments also include the Double Q-learning algorithm

that was introduced in the former chapter.

5.2 A Different Perspective: Gradients and Norms

Most of the algorithms we will discuss can be interpreted as minimizing

quadratic one-step errors through gradient descent (Sutton, 1988). We will

use TD learning as an example of how this works. For clarity, we repeat the

TD update here:

Vt+1(st)=Vt(st)+βt(st)
(

r t+1+γVt(st+1)−Vt(st)
)

, (5.5)

where βt(st) ∈ [0,1] is a step size parameter. We use β to differentiate from α

which we use as a step size parameter for action values.

Consider a parametrized function f t : R
N → R that is a linear weighted

sum of its input, such that f t(~x) = ~wT
t ~x, where ~x ∈ R

N is an input vector and

~wt ∈R
N is a parameter vector. The gradient of a function to its input is defined

as follows:

Definition 5.1 (Gradient). The gradient of a function f :RN →R at a point~x=
(x1, . . . ,xN) is denoted by ∇ f (~x) and is defined as a row vector with N partial

derivatives of f for each of the elements of~x, such that

∇ f (~x)=
(

∂ f

∂x1
,
∂ f

∂x2
, . . . ,

∂ f

∂xN

)

.

If~x is a one-dimensional vector, or a scalar rather than a vector, the gradient

is equal to the derivative, such that

∇ f (~x)= f ′(x) ,

where~x= (x).

5.2. GRADIENTS AND NORMS 117

The gradient to the parameters is defined equally, with ~w in the place of

~x in the definition.

Suppose we receive a noisy sample for a desired combination of an input~x

and an output y ∈ R for this function. We can use gradient descent to update

the parameter vector toward this target with the update

~wt+1 = ~wt−ζt∇~wt
Et , (5.6)

where ζt is some learning rate and Et = 1
2 (f (~x)− y)2 is an error. Other error

measures than the squared difference are possible too, but a discussion of

these falls outside the scope of this section. The gradient effectively gives us

the direction of steepest ascent for the error relative to the parameter vector.

In other words, for a point~x in the input space, the gradient tells us in which

direction we should move the parameter vector in order to increase the error

the fastest, given a first order approximation. Since we want to decrease the

error, rather than increase it, we step in the opposite direction: the direction

of steepest descent. Hence, the name gradient descent. Since f was assumed

to be linear in~x, update (5.6) then reduces to

~wt+1 = ~wt+ζt(y−~wT
t ~x)~x , (5.7)

an update which is known as the Widrow-Hoff rule (Widrow and Hoff, 1960).

Since in this chapter we consider tables that store the individual values,

we can equivalently write the value function as V (st) = ~wT
t xt, where ~wt is a

vector of size |S| containing all the state values and xt is a vector of size |S|
with all elements zero, except the element corresponding to the current state

which will be equal to one. It is easily verified that then indeed ~wT
t xt =V (st).

In TD learning, we want to reach the fixed point V = T V , so it makes sense

to use the error

E=
1

2
‖Vt−T Vt‖2,π =

1

2

∑

s∈S
P(s= st) (Vt(s)− (T Vt)(s))

2 ,

where the norm ‖· · ·‖2,π denotes a quadratic norm weighted by the steady

state probabilities P(s = st|π) that the agent is in each state, which are de-

pendent on the policy π. This error can be sampled as

Et =
1

2

(

r t+γVt(st+1)−Vt(st)
)2 =

1

2
(δt)

2 ,

which is simply the squared TD error. Using the Widrow-Hoff update with

y = r t+γVt(st+1) and ζt = βt(st) one directly obtains the TD learning update

in (5.5).

In the tabular case we consider here, the TD error can in principle be

reduced fully to zero and the exact fixed point V =T V can be obtained in the

limit. However, if one uses less parameters than states, for instance when the

118 CHAPTER 5. ACTION VALUE ALGORITHMS

state space is large or continuous, this no longer holds in general. Then, one

could in principle do one of two things: minimize the normal TD error as far

as possible, given the limitation of the function representation that is used,

or minimize a different error function. We will discuss these possibilities in

Chapter 7.

5.3 Expected Sarsa

The first novel algorithm we discuss is a variant on Sarsa. We noted that

Sarsa can be viewed as an averaging sample of Bellman equation (5.1). Up-

date (5.3) samples the reward and the transition that actually occur as well

as the action that is chosen in the next state. This sets the algorithm apart

from Q-learning that uses the maximal value in this next state for its update.

Closer inspection shows the sampling of the policy is in fact unnecessary.

The reason we sample the reward and transition is because we do not want to

assume or store a model for the reward and transition function. In any case, a

known policy is required since it is used to select actions. In other words, the

policy πt at time t should always be known. This means there is no need to

sample the action that is actually taken and we can instead use the following

update:

Qt+1(st,at)= (1−αt(st,at))Qt(st,at)+

αt(st,at)

(

r t+1+γ
∑

a

πt(st+1,a)Qt(st+1,a)

)

. (5.8)

The first mention of this algorithm seems to be in an exercise in the book by

Sutton and Barto (1998). It was more recently studied in detail and found in

general to be an improvement over Sarsa (van Seijen et al., 2009). It can also

be interpreted as a special case of the General Q-learning algorithm that we

will discuss in Section 5.4. We will discuss the connection between Expected

Sarsa, General Q-learning and Sarsa in more detail when we discuss General

Q-learning.

We will prove that in general Expected Sarsa has the same bias, but lower

variance than the original Sarsa algorithm. As such, it is a superior algo-

rithm, although not in all cases by a large margin. Lower variance means

that in practice α can often be increased in order to speed up the learning

process. This has empirically been demonstrated (van Seijen et al., 2009).

When the environment is deterministic, Q-learning and Expected Sarsa can

use α= 1, while Sarsa still requires α< 1 to average over stochasticity in the

policy.

5.3. EXPECTED SARSA 119

5.3.1 Variance Analysis

In this section, we analyze the difference between Sarsa and Expected Sarsa.

We show under which conditions Expected Sarsa will perform better than

Sarsa. Specifically, we show that both algorithms have the same bias and that

the variance of Expected-Sarsa is lower. Finally, we describe which factors af-

fect this difference in variance. In this section, we use vEt =
∑

aπt(st+1,a)Qt(st+1,a)

and vSt =Qt(st+1,at+1) to denote the values used for the updates of Expected

Sarsa and Sarsa, respectively. Further, we use the shorthands E t{·}=E{·|(s,a)=
(st,at)}, Biast(·) = Bias(·|(s,a) = (st,at)) and Vart(·) = Var(·|(s,a) = (st,at)) for

the expected value, bias and variance on time t.

The bias of the targets for the updates of both algorithms compared to the

value of any policy π is given by

Biast(vt)=E t{Q
π(st+1,at+1)−vt} ,

where vt is either vEt or vSt . Regardless of π, both algorithms have the same

bias, since E t{v
E
t }=E t{v

S
t }.

The variance of the targets is given by

Vart(vt)=E t{(vt)
2}− (E t{vt})

2 . (5.9)

The squared expected target in (5.9) is the same for both Sarsa and Expected

Sarsa. Therefore the difference between the two variances is equal to the

difference between expected squared targets: E t{(v
S
t)

2}−E t{(v
E
t)

2}. For Sarsa,

the expected squared target is

E t{(v
S
t)

2}=E t

{

(Qt(st+1,at+1))
2
}

=
∑

s

Ps
stat

(

∑

a

πt(s,a) (Qt(s,a))
2

)

.

Similarly, for Expected Sarsa we get

E t{(v
E
t)

2}=E t

{(

∑

a

πt(st+1,a)Qt(st+1,a)

)2}

=
∑

s

Ps
stat

(

∑

a

πt(s,a)Qt(s,a)

)2

.

Therefore, the difference in variances is equal to

Vart(v
S
t)−Vart(v

E
t)=

∑

s

Ps
stat

(

∑

a

πt(s,a) (Qt(s,a))
2−

(

∑

a

πt(s,a)Qt(s,a)

)2)

.

120 CHAPTER 5. ACTION VALUE ALGORITHMS

The inner term of the differences in variance between Sarsa and Expected

Sarsa is of the form
n
∑

i

wix
2
i − (

n
∑

i

wixi)
2 , (5.10)

where the ~w corresponds to the policy and~x corresponds to the action values.

When wi ≥ 0 for all i and
∑n

i
wi = 1, an unbiased estimate of the variance of

the weighed values wixi is equal to

∑n
i
wi(xi−µw)

2

1−
∑n

i
w2

i

,

where µw =
∑n

i
wixi is the weighted average. This term is uniformly positive.

We rewrite the numerator of this fraction to get

n
∑

i

wi(xi−µw)
2 =

n
∑

i

wix
2
i −2µw

n
∑

i

wixi+µ2
w

n
∑

i

wi

=
n
∑

i

wix
2
i −2µ2

w+µ2
w

=
n
∑

i

wix
2
i −µ2

w ,

which is exactly the same quantity as given in (5.10). This implies that the

difference in variance is closely related to the weighted variance of the ac-

tion values. In other words, a larger weighted variance of the action values,

weighted according to the current policy, results in a larger difference in vari-

ance between Sarsa and Expected Sarsa. This means that Expected Sarsa

has an expected improved performance in problems with high weighted vari-

ance in the action values.

More concretely, our analysis shows that we can expect Expected-Sarsa to

perform better than Sarsa especially in problems in which the action values

are separated far from each other and in which much exploration is used. This

makes intuitive sense, since then the stochastic sample Qt(st+1,at+1) that

Sarsa uses is likely to contain more noise than the sample
∑

aπt(st+1,a)Qt(st+1,a)

that Expected-Sarsa uses.

5.4 General Q-learning

Expected Sarsa was coined as an on-policy algorithm with the intention of

using it as an improved replacement for Sarsa. However, the update is more

flexible than Sarsa since we are not restricted to use the behavior policy πt

for our update, but rather, we can specify another estimation policy πe
t of

which we want to learn the value. We will refer to this algorithm as General

5.4. GENERAL Q-LEARNING 121

Q-learning and its update is

Qt+1(st,at)= (1−αt(st,at))Qt(st,at)+

αt(st,at)

(

r t+1+γ
∑

a

πe
t (st+1,a)Qt(st+1,a)

)

. (5.11)

This algorithm was proposed in earlier work by Precup et al. (2000), where it

was called the tree backup algorithm. Q-learning, Sarsa and Expected Sarsa

can be seen as special instances of General Q-learning. If the estimation

policy πe
t is equal to some fixed policy π that is also used as the behavior

policy, the algorithm reduces to on-policy Expected Sarsa and can be shown

to converge to Qπ. If πe
t 6=πt the algorithm is called off-policy.

In previous work, the General Q-learning algorithm was shown to con-

verge to Qe for any fixed estimation policy πe, where Qe is the value of this

policy (Precup et al., 2000; Precup and Sutton, 2001). The proof of conver-

gence was also extended to include eligibility traces. The only restriction is

that the behavior policy is non-starving, which is similar to requiring infinite

exploration in an ergodic MDP. Both statements imply that every state-action

pair is visited an infinite number of times almost surely in the limit.

We will prove that General Q-learning converges to the optimal policy for

any combination of behavior and estimation policies as long as the behavior

policy results in infinite exploration and the estimation policy is greedy in the

limit. Although this can be shown with a relatively straightforward applica-

tion of Lemma 2.1, we do not know of earlier work that discusses this result.

Furthermore, we show that General Q-learning is a strict improvement over

per-decision importance sampling, a similar algorithm for general off-policy

reinforcement learning that was proposed concurrently (Precup et al., 2000).

This confirms the experimental results in that work and the resulting anal-

ysis that General Q-learning is to be preferred over per-decision importance

sampling. Similar to the analysis for Expected Sarsa, we can show that both

algorithms have the same bias, but General Q-learning has a lower variance.

5.4.1 Convergence

The idea is to apply Lemma 2.1 with X = S×A, Pt = {Q0, s0, a0, α0, r1, s1, a1,

. . ., st, at}, vt = (st,at), ζt(vt)=αt(st,at) and ∆t(vt)=Qt(st,at)−Q∗(st,at). If we

can prove that ∆t converges to zero with probability one, we have convergence

of the Q values to the optimal values.

Theorem 5.1. [Convergence of General Q-learning] General Q-learning as

defined by update (5.11) converges to the optimal value function whenever the

following assumptions hold:

1. S and A are finite,

122 CHAPTER 5. ACTION VALUE ALGORITHMS

2. αt(st,at) ∈ [0,1] ,
∑

tαt(st,at)=∞ ,
∑

t(αt(st,at))
2 <∞ w.p.1 and ∀(s,a) 6=

(st,at) :αt(s,a)= 0,

3. The estimation policy πe
t is greedy in the limit and the behavior policy πt

ensures infinite exploration,

4. Var{r t+1|Pt}<∞.

The proof of the theorem is shown in Section 5.10.1. Theorem 5.1 shows

that General Q-learning converges to the optimal policy under similar condi-

tions as Sarsa and Q-learning. The difference with Q-learning is the added re-

striction that the estimation policy must become greedy, whereas Q-learning

has no explicit notion of an estimation policy. The difference with Sarsa is

that the behavior policy need not become greedy and the estimation policy

need not ensure infinite exploration, since the estimation and behavior poli-

cies are separate.

Many algorithms are a special case of General Q-learning. We could use

the greedy policy as the estimation policy. Trivially, an estimation policy that

is greedy everywhere is also greedy in the limit. Then, General Q-learning

reduces to Q-learning and converges to Q∗. If we let πe
t be a stochastic policy

such that πe
t (s,a)= 1 with probability πt(s,a), General Q-learning reduces to

Sarsa. Therefore, Theorem 5.1 implies the convergence of Q-learning and of

Sarsa and Expected Sarsa for behavior policies that are greedy in the limit.

5.4.2 Eligibility Traces

Like Q-learning and Sarsa, General Q-learning can be extended with eligibil-

ity traces. We want the algorithm to approximate Qe for any fixed πe and any

λ. This implies that we want the summed TD errors to telescope when λ= 1

is used, such that the resulting algorithm reduces to a Monte Carlo method.

Therefore, we propose to use a variant similar to the Q(λ) algorithm proposed

by Peng and Williams (1996). The General Q(λ) algorithm is shown in Al-

gorithm 6, where we have applied the delayed eligibility trace updates from

Wiering and Schmidhuber (1998).

5.4.3 Related Work

A similar algorithm is the per-decision importance sampling (PDIS) algorithm

by Precup et al. (2000). The TD error used by this algorithm is

δt = r t+1+γ
πe
t (st+1,at+1)

πt(st+1,at+1)
Qt(st+1,at+1)−Qt(st,at) . (5.12)

It is straightforward to show that this TD error has the same expected value

as the TD error used by General Q-learning with a behavior policy πt and

5.4. GENERAL Q-LEARNING 123

Algorithm 6 Fast General Q(λ)

1: Given γ, π, πe, I and an MDP to act on.

2: Initialize Q, s∼ I, D = 0, φ= 1, ∀s : e(s)= 0.

3: repeat

4: if s is terminal or λγφ< ǫM then

5: for all s ∈ S, a ∈ A(s) do

6: Q(s,a)=Q(s,a)+α(s,a)e(s,a)
(

D−d(s,a)
)

7: d(s,a)= 0

8: e(s,a)= 0

9: end for

10: φ= 1

11: D = 0

12: s∼ I

13: else

14: Choose a∼π(s)

15: Preform a, observe r and s′

16: V ′ =
∑

a′∈A(s′)π
e(s′,a′)

[

Q(s′,a′)+α(s′)e(s′)
(

D−d(s′,a′)
)]

17: δ= r+γV −Q(s,a)

18: D =D+φδ

19: e(s,a)= 1/φ

20: φ=λγφπe(s,a)/π(s,a)

21: s= s′,a= a′

22: for all a ∈ A(s) do

23: Q(s,a)=Q(s,a)+α(s)e(s)
(

D−d(s)
)

24: d(s,a)=D

25: end for

26: Determine πe, π (if these are not fixed)

27: end if

28: until sufficient convergence

an estimation policy πe
t . In the next subsection, we show that the variance

of General Q-learning is lower while both algorithms share the same bias.

Therefore, General Q-learning can also be viewed as an improved version of

PDIS. This is in line with the experiments in Precup et al. (2000) that show

that General Q-learning has better performance than PDIS. As a special case,

if πe
t =πt the TD error in (5.12) reduces to the same TD error as used by Sarsa.

Another similar algorithm is the very recent GQ algorithm (Maei and Sut-

ton, 2010; Maei et al., 2010). GQ uses the TD error

δt = r t+1+βt+1zt+ (1−βt+1)
∑

a

πe
t (st+1,a)Qt(st+1,a)−Qt(st,at) , (5.13)

where βt is the probability that an option terminates (Sutton et al., 1998). We

will not explain options in any detail here, but the probability that the option

124 CHAPTER 5. ACTION VALUE ALGORITHMS

does not terminate is a parameter comparable to the discount factor, such

that we can take γ= (1−βt), for all t. If we further ignore the target outcome

function zt which is related to the options framework, such that zt = 0 for

all t, the GQ algorithm reduces to General Q-learning. GQ was extended to

arbitrary smooth function approximation (Maei et al., 2010) and linear func-

tion approximation in combination with eligibility traces (Maei and Sutton,

2010). It seems the step to arbitrary function approximation in combination

with eligibility traces has not yet been made, possibly because the focus was

mainly on convergence guarantees and these are harder to give for that case.

The similarities between GQ and General Q-learning imply that the con-

vergence guarantees that are given for GQ also hold for General Q-learning.

This implies that General Q-learning converges to the value Qe for any fixed

estimation policy πe not only in the single-step tabular case outlined above,

but also when eligibility traces and linear function approximation are used.

Also, General Q-learning can be combined with arbitrary smooth function ap-

proximation as indicated in Maei et al. (2010) without diverging. However,

we note that this result does not guarantee convergence of Qt to Q∗ or even

to a small region around Q∗. The guaranteed convergence of an algorithm

to a region around Q∗ on any MDP when non-linear function approximation

is used is still largely open, due to the inherent possibility of reaching local

optima. We will discuss function approximation in reinforcement learning in

more detail in Chapter 7.

Finally, we note that although General Q-learning converges to Q∗ when

suitable estimation policies are used and General Q-learning converges to

Qe for any fixed πe when eligibility traces are used, we know of no proofs of

convergence for any eligibility trace method to Q∗ for general λ.

5.4.4 Variance Analysis

In this section, we show under which conditions General Q-learning will per-

form better than PDIS. Specifically, we show that both algorithms have the

same bias and that the variance of General Q-learning is lower. We describe

which factors affect this difference in variance.

In this section, we use the notation

v
GQ
t =

∑

a

πe
t (st+1,a)Qt(st+1,a) ,

for the value of the next state used by General Q-learning and

vPDIS
t =

πe
t (st+1,at+1)

πt(st+1,at+1)
Qt(st+1,at+1) ,

for the value used by PDIS. Again, Pt is the past up to time t as defined in

Section 5.4.1. For simplicity, we will assume πe is fixed, but the argument

below holds with small adaptations for time-dependent estimation policies.

5.4. GENERAL Q-LEARNING 125

Both algorithms have the same bias, since

E
{

vPDIS
t

∣

∣

∣Pt

}

=E

{

πe
t (st+1,at+1)

πt(st+1,at+1)
Qt(st+1,at+1)

∣

∣

∣

∣

Pt

}

=
∑

s

Ps
stat

(

∑

a

πt(s,a)
πe
t (s,a)

πt(s,a)
Qt(s,a)

)

=
∑

s

Ps
stat

∑

a

πe
t (s,a)Qt(s,a)

=E
{

v
GQ
t

∣

∣

∣Pt

}

,

where we assume that the action that is selected in state st+1 is selected with

the behavior policy as it was on time t. There may be a subtle difference if

the behavior policy is not fixed and therefore it is possible that πt+1(st+1, ·) is
not equal to πt(st+1, ·). In this case the update by General Q-learning is to

be preferred, since by design it implicitly uses the actual behavior policy at

time t+1. For simplicity, in the rest of this analysis we assume the behavior

policy does not change, where again the argument below continues to hold

with small adaptations if we would relax this requirement.

Similar to the analysis for Expected Sarsa, the variance is given by (5.9).

Since E{vPDIS
t |Pt} = E{v

GQ
t |Pt}, the last term in (5.9) is equal for PDIS and

General Q-learning and therefore the difference between the two variances is

equal to the differences between the first terms:

Var
(

vPDIS
t

∣

∣

∣Pt

)

−Var
(

v
GQ
t

∣

∣

∣Pt

)

=E
{

(vPDIS
t)2

∣

∣

∣Pt

}

−E
{

(v
GQ
t)2

∣

∣

∣Pt

}

.

For PDIS, this term is equal to

E
{

(vPDIS
t)2

∣

∣

∣Pt

}

=E

{

(

πe
t (s,a)

πt(s,a)
Qt(st+1,at+1)

)2
∣

∣

∣

∣

∣

Pt

}

=
∑

s

Ps
stat

(

∑

a

(πe
t (s,a))

2

πt(s,a)
(Qt(s,a))

2

)

.

Similarly, for General Q-learning we get

E
{

(v
GQ
t)2

∣

∣

∣Pt

}

=E

{(

∑

a

πe
t (st+1,a)Qt(st+1,a)

)2∣
∣

∣

∣

Pt

}

=
∑

s

Ps
stat

(

∑

a

πe
t (s,a)Qt(s,a)

)2

.

Therefore, the difference in variance is equal to

Var(vPDIS
t)−Var(v

GQ
t)=

∑

s

Ps
stat

(

∑

a

(πe
t (s,a))

2

πt(s,a)
(Qt(s,a))

2−
(

∑

a

πe
t (s,a)Qt(s,a)

)2
)

.

126 CHAPTER 5. ACTION VALUE ALGORITHMS

The inner term is of the form

n
∑

i

1

wi

(we
i xi)

2− (
n
∑

i

we
i xi)

2 , (5.14)

where the ~w, ~we and~x correspond to the π, πe and the action values, respec-

tively. Note that wi ≥ 0, we
i
≥ 0 for all i and

∑n
i
wi =

∑n
i
we

i
= 1.

If we minimize the first term, subject to the constraints
∑n

i
wi = 1 and

∀ j :w j ∈ [0,1], we find that it is minimal if the following holds for all j:

w j =
|we

j
x j|

∑n
i
|we

i
xi|

. (5.15)

If we resubstitute this in (5.14), we get zero if and only if all action values

have the same sign. In other words, the quantity in (5.14) is non-negative

and therefore General Q-learning can not have a larger variance than per-

decision importance sampling. Of course, this does not come as a surprise,

since the value used by General Q-learning is the expected value for the one

used by per-decision importance sampling. If equation (5.15) does not hold or

when not all action values have the same sign, General Q-learning will have a

strictly lower variance. Even when we assume that all action values are posi-

tive, equation (5.15) implies that in order to have the same variance we should

choose the behavior policy for PDIS as πt(s,a)=πe
t (s,a)Qt(s,a)/(

∑

bπ
e
t (s,b)Qt(s,b)).

Then, the update for PDIS reduces precisely to that of General Q-learning,

but at the cost of a very specific behavior policy, whereas General Q-learning

can choose its behavior policy freely.

We can compare this difference in variance to the difference in variance

between Sarsa and Expected Sarsa. That difference has the form given in

(5.10) and we showed it is related to the weighted variance of the action

values. There are two differences between (5.10) and (5.14). The first dif-

ference is that for Expected Sarsa the weights for the squared action values

in the first term are equal to the estimation policy—which is equal to the

behavior policy—while the weights are equal to the estimation policy times

πe
t (s,a)/πt(s,a) for General Q-learning. The second difference is that in prac-

tice the estimation policy itself will often be different in the two cases. For

Sarsa and Expected Sarsa the estimation policy will usually contain explo-

ration, since it is equal to the behavior policy. For General Q-learning the

estimation policy will more often be deterministic, for instance because it is

the greedy policy.

Suppose for a moment that indeed the estimation policy is deterministic.

We can reflect this in (5.14) by setting we
i
to zero for all elements except one.

Then (5.14) reduces to
1

wi

(xi)
2− (xi)

2 , (5.16)

5.5. QV-LEARNING 127

where i corresponds to the deterministically chosen element according to the

estimation weights we
i
. For instance, this may be the greedy element. Note

that wi is equal to one only when the behavior policy is greedy, which will usu-

ally not be the case as it would defeat the purpose of using an off-policy update

procedure. Since wi ≤ 1 the quantity in (5.16) is clearly non-negative, and will

be large especially when the probability that the behavior policy selects the

deterministic choice of the estimation policy is small. This is especially the

case in settings with much exploration and when there are many actions to

choose from.

This analysis indicates that General Q-learning has an expected improved

performance because of a lower variance in its updates, especially in problems

with high weighted variance in the action values. In practice, this means we

expect General Q-learning to perform better than PDIS especially in problems

in which the action values are separated far from each other and in which

much exploration is used. Of course, this makes intuitive sense, since then

the stochastic sample that PDIS uses is likely to contain more noise than the

sample that General Q-learning uses.

5.5 QV-learning

Another on-policy algorithm is QV-learning. It too can be considered a vari-

ation on Sarsa, although it differs more from Sarsa in its update rule than

Expected Sarsa does. Equivalent to equation (5.1), the function Qπ can be

defined as follows:

Qπ(s,a)=E
{

r t+1+γVπ(st+1)
∣

∣ st = s,at = a,π
}

, (5.17)

since by definition Vπ(s)=
∑

aπ(s,a)Q
π(s,a). For Expected Sarsa, we used the

sum
∑

aπ(s,a)Qt(s,a) as an approximation for this value. However, we can

also directly approximate the value of Vπ with the TD learning update (5.5),

which ensure that Vt converges to Vπ in the limit as t goes to infinity. Then,

using Vt as an increasing good approximation for Vπ, we can sample (5.17) to

obtain:

Qt+1(st,at)= (1−αt(st,at))Qt(st,at)+αt(st,at)
(

r t+1+γVt(st+1)
)

. (5.18)

This algorithm is called QV-learning (Wiering, 2005; Wiering and van Has-

selt, 2007). A potential advantage compared to Q-learning and Sarsa is that

the state space is smaller than the combined state-action space and therefore,

the approximation of the state value might improve faster than the approx-

imation of the action values. Similar to Expected Sarsa, QV-learning has

the advantage of low variance in its updates. Indeed, QV-learning has been

shown to sometimes outperform Q-learning and Sarsa (Wiering, 2005; Wier-

ing and van Hasselt, 2007, 2008, 2009). Additionally, QV-learning has been

128 CHAPTER 5. ACTION VALUE ALGORITHMS

used to select appropriate interaction behaviors in a human-robot interac-

tion task with children with autism spectrum disorder (Liu et al., 2008; Conn

et al., 2008).

Other variations of QV-learning can be constructed. For instance, we note

that V∗(s) = maxaQ
∗(s,a). Then, we can update Vt as an approximation of

a one-step on-policy update that picks the maximal action afterward. The

resulting algorithm is not fully off-policy since it uses one step of the current

policy, but it is also not fully on-policy because of the use of the maximal action

value. The action value is then updated as equation (5.18), but the state value

is updated as

Vt+1(st)= (1−βt(st))Vt(st)+βt(st)
(

r t+1+γmax
a

Qt(st+1,a)
)

.

This algorithm and other variations on QV-learning have been investigated

in Wiering and van Hasselt (2009), but we will not consider them further in

this dissertation.

5.5.1 Empirical Comparison

In previous work it was shown that in the control case, when policies are typ-

ically non-stationary, QV-learning sometimes performs better and sometimes

worse than both Q-learning and Sarsa, when these algorithms are all opti-

mized in their parameters (Wiering, 2005; Wiering and van Hasselt, 2007,

2008). As of yet, no clear indication was given in which type of control setting

one algorithm should be preferred over another. In this section we will show

an example of an MDPs where the explicit use of state values yields an ad-

vantage. Additionally, an example is given where it is a disadvantage to use

state values and Q-learning is to be preferred. On purpose, these examples

are kept simple to allow for a good understanding of what is happening for

each of the algorithms. However, the findings tell us something about the

behavior of these algorithms in more general problems.

Figure 5.1 depicts a simple MDP with only four states: X , Y , Z and the

terminal state T. The task is episodic; X is the starting state and the terminal

state T is reached after two steps in each episode. The state transitions are

deterministic. In state X there are two actions: one action leads to state

Y and one action leads to state Z. Both actions yield zero reward. From

state Y , there is only one action which leads to state T and yields a reward

of +10. From state Z there can be multiple actions, each of which leads to

state T. One such action is depicted in the figure. Two of the potential extra

actions are also shown, with dotted lines. The reward for each of the actions

in Z is +100 or −100 with equal probability. This is equivalently depicted as

a stochastic state transition with deterministic reward in Figure 5.1, where

each action from Z transitions to T with a reward of 100 or with a reward of

−100 with equal probability.

5.5. QV-LEARNING 129

Figure 5.1: The four state MDP.

Similar to nt(s) that denotes the number of times state s has been visited,

nt(s,a) denotes the number of times action a is chosen in state s in the first t

time steps. The learning rates are αt(st,at)= 1/nt(st,at) and βt(st)= 1/nt(st)

and the used exploration is ǫ-greedy, where a random action is chosen with

probability ǫt(st) = 1/nt(st). This exploration is greedy in the limit with infi-

nite exploration. In all cases all state and state-action values are initialized

to zero. The discount factor was set to 0.99.

The idea behind this MDP is that the value of state Z is independent on

the action that is chosen there. Algorithms that only use action values are

then expected to take longer to learn good policies than QV-learning. Espe-

cially Q-learning will be optimistic about the value of going to state Z, because

of overestimated actions. This issue was examined in detail in Chapter 4. It

is expected that QV-learning will learn more quickly that the value of state Z

under any policy is in fact zero and will then choose to go to state Y instead.

The first row in Figure 5.2 shows the average rewards for each of the algo-

rithms on this MDP. The hypothesized behavior is precisely what we observe

in the results. The left plot shows the results for when there is only one action

from state Z to state T. The middle and right plots show the results for when

there are 4 and 16 actions, respectively. Recall that all actions in state Z have

the same expected rewards and therefore their number does not change the

optimal solution for the MDP, which is to go from state X to state Y .

The first row of Figure 5.2 shows that the average rewards for QV-learning

do not change if more identical actions are added. This is to be expected in

this setting, since the number of actions has no influence on the state values.

However, for Expected Sarsa and especially for Q-learning, the number of

actions makes a large difference. The reason for this is that if there are more

actions, there is a higher probability that one of these actions will have a

value larger than 10. This leads Q-learning to believe that state Z has a

higher value than state Y and therefore it chooses the wrong action.

As far as Sarsa and Expected Sarsa is concerned: these algorithms per-

form better than Q-learning, since they do not only consider the greedy ac-

tion. These algorithms are therefore less optimistic about the value of state

Z because of their on-policy updates. However, because the policy becomes

greedy, the value of whatever happens to be the greedy action quickly has a

130 CHAPTER 5. ACTION VALUE ALGORITHMS

Figure 5.2: The results for the four state MDP shown in Figure 5.1. The first

row shows the results when all actions in Z yield rewards of 100 and −100
with equal probability. The second row shows the results when one of these

actions is replaced with an action that deterministically yields 20. The left,

center and right plots correspond to the MDPs with 1, 4 and 16 actions in

state Z, respectively. All lines are averages over 1000 experiments.

big influence on the value of the action that leads to state Z. Therefore, they

too suffer from the same problem as Q-learning. Expected Sarsa performs

slightly better on this problem than Sarsa.

The use of state values can also be a disadvantage. We demonstrate this

by using the same MDP as before, shown in Figure 5.1, but this time we en-

sure that there is always exactly one action in state Z that yields a determin-

istic reward of 20. The results on this adapted MDP are shown in the second

row in Figure 5.2. Interestingly, the results are reversed in comparison to

the first MDP. This time, Q-learning and Sarsa perform better than Expected

Sarsa and QV-learning, which performs worst. The reason that QV-learning

performs poorly is that the state values resulting from the initially random

exploration policy now give a poor indication of the optimal action value in

state Z. When there are many actions with lower values, as is the case here,

QV-learning will prefer to go to state Y . Since the exploration quickly de-

creases, QV-learning does not always update the value of Z sufficiently later

on to learn that this state is to be preferred.

The learning rates and the exploration scheme in the experiments made

it difficult for algorithms to recover from poor initial estimates. In practice, it

is often better to choose a fixed learning rate or a learning rate that decreases

more slowly. Additionally, although the used exploration rate ensures infinite

exploration in the limit, in practice it decreases so quickly that often some

of the 16 actions in state Z are not tried even once in the first 10,000 time

5.6. ACTOR CRITIC 131

steps. The results thus far have shown that there is no single algorithm that

is superior to all other algorithms in terms of convergence towards a good

control policy.

5.6 Actor Critic

Actor critic algorithms store an indication on how good the current policy is in

a critic and a policy in a separate actor (Barto et al., 1983; Sutton, 1984; Sut-

ton and Barto, 1998; Konda and Borkar, 1999; Konda and Tsitsiklis, 2003).

As such QV-learning can be viewed as an actor critic algorithm. It stores a

critic that determines how good the current policy is through Vt and then uses

this critic to influence a policy throughQt, where we assume that the policy is

indeed chosen with use of the current action values. In a broad sense, many

algorithms fall into this category. However, in this dissertation, we will use

the term actor critic mostly to refer to a specific instance of these algorithms.

This instance approximates the state value by use of (5.5) and then updates

preference values as follows:

Pt+1(st,at)= Pt(st,at)+αt(st,at)
(

r t+1+γVt(st+1)−Vt(st)
)

. (5.19)

The actor can be based on these preference values. We call these action val-

ues preference values to contrast this approach with the action values that

approximate the discounted cumulative future reward of a policy—be it the

current or the optimal one. In contrast, the preference values do not have

such an interpretation. Rather, one can interpret the preference values as

the difference between the value of the state and the value of each action in

that state. The action that has the highest preference value compared to the

state value should correspond to the action that has the highest action value.

Therefore, one would expect actor critic algorithms to converge to similar poli-

cies as the other on-policy algorithms we have discussed.

If the policy is mostly greedy and the increase is not a random perturba-

tion, the state values will adapt and over time learn the new, larger value.

Under some conditions on the policy and the learning rates, actor critic algo-

rithms can be shown to converge to the optimal values V∗ (Konda and Borkar,

1999; van Hasselt and Wiering, 2007b). When this is the case, the preference

value of the optimal action will converge to zero, while all non-optimal ac-

tions will have negative preferences. For a stationary policy, the preference

values converge to the expected temporal-difference error of the state values,

conditioned on the corresponding action. In the limit then

lim
t→∞

∑

a

π(s,a)Pt(s,a)= lim
t→∞

∑

a

π(s,a)E {δt| st = s,at = a}

= lim
t→∞

E {δt| st = s}= 0 ,

132 CHAPTER 5. ACTION VALUE ALGORITHMS

where the latter equality holds because of the eventual convergence of the

state values.

5.7 Actor Critic Learning Automata

A recent variant on the actor critic algorithm above has been shown to per-

form well in some problems (Wiering and van Hasselt, 2007; van Hasselt and

Wiering, 2009). This algorithm works on the same principle as other actor

critic algorithms. A state value is stored, which is updated with the TD learn-

ing update (5.5). When an action is performed, the state value will be up-

dated. If the update is positive, apparently the action was a good choice and

it makes sense to increase the probability of selecting the action. If the state

value was negative, the action was probably not such a good choice and its

probability should be decreased. However, instead of using the size of the TD

error, which is very problem dependent, one could also only use its direction.

A possible update then is

Pt+1(st,at)= Pt(st,at)+αt(st,at) (1−Pt(st,at)) if δt > 0, (5.20)

Pt+1(st,at)= Pt(st,at)+αt(st,at) (0−Pt(st,at)) if δt ≤ 0. (5.21)

Note that the choice of zero and one is arbitrary; we could have chosen any

other pair of values so long as the positive TD error corresponds to a higher

value than the negative TD error.

The algorithm defined by equations (5.20) and (5.21) is called the actor

critic learning automaton (Acla) algorithm. It uses a separate critic for the

state values and the actor update resembles a learning automaton update

(Narendra and Thathachar, 1974, 1989) of the linear reward-inaction (LR−I)

type, which updates an action dependent policy as follows:

πt+1(at)=πt(at)+αt(at) (1−πt(at)) if r = 1,

πt+1(at)=πt(at)+αt(at) (0−πt(at)) if r = 0.

Although the updates are similar, there are many important differences. The

LR−I update is stateless, which can equivalently be interpreted as a learning

algorithm for an MDP with only a single state. Furthermore, the update

uses a Boolean reward, which we mimic in Acla by checking whether or not

the TD error is positive. Finally, the learning automaton directly updates

the action selection probabilities. Although the preference values of Acla are

used to decide which action to take, they are not directly interpreted as action

selection probabilities. Rather, for instance we can use Boltzmann exploration

to construct a policy.

5.7. ACTOR CRITIC LEARNING AUTOMATA 133

5.7.1 Acla as an L1 Gradient Descent Update

Differing from these other algorithms, the Acla algorithm can be thought of as

following the gradient of the L1 norm instead of the L2 norm of the TD error

‖δt‖1 = |δt|. Following the discussion in Section 5.2, the preference values can

then be updated with a gradient descent update as

Pt(st,at)= Pt(st,at)−αt(st,at)
∂|δt|
∂st

The gradient of this norm is equal to minus one if the TD error is positive,

and it is equal to one if the TD error is negative. Therefore, we obtain the

following algorithm:

Pt+1(st,at)= Pt(st,at)+αt(st,at) if δt > 0,

Pt+1(st,at)= Pt(st,at)−αt(st,at) if δt < 0.

Although interesting in its own right, this algorithm has the problem that

the resulting preference values depend highly on the choice of learning rate

and if and how these learning rates are decreased over time. In theory the

preference values are unbounded, which is undesirable since it may cause nu-

merical problems. Although this variant may have its own merits, we have

not researched it further and will only discuss the version given by equations

(5.20) and (5.21). These algorithms are equivalent under a suitable adaption

of the learning rates such that the preference values always fall in a prede-

fined range.

5.7.2 Convergence

Unfortunately, Acla does not necessarily converge to the optimal policy in

stochastic settings. The reason is that Acla by its very nature increases the

probability of actions with a positive TD error and decreases the probability of

actions with a negative TD error. Although similar to algorithms that improve

the action value and therefore the probability of selecting an action when the

TD error is positive, these two objectives are not equivalent. To see why,

consider the following example.

Consider an MDP with a single state and two actions. We assume an

episode ends immediately after selecting either of these actions, so we only

have to consider the immediate reward. These rewards are stochastic such

that when action a1 is chosen the agent receives a reward of 100 with prob-

ability 0.1 and a reward of −10 with probability 0.9. Conversely, when a2 is

chosen, the reward is 10 with probability 0.9 and −100 with probability 0.1.

The expected values are thus +1 for a1 and −1 for a2, making a1 the optimal

action. However, now assume that the preference values of Acla are initial-

ized at 0.5 and let Pt(i) and πt(i) denote Pt(st,ai) and πt(st,ai). Then, for

134 CHAPTER 5. ACTION VALUE ALGORITHMS

some learning rate α=αt(st,at), the expected updates are

Pt+1(1)= Pt(1)+πt(1)0.1α (1−Pt(1))+πt(1)0.9α (0−Pt(1))

= 0.5−πt(1)0.4α ,

Pt+1(2)= Pt(2)+πt(2)0.9α (1−Pt(2))+πt(2)0.1α (0−Pt(2))

= 0.5+πt(2)0.4α .

This implies that the expected update decreases the probability of selecting

the optimal action a1 and increases the probability of selecting a2, if we as-

sume the probabilities are dependent on the preference values, as would nor-

mally be the case. The state value will then converge towards −1, the value

of the suboptimal action a2.

This counterexample does not provide much hope for the usefulness of

Acla in stochastic settings. However, in many settings the expected sign of the

TD error will correspond more closely with the quality of the action resulting

in that TD error. In deterministic settings, the preference values of all actions

that yield negative TD errors will necessarily decrease. Then, the state values

will update towards a value that is at least a high as the lowest value of the

remaining actions. At some point the state value will surpass this value after

which this action’s selection probability will decrease. This will continue until

there is only one action left. In the case of immediate rewards, this reasoning

is easily transformed into a proof of convergence for deterministic rewards,

showing that Acla has potential in such settings.

Furthermore, using the L1 norm in place of the L2 norm has the advan-

tage of being able to learn quickly in problems with large plateaus in the error

space. This proves to be a beneficial property when we apply Acla with neural

networks to the cart pole and mountain car problems in Chapter 7. However,

we do note that more research is useful and much better algorithms may exist

that build upon L1-normed errors.

5.8 Experiments

In this section we perform some experiments to observe the differences be-

tween the algorithms that were discussed in this chapter. To save space in

the tables, we use the abbreviations in Table 5.1. The names of Sarsa and

Acla are short enough to use as such.

The experiments are on a small maze problem, on a slightly bigger maze

problem and on the well known mountain car benchmark. In all cases, the to-

tal online results show the average reward per step during learning, the final

online results show the average reward per step for the last 5% of training

steps and the greedy results show the average reward per step for following

the greedy policy after training has concluded. This greedy policy was always

5.8. EXPERIMENTS 135

Table 5.1: Abbreviations for the names of the algorithms.

Algorithm Abbreviation

Q-learning Q

Double Q-learning DQ

Expected Sarsa ESarsa

QV-learning QV

Actor Critic AC

followed for a number of steps equal to 10% of the total number of training

steps.

5.8.1 Parameter Settings

In all cases a learning rate of 1/nt(st,at)
0.8 was used, where nt(st,at) gives

the number of times action at has been selected in state st in the first t time

steps. The exponent of 0.8 is inspired by a paper by Even-Dar and Mansour

(2003) and was indeed found to yield better results in our experiments than

a learning rate of 1/nt(st,at). This was also apparent in the experiments we

conducted in Chapter 4.

Boltzmann exploration was used and the results are shown correspond-

ing to the best choice of temperature, where τ ∈ 10x and x ∈ {−2,−1, . . . ,3}.
Further tweaking of the temperature and learning rate might yield slightly

better results, but the general conclusions remain similar. In contrast to ǫ-

greedy exploration, the amount of exploration that results from Boltzmann

exploration is not scale independent. Suppose we have two enumerated sets

of values X = {x1, . . . ,xn} and Y = {y1, . . . , yn}, where the elements in Y differ

from those in X only through scaling with some factor z, such that yi = zxi. A

Boltzmann distribution with temperature τX on X would result in

p(xi)=
exi /τX

∑n
j
ex j /τX

,

where p(xi) gives the probability of selecting element xi A Boltzmann distri-

bution with temperature τY on Y would result in

p(yi)=
eyi /τY

∑n
j
eyj /τY

=
exi(z/τY)

∑n
j
ex j(z/τY)

.

Therefore, if the values a set Y differ only from those in a set X by scaling

with some factor z, the Boltzmann distribution selects elements with equal

probabilities if the temperatures differ with the same scaling, such that τY =
zτX .

136 CHAPTER 5. ACTION VALUE ALGORITHMS

This property has consequences for our experiments. If we would use

preference values for Acla that by definition lie between 0 and 1 as suggested

in Section 5.7 and the action values used by Q-learning lie between 0 and

100, Acla would need a much lower Boltzmann temperature to reach similar

levels of exploration. This effect is apparent in previous work where Acla

indeed preferred different settings of this parameter than other algorithms

(Wiering and van Hasselt, 2008, 2009). We attempt to make the amount of

exploration for each of the algorithms more or less uniform. In all MDPs, we

choose the reward function in such a way that all optimal action values lie

between 0 and 100 or between −100 and 100, if negative values were in order.

Additionally, we updated Acla towards 100 and 0, instead of 1 and 0.

5.8.2 Statistical Significance

Finally, before we get to the experiments, we will say a few words about sta-

tistical significance. According to a Welch’s test (Welch, 1947), the difference

D between the means of two sets with sizes N1 and N2 is significant when

D
√

se21+ se22

> x ,

where se i is the sample standard error of set i. Here x is the value from

a t-distribution table for the corresponding degrees of freedom and desired

threshold α for our p-value. In our experiments, we obtain sufficient samples

to assume d f ≈ ∞. If we use α = 0.01, we obtain x = 2.326. Therefore, we

will call the difference between the sampled mean reward of two algorithms

significant if

D > 2.326
√

se21+ se22 . (5.22)

We will explicitly state the standard errors of our results, so it is possible to

redo the significance calculations for instance if a lower threshold is preferred.

It should be noted there can be a selection bias in the results, since at

some points we choose the best result for a number of parameter settings. As

such, the results in theory can have a positive bias. A normal way to handle

this would be to test the best found parameters on a new test run. However,

this may introduce a negative bias. For a lengthier discussion about these

biases, see Chapter 3.

Since the exploration parameters lie far apart, in most cases there is a

large difference in performance between the best setting and worse settings,

unless multiple settings either reach near optimal policies or when the best

setting is near random. We compared the best results for each algorithm

to the validation of these parameters and found that the results are usually

very close. This does mean that if the experiments are repeated, in some cases

different parameter settings may emerge as the best settings and that in some

5.8. EXPERIMENTS 137

Figure 5.3: A small grid MDP.

cases the results for the parameter settings as displayed may be somewhat

lower. However, this does not have any impact on the main conclusions.

5.8.3 Grid World

We start with a very small grid world MDP as show in Figure 5.3. In each

state there are 4 actions, corresponding to the directions the agent can go.

The starting state is in the lower left position and the goal state is in the

upper right. There are no obstacles and each time the agent selects an action

that would walk off the grid, the agent stays in the same state. The discount

factor was set to 0.95. We constructed a few different versions of this MDP,

varying the reward function in each. Every variant gives a reward of +100 for

each action in the goal state and then ends the episode. The variants differ in

what reward is given at every non-terminating time step. The optimal policy

is always to end an episode in the goal state after five actions.

5.8.3.1 Deterministic Grid World

In the first variant every time step yields a reward of zero. This variant

is fully deterministic and therefore the easiest variant we discuss. Each al-

gorithm we discussed in this chapter learns to solve this very simple MDP

perfectly within 1000 training steps. For instance, if a Boltzmann exploration

with a temperature of 1 is used the last 50 steps of the 1000 training steps

were always flawless for all algorithms, showing good on-policy performance.

Additionally, the greedy policy was always perfect.

5.8.3.2 Neutral Stochastic Grid World

In the second variant, the agent receives a random reward of −100 or +100
on each step with equal probability. We call this variant neutral stochastic

since every non-terminating step yields a stochastic reward with an expected

value of zero. The only difference with the first variant is the stochasticity of

the rewards. Table 5.2 shows the results for this MDP.

Clearly all algorithms take longer to find good policies on the MDP, be-

cause of the added noise in the feedback. The results in the table show that

QV learning has the best mean on-policy performance over the 1,000 train-

138 CHAPTER 5. ACTION VALUE ALGORITHMS

Table 5.2: Results for the neutral stochastic grid world with non-terminating

rewards of +100 or −100. The table shows average results over 1,000 repe-

titions of the experiments (µ), standard errors of these averages (se) and the

Boltzmann temperature (τ) that resulted in this best performance.

After 1,000 steps

total online final online greedy

µ se τ µ se τ µ se τ

Q 3.46 0.10 1000 2.99 0.46 1000 0.90 0.34 1

DQ 4.78 0.23 10 6.74 0.53 10 6.03 0.43 10

Sarsa 4.13 0.09 100 4.78 0.45 100 2.87 0.37 1000

ESarsa 4.45 0.09 100 5.82 0.45 100 3.62 0.39 1000

QV 5.48 0.10 100 6.28 0.44 100 4.11 0.40 100

AC 4.70 0.10 1000 5.08 0.48 100 3.75 0.40 100

Acla 4.33 0.10 100 4.40 0.45 100 1.92 0.36 10

best 5.48 QV 6.74 DQ 6.03 DQ

After 10,000 steps

total online final online greedy

µ se τ µ se τ µ se τ

Q 3.44 0.03 1000 3.21 0.14 1000 1.71 0.35 10

DQ 7.22 0.87 10 8.88 1.10 10 9.16 1.35 10

Sarsa 5.01 0.03 100 5.04 0.14 100 10.19 0.42 1000

ESarsa 5.22 0.03 100 5.32 0.14 100 10.34 0.44 1000

QV 5.58 0.03 100 6.96 0.32 10 10.13 0.42 1000

AC 7.42 0.21 100 9.21 0.27 100 8.92 0.44 100

Acla 4.09 0.07 10 4.26 0.15 10 1.56 0.34 10

best 7.42 AC 9.21 AC 10.34 ESarsa

ing steps. The difference is statistically significant with all other algorithms.

For both the on-policy and off-policy final performance, Double Q-learning is

the best algorithm, although in the on-policy case the difference with QV-

learning, Expected Sarsa and Actor Critic is not statistically significant. In

the off-policy case, the difference between Double Q-learning and the other

algorithms is statistically significant. The reason for this is that Double Q-

learning is an off-policy algorithm that can estimate the optimal policy when

following a different policy. The poor performance of Q-learning is striking

and from Chapter 4 we know this is due to the overestimation bias.

We also ran the same experiment for 10,000 time steps. The results of

this experiment are shown in the lower part of Table 5.2. Again, Double

Q-learning and to a lesser degree QV-learning perform well, although Actor

Critic has a better on-policy performance. Apparently it takes longer on this

5.8. EXPERIMENTS 139

problem before Actor Critic finds good policies, but then the online perfor-

mance surpasses that of QV-learning. The difference between Actor Critic

and Double Q-learning is not significant. Both the total and the final on-

policy performance of Actor Critic and Double Q-learning is significantly bet-

ter than all other algorithms. However, the final greedy policy that is found

by Sarsa, Expected Sarsa and QV-learning after 10,000 steps is better than

that of Double Q-learning, although the difference is not significant.

It is interesting to note that on this problem the on-policy algorithms seem

to reach performance levels at least as good as the off-policy algorithms, as

long as the learning parameters are explicitly optimized for this performance

metric. However, this may be very problem dependent, since we see that

the best greedy performance is reached for a behavior policy that is nearly

completely random, with a temperature of τ = 1000. Such a policy would

indeed favor states closer to the goal state, also in the on-policy values of a

random policy. However, in many problems a random policy will not be good

enough to reach certain interesting parts of the state space. This means that

the results here at least show some peculiarities of the problem, rather than

just differences between the algorithms. In all likeliness, this holds for any

specific problem setting.

In all settings, the worst performance is obtained by Q-learning and Acla.

The on-policy performance of Q-learning is approximately random, which can

also be seen by the fact that the best Boltzmann temperature for Q-learning

was τ = 1,000. In this setting, this leads to almost random policies. Appar-

ently, every policy found by Q-learning is worse than random. This can also

be concluded from its greedy performance, which indeed is worse on average

than a random policy.

5.8.3.3 Negative Stochastic Grid World

In this next variant, the rewards on each non-terminating step are +90 or

−110 with equal probabilities. This results in an expected value of −10 on

each step. Therefore, the optimal policy is now only worth on average 12 per

step, compared to 20 in the previous case. The negative values on each step

present an additional incentive for the algorithms to reach the goal state as

quickly as possible. This seemingly small adaptation of the problem can have

different effects on the different algorithm. For completeness we mention that

on an MDP with deterministic negative rewards on each non-terminating

transition each algorithm reaches optimal on-policy and off-policy withing

1,000 learning steps. The results for the stochastic variant are shown in Table

5.3.

The results show that after 1,000 training steps, Double Q-learning sig-

nificantly outperforms the other algorithms in a statistically and absolute

sense. On average, its total online performance is more than 2 points better

140 CHAPTER 5. ACTION VALUE ALGORITHMS

Table 5.3: Results for the negative stochastic grid world with non-terminating

rewards of +90 or −110. The table shows average results over 1,000 repeti-

tions of the experiments (µ), standard errors of these averages (se) and the

Boltzmann temperature (τ) that resulted in this best performance.

After 1,000 steps

total online final online greedy

µ se τ µ se τ µ se τ

Q -6.01 0.10 1000 -6.63 0.46 1000 -7.00 0.38 10

DQ 0.20 0.24 10 5.38 0.50 10 4.47 0.46 10

Sarsa -4.31 0.10 100 -2.51 0.44 100 -3.88 0.42 100

ESarsa -4.07 0.10 100 -2.81 0.44 100 -3.69 0.43 100

QV -2.46 0.25 10 0.91 0.53 10 1.47 0.46 10

AC -2.28 0.20 100 0.17 0.46 100 -1.12 0.45 100

Acla -5.23 0.09 100 -5.17 0.48 10 -6.94 0.37 10

best 0.20 DQ 5.38 DQ 4.47 DQ

After 10,000 steps

total online final online greedy

µ se τ µ se τ µ se τ

Q -1.52 0.23 10 3.83 0.32 10 4.71 0.43 10

DQ 8.62 0.16 10 11.17 0.18 10 11.55 0.32 10

Sarsa -0.16 0.23 10 5.46 0.31 10 10.52 0.35 100

ESarsa -0.20 0.23 10 5.66 0.31 10 10.38 0.35 100

QV 6.89 0.20 10 10.47 0.20 10 10.82 0.33 100

AC 6.00 0.16 100 9.68 0.18 100 10.71 0.33 100

Acla -3.94 0.07 10 -4.28 0.16 10 -8.54 0.35 1000

best 8.62 DQ 11.17 DQ 11.55 DQ

than the next best algorithms QV-learning and Actor Critic. Although these

algorithms also improve their online performance, for the last 50 steps this

difference has risen to more than 4 points. Naturally, this can be a statistical

overestimation since the performance of the greedy policy is somewhat lower,

but it does show that for this problem Double Q-learning learns good policies

much faster than the other algorithms.

After 10,000 training steps, Double Q-learning is still significantly bet-

ter than the other algorithms in its online performance, although its greedy

policy is no longer significantly better than that of Sarsa, QV-learning and

Actor Critic. This is due to the improved behavior of these algorithms. With

the exception of Acla, all algorithms find better policies than in the stochastic

setting without negative expected rewards on each step. This can be seen by

5.8. EXPERIMENTS 141

Figure 5.4: Sutton’s Dyna maze. The starting position is indicated by S and

the goal position is indicated by G. The black squares represent obstacles.

the fact that the results are much closer to the optimal value of 12 than the

results in Table 5.2 were to the optimal value of 20. Acla can not handle the

stochasticity in these problems well and performs poorly.

5.8.4 Dyna Maze

Next, we consider the performance of the algorithms on a larger maze, which

has been used a number of times in the past to measure the performance of

reinforcement learning algorithms in various settings (Sutton, 1990; Sutton

and Barto, 1998; Wiering and van Hasselt, 2008, 2009). The maze is shown

in Figure 5.4.

The setting is more or less the same as before, only now the agent receives

a negative reward of −0.1 on each step, as well as a reward of −2 whenever it

bumps into an obstacle. The black squares and the outer boundary of the grid

are such obstacles. When the goal is reached, a reward of 100 is obtained.

The optimal policy takes 14 steps to reach the goal and the optimal average

reward per step is therefore 7.05. The results of 10,000 steps of training are

shown in Table 5.4.

Because of the longer routes to the goal, in a state relatively far from the

goal state the difference in value between the best action and a suboptimal ac-

tion will be much lower. Additionally, in the beginning the action values will

appear to be overestimates, because of the −0.1 reward on each step. This im-

plies there is an incentive to explore and therefore the best performing Boltz-

mann temperatures are now also lower in general. The best algorithms for

this problem are the traditional algorithms Q-learning and Sarsa. Expected

Sarsa is slightly better than Sarsa, as expected, although the difference is not

statistically significant. QV-learning also finds a good greedy policy, although

its online improves slightly slower than that of Sarsa and Q-learning, as can

be seen from the somewhat lower total online performance. For all metrics,

Actor Critic and Acla perform the worst.

142 CHAPTER 5. ACTION VALUE ALGORITHMS

Table 5.4: The results for the Dyna maze: the best average results over 100

runs of the experiments (µ), standard errors of these averages (se) and the

corresponding Boltzmann temperature (τ) are shown. Training was 10,000

steps for the deterministic maze and 50,000 steps for the stochastic maze.

Deterministic Dyna Maze

total online final online greedy

µ se τ µ se τ µ se τ

Q 6.04 0.03 10−3 6.97 0.02 10−4 6.97 0.03 10−4

DQ 2.47 0.17 10−3 4.70 0.21 10−4 4.66 0.32 10−3

Sarsa 6.04 0.03 10−4 6.97 0.02 10−4 6.97 0.03 10−4

ESarsa 6.08 0.02 10−4 7.01 0.02 10−4 7.03 0.01 1

QV 5.10 0.10 0 6.96 0.04 10−3 7.01 0.02 10−3

AC 1.82 0.18 1 3.20 0.19 1 3.58 0.35 1

Acla 1.58 0.24 0.1 2.59 0.22 0.1 4.47 0.32 1

best 6.08 ESarsa 7.01 ESarsa 7.03 ESarsa

Stochastic Dyna Maze

total online final online greedy

µ se τ µ se τ µ se τ

Q 3.13 0.13 1 4.33 0.12 1 5.33 0.01 100

DQ 3.50 0.15 0 4.41 0.10 1 5.30 0.01 100

Sarsa 3.02 0.14 1 3.98 0.13 1 5.30 0.01 10

ESarsa 3.15 0.14 1 4.15 0.12 1 5.30 0.01 10

QV 2.63 0.18 0 3.47 0.11 1 5.24 0.05 10

AC 2.40 0.18 1 3.33 0.15 1 5.05 0.08 10

Acla 1.70 0.19 0 2.41 0.16 0 4.76 0.11 100

best 3.50 DQ 4.41 DQ 5.33 Q

The lower half of Table 5.4 shows the results on a stochastic version of

the Dyna maze, in which there was a 20% chance that the selected action

was replaced by a random action. This implies that the transitions are now

stochastic and one may end up in different states when performing the same

action in the same state twice. The optimal average reward per step in this

maze is close to 5.3. In this setting the same algorithms have good perfor-

mance and additionally Double Q-learning performs well with the best online

performance, although the difference with Q-learning and Expected Sarsa is

not significant. The results are closer than in the deterministic maze because

we let the algorithms train for 50,000 steps, instead of 10,000 steps. Even-

tually, all algorithms find an optimal policy in both these settings if they are

given enough learning steps.

We note that Acla generally performs somewhat poor in these problems.

5.8. EXPERIMENTS 143

However, in previous work it was shown that Acla can perform as well as or

better than the other algorithms in many problems if the learning rates are

optimized for each problem (Wiering and van Hasselt, 2007). This indicates

that Acla may be somewhat harder to tune and therefore somewhat less prac-

tical than the other algorithms. The main reason we include the algorithm in

our analysis is that there are some problems, such as the well known cart pole

and mountain car benchmarks, in which Acla was in fact significantly better

(van Hasselt and Wiering, 2009; Wiering and van Hasselt, 2009). It seems

Acla performs well when combined with neural networks. We will discuss

these results in more detail in Chapter 7.

5.8.5 Mountain Car

A well known benchmark in reinforcement learning is the mountain car prob-

lem (Singh and Sutton, 1996; Sutton and Barto, 1998). In this problem, a car

is initialized at the bottom of a two-dimensional valley and the goal is to climb

the hill to its right. The setting is interesting because of three characteristics.

First, the inputs to the reinforcement learning agent are continuous. How-

ever, in this chapter we will discretize the state space, removing this point of

interest. For results on the continuous version of the mountain car, we refer

to Chapter 7. Second, the engine of the car is too weak to climb the hill di-

rectly, and the car must therefore first make momentum by driving up the hill

to its left. Third, the reinforcement learning agent does not receive positive

feedback until it reaches the top of the right hill and must therefore explore

to solve the problem. To elaborate on this last point, one can imagine that

the agent does not know anything about the world it is in, so it might think

that every possible setting is of the same quality as the setting it is initialized

in. Without some incentive to explore, either explicit or implicit, there is no

compelling reason for it to leave this setting.

In this chapter, we construct a tabular version of the mountain car, simply

by partitioning the position and the velocity into 8 equally sized segments, for

a total of 64 different states.1 In Chapter 7, we consider the same problem

but without the discretization of the state space.

We used the same problem description as in the book by Sutton and Barto

(1998). This means that the position of the car x and its velocity dx are

updated as follows:

xt+1 = xt+dxt+1 ,

dxt+1 = dxt+0.001at−0.0025cos(3xt) .
(5.23)

The position is bounded to [−1.2,0.5] and the velocity is bounded to [−0.07,0.07].
When the position becomes lower than −1.2 it is assumed the car hits the left

1Counting the terminal state that is reached upon reaching the goal position, one could

argue in fact there are 65 states.

144 CHAPTER 5. ACTION VALUE ALGORITHMS

boundary of the problem and its position is set to −1.2 with zero velocity. An

episode is considered a success and ends when a position higher than 0.5 is

reached. The action space is finite and consists of the set A(s) = {−1,0,1}
for each state. The transitions are as described by the equations in (5.23).

Whenever an episode ends, the car is reset to x = −0.5 and dx = 0.0, which

is near the bottom of the track with zero velocity. The reward function is de-

fined such that the agent receives a reward of −1 on every time step, except

when an episode ends in a success and a reward of +100 is received. If no

success is obtained within 500 time steps, the episode is considered a failure

and the episode ends. This last transition rule actually makes the problem

non-Markovian since the agent does not receive the time step in its state de-

scription. In practice this is not a large problem and it makes the experiments

run faster.

The performance on the mountain car was quite poor when only a learn-

ing rate of 1/nt(st,at)
0.8 was used, so instead we mildly optimized a constant

learning rate for each algorithm. The possible learning rates were 10x for

x ∈ {−4,−3,−2,−1}.
Table 5.5 shows results on the mountain car. The most remarkable result

is the result of the Actor Critic algorithm, which reaches a very good greedy

policy after training. All the algorithms show improvement over the training.

Interestingly, Sarsa performs better on this setting than Expected Sarsa, al-

though only the difference in the final online performance is significant. A

possible explanation for this may be that Sarsa’s inherently noisier updates

are somewhat beneficial in this problem since the performance is very depen-

dent on the first time that an algorithm accidentally reaches the goal state.

The problem is not stochastic enough to cause overestimation problems for

Q-learning. Therefore, Q-learning performs better than Double Q-learning on

the mountain car.

5.9 Conclusion

In this chapter we have discussed many different algorithms to learn ac-

tion values. We have attempted to highlight the most important differences

and similarities between the algorithms and we have performed some experi-

ments which show that there are real differences in terms of how quickly each

algorithm on average finds a good policy.

One of the more interesting results is that Q-learning behaves well in the

deterministic settings, but performs very poorly in both stochastic grid world

settings. The reason for this was discussed in Chapter 4. In the stochastic

grid world Q-learning seems to suffer from less problems, possibly because

the stochasticity in that setting was only in the transitions and not in the

rewards.

5.9. CONCLUSION 145

Table 5.5: The results for the mountain car (lower is better): the best average

results over 100 runs of the experiments (µ), standard errors of these averages

(se) and the corresponding Boltzmann temperature (τ) are shown. Training

was 100,000 steps, testing was 5,000 steps.

total online final online greedy

µ se µ se µ se

Q 281.4 2.2 194.3 4.3 211.4 8.7

DQ 342.2 1.9 211.3 3.9 246.5 12.3

Sarsa 286.9 2.3 181.5 3.6 187.4 7.6

ESarsa 282.9 2.3 200.7 5.6 208.6 9.5

QV 293.0 4.1 201.5 3.3 219.8 10.1

AC 255.7 3.3 188.6 4.9 136.3 0.5

Acla 322.1 7.1 253.5 11.8 241.8 12.9

best 255.7 AC 181.5 Sarsa 136.3 AC

parameters

τ α β τ α β τ α β

Q 0.01 0.1 - 0.01 0.1 - 0.01 0.1 -

DQ 0.01 0.1 - 0.01 0.1 - 0.01 0.1 -

Sarsa 0.01 0.1 - 0.01 0.1 - 0.01 0.1 -

ESarsa 0.01 0.01 - 0.01 0.1 - 0.01 0.1 -

QV 0.01 0.1 0.1 0.01 0.1 0.01 0.01 0.1 0.01

AC 0.1 0.1 0.01 0.1 0.1 0.01 1 0.01 0.01

Acla 0.01 0.01 0.01 0.01 0.001 0.001 0.01 0.001 0.001

Another good thing to note is the consistent performance of the QV-learning

algorithm. Although it was rarely the best algorithm, it never performs very

poorly. The only drawback seems to be a slightly slower convergence rate, but

this can also be due to the specific learning rate that we used. In previous

work, some results have been published that show that QV-learning can be

tuned to perform better than Q-learning and Sarsa in many occasions (Wier-

ing, 2005; Wiering and van Hasselt, 2007, 2009).

Further, it is interesting to note that all algorithms perform well on at

least one of the tasks. Which algorithm performs best is clearly very task

dependent. On the one hand, this is good news since it means that there are

many ways to find a good policy. On the other hand, this adds complexity

for someone who wants to solve a problem, since an algorithm needs to be

selected in addition to the tuning of parameters.

For this reason, in the next chapters we will investigate ensembles of the

different algorithm. Ideally, this removes the need to choose between the dif-

ferent algorithms. Additionally, we will see that the ensemble often performs

146 CHAPTER 5. ACTION VALUE ALGORITHMS

better than each of the individual algorithms.

5.10 Proofs

This section contains the proofs for the theorems in this chapter.

5.10.1 Proof for Theorem 5.1

Proof. To prove this theorem, we simply check that all the conditions of Lemma

2.1 are fulfilled. The first and second conditions of this lemma correspond to

the first and second assumptions of the theorem. The fourth assumption in

the theorem ensures that Var{Ft(xt)|Pt} stays bounded. The process is then

upper bounded by Q-learning and lower bounded by a form of Q-learning that

uses a min operator in place of a max operator. These Q-learning processes

are known to converge and stay bounded if the reward function has finite

variance. Below, we will show the third condition of the lemma holds.

We can derive the value of Ft as

Ft(st,at)=
1

αt

(

∆t+1− (1−αt(st,at))∆t(st,at)
)

= r t(st,at)+γ
∑

a

πe
t (st+1,a)Qt(st+1,a)−Q∗(st,at) , (5.24)

We can assume Ft(s,a)= 0, for all (s,a) 6= (st,at). If we can show that ‖E{Ft|Pt}‖ ≤
κ‖∆t‖+ ct, where κ ∈ [0,1) and ct converges to zero, all the conditions of the

lemma can be fulfilled and we have convergence of ∆t to zero and therefore

convergence of Qt to Q∗. We derive this as follows:

‖E{Ft|Pt}‖

=

∥

∥

∥

∥

∥

E

{

r t+γ
∑

a′
πe
t (st+1,a

′)Qt(st+1,a
′)−Q∗(s,a)|Pt

}∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

E

{

r t+γ
∑

a′
πe
t (st+1,a

′)Qt(st+1,a
′)|Pt

}

−
∑

s′
Ps′

sa

(

Rs′

sa−γmax
a′

Q∗(s′,a′)

)

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∑

s′
Ps′

sa

(

γ
∑

a′
πe
t (s

′,a′)Qt(s
′,a′)−γmax

a′
Q∗(s′,a′)

)∥

∥

∥

∥

∥

≤ γmax
s

∣

∣

∣

∣

∑

a

πe
t (s,a)Qt(s,a)−max

a
Q∗(s,a)

∣

∣

∣

∣

≤ γmax
s

∣

∣

∣max
a

Qt(s,a)−max
a

Q∗(s,a)
∣

∣

∣+γmax
s

∣

∣

∣

∣

∑

a

πe
t (s,a)Qt(s,a)−max

a
Qt(s,a)

∣

∣

∣

∣

≤ γ‖∆t‖+γmax
s

∣

∣

∣

∣

∑

a

πe
t (s,a)Qt(s,a)−max

a
Qt(s,a)

∣

∣

∣

∣

.

5.10. PROOFS 147

The first equality uses (5.24), the second equality uses the Bellman optimality

equation and the third equality uses algebraic rewriting. The first inequal-

ity uses the fact that a maximum weighed difference cannot be greater than

the maximum difference over all the elements in the weighted sum. The sec-

ond inequality results from the triangular inequality. The third inequality

uses the fact that the difference between the maxima of two sets cannot be

greater than the maximal difference between any two corresponding elements

in these sets.2 The last step also applies the definition in (2.28).

We identify ct = γmaxs |
∑

aπ
e
t (s,a)Qt(s,a)−maxaQt(s,a)| and κ= γ. Clearly,

ct converges to zero for estimation policies that are greedy in the limit. There-

fore, if γ< 1, all of the conditions of Lemma 2.1 follow from the assumptions

in the present theorem and we can apply the lemma to prove convergence of

Qt to Q∗.

2To see this, assume two sets X and Y of equal size, where XM = maxi X i and YN =
maxiYi . If M = N, it follows that |XM −YN | = |XM −YM | ≤maxi |X i −Yi |. If M 6= N, without

loss of generality assume that XM ≥ YN . By definition of N we know YN ≥ YM , so it follows

that |XM −YN | ≤ |XM −YM | ≤maxi |X i −Yi |.

CHAPTER 6

ENSEMBLE ALGORITHMS IN REINFORCEMENT LEARNING

As we outlined in the previous chapters, there is no single value-based rein-

forcement learning algorithm that is dominant in terms of finding good poli-

cies quickly in all possible settings. This is the case in more general in the

field of machine learning and is sometimes referred to as the no free lunch

theorem (Schaffer, 1994; Wolpert and Macready, 1995, 1997). This theorem

states that in order to get better on some subset of problems, an algorithm

has to become worse at another subset of problems. The actual statement

that is proved is more narrow and obviously there exist algorithms that can

be improved on a subset of problems without suffering performance penalties

on other problems. But in general we have seen a similar development in the

reinforcement learning algorithms described thus far, that indicates that the

best choice of algorithm can be very dependent on the structure of the MDP.

In supervised learning, ensemble methods such as bagging (Breiman, 1996),

boosting (Freund and Schapire, 1996), and mixtures of experts (Jacobs et al.,

1991) have been proposed. These methods combine multiple classifiers, for

example with a weighted voting scheme. Each classifier casts a vote that

may be weighted by its confidence on the classification and these votes are

combined into a new classification. This ensemble classifier is then often at

least as good as the best individual classifier, especially when the errors of

the individual classifiers are reasonable low.

In reinforcement learning, ensemble methods have been used for rep-

resenting and learning the value function (Singh, 1992; Tham, 1995; Sun

and Peterson, 1999; Ernst et al., 2005). This allows combinations of mul-

tiple value-based algorithms, but it does not allow combinations of action

value algorithms with algorithms that learn preference rather than action

values, such as the actor-critic method described in Chapter 5. Also, it is

not possible to include algorithms that do not use value functions at all, such

as evolutionary algorithms that search directly in the policy space (Whitley

et al., 1993; Moriarty and Miikkulainen, 1996; Moriarty et al., 1999; Tay-

lor et al., 2006; Whiteson and Stone, 2006; Wierstra et al., 2008; Rückstieß

et al., 2010). Therefore, in this chapter we explore ensemble methods that

use voting schemes to directly combine policies of individual algorithms into

a combined policy. Literature on such methods is extremely scarce, although

the few results obtained so far have been promising (Jiang and Kamel, 2006;

Wiering and van Hasselt, 2008; Hans and Udluft, 2010).

In this chapter we describe several ensemble methods that combine mul-

tiple reinforcement learning algorithms in a single agent. The aim is to en-

149

150 CHAPTER 6. ENSEMBLES

hance performance by combining the chosen actions or action probabilities of

different algorithms. Each algorithm will learn its own policy, but the ensem-

ble selects the action that is actually performed in the MDP.

Specifically, we will discuss ensembles of the seven value-based reinforce-

ment learning algorithms that were outlined in the previous chapters: Q-

learning, Double Q-learning, Sarsa, Expected Sarsa, QV-learning, Actor Critic

and Acla. However, the ensembles we discuss allow other types of algorithms.

For instance, it is straightforward to include hand-tuned algorithms or algo-

rithms that search directly in the policy space. The reason that we choose

to use the seven algorithms we have described is that we observed that they

reach different intermediate policies. This allows us to look at the perfor-

mance of the ensemble methods when the agents that they consist of are

different. Additionally, some of the algorithms perform poorly when run in-

dividually some of the MDPs. Therefore, our results should indicate which

approaches are robust to such poor performing agents in the ensemble.

Section 6.1 introduces the notation used in this chapter and discusses

some of the general properties of ensemble methods. We can divide the en-

semble methods that we propose in two general groups. The members of the

first group of methods are called voting schemes, which will be discussed in

Section 6.2. These methods draw largely on voting mechanisms that have

been researched for human decision making, for instance through elections.

There is a large body of research on such methods, including results on desir-

able properties (Arrow, 1950, 1963). However, voting schemes often discard

some of the available information. Agents rank or express approval for one or

more actions, but the actual action selection probabilities are not taken into

account. This is why we also propose some methods in a second group, which

we call probability based methods. These methods take the actual action se-

lection probabilities of each algorithm and combine these into a policy for the

ensemble. The probability based methods are discussed in Section 6.3. In Sec-

tion 6.4 we summarize all the ensemble methods and look at the differences

and similarities between the different approaches. In Section 6.5 we look at

the performance of the discussed ensemble methods on a number of different

settings and we discuss the results. Finally, Section 6.6 discussed out findings

and gives pointers for future research and 6.7 concludes this chapter.

6.1 Ensemble Methods

In this section, we discuss some of the preliminaries concerning ensemble

methods. This includes the notation that will be used in this chapter and a

discussion about the limiting convergence properties of ensembles. Further-

more, we discuss some of the subtleties involved in using on-policy algorithms

within an ensemble.

6.1. ENSEMBLE METHODS 151

Ensemble methods have been shown to be effective in combining single

classifiers in a system, leading to a higher accuracy than obtainable with a

single classifier. Bagging (Breiman, 1996) is a simple method that trains mul-

tiple classifiers using a different partitioning of the training set and combines

them by majority voting. If the errors of the single classifiers are not strongly

correlated, this can significantly improve the classification accuracy. In rein-

forcement learning, ensemble methods have been used for combining function

approximators to store the value function (Singh, 1992; Tham, 1995; Sun and

Peterson, 1999; Ernst et al., 2005), and this can be an efficient way to obtain

better performance.

In contrast to most previous research in reinforcement learning, we com-

bine different algorithms that learn separate and possibly incomparable value

functions and policies. Since the preference values learned by Actor Critic and

Acla are different in nature than the action values learned by Q-learning and

Sarsa, it is impossible to combine their value functions directly. Therefore in

our ensemble approaches we combine policies instead of values. This has the

additional advantage that in principle it is possible to add other methods, as

long as these methods use some action selection policy. This includes the pos-

sibility to add hand-tuned and heuristic policies that may be suboptimal for

the MDP as a whole, but in general are better than random. We will not add

such policies in our experiments, but in some cases it may be very beneficial

to be able to bootstrap the behavior of the ensemble on known good policies.

6.1.1 Notation

An ensemble agent consists of a set of K agents A = {A1, . . . ,AK } and an en-

semble algorithm that determines the action that is taken to interact with the

environment. The action selection policy of agent k is πk
t . If we use this pol-

icy to select an action, this action is denoted by ak
t . However, in many of the

ensembles we will directly use the policies. At times, we will use an indicator

function I : {⊤,⊥}→ {0,1}. The input of this function should be considered a

Boolean value equal to ‘true’ (⊤) or ‘false’ (⊥). The function simply outputs a

value of one when its input is true and a value of zero if it is false: I (⊤)= 1

and I (⊥)= 0. As usual, the action that is selected by the ensemble to be per-

formed at time t is denoted at. As mentioned, it is not necessarily the case

that ak
t = at for any algorithm Ak, although it will often hold for at least some

of the algorithms.

The policies of the agents that constitute the ensemble are combined to

form preference values. In order to distinguish these preference values from

those of Acla and Actor Critic we denote these with a lowercase p, such that

pt(s,a) is the preference of the ensemble for action a in state s at time t.

Any method of exploration can be used, including ǫ-greedy and Boltzmann

exploration. The tunable parameters ǫ for ǫ-greedy and τ for Boltzmann ex-

152 CHAPTER 6. ENSEMBLES

ploration can then be used to ensure sufficient exploration. For instance, for

Boltzmann exploration the resulting ensemble policy is:

∀a ∈ A(s) :πt(s,a)=
ept(s,a)/τ

∑

b e
pt(s,b)/τ

,

where τ is the temperature parameter. How to obtain the preference value

function pt will be discussed below. After calculating the action probabilities,

the ensemble selects an action and all algorithms learn from this selected

action.

6.1.2 Convergence Considerations

The most important consideration in ensembles of multiple reinforcement

learning algorithms is the selection of each action. Unless all the agents

agree, there is a relatively large probability that the action that is actually

selected by the ensemble is not the action that each individual agent prefers.

From the viewpoint of each agent, we can then interpret the selection of an

action through the ensemble as a manner of exploration.

The fact that the ensemble determines the selected action, implies that

on-policy algorithms will approximate the value of the policy that is followed

by the ensemble, rather than the policy that is indicated by its own current ac-

tion values. In practice, this implies that Sarsa and QV-learning approximate

the action values corresponding to the ensemble policy. In our experiments,

we choose to let Expected Sarsa update towards the policy that results from

its own action values. If agent k uses Expected Sarsa, the update is

Qt+1(st,at)=Qt(st,at)+

αt(st,at)

(

r t+1+γ
∑

a

πk
t (st+1,a)Qt(st+1,a)−Qt(st,at)

)

.

This update is different from the expected update for Sarsa after reaching

state st+1, but before selecting at+1, which is equal to

E {Qt+1(st,at)|Pt+1}=Qt(st,at)+

αt(st,at)

(

r t+1+γ
∑

a

πt(st+1,a)Qt(st+1,a)−Qt(st,at)

)

,

where Pt+1 = {Q0, s0,a0, r1, s1, . . . , r t+1, st+1} denotes the past experiences up

to and including r t+1 and st+1, but excluding at+1. This means that the algo-

rithm we refer to as Expected Sarsa is in fact an off-policy version of General

Q-learning where the estimation policy is equal to the action selection pol-

icy of the agent, rather than the policy of the ensemble. We consider it an

advantage for our experiments that this version of Expected Sarsa will likely

6.2. VOTING SCHEMES 153

differ more from Sarsa and QV-learning than a version that uses the behavior

policy of the ensemble for its update.

In general, the exploration policy of each agent and the ensemble policy

may not be the equal. Therefore, it is not trivial to ensure that the ensem-

ble policy will become greedy with respect to all the individual action value

functions, which implies that convergence to the optimal policy may not be

guaranteed. For greedy off-policy algorithms such as Q-learning and Double

Q-learning, it is sufficient that infinite exploration occurs to ensure conver-

gence so these algorithms can be guaranteed to converge. Similarly, we may

make the estimation policy of Expected Sarsa greedy in the limit to ensure

this algorithm also converges to the optimal policy. However, convergence of

individual algorithms to the optimal policy does not imply convergence of the

ensemble as a whole.

If one wants to build a guaranteed convergent ensemble algorithm, it

makes sense to use only off-policy algorithms that themselves are guaranteed

to converge. However, ensembles that include only similar agents in general

fair little better than a single agent. In this case, the General Q-learning

framework that was discussed in Chapter 5 can be useful. One could build

an ensemble consisting of General Q-learning algorithms that all use differ-

ent estimation policies. It is then possible to choose the estimation policies in

such a manner that they differ, but that they all become greedy in the limit.

By Theorem 5.1 we then know that each of the action value functions will

then become optimal and therefore an ensemble that combines these policies

in a sensible manner will also become optimal. Other convergent off-policy

algorithms, such as Double Q-learning, can be added without endangering

the convergence properties. In short, an ensemble consisting of one or more

agents using Q-learning, Double Q-learning or General Q-learning is guaran-

teed to converge as long as the ensemble policy ensures infinite exploration

and the estimation policy of General Q-learning becomes greedy in the limit.

For the rest of this chapter, we will not concern ourselves too much with

convergence in the limit. Rather, we focus on the practical question which

types of ensembles seem to work best when given limited time. We do this by

including all the algorithms from Chapter 5 and then observing the perfor-

mance of the different types of ensembles.

6.2 Voting Schemes

In this section we discuss voting schemes that can be used to combine the dif-

ferent policies of the individual agents. We list possible criteria that a voting

scheme can adhere to and we discuss these criteria in the context of rein-

forcement learning. Then we explain how the voting schemes that we will

use function. These voting schemes are plurality voting, stochastic approval

154 CHAPTER 6. ENSEMBLES

Table 6.1: Arrow’s criteria for fair voting schemes (Arrow, 1950, 1963).

1. Unrestricted domain This criterion holds when all voters should

be allowed to rank the alternatives in any strict partial order.

2. Non-dictatorship This criterion holds when there is no single

voter that determines the outcome of the ensemble by itself.

3. Pareto efficiency This criterion holds when the ensemble will

rank some alternative A over another alternative B whenever all

the voters rank A above B.

4. Independence of irrelevant alternatives This criterion holds if

the ranking of any two alternatives is dependent only on the rank-

ing of these alternatives according to the voters. Therefore, this

criterion does not hold when the ensemble originally ranks A over

B, but when an alternative C is considered the ensemble ranks B

over A.

5. Non-imposition This criterion holds when every ensemble prefer-

ence is achievable and therefore some set of voter preferences exists

for each ensemble preference.

6. Monotonicity This criterion holds when the ensemble ranking for

each alternative is a monotonic function of the rankings of each

voter for this alternative. In other words, if a voter ranks an op-

tion higher without changing the order of the other options then the

ensemble should never respond by ranking that option lower.

voting, deterministic approval voting, instant runoff voting and Coombs’ al-

gorithm. The last two of these methods are majority voting methods in the

sense that they eliminate options until a single option is preferred above all

remaining options by a majority of agents. This is not an exhaustive list of

voting schemes, but in our opinion it includes the most intuitive and promis-

ing alternatives.

6.2.1 Criteria for Voting Schemes

There are a number of criteria that a voting system can succeed or fail in

meeting. A well known result from social choice theory is Arrow’s impos-

sibility theorem, that states that no single voting system can adhere to all

members of a set of desirable criteria (Arrow, 1950; Black, 1958; Arrow, 1963;

Ray, 1973; Fishburn, 1982). We list these criteria and discuss them in the

context of reinforcement learning ensembles.

The criteria are listed in Table 6.1. This list is somewhat redundant, since

6.2. VOTING SCHEMES 155

the last three criteria imply Pareto efficiency (Arrow, 1963; Osborne and Ru-

binstein, 1994). Arrow (1950, 1963) has shown that there is no voting method

that adheres to all the requirements at the same time.

There are other potentially relevant criteria that we will briefly discuss.

The Condorcet criterion states that if there is an alternative that is pairwise

preferred to each of the other options, this alternative should be chosen (de

Caritat, le marquis de Condorcet, 1785; Fishburn, 1977). This alternative is

then called the Condorcet winner. Conversely, the Condorcet loser is the alter-

native that is pairwise preferred to none of the other options. The Condorcet

lower criterion states that it should not be possible to select this Condorcet

loser. Implied by the Condorcet criterion is the weaker majority criterion that

states that if there is a single alternative that is ranked highest by a majority,

this alternative is selected by the ensemble (Straffin Jr, 1980). We also men-

tion the independence of clones criterion that states that the outcome remains

unchanged if alternatives are added that are equal to ones already included

in the set of alternatives (Tideman, 1987). Finally, the separability criterion

states that if for each possible partitioning into subsets it should hold that

if the same alternative is the winner in each subset, this should also be the

winner in the combined set (Smith, 1973). Next, we discuss these criteria in

the context of reinforcement learning ensembles.

6.2.2 Criteria for Voting Schemes Applied to Reinforcement

Learning

We assume that the ensemble has insight into the actual action selection poli-

cies of the algorithms it consists of. We do not have to address any concerns

about tactical voting, since we assume the algorithms have no interest in giv-

ing unfair information. Similarly, we will assume that each algorithm has

unrestricted domain in the sense that every policy that is legal in the MDP

that is to be solved is allowed by the ensemble.

One very important difference between voting in social choice and voting

in a reinforcement learning environment is that the ensemble does not have

to be fair. Therefore, we will not consider the non-dictatorship criterion to be

very important. Incidentally, this criterion is met by most voting procedures.

Of the ones discussed above, sensible criteria for ensembles in reinforce-

ment learning seem to be the monotonicity criterion, the related Pareto ef-

ficiency criterion and possibly the Condorcet criterion. The unrestricted do-

main and non-imposition criteria are either assumed to hold, or are assumed

not to be harmful if violated. For instance, we may decide to impose a restric-

tion on which actions are actually possible, based on domain knowledge. Such

an ensemble will then fail the non-imposition criterion, but this may improve

the resulting performance if our domain knowledge was accurate. It is not di-

rectly clear if meeting or failing the independence on irrelevant alternatives

156 CHAPTER 6. ENSEMBLES

has direct implications for the performance of an ensemble.

In theory, it seems like a good idea to have independence of clones, which

states that adding identical alternatives does not change the outcome of the

ensemble. As we saw in Chapter 4, for instance the performance of Q-learning

can deteriorate quickly when actions with identical effects are added to a

state. However, without prior knowledge an agent will not be able to know

with certainty that different actions are identical. Therefore, even though

two actions may be clones in terms of their effect in the MDP, they may not

be identical in how the different algorithms value these actions. So from

the point of view of the ensemble, then there are no redundant alternatives,

which makes this criterion less applicable. On the other hand, assume there

are actions that are clones in the sense that they are valued equal by all

algorithms at some point during learning. These actions may or may not be

identical in their effect on the long term reward. Therefore, in such a case it

even seems undesirable to have a voting system that is independent of clones.

Now we will discuss the different voting schemes that we will use in our

experiments.

6.2.3 Plurality Voting

The plurality voting algorithm lets each agent choose a single action. Then,

the action with the most votes has the largest probability to be selected. The

preference values are then determined by

∀a ∈ A(st) : pt(st,a)=
K
∑

k=1
I (a= ak

t) ,

where I is the indicator function described in Section 6.1.1. The most pre-

ferred action is then simply the action that is most often selected by the agent.

Note that although we call this procedure plurality voting, it is not necessary

that the action with the most votes is actually selected, since the selection

may be influenced by the exploration of the ensemble.1

Plurality voting fails the Condorcet criterion and can in fact select a Con-

dorcet loser (de Caritat, le marquis de Condorcet, 1785; Fishburn, 1977). This

can happen because no information about relative rankings of actions are

used and only the top choice of every agent is considered. However, in con-

trast to the usual assumption in social choice theory, we assume stochasticity

in the action selection. Therefore, in fact some information about the individ-

ual relative orderings is incorporated in the expected action selection proba-

1The plurality voting algorithm that is described here was named ‘majority voting’ by

Wiering and van Hasselt (2008). We prefer the name ‘plurality voting’, since the action with

the most votes is the action that is most likely to be selected, but an action does not need a

majority of votes to be selected.

6.2. VOTING SCHEMES 157

bilities of the ensemble. This invalidates some of the usual problems, at least

in expectancy. We will discuss this further in Section 6.3.

Plurality voting does meet the monotonicity criterion and it seems quite

vulnerable to clones. For instance, suppose we have an ensemble consisting

of ten agents. Further suppose that the current state has four actions, three

of which are optimal. Then if there are just four agents that select the subop-

timal action, this action has a good chance of being selected by the ensemble

because the other votes might get split over the three optimal actions. The

more optimal actions there are, the larger the influence will be of groups of

agents that incorrectly favor the wrong action. One could argue that usually

more optimal actions will reduce the probability of a sensible reinforcement

learning algorithm favoring the wrong option, but in Chapter 4 we have seen

that in some cases Q-learning structurally favors actions that lead to states

with many stochastic actions, even if all these actions have a low expected

return. This can be interpreted as an argument in favor of using algorithms

that are as different as possible, since this lowers the probability that dif-

ferent agents share the same biases and the resulting misconceptions about

which action to choose.

6.2.4 Approval Voting

The approval voting algorithm lets each agent choose more than a single ac-

tion (Brams and Fishburn, 1978). This means we have to decide in some

manner which actions do and do not get approved. For this, we consider two

methods: a stochastic and a deterministic method.

For the stochastic method, we can let every agent choose an action more

than once. For instance, if we let each agent select two actions a
k,1
t and a

k,2
t ,

both these actions will get a vote. If the agent chooses the same action more

than once, the agent casts a single vote for that action. Agents with strong

preferences for a single action will therefore more commonly vote for only a

single action than algorithms that have less extreme selection probabilities.

Because each action gets at most one vote per agent, it is hard for a single

agent to dominate the preferences.

More formally, each agent receives D votes. Then agent Ak randomly

selects actions a
k,d
t ∼ πk

t (s), for d ∈ {1, . . . ,D} to build a set Ak
t of approved

actions, such that Ak
t = {a

k,1
t , . . . ,a

k,D
t }. As mentioned, the agent may select

the same action more than once, so this set may have less than D unique

elements. The preference values are then determined by

∀a ∈ A(st) : pt(st,a)=
K
∑

k=1
I (a ∈ Ak

t) . (6.1)

The most preferred action is the action that is approved by the most agents.

In our experiments, we use D = A(s). This algorithm is called stochastic ap-

158 CHAPTER 6. ENSEMBLES

proval voting because of the stochastic action selection that determines the

contents of Ak
t .

Deterministic approval voting uses a threshold ν ∈ [0,1]. The approved

action set Ak
t of agent k then consists of all actions with selection probability

larger than or equal to the threshold. The preferences are computed as in

(6.1), which is equivalent to

∀a ∈ A(st) : pt(st,a)=
K
∑

k=1
I (πk

t (st,a)≥ ν) . (6.2)

If ν = 1 at most one action is approved, and then only when the agent is

completely sure about its choice. If ν = 0 all actions will be approved. In

practice, both cases lead to random policies for the ensemble agent. In our

experiments, we used ν= 1/A(s), which ensures that every action is approved

that has a higher than random probability of being selected by the agent.

This threshold is the largest possible that ensures that at all times at least

one action is approved by each agent. It is also the lowest possible threshold

that can lead to all actions being approved, although this will only happen

when the agent has a perfectly uniform policy. When using greedy, ǫ-greedy

or suitably scaled Boltzmann exploration procedures, selecting all actions is

equivalent to selecting no actions. Therefore, purely random algorithms with

equal selection probabilities for all actions do not harm the performance of

the ensemble when using deterministic approval voting.

Approval voting meets the monotonicity criterion, but it does not meet

the Condorcet criteria. It has been argued that approval rating is sensitive

to strategic voting (Niemi, 1984; Saari and Newenhizen, 1988), but since we

assume the algorithms will never vote strategically this is no disadvantage in

our setting.

6.2.5 Majority Voting

There are settings in which it is desirable not only to have the largest subset

of decision makers to favor some outcome, but rather to select an outcome

that is deemed to be acceptable by a majority of voters. Notable examples

include many real-world elections (Farrell, 2001). Therefore, a number of

methods have been proposed to make these decisions. If there are only two

options to choose between, plurality voting is one such method if the action

with the highest number of votes is always selected. However, for more than

two options, plurality and approval voting does not necessarily select a major-

ity winner that is pairwise ranked above each other alternative, if one such

majority winner exists.

Majority voting is used to refer to a group of methods. The goal is to ob-

tain a majority for one decision. When there are only two alternatives, this

6.2. VOTING SCHEMES 159

is equivalent to plurality voting. When there are more than two possible de-

cisions to choose from, there are a number of ways to continue. In previous

work, it was proposed to extend the majority voting rule to more than two

alternatives by splitting the alternatives into two groups (Jiang and Kamel,

2006). Then, a decision is made through majority on the group, after which

the procedure repeats with the chosen group. However, this procedure in-

volves heuristic rules in order to decide how to split the alternatives into

groups. Furthermore, depending on this split, it is possible to reach undesir-

able conclusions. Below, we discuss rank voting algorithms in which each of

the agents specifies a partial total order on the set of actions. Two methods

are discussed that lead to a majority vote, both of which are special cases of

the more general single transferable vote algorithm (Hare, 1873; Tideman,

1995).

Rank voting methods use more information about the action preferences

of the different algorithms than simple plurality voting does. Let rkt (s,a) de-

note the ranking weight for action a in state s as specified by algorithm k.

These ranking weights follow a partial total order, such that a higher ranked

action corresponds to an action that is preferred more by the corresponding

agent. For the agent preferences we simply use the policies, such that if

πk
t (s,a) ≥ πk

t (s,b) then rkt (s,a) ≥ rkt (s,b). When these rankings are specified

they can be used in a few different ways. The following three methods are

special cases of rank voting, the last two of these methods are majority voting

methods.

Borda Count An algorithm can give A(s)−1 points to the the most probable

action, A(s)−2 to the second most probable and so on. For instance, if a is the

greedy action in state s for agent k, the ranking weight of this action is given

by rkt (s,a) = A(s)−1. The rank of the action with the lowest action selection

probability is then equal to zero. The rank weights of all algorithms can be

added to give a final score and the highest scoring action gets the highest

preference. This method is called a Borda count (de Borda, 1784; Grazia,

1953; Black, 1958) and the preference values of the ensemble then are

∀a ∈ A(st) : pt(st,a)=
K
∑

k=1
rkt (st,a) .

The rank weight rkt (s,a) of action a in state s can be interpreted as the num-

ber of actions that have lower probabilities of being selected by agent k than

action a in that state. Ties are broken randomly in our experiments so that al-

ways a full strict ordering is obtained. Borda count algorithms have been used

to combine classifiers (Ho et al., 1994; Van Erp and Schomaker, 2000) and

were used in reinforcement learning ensembles by Jiang and Kamel (2006)

and under the name of rank voting by Wiering and van Hasselt (2008).

160 CHAPTER 6. ENSEMBLES

Instant Runoff The Borda count algorithm can be extended to a majority

voting algorithm by determining in multiple rounds which action is to be pre-

ferred by eliminating undesirable options. Since we assume that the agents

do not change their rankings between these rounds, this can be done using

a single transferable vote, as proposed by Hare (1873). The specific case we

consider here is also known as instant runoff voting (Richie et al., 2000). In-

stant runoff voting has been used to elect officials in elections in Australia,

Ireland, San Fransisco and London, amongst numerous others (Richie et al.,

2000; Marron, 2003).

Instant runoff voting works as follows. Each agent uses a Borda count to

rank all the actions according to the policy. The action that is ranked as the

most preferred action the least often is then eliminated and removed from the

rankings. This procedure is repeated until only one action remains. Equiva-

lently, one may stop when a single action is preferred most by a majority of

agents.

Unlike plurality voting, instant runoff will never select a Condorcet loser.

There is also some indication that there is a higher probability that this proce-

dure will select the Condorcet winner, even though cases can be constructed

in which plurality does and instant runoff does not select this alternative

(Grofman and Feld, 2004).

Perhaps more importantly, instant runoff voting fails the monotonicity

criterion (Fishburn, 1982). This implies the methods is not Pareto efficient

(Arrow, 1963; Osborne and Rubinstein, 1994). Furthermore, instant runoff

fails the independence of irrelevant alternatives criterion that states that the

preferences of alternatives should not change if a different new alternative is

added (Arrow, 1963; Ray, 1973). It is not immediately clear how harmful this

is for the performance of the ensemble.

Coombs’ Runoff An alternative to the instant runoff algorithms is Coombs’

runoff voting algorithm (Coombs, 1960; Grofman and Feld, 2004). Like in-

stant runoff, this algorithm ranks all the actions with a Borda count. But

instead of eliminating the least favored action, Coombs’ runoff voting elimi-

nates the action that is most often ranked lowest.

An Example Consider five agents who rank three actions. Suppose that

the agents rank the actions according to the values in Table 6.2. Action a3 is

favored only by agent A5. Both other actions are favored by two agents each.

Therefore, instant runoff voting first eliminates action a3. Then, of the re-

maining two actions a2 is favored by three agents and therefore the ensemble

gives this action a preference of one and both other actions a preference of

zero.

On the same rankings Coombs’ runoff voting reaches a different conclu-

6.3. POLICY BASED ENSEMBLES 161

Table 6.2: An example of s set of rankings for which instant runoff voting

reaches a different conclusion than Coombs’ algorithm.

r1t (s,a) r2t (s,a) r3t (s,a) r4t (s,a) r5t (s,a)

a1 2 2 0 0 0

a2 0 0 2 2 1

a3 1 1 1 1 2

sion. Action a1 is ranked lowest by three agents. Therefore, Coombs’ runoff

voting eliminates this action first. Then, of the remaining two actions action

a3 is favored by three agents above action a2. Therefore, Coombs’ algorithm

selects action a3.

In this example the preferences according to a Borda count for the actions

are pt(s,a1) = 4, pt(s,a2) = 5 and pt(s,a3) = 6. Therefore, a greedy Borda

count ensemble agrees with the answer reached by Coombs’ runoff voting.

This does not hold in general. The action with the highest Borda count may

be preferred by instant runoff voting and not by Coombs’ runoff voting or

all three methods may disagree. Of course, in many cases the algorithms

agree on the action with the highest preference. But then there is still a

difference between the runoff algorithms on the one hand and Borda count

on the other hand. The runoff algorithms always give a preference of one to

exactly one action and a preference of zero to all other actions. The possible

preferences by a Borda count are much more varied, ranging from a possible

minimal preference value of zero to a possible maximal preference value of

K(A(s)−1). The preference values will be closer together if the agents do not

fully agree about which action is the best and which is the worst, but they still

contain more information than the binary judgment of the runoff algorithms.

However, we will see that this does not necessarily imply that the Borda count

ensemble performs better.

6.3 Policy Based Ensembles

The following two methods transform the policies of the individual algorithms

into a combined policy. The first method simply adds the action selection prob-

abilities of the individual algorithms. This is similar to the voting procedures

we described above, but uses the most information we can obtain about the

algorithms’ preferences for each action. The second method has a probabilis-

tic interpretation and is the only method we discuss that uses a product over

values obtained from the individual algorithms, as opposed to a summation.

Both these methods by construction fulfill the monotonicity criterion as well

as the majority criterion. However, both methods are somewhat easier in-

162 CHAPTER 6. ENSEMBLES

fluenced by agents with strong opinions than most of the other methods we

discussed.

6.3.1 Policy Summation

In a policy summation ensemble, we sum the action selection probabilities of

the different algorithms. Essentially, this is a variant of rank voting, using

rkt = πk
t instead of a Borda count. Therefore, the preference values of the

ensemble are:

∀a ∈ A(st) : pt(st,a)=
K
∑

k=1
πk
t (st,a)

This algorithm is related to the mean combination rule for combining multiple

classifiers (Tax et al., 2000). This method is arguably the closest to range vot-

ing (Smith, 2000) , which can be shown to have low Bayesian regret. Bayesian

regret can be viewed as the dissatisfaction of voters with the actual outcome.

In our case, we can interpret it as the difference between the desired outcome

for each agent, and the actual outcome. The difference between this approach

and range voting is that in range voting the preference for each element can

be chosen from a predetermined range, but the sum of the preferences can

be any number. Using the probabilities as preferences means the preferences

of each algorithm always sum to one. However, the actual preference of the

algorithms is expressed more explicitly than when using the Borda count ap-

proach as described above.

Note that the expected value of I (a= ak
t), where I is the indicator func-

tion, is equal to E{I (a = ak
t)|s = st} = πk

t (st,a). Therefore, the expected pref-

erence values as used by plurality voting are equal to the actual preference

values resulting from policy summation. This does not imply that the ex-

pected policy of the ensemble is also equal for both methods. For instance,

if the ensemble uses a greedy action selection mechanism, policy summation

will result in a deterministic choice of the action with the largest summed

selection probabilities. However, in plurality voting, there may be multiple

actions with a non-zero probability of obtaining the plurality. Put differently,

if the expected outcome of the ensemble is a non-linear function of the prefer-

ence values, the expected outcome of plurality voting can be different from the

outcome of policy summation, even though the expected preference values are

equal. This is a result of Jensen’s inequality (Jensen, 1906). In other words,

the expected outcome of the ensemble would only be equal for both methods if

the preference values were scaled to form a proper policy by dividing them by

the number of agents. We do not consider this exploration methods, since we

prefer the more flexible Boltzmann exploration. In practice, plurality voting

will usually result in more stochastic ensemble policies than policy summa-

tion.

6.4. SUMMARY OF ENSEMBLE METHODS 163

6.3.2 Policy Multiplication

Another possibility is multiplying all the action selection probabilities for

each action based on the policies of the algorithms. An interpretation of the

preference values is that they correspond to the unscaled probability that all

algorithms agree on an action. The action that has the highest probability

of being chosen unanimously will get the largest preference. The preference

values of the ensemble are:

∀a ∈ A(st) : pt(st,a)=
K
∏

k=1
πk
t (st,a)

This algorithm is related to the product combination rule for combining mul-

tiple classifiers (Tax et al., 2000).

A potential disadvantage of this method is that if one algorithm sets the

probability to 1 for one action and to 0 for the rest, these other actions can

never get a non-zero probability in the multiplication. Therefore, this method

is vulnerable to dictators and to agents who veto one of the options. However,

if all algorithms use some exploration technique that ensures none of the

action selection probabilities become extremely low, the preference values can

be quite informative.

In practice, the preference values of all actions can be quite close to zero,

especially when the ensemble consists of a large number of agents. Further-

more, the ratios between the preference values tend to be higher than for most

other methods. For instance, if all algorithms use ǫ-greedy exploration, the

preference value for an action a will be equal to pt(s,a)= (1−ǫ)mǫK−m, where

m is the number of algorithms that consider a best action in state s. Suppose

that ǫ= 0.1 and there are 10 agents. Now suppose one action is greedy for 6

agents, while another action is greedy for 3 agents. For policy summation, the

respective preference values for this action would then be 6(0.9)+4(0.1)= 5.8

and 3(0.9)+7(0.1) = 3.4. For policy multiplication, the preferences would be

(0.9)6(0.1)4 ≈ 5.3×10−5 and (0.9)3(0.1)7 ≈ 7.3×10−8. In this example, we see

that indeed the preference values of policy multiplication are much lower and

the ratio between the preference values is also much larger. This means we

expect that when policy multiplication is combined with Boltzmann explo-

ration, much lower temperatures are needed to get good performance.

6.4 Summary of Ensemble Methods

In this section we summarize all the methods we have described and briefly

discuss some possible variations on these procedures. The eight methods we

described are summarized in Table 6.3. The table shows the preference values

and the expected preference values. For the expectancy the past up to and

including st is assumed: Pt = {s0, . . . , st−1, at−1, r t, st}.

164 CHAPTER 6. ENSEMBLES

Table 6.3: The different ensemble methods to combine policies of individual

agents. The indicator function I is defined in Section 6.1.1. For SAV we

used D = A(st), for DAV we used ν = 1/A(st). For BC rkt (s,a) denotes the

number of actions that have lower probabilities than a of being selected by

agent Ak. Ties are broken randomly. IRV and CRV deterministically reach

a single majority winner. The expected preference values are conditioned on

Pt, where st ∈ Pt, a
k
t ∉ Pt and at ∉ Pt.

Ensemble Method pt(s,a) E { pt(s,a)|Pt}

Plurality (PV)
∑

kI (a= ak
t)

∑

kπ
k
t (s,a)

Stochastic Appr. (SAV)
∑

kI (a ∈ Ak
t)

∑

k 1− (1−πk
t (s,a))

D

Deterministic Appr. (DAV)
∑

kI (πt(s,a)≥ ν)
∑

kI (πt(s,a)≥ ν)

Borda Count (BC)
∑

k r
k
t (s,a)

∑

k r
k
t (s,a)

Instant Runoff (IRV) 0 or 1 0 or 1

Coombs’ Runoff (CRV) 0 or 1 0 or 1

Policy Summation (PS)
∑

kπ
k
t (s,a)

∑

kπ
k
t (s,a)

Policy Multipl. (PM)
∏

kπ
k
t (s,a)

∏

kπ
k
t (s,a)

6.4.1 Stochastic and Deterministic Ensembles

Instead of dividing the methods in Table 6.3 into voting schemes and prob-

ability based methods, one could divide the methods into stochastic and de-

terministic methods. The only two stochastic methods are plurality voting

and stochastic approval voting. Both methods sample actions with use of the

agents’ policies to determine the preference values, so the preference values

themselves may contain noise. Deterministic methods always reach the same

preference values for a given set of individual policies.

Interestingly, the expected preference values of plurality voting and policy

summation are equal although the actual preference values are likely to differ

because plurality voting uses sampled actions. For stochastic approval voting,

the expected contribution by each agent to the preference values is equal to

the probability that the corresponding action is selected at least once out of D

samples by that agent:

P(Ak selects a at least once out of D samples)=
1−P(Ak does not select a in D samples)=

1−P(Ak does not select a in 1 sample)D = 1− (1−πk
t (s,a))

D .

For D = 1, the expected value of stochastic approval voting reduces to policy

summation, which makes sense since then stochastic approval voting reduces

to plurality voting. As mentioned before, we use D = A(s) in our experiments.

All other methods are deterministic in the sense that the preference val-

ues are uniquely defined by the agents’ policies and no sampling is involved.

6.4. SUMMARY OF ENSEMBLE METHODS 165

For instant runoff voting and Coombs’ runoff voting the preference value for

each action is either zero or one. Which action gets a preference value of one

depends deterministically on the policies of the individual agents. If we have

to break ties, Borda count, instant runoff voting and Coombs’ algorithm can

also introduce some randomness, but this will have a more limited effect than

the sampling of the aforementioned stochastic algorithms.

6.4.2 Variants

There are infinitely many ways to variate on the ensemble methods we have

described. We will discuss some of the more promising approaches here. Al-

though these variants are interesting, we do not consider them further in this

dissertation and we will not include them in the experiments.

Like the runoff procedures, plurality voting is normally understood to pro-

duce a single winner. This would correspond to setting the preference of the

action with the most votes to one and the others to zero. However, we choose

to set each preference equal to the number of votes the corresponding action

receives. The probability with which the plurality winner is then selected

is left to the exploration policy of the ensemble. True plurality voting is ob-

tained when the ensemble uses a greedy selection procedure on the preference

values.

For instant runoff and Coombs’ runoff, one could obtain a full ranking

of actions instead of a single majority winner. If there are A(s) actions, the

winner of the runoff procedure could be given a preference of A(s)−1. Then

the runoff procedure could be repeated with the other A(s)−1 actions. The

winner of this runoff could be given a preference of A(s)−2, and so on.

For Borda count, policy summation and policy multiplication it is easy to

construct variants by using any non-linear function on the ranking weights.

For instance, one could use a power rule on the ranking weights such that

the action with the nth highest selection probability gets a ranking weight of

(A(st)−n)x. For x= 1 one obtains the Borda count as we described it, for x> 1

the highest values actions get weighted more heavily. Similar constructions

are possible for the probability based methods and other non-linear functions

are also possible.

6.4.3 Implementation Details

We will use Boltzmann exploration on the preference values that are obtained

by the ensemble methods. As we have discussed in Section 5.8, Boltzmann

exploration is sensitive to scalings of these values. Therefore, it is good to note

structural differences in the ranges of these preference values. The possible

ranges of any action and the possible ranges of the action with the highest

preference value are shown in Table 6.4.

166 CHAPTER 6. ENSEMBLES

Table 6.4: The possible value for an arbitrary preference value and for the

maximal preference value for each ensemble method.

range of pt(s,a) range of maxa pt(s,a)

PV {0, . . . ,A(s)} {1, . . . ,A(s)}

SAV {0, . . . ,A(s)} {1, . . . ,A(s)}

DAV {0, . . . ,A(s)} {1, . . . ,A(s)}

BC {0, . . . ,K(A(s)−1)} {⌈K(A(s)−1)/2⌉, . . . ,K(A(s)−1)}

IRV {0,1} {1}

CRV {0,1} {1}

PS [0,K] [K /A(s),K]

PM [0,1] [0,1]

In our experiments, we will have 7 agents and at most 4 actions in any

state. This means K = 7 and maxs A(s)= 4, so the highest preference value of

Borda count will in some cases be approximately ten to twenty times as large

as the preference value of the runoff algorithms. To get the same amount of

exploration, the Borda count ensemble then needs a larger temperature. This

effect becomes larger when there are more actions to choose between.

The biggest difference in practice is that between policy multiplication

and the other algorithms. Although in theory an action can obtain a prefer-

ence value of one, this can only happen when all agents have deterministic

policies that agree on the action to choose. In practice, often there will be at

least one or two agents that disagree, and the action with the highest selec-

tion probability will have a selection probability lower than one. Even if an

action is the greedy choice for a majority of the agents, the preference value

of this action can easily be lower than 0.01. In short, we expect that pol-

icy multiplication will obtain its best results with lower temperatures for the

ensemble than the other ensemble methods.

6.5 Experiments

We show the results for five different MDPs of varying complexity. Since the

focus of this chapter is on the ensemble methods, we did not fully optimize

the parameters of the individual algorithms. We discuss the parameters set-

tings we used in the next section. Then we give the results on the different

MDPs for some parameter settings for the individual algorithms and for the

ensemble methods described above.

6.5. EXPERIMENTS 167

6.5.1 Parameter Settings

As mentioned, we make no attempt to fully optimize the parameters of the

individual algorithms. This is in contrast with the work by Wiering and van

Hasselt (2008), where first the individual algorithms were optimized and then

these algorithms were used in the ensemble. Ideally, the parameters of the

individual algorithms could be optimized while using the ensemble and ad-

ditionally optimizing the parameters of the ensemble itself. However, each

algorithm has at least two tunable parameters—an exploration parameter

and at least one learning rate—and even if only three possible values would

be considered for each parameter, a combined optimization procedure would

have try a huge number of options. For instance, an ensemble for the seven

algorithms we used here needs ten learning rates, seven exploration param-

eters and an additional exploration parameter for the ensemble itself. For

only three possible values of each, this already adds up to 318 = 387,420,489

different parameter settings to perform experiments on.

To reduce the number of experiments, we only consider learning rates

equal to αt(s,a) = 1/nt(s,a)
0.8 and βt(s) = 1/nt(s)

0.8. The Boltzmann temper-

ature was 10x, where x ∈ {−3,−2, . . . ,3} and additionally greedy exploration

was tried. Policy multiplication was allowed to use temperatures as low as

10−5, to compensate for the low preference values. The ensemble methods

were only tested with the same exploration parameter for all agents. In the

previous chapter, we have seen that the different algorithms prefer different

exploration parameters, so restricting them to be equal is a potential disad-

vantage for the ensemble. However, it does greatly reduce the number of

experiments we need to conduct and still gives us the opportunity to compare

the different ensemble approaches on equal terms. Furthermore, we think it

is useful to consider ensembles of algorithms where not all algorithms per-

form well, since this tells us more about how robust each of the methods is.

For this reason, we also do not update Acla toward 0 and 100, but towards

0 and 1. Since all the MDPs will have a maximal reward of 100, this means

that the individual Acla algorithm often reaches its best behavior with quite

different exploration parameters than for instance Q-learning.

Now we will discuss the different MDPs and the results of the individ-

ual agents and of the ensemble methods. In all cases, the discount factor

was set to 0.95. We will use τ to refer to the Boltzmann temperature of the

agents and τE to refer to the temperature used by the ensemble. For a some-

what consistent notation, the greedy policy will be indicated by τ→ 0, since in

the limit Boltzmann exploration is greedy when the temperature approaches

zero, although naturally in practice the greedy policy was implemented with-

out using a Boltzmann distribution.

We will use the term total online average reward per step to refer to the

average of all the rewards that were obtained during training. The final on-

168 CHAPTER 6. ENSEMBLES

line average rewards are obtained during the last 10% of training. How many

steps are taken in the last 10% differs between the different problem domains.

Because of the nature of the ensembles, we test the final offline performance

in two ways. First, we only set the exploration of the ensemble to greedy. This

way, the agents’ policies still give relevant information to the ensembles that

use this information to determine the preference values. Then, simply the

action with the highest preference value is taken. A test for 10% of the total

training time results in the final offline performance. Finally, we set both the

agents’ and the ensembles exploration to greedy. The greedy offline results

are obtained by again running a test of 10% of the total training time.

As in Chapter 5 we use a Welch’s test with α= 0.01 to determine whether

two approaches are significantly different. Therefore, we will call the differ-

ence between the sampled mean reward of two methods significant if this

difference is greater than

2.326
√

se21+ se22 ,

where se1 is the standard error the first method and se2 is the standard er-

ror of the second method. We will explicitly state the standard errors of our

results, so it is possible to redo the significance calculations for instance if a

lower threshold is preferred.

6.5.2 Stochastic Grid World

We start with the stochastic 3×3 grid world that was also discussed in Chap-

ter 5. Each state has four actions and each reward is stochastic, except for

the final reward which is received for each action in the goal state. The fi-

nal reward was set to 100. In every other state, each action yields −100 or

100 with equal probability. All the algorithms where trained on the MDP for

1,000 steps. The online results of this training are shown in Table 6.5.

Table 6.5 contains a wealth of information. First of all, we note that the

final online and offline performance of the best ensembles are as good as the

best individual algorithms. This is interesting, because as mentioned above

we did not optimize the exploration rates of the algorithms in the ensemble.

Only in a few cases the ensembles performance falls below the average per-

formance of the algorithms it consists of, even though this average is based

on the optimized individual algorithms.

For the total online performance, instant runoff voting is significantly bet-

ter than all other ensemble methods, except Coombs’ runoff voting. The dif-

ference between QV-learning and instant runoff voting is not significant. At

the final online performance, the advantage of the runoff methods has dis-

appeared and the plurality voting algorithm obtains the best performance.

The differences with the other methods are small. The difference with policy

multiplication—the worst performing ensemble—is only just significant. The

6.5. EXPERIMENTS 169

Table 6.5: Average rewards per step for the first grid world MDP. The average

reward is shown for all 1,000 training steps (total online), for the last 100

training steps (final online) and for 100 test steps without exploration after

training (final offline). For the ensembles results are shown for when only

the ensemble is greedy (final offline) and for when both the ensemble and

the consisting algorithms are greedy (final greedy). Values are averaged over

1,000 runs.

total final online final offline final greedy

INDIVIDUAL RESULTS

best 5.48 QV 6.02 DQ 6.03 DQ — —

average 4.48 — 5.13 — 3.32 — — —

worst 3.46 Q 3.55 Q 0.90 Q — —

ENSEMBLE RESULTS

PV 4.54 0.11 5.86 0.32 6.19 0.32 3.25 0.37

SAV 4.35 0.10 5.30 0.33 5.18 0.34 3.25 0.37

DAV 4.46 0.10 5.02 0.32 2.60 0.36 2.93 0.37

BC 4.60 0.11 4.96 0.32 3.57 0.36 4.53 0.39

IRV 5.07 0.10 5.49 0.31 4.04 0.39 3.59 0.39

CRV 4.91 0.10 5.79 0.30 3.39 0.35 3.67 0.40

PS 4.44 0.09 5.72 0.31 3.67 0.39 3.24 0.37

PM 4.09 0.10 4.77 0.32 3.89 0.32 4.03 0.32

best 5.07 IRV 6.15 PV 6.19 PV 4.53 BC

worst 4.09 PM 4.15 PM 2.60 DAV 2.93 DAV

ENSEMBLE PARAMETERS

τE τ τE τ τE τ τE τ

PV 10−1 100 10−2 100 0 100 10−3 1000

SAV 1 10−1 1 10−1 10−2 100 10−1 1000

DAV 1 1000 1 100 1 10−1 10 1000

BC 1 1000 1 1000 1 0 1 100

IRV 1 1000 1 1000 1 1000 1 1000

CRV 1 1000 1 1000 1 0 1 1000

PS 1 0 10−1 100 10−2 1000 10−1 100

PM 10−5 1000 10−3 10 10−1 0 10−5 10

170 CHAPTER 6. ENSEMBLES

performance of policy multiplication is not so good, despite the extra explo-

ration options it was given. This is likely due to the nature of the algorithm,

which makes it sensitive to strong opinions of individual agents.

When we make the ensemble greedy, such that it always chooses the ac-

tion with the highest preference value, the differences between the ensemble

methods increases. Again, plurality voting obtains the best performance, but

the difference is significant with all other methods, except stochastic approval

voting. Apparently, for most methods the probability that the ensemble gets

stuck increases if there is no exploration to break out of poor policies. Plu-

rality voting and stochastic approval voting introduce some randomness into

the preference values, which can act as sufficient noise to get out of apparent

local optima in order to go towards the global optima.

In this setting, the local optima are suboptimal actions that are overrated.

For instance, an action that bumps into a wall may have received a large

number of high rewards by chance, making it seem profitable. Then, a greedy

ensemble method can get stuck trying such an action over and over. For in-

stance, we know from Chapter 4 that Q-learning may prefer such recurrent

connections due to its overestimation bias. This also holds for Sarsa and Ex-

pected Sarsa, if the estimation policies are greedy enough. Therefore, when

adding the policies, an action that bumps into a wall can easily be preferred

over the other actions in at least some of the states. The stochastic ensem-

ble methods will sometimes try another action, which increases the chance of

walking towards the goal.

If we also make the individual agents greedy, the stochasticity disappears

and we can see that the final greedy performance of the stochastic ensemble

methods then decreases. None of the deterministic approaches reaches a sig-

nificantly different result compared to the final offline result, but plurality

voting and stochastic approval voting drop significantly to the same level as

the deterministic approaches. This shows that at least in this setting it can

be beneficial to use a stochastic ensemble method.

Plurality voting prefers the exploration to be greedy during training for

its best final offline performance, showing that in this case a true plurality

voting is preferred to an ensemble that gives a non-zero probability to actions

that do not obtain a plurality. Apparently, the stochasticity resulting from the

voting procedure results in sufficient exploration to reach good policies.

Policy multiplication may need even lower Boltzmann temperatures to

reach good performances in this setting. For the final online and offline per-

formance, it prefers a greedy setting to the lowest temperature it had avail-

able of 10−5. We did not try other settings, since we see it as an inherent

disadvantage of the method if it requires extra tuning of the parameters to

reach good performance levels.

6.5. EXPERIMENTS 171

Table 6.6: Average rewards per step for the second grid world MDP. The av-

erage reward is shown for all 10,000 training steps (total online), for the last

1000 training steps (final online) and for 1000 test steps without exploration

after training (final offline). For the ensembles results are shown for when

only the ensemble is greedy (final offline) and for when both the ensemble

and the consisting algorithms are greedy (final greedy). Values are averaged

over 100 runs.

total final online final offline final greedy

INDIVIDUAL RESULTS

best 8.62 DQ 11.31 DQ 11.61 DQ — —

average 2.24 — 5.92 — 7.17 — — —

worst -3.94 Acla -4.12 Acla -8.54 Acla — —

ENSEMBLE RESULTS

PV 6.80 0.31 10.12 0.35 10.78 0.38 11.21 0.63

SAV 6.50 0.45 10.02 0.44 11.32 0.51 10.57 0.63

DAV 5.15 0.60 9.29 0.54 10.27 0.62 11.00 0.60

BC 2.12 0.69 6.45 0.69 9.49 0.75 11.41 0.36

IRV -0.60 0.11 0.84 0.80 10.23 0.66 9.43 0.62

CRV -0.72 0.10 0.76 0.81 10.25 0.61 10.66 0.48

PS 6.40 0.50 9.92 0.45 11.59 0.54 10.91 0.58

PM 0.74 0.65 4.11 0.67 5.95 0.82 -1.50 0.53

best 6.80 PV 10.12 PV 11.59 PS 11.41 BC

worst -0.72 CRV 0.76 CRV 5.95 PM -1.50 PM

ENSEMBLE PARAMETERS

τE τ τE τ τE τ τE τ

PV 10−1 10 10−1 10 10−1 10 10−1 0

SAV 10−1 1 10−1 1 10−1 1 10−1 0

DAV 10−1 10−1 10−1 10−1 10−1 10−1 10−1 10−1

BC 10−2 0 10−2 0 1 100 1 100

IRV 1 100 0 0 1 1000 1 1000

CRV 1 100 10−3 0 1 100 1 1000

PS 10−1 10 10−1 1 10−1 10 10−1 1

PM 0 10−1 0 10−1 0 10−1 0 10−1

6.5.3 Negative Stochastic Grid World

As in Chapter 5 we also consider a variant of the same problem, where the

rewards on each step are −110 or 90, instead of −100 and 100. In Chapter 5

we saw that in this variant Double Q-learning was the best algorithm, espe-

cially in its total online performance. This settings is interesting also because

Acla performed very poor. Therefore, we will be able to see if the ensembles

172 CHAPTER 6. ENSEMBLES

get effected negatively by agents that prefer bad policies.

The results for the negative stochastic grid world are shown in Table 6.6.

The best online ensemble method is plurality voting and its performance if

much better than the average individual algorithm. Plurality voting does

not reach the high performance of Double Q-learning, but its performance is

approximately equal to the second best algorithm, which was QV-learning.

The difference is the largest in the total online performance, showing that

the ensemble needs a little more time to get to good online performance levels

than Double Q-learning.

The final offline and greedy offline performance levels are competitive to

Double Q-learning. Interestingly, the offline performance of the runoff algo-

rithms is respectable, although their online performance was extremely poor.

If we ignore the online performance of the runoff algorithms, policy multipli-

cation is the worst ensemble method for every metric. It is not immediately

clear why the runoff methods’ online performance is so poor on this particular

setting. However, it does show that the runoff procedures can produce actions

that are quite different from the plurality or policy summation winners.

It is interesting to note that the preferred exploration parameter for the

agents is not always the parameter the individual agents prefer. For instance,

for their best final online performance almost all the individual algorithms

preferred a temperature of 10. Of the ensemble methods, only plurality vot-

ing and policy summation also reach their best performance when this tem-

perature is used for the agents’ policies. All other ensemble methods prefer

other exploration settings. This shows that the parameters that optimize the

individual agents are not always the best parameters to use when the agents

are part of an ensemble. As another example, even plurality voting reaches

its best final greedy performance when it was trained with a set of greedy

agents.

6.5.4 Deterministic Dyna Maze

We also conducted experiments on the Dyna maze. The maze is shown in

Chapter 5 in Figure 5.4. In this setting all ensembles were allowed to use

Boltzmann temperatures as low as 10−4. As in Chapter 5, we conducted

one experiment with deterministic transitions and one experiment with noisy

transitions. In the deterministic case, all ensembles reached good perfor-

mance levels, close to the best performing individual algorithms. These find-

ings are shown in Table 6.7. The only ensemble method to perform relatively

poorly is policy multiplication.

Probably the good performance on the Dyna maze results from the rela-

tively large group of good performing individual agents: Q-learning, Sarsa,

Expected Sarsa and QV-learning all performed well on this problem. How-

ever, the other three algorithms—Double Q-learning, Actor Critic and Acla—

6.5. EXPERIMENTS 173

Table 6.7: Average rewards per step for the deterministic Dyna maze MDP.

The average reward is shown for all 10,000 training steps (total online), for

the last 1000 training steps (final online) and for 1000 test steps without

exploration after training (final offline). For the ensembles results are shown

for when only the ensemble is greedy (final offline) and for when both the

ensemble and the consisting algorithms are greedy (final greedy). Values are

averaged over 100 runs.

total final online final offline final greedy

INDIVIDUAL RESULTS

best 6.08 ESarsa 7.01 ESarsa 7.03 ESarsa — —

average 3.75 — 5.03 — 5.80 — — —

worst 1.58 Acla 2.59 Acla 3.58 AC — —

ENSEMBLE RESULTS

PV 5.95 0.04 6.95 0.02 7.03 0.01 7.04 0.01

SAV 5.97 0.04 6.92 0.02 7.04 0.01 7.05 0.01

DAV 5.97 0.04 6.94 0.02 6.97 0.07 6.98 0.07

BC 5.97 0.03 6.97 0.02 7.05 0.00 7.05 0.00

IRV 6.02 0.04 6.98 0.02 7.02 0.01 6.98 0.03

CRV 6.02 0.04 6.97 0.02 7.03 0.01 7.02 0.02

PS 5.87 0.04 6.93 0.02 6.96 0.07 6.97 0.07

PM 1.97 0.24 2.68 0.21 6.38 0.19 2.26 0.19

best 6.02 CRV 6.98 IRV 7.05 BC 7.05 BC

worst 1.97 PM 2.68 PM 6.38 PM 2.26 PM

Ensemble Parameters

τE τ τE τ τE τ τE τ

PV 10−2 10−2 10−1 10−2 1 10−2 1 10−2

SAV 10−4 10−2 10−1 0 1 10−2 1 0

DAV 10−1 10−2 10−1 10−2 1 10−2 1 0

BC 10−3 0 10−3 0 1 10−1 1 10−2

IRV 10−4 0 10−4 0 1 10−1 10−4 0

CRV 10−4 0 10−4 0 1 10−2 1 10−2

PS 10−1 0 10−1 0 1 10−2 1 0

PM 0 1 0 10 10−1 10−2 0 0

did not perform so well, so it is good to note that these algorithms apparently

do not drag down the performance of the ensemble. The optimal policy re-

ceives 7.05 reward per step, so the final policies of all ensembles are optimal

or near optimal in virtually all 100 runs.

174 CHAPTER 6. ENSEMBLES

Table 6.8: Average rewards per step for the stochastic Dyna maze MDP. The

average reward is shown for all 50,000 training steps (total online), for the

last 5000 training steps (final online) and for 5000 test steps without explo-

ration after training (final offline). For the ensembles results are shown for

when only the ensemble is greedy (final offline) and for when both the en-

semble and the consisting algorithms are greedy (final greedy). Values are

averaged over 100 runs.

total final online final offline final greedy

INDIVIDUAL RESULTS

best 3.50 DQ 4.41 DQ 5.33 Q — —

average 2.79 — 3.73 — 5.18 — — —

worst 1.70 Acla 2.41 Acla 4.76 Acla — —

ENSEMBLE RESULTS

PV 4.01 0.08 5.03 0.04 5.29 0.01 5.30 0.01

SAV 4.03 0.08 4.98 0.05 5.29 0.01 5.30 0.01

DAV 3.79 0.14 4.29 0.10 5.30 0.01 5.30 0.01

BC 3.16 0.16 3.67 0.12 5.29 0.01 5.30 0.01

IRV 2.85 0.18 3.18 0.13 5.30 0.01 5.30 0.01

CRV 3.13 0.16 3.58 0.12 5.30 0.01 5.30 0.01

PS 3.83 0.13 4.65 0.09 5.32 0.01 5.30 0.01

PM 2.58 0.11 3.75 0.10 5.31 0.01 4.11 0.13

best 4.03 SAV 5.03 PV 5.32 PS 5.30 most

worst 2.58 PM 3.18 IRV 5.29 PV 4.11 PM

ENSEMBLE PARAMETERS

τE τ τE τ τE τ τE τ

PV 10−1 1 10−1 1 1 10−2 1 1

SAV 10−1 1 10−1 1 1 10−1 1 1

DAV 10−1 0 10−1 0 1 1 1 10−2

BC 10−1 0 10−1 100 1 10 1 10

IRV 0 0 10−1 10−1 1 1 1 1

CRV 10−1 0 10−1 0 1 10−2 1 10−2

PS 10−1 1 10−1 1 100 1 1 1

PM 0 0 0 0 10−1 10−1 0 0

6.5.5 Stochastic Dyna Maze

We add 20% random action replacement noise to get noisy transitions. In

this stochastic Dyna maze most individual algorithms perform quite close to

each other, but the differences between the algorithms are larger than in the

deterministic case.

6.5. EXPERIMENTS 175

The results for the ensembles are shown in Table 6.8. Although the differ-

ences is not significant, plurality voting, policy summation and both approval

voting methods all reach a better total online performance than the best in-

dividual agent. The results for the other metrics are equally impressive. Ap-

parently many of the ensemble methods are more likely to be as strong as the

strongest link, rather than the average or weakest link. As long as a large

enough subset of the agents reaches reasonable policies, one or two poorly

performing agents do not seem to hinder the performance.

Of the ensembles, the stochastic methods reach the best online perfor-

mance. The offline performance for all ensembles is so good that we can not

distinguish between them, although policy multiplication suffers a decrease

in performance when the policies of the individual agents are made greedy.

This is due to the vulnerability of this method to ‘vetoes’ of single agents, as

discussed earlier.

6.5.6 Mountain Car

The final test case we consider in this chapter is the discretized version of

the mountain car MDP. The state space is divided into 64 separate states by

partitioning the position and the velocity of the car into 8 equally sized parts.

There are three actions in each state: accelerate left, accelerate right or do

nothing. For a more detailed description, we refer to Section 5.8.5.

Instead of just using a learning rate of n−0.8, also learning rates of 10−1,

10−2, 10−3 and 10−4 were allowed. However, all agents were always given

the same learning rate and algorithms that store two separate value func-

tions were required to use the same learning rate for both functions. This

means that the parameters used for the agents that are part of the ensemble

are far from optimal, which implies that the ensembles have an additional

disadvantage when compared to the optimized individual algorithms.

The results for the mountain car are shown in Table 6.9. Again, we see

that the ensemble methods come close to the performance of the best indi-

vidual algorithm, even though we severely limited the possibilities of the en-

sembles by restricting all algorithms that are part of the ensemble to use a

single exploration parameter and a single learning parameter. The optimal

choice for the learning parameter for all ensembles in almost all cases was

0.1. The only exceptions were the offline final performance of policy sum-

mation and policy multiplication and the greedy offline performance of policy

multiplication. In these three cases a learning rate of 0.01 was preferred. The

final offline result for policy multiplication is better than all other ensemble

methods, although the difference with policy summation and stochastic ap-

proval voting is not statistically significant. This is interesting, because for

the other three metrics policy multiplication is slightly worse than most other

ensembles.

176 CHAPTER 6. ENSEMBLES

Table 6.9: Average number of steps until the goal state is reached in the

mountain car MDP (lower is better). The average results are shown for all

100,000 training steps (total online), for the last 10000 training steps (final

online) and for 10000 test steps without exploration after training (final of-

fline). For the ensembles results are shown for when only the ensemble is

greedy (final offline) and for when both the ensemble and the consisting algo-

rithms are greedy (final greedy). Values are averaged over 10 runs.

total final online final offline final greedy

INDIVIDUAL RESULTS

best 255.7 AC 181.5 Sarsa 136.3 AC — —

average 294.9 — 204.5 — 207.4 — — —

worst 342.2 DQ 253.5 Acla 246.5 DQ — —

ENSEMBLE RESULTS

PV 270.1 16.4 192.2 8.6 172.1 13.5 166.7 12.6

SAV 257.9 12.4 183.0 8.9 155.0 11.3 155.0 11.2

DAV 268.0 8.7 190.6 11.0 170.1 6.1 174.5 8.9

BC 267.8 8.7 181.2 7.9 162.3 5.7 162.3 5.5

IRV 266.5 10.3 185.3 5.7 166.7 11.6 166.9 11.4

CRV 273.1 19.0 187.2 9.7 167.5 10.5 166.1 9.7

PS 256.6 11.0 187.0 7.3 144.3 21.0 177.0 9.6

PM 289.5 32.3 214.3 18.7 129.5 10.3 271.7 35.2

best 256.6 PS 181.2 BC 129.5 PM 155.0 SAV

worst 289.5 PM 214.3 PM 172.1 PV 271.7 PM

ENSEMBLE PARAMETERS

τE τ τE τ τE τ τE τ

PV 10−2 0 10−3 10−2 10−4 10−2 10−4 10−2

SAV 0 10−2 0 10−2 0 10−4 0 10−4

DAV 0 0 10−5 1 10−4 1 10−1 0

BC 0 10−3 10−1 1 0 10−2 0 10−2

IRV 10−5 10−3 10−2 0 10−4 10−4 10−4 10−4

CRV 10−3 10−2 0 10−4 10−1 0 10−1 0

PS 10−2 10−2 10−2 10−2 100 1 10−1 10−3

PM 0 10−1 0 10−1 10−3 10−3 1 10−3

6.6. DISCUSSION AND FUTURE RESEARCH 177

If we ignore policy multiplication, all ensembles score approximately equal

on all performance metrics. The online results are comparable to the online

results for the best individual algorithm. This is promising, because these

results were obtained with an Actor Critic algorithm that was allowed to use

different learning rates for its actor and for its critic. Recall that this was not

allowed in the ensemble as all agents were required to use the same learning

rate for all their value functions. In the offline performance, the probability

based methods seem to do better than the voting schemes and Actor Critic

performs better than all voting schemes. However, also the voting schemes

are slightly better than the next best individual algorithm, which was Sarsa

with an average number of steps to reach the goal state of 187.4.

No doubt the ensembles can be improved by tuning the agents they consist

of individually, but this comes at the computational cost of far more extensive

tuning of the parameters. Whether this tuning is worth the trouble is of

course dependent on the cost of experimenting on the MDP. If (simulated)

experiments on the MDP are cheap, it might be worth to obtain better results

by using a fully tuned ensemble. If on the other hand there is less room for

tuning the parameters, we have seen that most ensemble methods already

reach respectable performance levels when only a very course optimization of

the parameters is attempted.

6.6 Discussion and Future Research

The results have shown that most of the ensembles reach reasonably good

policies, even when a small number of the individual algorithms they consist

of perform poorly. If a single algorithm stands out, as was the case with

Double Q-learning in the second grid world, the ensemble seems to benefit

from this. The best ensembles performed as good as the second best algorithm

on this problem and far better than the average performance of the individual

algorithms. No ensemble reached the high performance of Double Q-learning

in this settings, but the fact that the performance was better than the average

of the constituting algorithms does suggest a potential important application

for the ensembles.

Although we attempt to shed some light on this issue in this dissertation,

it is often unknown which algorithm will reach good policies the fastest. In

some problems, it is important that the performance of the agent is not too

poor during training, for instance because this may damage the system it is

trying to control. One way to solve this is to take explicit care in the explo-

ration of the agent to avoid dangerous states (Hans et al., 2008). However,

our results indicate that ensembles may also be very useful for good online

performance, even if some of the individual algorithms are quite poor.

For instance, one could run such an ensemble and record the average re-

178 CHAPTER 6. ENSEMBLES

wards of each individual algorithm. For instance this can be done by averag-

ing the rewards for each algorithm for the time steps on which the action of

the ensemble agrees with the most preferred action by the algorithm. Alter-

natively, one could sample an action for each agent according to its policy and

average the rewards on the steps when the ensemble action agrees with this

sampled action. Finally, one could weight the rewards on each step with the

probability that each algorithm would select that action and update the run-

ning averages with a step size that is dependent on that probability. This way,

each algorithm will get a measure of how good the algorithm would perform

outside the ensemble, without actually having to try each of them separately.

Alternatively, one could use the General Q-learning framework to update

action values for a number of algorithms based on their own policy, rather

than on the ensemble policy. Then, the action values give a good indication of

the performance of each individual agent. Of course, the agents should be dif-

ferent in some sense to allow for different policies to emerge. Otherwise, the

ensemble does not add anything. There are a number of ways these agents

could be made to differ. For instance, some algorithms could be more greedy

than others. Some algorithms may use a double action value approach, simi-

lar to Double Q-learning. And it is even possible to differentiate the discount

factor for different algorithms. Then, the action values are no longer directly

comparable to determine the relative worth of each algorithm, but it does

seem interesting to have an ensemble consisting of both long-term optimiz-

ing agents and short-term optimizing agents. Finally, an easy way to obtain

different General Q-learning algorithm is to use a different learning rate per

agent. All of these ideas make interesting topics for future research into be-

havior based ensemble methods for reinforcement learning.

An extension of the ideas above leads to weighted ensembles. One could

measure some performance metric for each agent and adapt the influence

of each agent to this performance metric. Eventually the best performing

agents will receive larger weights than poor performing agents. One instance

of such a performance metric could be the average reward or the action values

corresponding to the agents’ policies, as discussed above. Other performance

metrics can be devised. For instance, one could take the ‘agreeability’ of an

agent as a metric of its performance: if many other agents agree with the

policy or the sampled action of an agent, the agent’s weight gets increased,

while if less other agents agree with the agent, its weight gets decreased.

Of course, to implement such an approach good formalizations of the terms

‘more’ and ‘less’ should be considered. This is also left for future research.

Plurality voting was shown to be a good ensemble method and it performs

much better than the related policy summation in at least one setting, where

it uses it inherent stochasticity to escape from a suboptimal solution. How-

ever, if the number of actions is (much) larger than the number of agents in

the ensemble, we expect that policy addition or perhaps stochastic approval

6.7. CONCLUSION 179

voting will perform better. The reason is that we expect that if the number of

actions is large, there are many occasions on which non of the agents agree

on which action to take. Then, plurality voting essentially chooses at random

between all the actions that are selected by each of the agents. In such a case,

policy summation and stochastic approval voting can perhaps obtain better

results because they use more of the available information about the full se-

lection policies of the individual agents. This is an interesting hypothesis to

test in future work.

6.7 Conclusion

Policy based ensembles of reinforcement learning algorithms seem like a promis-

ing way to get good policies fast in a wide range of problems. Even though we

severely restricted the possible learning parameters of the ensembles, they

were often as good as the best individual algorithm that was used to con-

struct the ensembles, and sometimes even better. Most approaches seem very

robust to adding one or two poorly performing agents.

As for the comparison of the different ensemble methods: there is not a

single methods that stands out in particular. In one problem we saw that

the inherent stochasticity of plurality voting and stochastic approval voting

helped to break out of a local optimum when the ensemble was made greedy.

In other problems we saw more or less equivalent performance of all voting

schemes. The policy multiplication method was often much worse, probably

because it needs a well tuned exploration parameter and our course tuning

did not reach the best results.

If we weight ease of implementation, ease of use and performance, plu-

rality voting seems like a good choice. When the ensemble used this method,

good policies were found quite consistently. It was never significantly worse

than the similar stochastic approval voting. It was also usually better and

never significantly worse than policy summation, which can be viewed as a

deterministic variant of plurality voting. However, it was significantly better

on one occasion, when the extra stochasticity that is introduced by the ac-

tion sampling of plurality voting caused the ensemble to break out of a local

minimum.

Much more research can be done on behavior based ensembles, but the re-

sults have shown at least that the approach is promising. We have seen that

often the best ensembles were as good as their strongest link. Often the per-

formance of most ensembles was much better than the average performance

of the individually optimized algorithms and in all cases the best ensemble

was significantly better than the worst individual agent. This is especially

important because we have seen that there is no single reinforcement learn-

ing algorithm that performs well on all occasions, so by using ensembles we

180 CHAPTER 6. ENSEMBLES

can prevent choosing a poor algorithm in problems were it is important that

the performance is not too poorly.

CHAPTER 7

CONTINUOUS STATE AND ACTION SPACES

There are many problems for which reinforcement learning can successfully

be used, that have large or continuous domains. Many traditional reinforce-

ment learning algorithms assume finite discrete state and action spaces, such

as the ones described in the previous chapter. In this chapter, we will discuss

a few ways to apply the reinforcement learning algorithms from the previous

chapters to problems with continuous state spaces. Additionally, we will dis-

cuss reinforcement learning algorithms that can learn good policies in MDPs

with continuous action spaces. This includes a discussion on existing actor-

critic, policy-gradient and evolutionary algorithms.

After reviewing current reinforcement learning methods that can be used

with continuous state and action spaces, we will introduce a new model-free

temporal-difference algorithm that can learn online in fully continuous do-

mains. This algorithm is called the continuous actor-critic learning automa-

ton (Cacla). This algorithm is fast and easy to implement and we will see

that it can reach good solutions much faster in a pole balancing domain than

the current state-of-the-art reinforcement learning algorithms for continuous

action spaces.

7.1 Introduction

In a general sense, many learning problems can be interpreted as the prob-

lem of finding a mapping of an input set to an output set. In reinforcement

learning, the input set is the state space and the output set is the action space

or the policy space. When both sets are finite, we can use the algorithms the

were outlined in the previous chapters. However, in some cases the state

space or the action space can be very large or even continuous.

We start by extending the MDP framework to continuous spaces in Sec-

tion 7.2. To deal with large or continuous spaces, we will need some func-

tion approximation techniques, which we will discuss in Section 7.3. We ap-

ply these techniques to reinforcement learning in Section 7.4, where we also

discuss the current state of knowledge, including which convergence guar-

antees can be given when combining reinforcement learning with function

approximation and the current state of the art in algorithms for continuous

reinforcement learning problems. This includes a discussion on some recent

temporal-difference algorithms, policy-gradient algorithms and evolutionary

methods. We will discuss how to deal with problems with continuous action

181

182 CHAPTER 7. CONTINUOUS STATES AND ACTIONS

spaces in Section 7.5. There we will also introduce the new continuous ac-

tion algorithm called Cacla (van Hasselt and Wiering, 2007a; van Hasselt

and Wiering, 2009). Section 7.6 shows the results of some experiments with

this algorithm. We compare the Cacla algorithm on problems with discrete

actions to the discrete algorithms from Chapter 5 and we compare it to the

current state of the art on a difficult continuous double pole balancing task.

Finally, Section 7.7 concludes this chapter.

7.2 Markov Decision Processes in Continuous

Spaces

Much of the discussion on MDPs in Chapter 2 still holds in the continuous

case. The main difference is that in this chapter we will consider the state

space S will generally be an infinitely large bounded set. More specifically,

we will assume the state space is a subset of a possibly multi-dimensional

Euclidean space, such that S ∈ R
DS , where DS ∈ {1,2, . . .} is the dimension of

the state space. Likewise, when we talk about continuous actions, we as-

sume A ∈ R
DA , where DA ∈ {1,2, . . .} is the dimension of the action space. We

will discuss two variants: continuous state MDPs and continuous state ac-

tion MDPs. In the first case only the state space is continuous, but the action

space is finite. In the second case both the state and the action space are con-

tinuous. Most of our analysis transfers to MDPs with finite state spaces and

continuous action spaces, but we do not cover this case explicitly. Wherever

we write ‘continuous’ the reader can usually also assume the results hold for

‘very large finite’ spaces. We will mention some results on large finite state

spaces from the literature, since the techniques for such problems are very

similar to the continuous case.

In this chapter we discuss two general types of function approximation:

linear and non-linear function approximation. Linear function approximation

is easier to analyze and implement, and there are global convergence guaran-

tees that can not be given when non-linear function approximators are used.

In particular, when TD learning is used to estimate the value of a given sta-

tionary policy under on-policy updates the value function converges when the

feature vectors are linearly independent (Sutton, 1984, 1988). Later it was

shown that TD learning also converges when eligibility traces are used and

when the features are not linearly independent (Dayan, 1992; Peng, 1993;

Dayan and Sejnowski, 1994; Bertsekas and Tsitsiklis, 1996; Tsitsiklis and

Van Roy, 1997). More recently, variants of TD learning were proposed that

converge also under off-policy updates (Sutton et al., 2008, 2009; Maei and

Sutton, 2010). We will shortly discuss these later in Section 7.4.2. For more

general information, we refer to the recent books by Bertsekas (2007) and

Szepesvári (2010). A limitation of the aforementioned results is that they

7.3. FUNCTION APPROXIMATION 183

apply to the prediction case, whereas we focus mainly on control problems.

However, more recently some work has been done to extend these results to

the control case. This has led to the Greedy-GQ algorithm, which essentially

extends Q-learning to linear function approximation, without the danger of

divergence (Maei et al., 2010).

The main drawback of linear function approximation compared to non-

linear function approximation is the need for good informative features. These

are usually assumed to be hand picked beforehand, which may require quite

some domain knowledge in some cases. Even if convergence in the limit to an

optimal solution is guaranteed, this solution is only optimal in the sense that

it is the best possible linear function of the given features. This means that

poor features imply poor solutions. Additionally, while the theoretical guar-

antees are less convincing, nice empirical results have been obtained by com-

bining reinforcement learning algorithms with non-linear function approxi-

mators, such as neural networks (Haykin, 1994; Bishop, 1995, 2006; Ripley,

2008). Examples include Backgammon (Tesauro, 1992, 1994, 1995), robotics

(Anderson, 1989; Lin, 1993; Touzet, 1997; Coulom, 2002) and elevator dis-

patching (Crites and Barto, 1996, 1998). In our experiments, we mostly use

neural networks as function approximators.

7.3 Function Approximation

In the previous chapters, we have assumed that values were stored in a table.

This allowed us to update each element in that table individually. However,

such an approach quickly becomes infeasible if the state and action space are

large. Many more general methods to learn a function from data exist and

are the topic of active research in the field of machine learning. For some

pointers, see the books by Vapnik (1995), Mitchell (1996) and Bishop (2006).

Not all these methods are directly applicable to the setting of reinforcement

learning. However, the general framework of parametrized function approxi-

mation can be used to extend reinforcement learning to problems with large

or even infinite spaces.

In machine learning, it is usually assumed that a labeled data set is given

that contains a number of inputs with their corresponding outputs. These

given outputs are commonly referred to as targets. One can then answer sta-

tistical questions about the process that spawned the data. Often it is possi-

ble to construct a predictive model—or function—that describes the observed

data and additionally can be used to predict the behavior of unseen data.

In reinforcement learning, targets are often non-stationary, because they

may depend on an adapting policy or on adapting values of states. Therefore,

targets may change during training and not all methods to learn a model

or function from machine learning are directly applicable to reinforcement

184 CHAPTER 7. CONTINUOUS STATES AND ACTIONS

learning. Nevertheless, many techniques from machine learning can success-

fully be applied to the reinforcement learning setting, as long as one is careful

about the inherent properties of learning in an MDP. In this section we dis-

cuss two methods that can be used more in general to update parametrized

functions: gradient descent and evolutionary algorithms. These methods

have often been used in reinforcement learning with considerable success

(Sutton, 1988; Werbos, 1989a,b, 1990; Whitley et al., 1993; Tesauro, 1994,

1995; Moriarty and Miikkulainen, 1996; Moriarty et al., 1999; Whiteson and

Stone, 2006; Wierstra et al., 2008; Rückstieß et al., 2010). There exist other

general methods for optimization that can be used, such as simulated an-

nealing (Kirkpatrick, 1984) and particle swarm optimization (Kennedy and

Eberhart, 1995). These methods share more or less the same properties as

evolutionary algorithms in that they are stochastic global optimization tech-

niques, with some sort of a localized search mechanism. We will not discuss

these specific methods further in this chapter, but most of the general discus-

sion will also apply to these approaches.

7.3.1 Generalization

We spend a few words on the limitations and advantages of function approxi-

mation in general. First, consider the tabular storage of each action value, as

assumed in the previous chapters. Storing each value in a separate cell in a

table has a clear advantage: since each cell is separate, there can be no inter-

ference and the approximation of the value of each action is only dependent

on the algorithm, the MDP and the policy. For instance, for a given policy

in a deterministic MDP the exact value of every action can be determined

with a single Monte Carlo sample for this action and learning rate equal one.

However, the strict separation of cells also has a disadvantage. If the state

and/or action space is large, it can take a very long time before each action

is visited. Furthermore, if the MDP is noisy each action has to be visited

numerous times to average out the noise.

To avoid prohibitively slow convergence rates, one would ideally want to

generalize over similar states and actions. For this, a generalizing function

approximator can be used. There are two general ways a learned function can

misinterpret the data that has been obtained in the sense that it generalizes

poorly. The first problem occurs is the function approximator is too inflexible.

As an extreme example, if we use a single value to represent the value of all

possible states, the generalization will in general be poor. Such a function

approximator is said to underfit the data. The second problem occurs when

the function approximator is too flexible. If the function approximator can

represent nearly any function and there are many parameters that can be

tweaked, there is a risk that the function approximator will represent not only

the general structure of the data, but also the noise in the data. The function

7.3. FUNCTION APPROXIMATION 185

approximator is then said to overfit the data. In both cases the generalization

error on a large portion of the value space can be large.

In reinforcement learning, a function approximator that underfits the

data will in many cases learn quickly but will not reach a very good final

performance. Dependent on the complexity of the problem and the simplicity

of the function approximator, it may not reach reasonable performance at all.

Conversely, a very flexible function approximator might overfit the data, es-

pecially when little data has yet been observed. In practice, this will usually

translate to slow learning, since the estimations for unobserved states will be

poor. As more experiences are obtained, a suitably trained flexible function

approximator might reach very good final performance levels. In some cases,

convergence to the best possible approximation in the limit can be guaran-

teed. Then, the more flexible the approximator, the better this final approx-

imation will be. However, it may take prohibitively long before reasonable

performance is obtained.

7.3.2 Linear Function Approximation

In Chapter 5 we mentioned that many tabular temporal-difference methods

can be interpreted as optimizing a Bellman error through a gradient descent

update. The idea is that if we can minimize the so called Bellman residual

‖V −T V‖, we come closer to the desired fixed point V =T V . Naturally, this

also holds when action values are considered instead of state values.

In this chapter we extend the discussion to non-tabular functions. The

simplest of non-tabular functions is a linear function. In fact, as discussed

in Chapter 5, a table can be interpreted as a linear function. The feature

vector is then the same size as the state space and for each state precisely one

element of the feature vector is equal to one, while the rest of the elements is

equal to zero. More generally, the value function can be approximated by

Vt(s)=~θTt φ(s) . (7.1)

Here~θt is the adaptable parameter vector at time t and φ(s) is the feature vec-

tor of state s. We will use K to refer to the number of elements in the feature

vector. Since the function is linear in the parameters, we refer to it as a linear

function approximator. Linear function approximators are useful since they

are better understood than non-linear function approximators. Applied to re-

inforcement learning, this has led to a number of convergence guarantees, un-

der various additional assumptions (Sutton, 1984, 1988; Dayan, 1992; Peng,

1993; Dayan and Sejnowski, 1994; Bertsekas and Tsitsiklis, 1996; Tsitsiklis

and Van Roy, 1997). From a practical point of view, linear approximators are

useful because they are simple to implement and fast to compute.

Many problems have large state spaces in which each state can be rep-

resented efficiently with a feature vector of limited size. For instance, the

186 CHAPTER 7. CONTINUOUS STATES AND ACTIONS

standard cart pole problem that we will consider later in this chapter has

continuous state variables and therefore an infinitely large state space. Yet,

every state can be represented with a feature vector with four elements. This

means that we would need a table of infinite size, but can suffice with a pa-

rameter vector with just four elements if we use a linear approximation, as in

(7.1).

Of course, this reduction of tunable parameters of the value function comes

at a cost. It is obvious that not every possible value function can be repre-

sented as a linear combination of the features of the problem. Therefore, our

solution is limited to the set of value functions that can be represented with

the chosen functional form. Furthermore, the parameters are shared over

all states, which implies that an update to these parameters will change the

value of unrelated states. This last point is an advantage as well as a disad-

vantage, since it implies that often sensible values can be obtained for states

that have not yet been observed.

Linear function approximation is often used in combination with rein-

forcement learning, because it is easier to analyze and it has desirable con-

vergence properties. However, the quality of the solution is very dependent

on the quality of the features. If the features are not informative enough,

sticking to a linear combination of these features may cause the function ap-

proximation to be too inflexible. This means that often considerable domain

knowledge is needed to construct useful features for a given problem. There

are also methods to determine such features automatically, but a discussion

of such methods falls outside the scope of this dissertation.

If one does not know beforehand what useful features are for a given prob-

lem, it can be beneficial to use non-linear function approximation. A very

flexible class of non-linear functions consist of so called neural networks. For

extensive introductions we refer for instance to the books by Bishop (1995,

2006). We will use a specific type of neural network in our experiments, which

we briefly explain in Section 7.3.6.

7.3.3 Discretize the State Space: Tile Coding

One often used method to find features for a linear function approximator

is to simply divide the continuous space into separate segments and then to

attach one or more features to each segment. These features are then active

if the value of a point in the continuous space is considered that falls into the

corresponding segment.

One prominent example of such a discretizing method that is often used

in reinforcement learning is tile coding (Watkins, 1989; Lin and Kim, 1991;

Sutton, 1996; Santamaria et al., 1997; Sutton and Barto, 1998), which is

based on the Cerebellar Model Articulation Controller (CMAC) structure pro-

posed by Albus (1975a,b). In tile coding, the state space is divided into a

7.3. FUNCTION APPROXIMATION 187

number of partitions. For instance, one could use hypercubes such that if

S ⊆R
DS , then one such hypercube would be defined by the Cartesian product

Hk = [xk1, yk1)]×. . .×[xkDS
, ykDS

], where xk = {xk1, . . . ,xkDS
} is a vector contain-

ing the lower bounds of the partition and likewise yk = {yk1, . . . , ykDS
} contains

the upper bounds. Then, a feature φk(s) ∈~φ(s) corresponding to this partition

is equal to one when s ∈Hk and equal to zero otherwise.

In general, if one wants to use a maximum of K =MN different features,

one can construct a single partitioning with K partitions to obtain an equally

large feature vector of size K for each state. An alternative is to use M

partitionings with N partitions each. The advantage of using multiple non-

overlapping partitionings, is that then there are up to
(MN

M

)

∈O(NM) different

feature vectors possible, compared to just MN different feature vectors in the

single case. It must be noted that the number
(MN

M

)

is an upper bound. In

general certain combinations of active features may not be possible and num-

ber of different feature vectors will be smaller. However, often this number

will still be far larger than the MN different features that are obtained with

a single partitioning.

7.3.4 Issues with Discretization

One potential problem with discretizing methods such as tile coding is that

the resulting function that maps states into features is not injective. In other

words, φ(s) = φ(s′) does not imply that s = s′. This means that in fact, the

resulting feature space MDP is partially observable and one could consider

using an algorithm that is explicitly designed to work on POMDPs. Many

good results have been obtained with tile coding, but the discretization and

the resulting loss of the Markov property do imply that none of the conver-

gence proofs for linear function approximation in MDPs are guaranteed to

hold in this case. This holds for any function approximation that uses a fea-

ture space that is not an injective function of the Markov state space.

Another practical problem with tile coding and similar methods is related

to the learning rate. The tile coding update can be summarized as

~θTt+1 =~θTt +βt(st)δtφ
T (st) , (7.2)

where βt(st) ∈ [0,1] is a learning rate and δt is the error for the current state.

This can be a temporal-difference error, the difference between the current

value and aMonte Carlo sample, or any other relevant error. A derivation and

explanation of this update and variants thereof are given below, in Sections

7.3.7 and 7.4.2.

188 CHAPTER 7. CONTINUOUS STATES AND ACTIONS

If we look at the update to the value that results from (7.2), we get

Vt+1(st)=~θTt+1φ(st)

=
(

~θTt +βt(st)δt
~φT (st)

)

φ(st)

=~θTt φ(st)+βt(st)δt
~φT (st)φ(st)

=Vt(st)+βt(st)~φ
T (st)φ(st)δt .

In other words, the effective learning rate on the values is equal to

βt(st)~φ
T (st)φ(st) . (7.3)

In tile coding, ~φT (st)φ(st) will be equal to the number of tilings M. This means

that the effective learning rate on the value function is larger than intended

and can be larger than one. This can cause problems, such as divergence of

the parameters.

Of course, these problems are easily prevented, for instance by scaling the

learning rate by dividing it by M. When decreasing learning rates are used,

for instance because they adhere to the Robbins-Munro conditions, divergence

is also prevented because the learning rates will only be larger than one for

a finite amount of time. However, the convergence may still be slowed if the

learning rate is not scaled to prevent large effective learning rates.

This issue with the learning rates can occur for any feature space and

linear function approximation, since then the effective learning rates in (7.3)

are used for the update to the value function. This indicates that it can be a

good idea to scale the learning rate appropriately, by using

β̃t(st)=
βt(st)

‖~φ(st)‖2
,

where β̃t(st) is the scaled learning rate and ‖~φ(st)‖ is the length of the fea-

ture vector.1 This scaled learning rate can prevent unintended small as well

as unintended large updates to the values. A similar trick will appear below

when we explain policy-gradient algorithms, where it is suggested to adapt

the learning rate with a similar procedure to obtain a so called natural gradi-

ent update (Amari, 1998).

A final drawback of discretization is that it introduces discontinuities in

the function. If the state changes a small amount, the approximated value

may change a fairly large amount if the two states fall into different segments

of the state space.

1One can safely define β̃t(st) = 0 if ‖~φ(st)‖ = 0, since in that case update (7.2) would not

change the parameters anyway.

7.3. FUNCTION APPROXIMATION 189

7.3.5 Non-linear Function Approximation

Because of the potential difficulty of finding good features for a linear approx-

imator and the aforementioned issues with discretization of the state space,

we discuss non-linear function approximation. This type of function approx-

imation has the problem that in general it can get stuck in local optima, but

in general more different functions can be represented and therefore the so-

lution that is found can be of better quality than the more inflexible linear

function approximators.

In a non-linear function approximator, the value function is usually rep-

resented by some predetermined parametrized function, such that

Vt(s)= f (~θt,~φ(s)) . (7.4)

Here~θt is the parameter vector that is not necessarily of the same size as the

feature vector. For instance, f may be a neural network and ~θt is a vector

with all the weights in the neural network at time t. We discuss a multilayer

perceptron neural network in the next section. Note that we assume that f

is fixed and that the value of the state is dependent on the state through the

feature vector ~φ(s) and on the time step through~θt.

Because the mapping from states to features is often non-linear, many

linear methods such as tile coding are non-linear when one considers the full

mapping from states to values. In this view, one way to interpret the differ-

ence between linear and non-linear approximation is that in the former the

non-linear part of the mapping is assumed to be fixed, while in the latter this

part of the function can also be parametrized and adapted during learning.

Below, we explain how to use gradient descent and evolutionary algo-

rithms to learn the values of the adaptable parameters. First we explain

briefly what a neural network is. In the context of neural networks gradi-

ent descent is often referred to as backpropagation (Bryson and Ho, 1969;

Werbos, 1974; Rumelhart et al., 1986). In essence, backpropagation is an

algorithm that uses the chain rule and the layer structure of the networks

to efficiently calculate the derivative of the network’s output to all the pa-

rameters. However, the principle of gradient descent can be applied to any

differential non-linear function.

7.3.6 Non-learning Functions: The Multilayer Perceptron

A multilayer perceptron is a specific type of neural network that consists of

a set of weight matrices Wl with l ∈ {1,2, . . . ,L} and a set of activation func-

tions f l with l ∈ {0,1,2, . . . ,L}. The number L is the number of layers in the

network.2 The weight matrices are the parameters of the function that can

2Some authors count the input and the output layer of the network and therefore report

L+1 as the number of layers. Others only count the number of hidden layers and use L−1.

190 CHAPTER 7. CONTINUOUS STATES AND ACTIONS

be tuned, while the activation functions are used to give the function desir-

able properties, such as being smooth with easily derivable derivatives. Each

weight matrix is of size (Nl +1)×Nl+1, where N1 equals the size of the input

vector and NL+1 is the size of the output vector. The number of rows is Nl+1

rather than Nl to account for a bias node in each layer. For instance, the in-

put vector might be a feature vector of a state and the output might be the

value function. Then we would have N1 = F and NL+1 = 1. The number of

weight matrices and the values of Nl for 2≤ l ≤ L are determined beforehand

as meta-parameters. All the layers except for the input and the output are

called hidden layers.

A convenient way to describe a neural network is by defining operators

Ll , which take a vector of size Nl as their input and output a vector of size

Nl+1. These operators are defined by

Llx= f l+1(W
T
l ~x+) ,

where ~x is a vector of size Nl and ~x+ is an augmented version of ~x with an

additional bias node, defined as

if ~x= (x1, . . . ,xNl
)T then ~x+= (x1, . . . ,xNl

,1)T .

We assume the activation functions f l : R
Nl → R

Nl operate elementwise, such

that f l = (f l,1, . . . , f l,Nl
)T and f l(~x)= (f l,1(x1), . . . , f l,Nl

(xNl
))T . Furthermore, we

assume all the functions in a layer are equal, such that f l,i = f l, j for all 1 ≤
i < j ≤Nl . Then, with a slight abuse of notation we use f l to refer both to the

vector-based function from R
Nl to R

Nl and to the component-based function

from R to R. Then, (f l(~y))i = f l(yi), where ~y is an arbitrary vector and (·)i
is the ith element of a vector. Usually, we will assume that any necessary

preprocessing to the input of the network is conducted before presentation of

the input to the network, such that without loss of generality we can assume

that f0 is the identity function. The functional form of the neural network

can then be described by

NeuralNetwork(~x)=LL . . .L1~x . (7.5)

The activation functions play an important part in the usefulness of the

network. In this chapter, we will only use a single hidden layer, such that

there are two weights matrices and L= 2. We always use the identity function

as the activation of both the input and output layer, such that f0(x)= f2(x)= x,

for any x ∈ R. The hidden layer has a non-linear activation function, known

as the tanh function, which is defined by

tanh(x)=
e2x−1

e2x+1
.

7.3. FUNCTION APPROXIMATION 191

Figure 7.1: A plot of the tanh function.

This function can be interpreted as a smoothed threshold function that is

almost equal to one for inputs larger than four and almost equal to minus

one for inputs smaller than minus four. The function is shown in Figure

7.1. Apart from the smooth threshold shape and the conveniently bounded

range, this function is additionally used because its derivative is very easy to

compute:

∂

∂x
tanh(x)= 1− tanh2(x) .

In summary, the neural networks we use are equivalent to the following

function

NeuralNetwork(~x)=







w2(H+1)1+
∑H

h=1w2h1tanh
(

w1(I+1)h+
∑I

i=1w1ihxi
)

...

w2(H+1)O+
∑H

h=1w2hOtanh
(

w1(I+1)h+
∑I

i=1w1ihxi
)






,

where wl i j represents the element in row i and column j of matrix Wl . Here

I is the number of input nodes, H is the number of hidden nodes and O is

the number of output nodes. The size of the matrices is then I+1×H for W1

and H + 1×O for W2. The weights w2(H+1)o) and w1(I+1)h are the so called

bias weights corresponding to output o and hidden node h, respectively. The

matrices W1 and W2 store the adaptable parameters that we will attempt to

learn using one of the methods below. That means that such a neural network

has a total of (I +O+1)H+O adjustable parameters. The value of I and O

is given by the function we want to approximate. The value of H should be

chosen, where ‘high’ values result a flexible function that is slightly slower

to use and that has a higher chance of overfitting observed data, whereas

‘low’ values result in a function that is less flexible, quick to use and that

generalizes well to unseen data. We observed little effect of the exact value

of H to our results and used 40 hidden nodes (i.e., H = 40) throughout the

experiments.

192 CHAPTER 7. CONTINUOUS STATES AND ACTIONS

7.3.7 Gradient Descent

Most of the methods in this chapter use some form of a gradient descent up-

date. We explain the gradient descent algorithm in general and discuss its

application to reinforcement learning. We have discussed this partially in

Section 5.2. Here we summarize the discussion there and extend it to func-

tion approximation.

A gradient descent update follows the direction of the negative gradi-

ent over some metric to be minimized. The idea is that the gradient of a

parametrized function to its parameters points in the direction in which the

function increases, according to a first-order Taylor expansion. Under the as-

sumption that the function is smooth, changing the parameters an infinitesi-

mally small amount in the direction of the negative gradient should then re-

sult in a new function that has an infinitesimally smaller value at the given

input. The assumption behind gradient descent algorithms is that this also

usually holds when a larger step in this direction is taken.

Any update that follows the direction of the negative gradient is called a

gradient descent update. In the definition below, we state this more precisely.

In this definition, for simplicity we assume real-valued functions.

Definition 7.1 (Gradient Descent). Let f :RP×RN →R
M denote a parametrized

function. We define f t : R
N → R

M to be the function that corresponds to a pa-

rameter vector~θt ∈R
P , such that ∀x ∈R

N : f t(x)= f (~θt,x). In a gradient descent

update, the parameters of f t are updated so that the target of the update lies

in the direction of the negative gradient. The update to the parameters then is

~θTt+1 =~θTt −ηt∇θ f t(x) , (7.6)

where ηt ∈ [0,1] is a step size and x ∈ X is some input. In (7.6), ∇θ f t(x) is the

gradient to the parameters, which is a row vector defined by

∇θ f t(x)=
(

∂

∂θt,1
f t(x), . . . ,

∂

∂θt,P
f t(x)

)

Then, we can obtain a new function f t+1 : X →Y , which is defined by ∀x ∈ X :

f t+1(x)= f (~θt+1,x).

It can be seen from Definition 7.1 that a gradient descent update is always

defined for a given input, which is denoted by x in the definition. The update

(7.6) is defined on the whole parameter vector. It is of course also possible to

update a subset of parameters at a time. Then, one will use an elementwise

gradient descent update, defined by

θt+1,p = θt,p−ηt
∂

∂θt,p
f t(x) .

7.3. FUNCTION APPROXIMATION 193

It is possible to generalize this update further, for instance by making the

step size ηt dependent on the input x, or perhaps on the parameter element

θt,p.

Usually, the function that we want to minimize through a gradient de-

scent procedure is some error measure. The goal is then to minimize this

error as much as possible. If instead we want to maximize rather than min-

imize a function, the minus in update (7.6) is replaced with a plus and the

procedure is called gradient ascent.

Many applications of gradient descent involve a fixed set of inputs and tar-

get outputs to which the parameters of the function should be adapted. For

instance, consider a data set of n input-output pairs X = {(x1, y1), . . ., (xn, yn)},

where xi ∈ R
Nx and yi ∈ R

Ny . Suppose we want to adapt the parameters of

a function g :Θ×R
Nx → R

Ny in order to minimize the difference between the

outputs of this function and the given outputs for the corresponding inputs.

Further assume we consider all input-output pairs as equally important and

we measure the Euclidean distance between the output of the function and

the desired output of the function. This means we want to minimize the fol-

lowing error function

E(~θ,X)=
1

2

n
∑

i=1

(

yi− g(~θ,xi)
)2

.

The factor 1/2 is included only for convenience. We can then iteratively lower

the error by using a gradient descent procedure, which results in

~θTt+1 =~θTt −ηt∇θtE(~θt,x)=~θTt +ηt

n
∑

i=1

(

yi− g(~θ,xi)
)

∇θt g(
~θ,xi) . (7.7)

This approach has a number of disadvantages. For instance, it can be slow

to converge and it can get stuck in a local optimum. Also, there is a probability

that the trained function overfits the training data. For these problems many

solutions have been proposed (see e.g., Bishop, 2006). Most of these solutions

assume the whole training data set is available and fixed. Another common

assumption for these improvements over the standard iterative gradient de-

scent approach is that the data is independently and identically distributed.

These assumptions do not normally hold in reinforcement learning.

Although it too can be slow to converge, one simple way to partially ad-

dress the issue of local optima is to use stochastic iterative gradient descent.

This algorithm uses only one data point at a time. This may then prevent get-

ting stuck in a local optimum, since each update does not necessarily move

the function into the direction of the gradient. It can not be guaranteed in

general that the global optimum is found, but convergence to a local optimum

of the error function can be guaranteed if the data points are chosen at ran-

dom and the step size is chosen according to the Robbins-Munro conditions.

194 CHAPTER 7. CONTINUOUS STATES AND ACTIONS

In other words, if
∑

tηt =∞ and
∑

t(ηt)
2 <∞, we can guarantee that

lim
t→∞

E(~θt,x)=min
~θ∈R

E(~θ,x) ,

where R is a subset of the full parameter space. Unfortunately, this subset

may not span the full parameter space, which is why this is called a local

optimum.

There is some indication that stochastic gradient descent converges faster

than batch gradient descent in many cases (Wilson and Martinez, 2003). An

additional advantage of stochastic gradient descent over batch learning is

that it is straightforward to extend online stochastic gradient descent to an

adapting target function. In other words, one does not have to have an inde-

pendent and identically distributed training set. These features make online

gradient methods very suitable for reinforcement learning. We will discuss

the application of gradient descent methods to reinforcement learning in Sec-

tion 7.4.

7.3.8 Evolutionary Algorithms

Another way to optimize a parameter vector for a given optimization problem

is through evolutionary algorithms (Holland, 1962; Rechenberg, 1971; Hol-

land, 1975; Schwefel, 1977; Davis, 1991; Bäck and Schwefel, 1993). We will

not give a full introduction to this method. For this we refer to introductory

texts, such as the books by Bäck (1996) and Eiben and Smith (2003). We

merely give a short overview of how such an algorithm can work.

In an evolutionary algorithm, a population of possible solutions is con-

structed, for instance by creating a number of random parameter vectors.

Then, individuals from this population are selected for reproduction andmixed,

after which the resulting offspring is mutated slightly to maintain diversity in

the population. The offspring then usually replaces individuals in the exist-

ing population. The idea is to specify some fitness function on the individuals,

such that both the selection of individuals for reproduction and the selection

for which members of the population to discard in favor of the new offspring

is guided by this fitness. By convention, higher fitness improves the proba-

bility to be selected. This procedure is then repeated until an individual with

a high enough fitness has been produced. One iteration of the cycle of selec-

tion, reproduction, mutation and replacement is by convention usually called

a generation.

Evolutionary algorithms therefore use twomethods to adapt the solutions.

The reproduction can be seen as a heuristic randomized search, that assumes

that two partial solutions for a problem can be combined to form a better new

solution. This is often indeed possible, but it does require that the individual

solutions are mixed in a way that is unlikely to be too destructive. Otherwise,

7.3. FUNCTION APPROXIMATION 195

the offspring will often be worse than the individuals that were used to create

it and the progress towards better solutions will be slow. The mutation can be

seen as random local search in the solution space. For completeness, we note

that in an evolutionary algorithm either the reproduction or the mutation

phase can be missing. If the reproduction phase is missing, the algorithm

is said to be asexual and the only interaction between the individuals in the

population occurs due to the selection on which individuals to keep in the

next generation. We will discuss an application of evolutionary algorithms to

reinforcement learning in Section 7.4.4.

7.3.9 Comparing Gradient Descent and Evolutionary

Algorithms

Evolutionary algorithms provide a very general framework for optimization.

The main requirement is a way to map an individual into a fitness. This is

similar to the requirement of an error function in gradient descent. However,

because of the importance of the reproduction step, care must be taken in the

representation of the individuals and the definition of the reproduction step

itself. This is non-trivial for many problems.

Evolutionary algorithms are often gradient-free, removing the need to cal-

culate gradients. This is especially useful if gradients are hard or impossible

to calculate for the used fitness function. As such, many evolutionary algo-

rithms can be classified as a zeroth order stochastic search method, while

online gradient descent as we discussed it is a first order stochastic search

method. In practice, this means it is sometimes easier to define a meaning-

ful fitness function for a problem then it is to construct a smooth, differential

error function for gradient descent.

Furthermore, suitably tuned evolutionary algorithms can quite often es-

cape from local maxima of the fitness function. This happens because more

than one solution is stored in the population and the adaptations to the in-

dividuals through reproduction and mutation can be large. However, as in

gradient descent the likelihood of ending up in a local optimum is dependent

on the representation of the solutions and the characteristics of the problem.

Other factors that can have a large influence on the convergence of an evolu-

tionary algorithm include the definition of the fitness function and the precise

methods used to reproduce and mutate the population.

For a given functional form gradient descent only uses a single step size

meta-parameter. Evolutionary algorithms often use meta-parameters to guide

the selection of individuals to reproduce, the reproduction itself, the mutation

and the selection of which individuals to keep in the population. Although

in many cases sensible settings exist that work well for many settings (for

instance see the papers in Lobo et al., 2007), this does imply that it may be

difficult to find meta-parameters that solve any particular problem efficiently.

196 CHAPTER 7. CONTINUOUS STATES AND ACTIONS

Another important difference between the two approaches is that gradient

descent usually stores only a single solution that is updated each step, while

evolutionary algorithms store a whole population of solutions. Because of

this and the random nature of the mutation and reproduction, evolutionary

algorithms can take much longer to converge on some problems. However,

extensive empirical comparisons of the two approaches seem rare.

Below we will discuss how both optimization approaches can be used in

reinforcement learning to find good policies of behavior in MDPs.

7.4 Approximate Reinforcement Learning

In this section we apply the techniques described above to the reinforcement

learning settings. We discuss some of the current state of the art in reinforce-

ment learning in continuous domains.

7.4.1 Projected Bellman Equation

To be able to reason more formally about the function approximation, we in-

troduce the concept of projections. A projection Π for a certain function ap-

proximator is a mapping of the value function space R
S to the space that can

be represented with that function approximator. We use F ⊆ R
S to denotes

this space of representable functions. Intuitively, if F contains a large sub-

set of RS, the function is flexible and can accurately approximate many value

functions. However, it may be prone to overfitting of the perceived data and

it may be slow to update since usually a more flexible function requires more

tunable parameters. Likewise, if F is small compared to R
S, the function

is not so flexible and may not be able to approximate certain functions well,

although it will probably generalize quickly.

Formally, the projection Π is an operator that maps a function to the clos-

est representable function, under a certain norm. We will assume each func-

tion has a parameter vector ~θ = {θ1, . . . ,θK } of size K that can be adjusted

during training. From here on further, we denote such parametrized value

functions by Vθ or Qθ, such that for instance Vθt (s) gives the current estimate

for the value of state s. The space of representable state value functions is

then given by

F =
{

Vθ|~θ ∈R
K

}

.

The projection for this function approximator under a weighted norm is de-

fined by

‖V −ΠV‖w =min
v∈F

‖V −v‖w =min
~θ

‖V −Vθ‖w ,

7.4. APPROXIMATE REINFORCEMENT LEARNING 197

where ‖ · ‖w is a weighted norm. We will assume the norm is quadratic, such

that

‖V −Vθ‖2w =
∫

s∈S
w(s)

(

V (x)−Vθ(s)
)2

ds ,

or, if the state space is finite

‖V −Vθ‖2w =
∑

s∈S
w(s)

(

V (s)−Vθ(s)
)2

.

This means that any projection is defined by two aspects: the functional form

of the function approximator and the weighted norm.

It is often not possible to find a parameter vector that fulfills the Bellman

equation Vθ = T
πVθ, or the Bellman optimality equation Vθ = T

∗Vθ for the

whole state space. Rather, the best we can hope for is a parameter vector that

fulfills

Vθ =ΠT Vθ , (7.8)

where T = T
π or T = T

∗. This equation is called the projected Bellman

equation. In equation (7.8), Π : RS → F projects the outcome of the one step

Bellman operator T Vθ back to the space that is representable by the function

approximation.

In some cases, it is possible to give a closed form expression for the projec-

tion. For instance, consider a large finite state space with size |S| where the

states are enumerated from 1 to |S|, such that with some abuse of notation

we assume that s denotes the number of the state rather than the state it-

self. Assume a linear function with a parameter vector ~θ of size K ≪ |S| that
maps the features of each state φ(s) ∈ R

K into a value with Vθ(s) =~θT~φ(s).

Further, assume the expected probability of sampling each state is stored in

the diagonals of the |S|× |S| matrix D, such that dss′ is the element in row s

and column s′ of D, dss′ = 0 if s 6= s′ and dss = P(st = s) for an arbitrary time

step t (Tsitsiklis and Van Roy, 1997). For simplicity, we assume the states

are always sampled according to these probabilities and therefore we do not

have to consider a separate distribution for the initial states. Finally, assume

the |S|×K matrix Φ holds the feature vectors for all states in its rows, such

that Vθ =Φθ and Vθ(s) =Φsθ = θT~φ(s). Then, the projection operator can be

represented by the |S|× |S| matrix with the following definition:

Π=Φ

(

Φ
TDΦ

)−1
Φ

TD . (7.9)

The inverse exists if the features are linearly independent, such that Φ has

rank K .

Note that in general ΠVθ = ΠΦθ = Φθ = Vθ, but ΠT Vθ 6= T Vθ, unless

T Vθ can be expressed as a linear function of the feature vectors. The exis-

tence of a projection matrix as defined in (7.9) is used in the analysis and in

198 CHAPTER 7. CONTINUOUS STATES AND ACTIONS

the derivation of several algorithms (Tsitsiklis and Van Roy, 1997; Nedić and

Bertsekas, 2003; Bertsekas et al., 2004; Sutton et al., 2008, 2009; Maei and

Sutton, 2010).

7.4.2 Gradient Temporal-Difference Learning

We generalize the TD learning update (2.18) from Section 2.3.4 to the linear

function approximation case. In Chapter 5 we argued that the tabular TD

update can be seen as a variant of linear function approximation if we assume

there are precisely as many features as there are states, in every state exactly

one feature is active and in no two different states the same feature is active.

We repeat the update for clarity

Vt+1(st)=Vt(st)+βt(st)δt ,

where

δt = r t+1+γVt(st+1)−Vt(st) .

The tabular TD learning update can be interpreted as following a stochas-

tic gradient descent update on the one step temporal-difference error, defined

as

Et(st)=
1

2

(

r t+1+γVt(st+1)−Vt(st)
)2 =

1

2
(δt)

2 . (7.10)

If Vt = Vθ is a parametrized function with parameter vector ~θ, the negative

gradient with respect to the parameters is given by

−∇θEt(st,θ)=−
(

r t+1+γVθ(st+1)−Vθ(st)
)

∇θ

(

r t+1+γVθ(st+1)−Vθ(st)
)

,

where we stress the dependence of the error on the parameter vector by writ-

ing it as a function thereof. Naturally, the error is also dependent on the

MDP and the policy, but we do not specify these dependencies explicitly to

avoid cluttering the notation.

A direct implementation of gradient descent based on the error in (7.10)

would adapt the parameter to move Vθ(s) closer to r t+1+γVθ(st+1) as desired,

but would also move γVθ(st+1) closer to Vθ(st)−r t+1. This would imply that we

move the value of the next state Vθt (st+1) in such a way that the error in the

current state becomes lower. Such an algorithm is called a residual gradient

algorithm (Baird, 1995). Alternatively, we can interpret r t+1+γVθ(st+1) as a

stochastic target value that is independent on the parameter vector. Then,

the negative gradient is (Sutton, 1984, 1988)

−∇θEt(st,θ)=
(

r t+1+γVθ(st+1)−Vθ(st)
)

∇θVθ(st) .

This implies the parameters can be updated as

~θTt+1 =~θTt +βt(st)δt∇θtVθt (st) . (7.11)

7.4. APPROXIMATE REINFORCEMENT LEARNING 199

This is the conventional TD learning update and it usually converges faster

than ordinary the residual gradient update above (Gordon, 1995, 1999). How-

ever, because we ignore the parameters in the next state, this is not a real

gradient descent algorithm. We will get back to this later.

For linear function approximation, for any θ we have ∇θVθ(st)=~φ(st) and

we obtain the same update as was shown earlier for tile coding in (7.2). Simi-

lar updates can easily be created for action value algorithms, such as the ones

discussed in Chapter 5.

We can incorporate accumulating eligibility traces with trace parameter

λ with the following two equations (Sutton, 1984, 1988):

~eTt+1 =λγ~eTt +∇θtVθt (st)

~θTt+1 =~θTt +βt(st)δt~e t+1 ,

where the trace vector ~e has a number of elements equal to the number of

features. Replacing traces are somewhat less straightforward, although it

seems sensible to use the suggestion by Främling (2007):

~eTt+1 =max(λγ~eTt ,∇θtVθt (st)) ,

since this corresponds nicely to the common practice when tile coding is used.

Also, this update reduces to the conventional replacing traces update when a

table is used as function approximator. However, as far as we know a good

theoretical justification for this generalization of replacing traces is still lack-

ing.

Update (7.11) can not be proven to converge if off-policy updates are used.

This holds for any temporal-difference method with λ < 1 and when we use

linear function approximation (Baird, 1995) or non-linear function approxi-

mation (Tsitsiklis and Van Roy, 1996). In other words, if we sample transi-

tions from some simulated MDP and feed these experiences to the algorithm

according to a distribution that does not comply completely to the state visit

probabilities that would occur under a fixed behavior policy, the parameters

of the function may diverge.

Recently, a class of algorithms has been proposed to deal with this issue

(Sutton et al., 2008, 2009; Maei et al., 2009; Maei and Sutton, 2010). The main

idea is to perform a stochastic gradient descent update, but on a different

error function. This error function is not defined as the current temporal

difference, but as the one-step projected temporal difference:

E(θ)=
1

2
‖Vθ−ΠT Vθ‖2D . (7.12)

Note that in contrast with the error in (7.10), this error is not explicitly de-

pendent on the time step. It is dependent on the MDP, the backup operator

200 CHAPTER 7. CONTINUOUS STATES AND ACTIONS

and of course on the parameter vector. We stress this last dependence by writ-

ing the error as a function of the parameters. The norm in (7.12) is weighted

according to the steady-state probabilities that are stored on the diagonal of

matrix D, as described in Section 7.4.1.

If we can minimize the error (7.12), we have reached the fixed point in

(7.8). This implies that we can not do better for the given function approxi-

mation. If can be shown that the error in (7.12) can be rewritten as

E(θ)=
1

2
(E {δ∇θVθ(s)})

T
(

E
{

∇θVθ(s)∇T
θ Vθ(s)

})−1
E {δ∇θVθ(s)} , (7.13)

where it is assumed that the inverse exists (Maei et al., 2009). The expec-

tations are taken over the steady state probabilities in D. The error func-

tion can therefore be interpreted as the product of multiple expected values.

These expected values can not be sampled from a single experience, because

then the samples would be correlated. This can be solved by updating two pa-

rameter vectors instead of one. To see how this works, we use the shorthands

φ = ~φ(st) and φ′ = ~φ(st+1) and we assume a linear function approximation.

Then ∇θVθ(st) = φ and we can calculated the negative gradient of (7.13) as

follows:

−∇θE=E
{

(φ−γφ′)φT
}(

E
{

φφT
})−1

E
{

δφ
}

≈E
{

(φ−γφ′)φT
}

~w .

The parameter vector ~wt can be updated with the stochastic update

~wT
t+1 = ~wT

t +ηt(st)
(

δt−~wT
t
~φ(st)

)

~φT (st) ,

where ηt(st) ∈ [0,1] is an additional step size parameter. It can be verified that

~wt then approximates
(

E
{

φφT
})−1

E
{

δtφ
}

, as required. This means there is

only one expected value left to approximate, which can be done with a single

sample. This leads to the update

~θTt+1 =~θTt +βt(st)
(

~φT (st)−γ~φT (st+1)
)(

~wT
t
~φ(st)

)

,

which is called the GTD2 (Gradient Temporal-Difference Learning, version 2)

algorithm (Sutton et al., 2009). One can also write the gradient in a slightly

different manner to obtain the similar TDC algorithm, which is defined as:

~θTt+1 =~θTt +βt(st)δt
~φT (st)−βt(st)γ

(

~wT
t
~φ(st)

)

~φT (st+1) ,

where ~wt is updated as above. This algorithm is named TD with gradient cor-

rection (TDC), because the update to the primary parameter vector is equal

to the one we discussed before and is shown in (7.11), expect for a correction

7.4. APPROXIMATE REINFORCEMENT LEARNING 201

term. This term prevents divergence of the parameters. Both GTD2 and TDC

can be shown to converge to the projected fixed point in the limit when βt and

ηt follow the normal Robbins-Munro conditions and for GTD2 ηt = kβt for

some constant k ∈ [0,∞), while for TDC limt→∞βt/ηt = 0 (Sutton et al., 2009).

When non-linear smooth function approximators are used, it can be guaran-

teed that algorithms that are constructed along these lines reach local optima

(Maei et al., 2009). The resulting updates in the non-linear are similar to the

ones above with the addition of another correction term.

The aforementioned updates can be extended to a form of Q-learning in

order to learn action values with eligibility traces. The resulting GQ(λ) algo-

rithm is off-policy, which means it converges to the prediction of the value of a

given estimation policy, even when the algorithm follows a different behavior

policy (Maei and Sutton, 2010). Finally, the methods can be extended to solve

the control problem (Maei et al., 2010), although at the present time it is not

yet known how well the resulting Greedy-GQ algorithm performs in practice.

Although these theoretic insights and the resulting algorithms are very

promising, we note that in practice often the old TD updates—such as (7.11)—

perform equally well. Apparently, most problems do not have the precise

characteristics that result in divergence of the parameters. Additionally, the

newer algorithms require an additional learning parameter to tune. There-

fore, in our experiments we use the conventional updates, even though they

can not be proven to converge for every setting.

7.4.3 Policy-Gradient Algorithms

Temporal-difference methods can be used to find action values, which in turn

can be used to find good policies. Conversely, policy-gradient algorithms at-

tempt to optimize the policy directly (Williams, 1992; Sutton et al., 2000; Bax-

ter and Bartlett, 2001; Peters and Schaal, 2008b; Rückstieß et al., 2010).

These algorithms use a parametrized policy π : S × A ×R
p → [0,1], where

π(s,a,ψ) denotes the probability of selecting a in s for a given policy parame-

ter vector ~ψ ∈R
p.

The idea of policy-gradient algorithms is to update the policy with gradi-

ent ascent on the cumulative expected value Vπ. If we assume the gradient

is known, we can update the policy parameters by

~ψT
k+1 =~ψT

k +αt∇ψ

∫

s∈S
P(st = s)Vπ(s) ds .

Here P(st = s) denotes the probability that the agent is in state s at time step

t. In this update we use a subscript k instead of t to distinguish between the

time step of the actions and the update schedule of the policy parameters,

which may not overlap. If the state space is finite, we can replace the integral

with a sum.

202 CHAPTER 7. CONTINUOUS STATES AND ACTIONS

As an alternative, we can use stochastic gradient descent:

~ψT
t+1 =~ψT

t +αt∇ψV
π(st) . (7.14)

Here the time step of the update corresponds to the time step of the action

and we use the subscript t. Such procedures can at best hope to find a local

optimum, because of the gradient updates and the fact that the value function

is usually not convex with respect to the policy parameters. However, with

such an update some promising results have been obtained, for instance in

robotics (Benbrahim and Franklin, 1997; Peters et al., 2003).

The obvious problem with update (7.14) is that in general Vπ is not known

and therefore neither is its gradient. For a successful policy-gradient algo-

rithm, we need an estimate of ∇ψV
π. We will now discuss how to obtain such

an estimate.

We will use the concept of a trajectory. A trajectory S is a sequence of

states and actions:

S = {s0,a0, s1,a1, . . .} .

The probability that a given trajectory occurs is equal to the probability that

the corresponding sequence of states and actions occurs with the given policy:

P(S |s,~ψ)= P(s0 = s)P(a0|s0)P(s1|s0,a0)P(a1|s1)P(s2|s1,a1) · · ·

= P(s0 = s)
∞
∏

t=0
π(st,at,~ψ)P

st+1
stat

. (7.15)

The expected value Vπ can then be expressed as an integral over all possible

sequences for the given policy and the corresponding expected rewards:

Vπ(s)=
∫

S

P(S |s,ψ)E

{

∞
∑

t=0
γtr t+1

∣

∣

∣

∣

∣

S

}

dS .

Then, the gradient thereof can also be expressed in closed form:

∇ψV
π(s)=

∫

S

∇ψP(S |s,~ψ)E

{

∞
∑

t=0
γtr t+1

∣

∣

∣

∣

∣

S

}

dS

=
∫

S

P(S |s,~ψ)∇ψ logP(S |s,~ψ)E

{

∞
∑

t=0
γtr t+1

∣

∣

∣

∣

∣

S

}

dS

=E

{

∇ψ logP(S |s,~ψ)E

{

∞
∑

t=0
γtr t+1

∣

∣

∣

∣

∣

S

}∣

∣

∣

∣

∣

s,~ψ

}

, (7.16)

where we have used the general identity f (x)∇x log f (x) = ∇x f (x). his useful

observation is related to Fisher’s score function (Fisher, 1925; Rao and Poti,

1946) and the likelihood ratio (Fisher, 1922; Neyman and Pearson, 1928). It

was applied to reinforcement learning by Williams (1992) for which reason it

7.4. APPROXIMATE REINFORCEMENT LEARNING 203

is also known as the REINFORCE trick, after the policy-gradient algorithm

that was proposed therein (see, for instance, Peters and Schaal, 2008b).

The product in the definition of the probability of the trajectory as given in

(7.15) implies that the logarithm thereof consists of a sum of terms, in which

only the policy terms depend on ~ψ. Therefore, the other terms disappear when

we take the gradient and we obtain:

∇ψ logP(S |s,~ψ)=∇ψ

(

logP(s0 = s)+
∞
∑

t=0
logπ(st,at,~ψ)+

∞
∑

t=0
logP

st+1
stat

)

=
∞
∑

t=0
∇ψ logπ(st,at,~ψ) . (7.17)

This is nice, since it implies we do not need the transition model. However,

this only holds if the policy is stochastic. If the policy is deterministic we

need the gradient ∇ψ logPs′
sa = ∇a logP

s′
sa∇ψπ(s,a,~ψ), which is available only

when the transition probabilities are known. In most cases this is not a large

problem, since stochastic policies are needed anyway to ensure sufficient ex-

ploration.

For instance, suppose the policy is a Boltzmann distribution with param-

eters ~ψ, where ~φ(s,a) is a feature vector of size p corresponding to state s and

action a. Then

π(s,a,~ψ)=
e~ψ

T~φ(s,a)

∑

b∈A(s) e
~ψT~φ(s,b)

,

and the gradient of the logarithm of this policy is given by

∇ψ logπ(s,a,~ψ)=~φ(s,a)−
∑

b

π(s,b,~ψ)~φ(s,b) .

As another example, consider a Gaussian policy with a state-dependent mean

~µs ∈ R
DA and the DA ×DA covariance matrix Σs as adjustable parameters in

the action space, such that

π(s,a, {~µs,Σs})=
1

√

2πdetΣs

exp

(

−
1

2
(a−~µs)

T
Σ
−1
s (a−~µs)

)

,

∇µ logπ(s,a, {~µs,Σs})= (a−~µs)
T
Σ
−1
s ,

∇Σ logπ(s,a, {~µs,Σs})=
1

2

(

Σ
−1
s (a−~µs)(a−~µs)

T
Σ
−1
s −Σ

−1
s

)

.

where the actions a ∈ A(s) are vectors of the same dimension as ~µs. It makes

sense use a state-dependent parametrized function to store the mean, such

that µs : S×Ψµ →R
DA , where ~ψµ ∈Ψµ is the adaptable policy parameter vec-

tor that determine the location of the mean for all states. Then the chain

rule can be used to adapt the parameters of these functions. For instance,

below we use a neural network to output the mean of the exploration policy;

204 CHAPTER 7. CONTINUOUS STATES AND ACTIONS

the parameter vector ~ψµ then contains the weights of the network. The co-

variance matrix can be the output of a adjustable function as well, although

care should be taken that the amount of exploration. The gradient update

may decrease the exploration before some interesting parts of the state space

are reached, which is undesirable. In the experiments in this chapter we

will sometimes use a covariance matrix of σ2I, where σ is a fixed exploration

parameter rather than an adjustable parameter.

When we can obtain the gradient of the policy, we can sample the quantity

in (7.16). For this, we need to sample the expected cumulative discounted

reward. For instance, if the task is episodic we use γ = 1 and take a Monte

Carlo sample that gives the cumulative reward for each episode. Additionally,

if the task is episodic the sum in (7.17) is also finite rather than infinite. Then

we obtain

∇ψV
π(s)≈Rk

Tk
∑

t=tk

∇ψ logπ(st,at,~ψ) , (7.18)

where Rk is the total return for episode k that started on time step tk and

ended on Tk. This is an unbiased estimate for (7.16) and can then be used to

update the policy through (7.14).

A drawback of estimate (7.18) is that the variance of Rk can be quite high,

resulting in noisy estimates of the gradient. Williams (1992) notes that this

can be mitigated somewhat by using the following update:

~ψT
t+1 =~ψT

t +αt (Rk−b)
Tk
∑

t=tk

∇ψ logπ(st,at,~ψ) . (7.19)

Here b is a baseline that is independent on the policy. This baseline can be

used to minimize the variance without adding bias to the update, since
∫

S

∇ψP(S |s,~ψ)b(s) dS = b(s)

∫

S

∇ψP(S |s,~ψ) dS

= b(s)∇ψ

∫

S

P(S |s,~ψ) dS

= b(s)∇ψ1= 0 .

Some work has been done to optimally set this baseline to minimize the vari-

ance and thereby increase the expected convergence rate of the algorithm,

but we will not go into this in detail here (see, e.g., Greensmith et al., 2004;

Peters and Schaal, 2008b).

The policy-gradient updates as defined above all use a gradient that up-

dates the policy parameters in the direction of steepest ascent of the perfor-

mance metric. However, the gradient update operates in parameter space,

rather than in policy space. In other words, when we use normal gradient de-

scent with a step size, we restrict the size of the change in parameter space:

(~ψt+1−~ψt)
T (~ψt+1−~ψt). It has been argued that it is much better to restrict

7.4. APPROXIMATE REINFORCEMENT LEARNING 205

the step size in policy space. This is similar to our observation in Section 7.3.4

that an update in parameter space for a linear function approximator can re-

sult in an update in value space with a unintended large or small learning

rate. For policy-gradient algorithms, we can improve the update by weighing

the difference in parameter space with the Fisher information matrix. This

matrix is defined as

Fψ =E
{

∇ψP(S |s,~ψ)∇T
ψP(S |s,~ψ)

∣

∣

∣

}

,

where the expectation ranges over the possible trajectories. This matrix can

be sampled with use of the identity (7.17). Then, we can obtain a natural

policy gradient, which follows the so called natural gradient (Amari, 1998).

This idea was first introduced in reinforcement learning by Kakade (2001).

The update then becomes

~ψT
t+1 =~ψT

t +αtF
−1
ψ ∇ψV

π(st) .

A disadvantage of this update is the need for enough samples to (approxi-

mately) compute the inverse matrix. The number of required samples can be

restrictive if the number of parameters is fairly large, especially if a sample

consists of an episode that can take many time steps to complete. For more

details, see Kakade (2001); Peters and Schaal (2008a); Wierstra et al. (2008)

and Rückstieß et al. (2010).

Many reinforcement learning algorithms exist that make use of such nat-

ural gradient updates. Examples include various forms of natural actor-critic

algorithms (NAC, Peters and Schaal, 2008a; Bhatnagar et al., 2009) and nat-

ural evolutionary strategies (NES), where the latter combines ideas from evo-

lutionary algorithms and policy-gradient methods (Wierstra et al., 2008; Sun

et al., 2009). We will explain how this last algorithm approximately works,

since it is an interesting combination of policy-gradient methods with evolu-

tionary methods. The idea behind the algorithm is fairly simple, although

many specific improvements are quite advances (Sun et al., 2009).

7.4.4 Natural Evolutionary Strategies

Now, we discuss natural evolutionary strategies (NES), an interesting partic-

ular algorithm that combines ideas from evolutionary algorithms and policy-

gradient methods (Wierstra et al., 2008; Sun et al., 2009). The idea behind the

algorithm is fairly simple, although many possible improvements are quite

advanced (Sun et al., 2009). We will not give the specifics of these improve-

ments and only discuss the high level view.

Instead of storing a single exploratory policy, NES creates a population of

n parameter vectors ~ψ1, . . ., ~ψn. These vectors represent policies that have

a certain expected payoff; this is their fitness. The goal is to improve the

206 CHAPTER 7. CONTINUOUS STATES AND ACTIONS

parameters of the distribution that generates the population, such that if

we update the parameters and create a new population these solutions will

likely be better. In other words, we do not improve the policies themselves; we

improve the process that generates the policies. For this, we use a gradient

ascent step on the fitness of the current solutions.

The parameter vectors ~ψi in a population are all drawn from a Gaussian

distribution ~ψi ∼ N
(

µψ,Σψ

)

. The distribution has a total of p+ p(p+ 1)/2

parameters, where p parameters correspond to the mean and p(p+1)/2 pa-

rameters correspond to the covariance matrix.3 Using Monte Carlo samples

one can find an estimate of the gradient of the performance of the population

to the meta-parameters in µψ and Σψ. This tells us how the meta-parameters

should be changed in order to generate better populations in the future.

In NES, no crossover exists. A nice feature of NES compared to other

evolutionary algorithms is that all solutions in the population are used to de-

termine the gradient of the population parameters. In other methods, the

mutation is not random, but moves into a direction of gradient ascent. Be-

cause of the choice of a Gaussian generating distribution, it is possible to

calculate the Fisher information matrix analytically. With further algorith-

mic specifics, it is possible to restrict the computation for a single generation

to O(np3 + nf), where n is the number of solutions in the population, p is

the number of parameters of a solution and f is the computational cost of

determining the fitness for a single solution. The potentially large variance

in the fitness may make NES less appropriate for large, noisy problems. Note

that the solutions can be deterministic policies, which may reduce the vari-

ance compared to stochastic policies. Whether the cubed parameter length in

the complexity is a problem is task dependent. There are many tasks that

can be solved with a controller with a fairly small amount of parameters, but

constructing a suitable functional form may be non-trivial and therefore it

may be important to have some domain knowledge to avoid overly limiting

the solution space.

7.4.5 Adaptive Dynamic Programming

There is significant overlap between some of the policy-gradient ideas and

many of the ideas in the related field of adaptive dynamic programming (ADP).

For recent overviews see Powell (2007) and Wang et al. (2009). Essentially,

reinforcement learning and ADP can be thought of as different names for the

same research field. However, in practice there is a significant divergence

between the sort of problems that are considered and the solutions that are

proposed.

3Note that the covariance matrix is symmetrical, which is why only p(p+1)/2 parameters

are needed, rather than p2 parameters.

7.5. CONTINUOUS ACTIONS 207

Usually, research papers on adaptive dynamic programming seem to look

at the world more from an engineering’s perspective. This results in a slightly

different notation and a somewhat different set of goals. For instance, while

the goal in reinforcement learning is often to reach a good policy for some

problem, in ADP the goal is usually to stabilize a plant (Murray et al., 2002).

This puts some restraints on the exploration that is to be used and also im-

plies that often, the goal state is the starting state and the goal is to stay near

this state, rather that to go out and find better states. Additionally, problems

in continuous time are discussed more often in ADP than in reinforcement

learning (e.g., Beard et al., 1998; Vrabie et al., 2009). For these problems a

continuous version of the Bellman optimality equation is used, that it known

as the Hamilton–Jacobi–Bellman equation (Bardi and Dolcetta, 1997). A fur-

ther discussion of these specifics falls outside the scope of this dissertation.

A particular model-free algorithm we will discuss is called action depen-

dent heuristic dynamic programming (ADHDP) (Werbos, 1977; Prokhorov

and Wunsch, 2002). It can be interpreted as an actor critic type algorithm,

where an actor stores Ac(s,~ψ), which is an estimate for the locally optimal

action for the current value function and a critic stores Q(s,a,~θ) which is an

estimate of the value of the action. The actor can be updated with a gradient

ascent update on the value of the critic by

~ψT
t+1 =~ψT

t +αt∇ψQ(s,Ac(s,~ψ),~θ)

=~ψT
t +αt

∂Q(s,Ac(s,~ψ),~θ)

∂Ac(s,~ψ)
∇ψAc(s,~ψ) .

The critic can be updated with any action value algorithm. There are many

variants of this algorithm. Many of these variants assume a known model of

the environment, the reward function or both, or they construct such models.

There are many variants of this algorithm that we will not further dis-

cuss. Many of these variants use a known model of the environment, the

reward function or both, or they construct such models. We restrict ourselves

to the model-free case, but we do note that for some problems a model-based

or model-building approach may yield better results. As argued before, this

is dependent on the relative complexity of the model compared to the solution

that is sought.

7.5 Continuous Actions

In this section we will look at reinforcement learning algorithms for continu-

ous action spaces. We will discuss which aforementioned methods are appli-

cable and we will look at a simple new temporal-difference algorithm called

continuous actor critic learning automata (Cacla). This algorithm is very easy

208 CHAPTER 7. CONTINUOUS STATES AND ACTIONS

to implement and computes updates and actions very fast. Additionally, it is

shown to compare well to the current state of the art.

7.5.1 Previous Work

All the aforementioned algorithms that search directly in policy space can

directly be applied to problems with continuous actions. This includes policy-

gradient algorithms with Gaussian policies and evolutionary algorithms such

as NES.

It is harder to extend online temporal-difference algorithms to continu-

ous actions. Although it is possible to construct an action value function that

gives an estimate of the value for each continuous action, it is then non-trivial

to find the best action. One way to do so is by gradient ascent on the value, as

in ADHDP. Another way is to simply discretize the continuous space, as we

have done in Chapter 5 for the mountain car task. Our discretization there

can be interpreted as a form of tile coding which was described earlier, but

with only a single tiling. Using more tilings can increase the amount of infor-

mation that is conveyed with each state and the resolution of the action that

is output. However, the spaces are still discretized and there is no general-

ization between parts of the state and action space that may contain similar

features, but do not fall into the same tiles. Depending on the problem, this

can sometimes be an advantage. For instance, in the mountain car the op-

timal policy is highly discontinuous since the controller should at one point

switch between pushing up a hill to pushing down a hill in very similar states.

Such a policy is perhaps more easily stored in a truly discontinuous manner

than with a smooth function approximator.

Another way to use temporal-difference algorithms is to perform a line

search. For instance, binary action search uses an ordinary action value al-

gorithm to perform such a line search (Pazis and Lagoudakis, 2009). In its

original form, this algorithm assumes a one-dimensional action space. It then

chooses the center of the space and constructs an augmented state, consisting

of the current state and this first action. Then, an ordinary action value based

algorithm is given this augmented state as input and is used to answer the

question whether the action to be performed should be larger or smaller than

the current estimate. After the decision, the center of the rest of the action

space is chosen and the corresponding augmented state is fed again to the de-

cision algorithm. This continues a fixed number of steps, until a sufficiently

fine grained resolution is obtained. Strangely, in the original formulation of

the algorithm, each decision is marked a discrete time step, such that each

continuous action takes N discrete time steps. Then, the reward is only re-

ceived at the last decision. It is unclear why not all decisions are interpreted

as being made at the same time step and the reward and transition are used

as feedback for all decisions simultaneously. Indeed, in our experiments this

7.5. CONTINUOUS ACTIONS 209

proved to work better. However, the performance of the binary action search

algorithm was not nearly as good as that of other methods, which is why we

do not consider it further. Of course, binary action search does not use actual

continuous actions, since the possible set of actions is fully determined by the

range of the action space and the choice of the number of decision steps to

take.

One final method that we like to mention is similar to both temporal-

difference methods, policy-gradient methods and ADHDP. This algorithm is

called wire-fitting (Baird and Klopf, 1993; Gaskett et al., 1999). This algo-

rithm uses a function approximator to output a fixed number of candidate

vectors that contain the (possibly multi-dimensional) action and the value of

this action. The actions and values are then fed into a least squares interpola-

tor to form the whole current estimate of the continuous action value function

in the current state. Because of the interpolation, the maximal value of the

resulting function will always lie precisely on one of the actions, thus facili-

tating the selection of the greedy action in the continuous space. The action

value function can then be updated by using a one step temporal-difference

error, for instance as in Q-learning. The function is updated with a gradient

step to minimize this temporal-difference error. Because of the interpolation,

the effect is that the actions that are close to the action that was actually

selected move closer to the resulting action and target value. Unfortunately,

this implies that actions near the current best action that give poor values

not only pull the value of the best action down, but also move this action away

from its previous position. This can perhaps be mitigated by differentiating

the learning rate for actions that resulted in a large target value and actions

that resulted in a low target value, but to the best of our knowledge such an

extension to the algorithm was never published. Wire-fitting was shown to

perform worse than other methods (van Hasselt and Wiering, 2007a), so we

do not further consider this methods in this dissertation.

7.5.2 Continuous Actor Critic Learning Automaton

In this section we discuss the continuous actor critic learning automaton (Ca-

cla) algorithm that can learn undiscretized continuous actions in continuous

states with use of temporal-difference methods (van Hasselt and Wiering,

2007a; van Hasselt and Wiering, 2009). This algorithm was compared fa-

vorably to ADHDP and wire-fitting (van Hasselt and Wiering, 2007a). We

will first describe how the algorithm works and later we will test it empiri-

cally. Additionally, we will present some previously unpublished extensions

and improvements.

Cacla uses a critic that stores state values. For instance, the methods

in Section 7.4.2 can be used to update this critic. Additionally, similar to

ADHDP an actor is used that outputs a single—possibly multi-dimensional—

210 CHAPTER 7. CONTINUOUS STATES AND ACTIONS

Algorithm 7 Cacla

1: Given γ, an initial state distribution I and an MDP to act on.

2: Initialize~θ, ~ψ, s∼ I.

3: repeat

4: Choose a∼π(s,~ψ)

5: Perform a, observe r and s′

6: δ= r+γV (s′)−V (s)

7: ~θT =~θT +βδ∇θV (s)

8: if δ> 0 then

9: ~ψT =~ψT +α(a−Ac(s,~ψ))∇ψAc(s,~ψ)

10: end if

11: if s′ is terminal then

12: s∼ I

13: else

14: s= s′

15: end if

16: until end

action from a continuous domain. On each time step, some exploration is used

to determine an action that is to be performed. Then, the temporal-difference

error is used to determine if that action was a good idea or not. As in most

actor critic algorithms, if the temporal-difference error was positive, we judge

the action to have been profitable and we reinforce it. In this case, this means

we update the actor function approximator towards the action that was se-

lected. This implies that similar to policy-gradient algorithms stochastic poli-

cies should be used: if there is no exploration the action will be equal to the

output of the actor and an update would leave the actor unchanged.

A basic version of Cacla is shown in Algorithm 7. The policy in line 4 is de-

rived from the actor’s output. For instance, one can use Gaussian exploration

around this action. As noted, it is important that at 6= Ac(st,~ψt) in order for

Cacla to update its actor. Of course, after training has concluded and the ac-

tor is no longer updated, the agent can deterministically use the action that

is output by the actor.

The critic update in line 7 is an ordinary TD learning update. One can

replace this with a TD(λ) update or with one of the updates from Section

7.4.2. The actor update in line 9 essentially performs gradient descent on the

error between the action that was performed and the output of the actor. Note

that an update only occurs when the temporal-difference error was positive.

One might imagine that one could also include an update that moves away

from an action when the temporal-difference error was negative. However,

this is usually not a good idea since this is equivalent to updating towards

some action that was not performed and of which it is not known whether it

7.5. CONTINUOUS ACTIONS 211

is better than the current output of the actor. As an extreme case, consider

an actor that outputs the optimal action in each state of a deterministic MDP.

If an update would occur when the temporal-difference error is negative, the

actor would change its output even though it was already optimal. This is an

important difference between Cacla and policy-gradient methods: Cacla only

updates its actor when actual improvements have been observed.

The Cacla algorithm essentially performs hill climbing in action space.

This is slightly different from hill climbing in policy space, as policy-gradient

methods do. This also means that Cacla is compatible with some types of

exploration that policy-gradient algorithms are not. For instance, a uniform

random exploration policy would still allow Cacla to improve its actor, whereas

such a policy has no parameters to tune for policy-gradient methods. Other

differences are that policy-gradient methods do not use a threshold, but de-

termine the size of the update by a learning rate, or by natural gradients.

In Cacla the size of the update towards the action is governed only by the

learning rate parameter αt and not by the size of the temporal-difference er-

ror. This allows Cacla to learn quickly also when there are plateaus in the

value space. It was shown that this works better in at least some settings

than when the learning rate is made dependent on the size of the temporal-

difference error (van Hasselt and Wiering, 2007a). Intuitively, it makes sense

that it is the distance to the better action that is important for the actor and

not necessarily the size of the improvement in value.

The hill climbing of Cacla is stochastic because of two reasons: the value

function is updated by the critic during the improvements to the policy and

the temporal-difference error may contain noise. This allows Cacla to get out

of some local optima. However, like any approximate hill climbing algorithm

Cacla can get stuck in a local optimum.

Although it is designed for continuous action spaces, we will also compare

Cacla to discrete algorithms. Then, we discretize the output of the actor of

Cacla by rounding it to the nearest allowed action in the action space of the

MDP. This makes sure that Cacla does not have the advantage of being able

to more finely determine its action, although since it is a feature of the design

of the algorithm, this advantage is arguably neither unrealistic nor unfair.

By its nature, Cacla will assume the underlying action space is continuous

and this can be an advantage even if the action space that is actually used is

discrete. Specifically, this is an advantage if the finite set of actions follow an

ordinal scale, rather than a nominal scale.

In the remainder of this chapter, we will compare Cacla to some of the

other algorithms and show that it is competitive with the current state of the

art, although it is much easier to implement than most other methods.

212 CHAPTER 7. CONTINUOUS STATES AND ACTIONS

7.6 Experiments

In this section we compare the performance of the discrete temporal-difference

algorithms from Chapter 5 on the mountain car and the cart pole when we

do not discretize the state space. We will compare this performance with Ca-

cla and additionally compare Cacla to some other state of the art continuous

action algorithms.

Unless stated otherwise, as function approximator a neural networkmulti-

layer perceptron (MLP) with a single hidden layers with 15 nodes and a tanh

activation function was used. The input and output layers then use the iden-

tity function and learning is done with a gradient descent update as in (7.11),

using backpropagation. This function approximation may not be suitable for

every problem, as some problems may benefit from more or less hidden nodes,

or a different activation function. We did some preliminary tests in our ex-

periments and found no improvements in the results when using MLPs with

more of less hidden nodes. To a certain point, less hidden nodes seem to re-

sult in faster learning to less optimal solutions and more hidden nodes seem

to result in slower learning to better solutions. Of course, this depends on the

complexity of good policies and the complexity of good value functions in the

problem domain. Our focus is on the comparison of the algorithms that use

the function approximators, rather than the function approximators them-

selves. However, we note that somewhat different results will probably be

reached with other functional representations.

As in Chapters 5 and 6 we use a Welch’s test with α = 0.01 to determine

whether two approaches are significantly different. Therefore, we will call the

difference between the results of two methods significant if this difference is

greater than

2.326
√

se21+ se22 ,

where se1 is the standard error of the first method and se2 is the standard

error of the second method.

7.6.1 Mountain Car

The mountain car setup is the same as in Chapter 5 with the difference that

the position of the car x and its velocity dx are not discretized. Rather, they

are given as inputs to a multi-layer perceptron, which then approximates the

relevant action, state or preference value function.

The algorithms receive a reward of −1 on every time step, except when an

episode ends in a success. Then a reward of +100 is received. If no success

is obtained for 500 time steps, the episode is considered a failure and the

episode also ends. Whenever an episode ends, the car is reset to the bottom of

the track with zero velocity. The discount factor was γ= 0.95.

7.6. EXPERIMENTS 213

For all discrete algorithms, a Boltzmann exploration was used. For Cacla,

Gaussian exploration was used and after adding this exploration, the result-

ing action was scaled to the nearest legal option. The exploration parameters

and learning rates are given below.

Training in this task was limited to 1000 episodes, each of which lasted

a maximum of 500 time steps. This actually biases the results somewhat in

favor of poorly performing algorithms, since these get a larger number of total

training steps if the episodes take longer. After every episode, a test episode

was run without exploration and without updating any of the algorithms.

This problem is arguably less suited to Cacla than the cart pole problem that

we will consider later, because Cacla is designed explicitly for continuous ac-

tion spaces and here there are only two actions of real interest: driving as fast

to the left as possible and driving as fast to the right as possible. This means

the ability of Cacla to finely tune its actor output becomes less important.

7.6.2 Results on the Mountain Car

Table 7.1 shows the average results over the whole training run (total online)

of the last 10% of training episodes (final online) and for 100 test episodes

without exploration after training has concluded (greedy). We see that in the

greedy result Acla performs significantly better than Cacla, which in turn

significantly outperforms all other algorithms. This implies that Acla has the

most success in eventually finding a policy that works well. However, for this

policy to be found, substantial exploration was needed. This explains the poor

behavior of Acla in the online settings. In online performance, Cacla manages

to outperform all the other algorithms with QV-learning a relatively distant

second. The results for Expected Sarsa are not shown, but preliminary ex-

periments indicate that these results are similar to those of Sarsa for this

problem.

Interestingly, we see that Cacla uses very large values for its Gaussian

exploration in this problem. The reason is that in the mountain car only the

two extreme actions are relevant. The idea is to drive as fast as you can to the

left and then as fast as you can to the right. Cacla learns to output actions

far above and below the actual actions of 1 and −1, because they are rounded

to these actions anyway. Even in the online results, Cacla can perform well

with very high exploration, while most other algorithms use quite low tem-

peratures that translate into little exploration. As mentioned, this explains

the large difference between the offline and online performance of Acla. The

offline performance uses a high temperature, resulting in much exploration.

This apparently allows Acla to learn good offline policies, but such a high tem-

perature will not lead to good online performance. This shows that although

technically Acla is an online algorithm, it has some offline characteristics be-

cause it can learn good offline policies from noisy online behavior.

214 CHAPTER 7. CONTINUOUS STATES AND ACTIONS

Table 7.1: Average number of steps until goal is reached (lower is better).

Shown are the mean performance with exploration during training (total on-

line), the final performance with exploration after training (final online) and

the final greedy performance. Averages over 300 trials.

Total online performance

α β exploration. mean std error

Cacla 0.0002 0.05 20. 306.0 1.0

QV 0.00001 0.2 0.001 351.5 4.6

AC 0.001 0.2 1. 428.3 3.3

Acla 0.0002 0.002 0.01 430.2 5.3

Sarsa 0.0005 0.01 461.2 3.9

Q 0.001 0.01 478.5 2.6

Final online performance

α β exploration mean std error

Cacla 0.00005 0.02 50. 222.4 4.4

QV 0.00002 0.1 0.002 309.9 7.6

AC 0.001 0.2 2. 345.4 7.1

Sarsa 0.0002 - 0.01 453.6 6.0

Acla 0.0005 0.001 0.01 455.0 6.4

Q 0.0001 - 0.01 495.9 1.2

Final greedy performance

α β exploration mean std error

Acla 0.005 0.05 100. 132.2 0.9

Cacla 0.00002 0.05 100. 187.3 3.1

QV 0.00002 0.1 0.002 273.4 9.2

AC 0.0005 0.2 1. 416.4 8.5

Sarsa 0.0002 - 0.01 462.7 5.9

Q 0.00002 - 1. 472.1 5.1

We also tested Cacla with a fully random uniform exploration policy. The

online performance is then −500 in all cases, since the random policy does

not manage to drive up the hill. However, after only 90 episodes the final

greedy performance is already quite good at 193.4, which is almost as good

as the best final greedy performance with Gaussian exploration after 1,000

episodes. The greedy policy was tested after every 3 episodes. The average

of the first 30 of these tests—again, after 90 episodes in total—is 319.1: not

much worse than the best online average over 1,000 episodes with Gaussian

exploration. These results show that in this setting Cacla can learn about

good policies without following them. Note that during training the goal state

7.6. EXPERIMENTS 215

was not reached a single time. This did not prevent Cacla from finding good

policies for its actor, due to the −1 reward on each step that gives an incentive

to get out of the valley. Naturally, there are problems in which good policies

can not be learned without bootstrapping on a policy that is already at least

somewhat reasonable, but this demonstrates that Cacla is fairly robust to the

type of exploration that is used.

On the whole, the results show that Cacla is a very reasonable choice to

solve problems similar to the mountain car. Depending on the performance

measure that you consider, Cacla performs best or second best to Acla. This is

somewhat surprising, since the discontinuous nature of the optimal policy in

the mountain car and the fact that there are only two relevant actions would

seem to favor discrete algorithms that only consider these actions, rather than

an algorithm that considers the whole range of possibilities.

We can and should compare these results with the results in Table 5.5,

which were obtained with a discretization of the state space. The results

are not directly comparable, since for Table 5.5 the training time was always

100,000 steps, regardless of the number of episodes. However, given the av-

erage number of steps in the total online performance in Table 7.1 we can

conclude that our neural network counterparts in the continuous state space

have used approximately 3 to 5 times that number of training steps. It is

then interesting to note that only Cacla comes close in terms of its online

performance. For the offline performance, Cacla is also comparable to the re-

sults in the discretized state space. The neural version of Acla outperforms

all the other algorithms in terms of its greedy performance. Even the dif-

ference with the discretized Actor Critic is significant, although it is small.

However, the neural network version Acla had the advantage of a finer tun-

ing of the learning parameters, as well as a longer learning time. Therefore,

we must conclude that the mountain car can be solve adequately with a sim-

ple discretization of the state space and does not profit from the use of neural

networks for the controllers, at least in our experimental setup.

7.6.3 Discrete Cart Pole

The cart pole is a non-linear control problem that is often used as a bench-

mark in reinforcement learning. The goal is to balance a pole that is con-

nected with a hinge to a cart by hitting the cart left and right. If the pole

falls further than a specified amount of degrees, the episode is considered a

failure. The problem is made harder by an extra condition that the cart may

not drive further than a fixed amount to the left or to the right of the start-

ing position. If it does, it hits a wall and the episode is considered a failure.

We first consider the discrete version of the problem, where the agents can

choose between 21 different actions. Later, we will look at the harder double

pole version of the cart pole and allow the agents to use the whole continuous

216 CHAPTER 7. CONTINUOUS STATES AND ACTIONS

action space.

For the cart pole task, we use commonly used system dynamics, which can

be described as follows.

ω̈=
gsinω(mc+mp)− (F+mplω̇

2 sinω)cosω
4
3 l(mc+mp)−mpl cos2ω

,

ẍ=
F−mpl(ω̈cosω− ω̇2 sinω)

mc+mp

.

Here x ∈ [−2.4,2.4] is the position of the cart, ẋ = (d/dt)x is its velocity and

ẍ = (d/dt)2x is its acceleration. We use ω to denote the angle of the cart,

rather than the more common θ, since we already use this symbol to denote

parameter vectors. Similar to the velocity and acceleration of the cart, ω̇ =
(d/dt)ω and ω̈ = (d/dt)2ω denote the angular velocity and acceleration of the

pole, respectively. In these formulas, l = 0.5m is half of the length of the

pole, mc = 1kg is the mass of the cart, mp = 0.1kg is the mass of the pole,

g = 9.81m/s2 is the gravitational constant and F ∈ [−10N,10N] is the force

that is applied to the cart. The time between each two decisions the agent

can make is 0.02s. These dynamics are the same as for instance in Riedmiller

et al. (2007) and we fix two small typographic errors in their formulation. The

discount factor was γ= 0.99.

An episode is ended when either it hits one of the walls at 2.4m in each

direction, or when the pole drops further than 12◦ from its upright position.

In both cases the MDP reaches a terminal state and after this it is reset.

An episode ends and is considered a success when the pole is balanced for at

least 40s. Note that this does not imply that the MDP reaches a terminal

state after 40s. This would make the state non-Markovian if the elapsed

time is not part of the state. Rather, the environment is reset after an ended

trial and the agent is not updated on the transition from the last state of the

former episode to the first state of the next episode. Therefore, the goal of the

agent is to balance indefinitely and not only for a maximum of 40s.

When an episode ends, the cart is reset at the center of the track with the

pole tilted randomly between −3◦ and 3◦, where 0◦ is upright. The dynamics

do not include friction, but are realistic in the other aspects. The state vector

given to the algorithms consists of the position and velocity of the cart and

the angle and angular velocity of the pole. On every time step the algorithms

receive a reward of +1, except when an episode ends with a failure. Then

a reward of −1 is received. The reward on the transition from the end of a

successful episode to the next episode is inconsequential, since this reward is

not used in an update anyway.

An important difference between the cart pole and the mountain car is

that a random or poorly performing algorithm will get a lot of meaningful

7.6. EXPERIMENTS 217

feedback on the cart pole, since the pole will drop quickly and will allow the

algorithm to get information about good and bad situations to be in. In the

mountain car such an algorithm will only observe rewards of −1 for all time

steps, which by themselves do not carry much information. We will see that

the two tasks are sufficiently different to require quite different settings of

the parameters of the algorithms to reach the best performances.

7.6.4 Discrete Cart Pole Results

Table 7.2 shows the results on the cart pole task for 2000 simulated seconds of

training. The total online performance gives the average failures per second

for the whole training time. For the total greedy performance, after each

20 s of training a test run of 40 s was run without exploration. This tells us

something about how quickly the algorithms find good greedy policies. For the

final online performance the last 40 s of training were used. For the greedy

performance after training had concluded a run of 40 s was used without

exploration.

Acla is by far the best algorithm in terms of total online performance. This

implies that Acla reaches good policies fast. Interestingly, Acla’s online per-

formance is even better than its offline performance. Apparently, Acla can use

some stochasticity to reach good results. We did not investigate further why

this is the case. Cacla finds good greedy policies the fastest, as indicated by

its good total greedy performance. Also, the final policies found by Cacla with

and without exploration are better than those found by the other algorithms.

The success rate is also shown, which shows that Cacla is almost flawless

and that almost 99% of its policies can balance the pole for 40 s after 2000 s

of learning.

Table 7.3 shows how quickly on average each algorithm conducted its first

‘perfect’ run. A perfect run is defined here as balancing the pole for 40 s.

We see that Acla finds a perfect policy the fastest if we include exploration,

but Cacla finds a perfect deterministic policy the fastest. The greedy results

are probably slightly overestimated, since the greedy policy was only checked

every 20 s and not continuously. Therefore, probably a perfect policy is found

slightly faster than the results shown in the figure. This does not hold for the

online results, since these were collected during the actual training.

We see that although Actor Critic reaches similar results as Acla and Ca-

cla in total performance, the latter two algorithms reach a flawless perfor-

mance a lot faster. In offline performance Cacla outperforms all the other al-

gorithms, while in online performance the same holds for Acla. In both cases,

the difference is statistically significant. Interestingly, Actor Critic only man-

ages to outperform Q-learning and Sarsa. For all algorithms except Acla the

online performance is worse than the offline performance by a considerable

margin. It is unclear what makes Acla special in this regard.

218 CHAPTER 7. CONTINUOUS STATES AND ACTIONS

Table 7.2: Mean performance with exploration during training (total online),

final performance with exploration after training (final online) and the per-

formance of the best policy without exploration after training (final greedy).

Training lasted 2000 s, each test run was 40 s. Results are averages over 300

repetitions of the experiment.

Total online performance

α β exploration mean std err

Acla 0.05 0.005 0.1 0.103 0.002

Cacla 0.0005 0.002 20.0 0.141 0.003

AC 0.01 0.002 5.0 0.148 0.002

QV 0.005 0.005 1.0 0.206 0.004

Sarsa 0.01 - 0.5 0.316 0.005

Q 0.01 - 0.5 0.320 0.006

Total greedy performance

α β exploration mean std err

Cacla 0.0005 0.002 10.0 0.107 0.003

AC 0.002 0.002 10.0 0.113 0.002

Acla 0.05 0.005 0.1 0.131 0.003

QV 0.005 0.005 1.0 0.229 0.005

Q 0.01 - 0.5 0.230 0.004

Sarsa 0.01 - 0.5 0.332 0.005

Final online performance

α β exploration mean success

Cacla 0.002 0.002 0.2 0.005 97.7 %

Acla 0.1 0.002 0.05 0.011 95.2 %

AC 0.002 0.002 5.0 0.012 87.7 %

QV 0.005 0.005 1.0 0.117 48.2 %

Q 0.005 - 0.2 0.128 37.6 %

Sarsa 0.005 - 0.01 0.150 35.5 %

Final greedy performance

α β exploration mean success

Cacla 0.0005 0.001 10.0 0.003 98.8 %

Acla 0.002 0.001 10.0 0.019 91.7 %

AC 0.002 0.002 0.5 0.037 82.6 %

QV 0.02 0.001 0.2 0.022 80.5 %

Sarsa 0.002 - 1.0 0.156 55.7 %

Q 0.05 - 0.01 0.131 54.8 %

7.6.5 Cart Pole with Removed Actions

For the following results we removed some of the available actions after the

algorithms were trained on the cart pole task. Three scenarios were tested,

7.6. EXPERIMENTS 219

Table 7.3: Time in seconds before the start of the first perfect test and train-

ing run. Averaged over 300 trails.

Online performance

α β exploration mean std err

Acla 0.05 0.005 0.1 191.0 5.7

Cacla 0.005 0.002 5.0 281.6 5.2

QV 0.005 0.005 1.0 340.8 9.6

AC 0.01 0.005 2.0 439.8 13.5

Q 0.01 - 0.02 638.1 27.2

Sarsa 0.005 - 0.5 665.6 22.5

Greedy performance

α β exploration mean std err

Cacla 0.01 0.005 5.0 181.1 10.0

QV 0.005 0.005 1.0 232.0 7.2

Acla 0.05 0.005 0.1 236.4 8.3

AC 0.01 0.005 2.0 359.6 13.6

Q 0.005 - 1.0 385.5 12.0

Sarsa 0.01 - 0.5 453.6 22.4

where after 2000 s of training a subset of the actions was made unavailable.

In the first scenario Even, all the odd positive and negative integer forces

were removed, leaving the even integers −10, −8, . . . , 8 and 10. In the second

scenario Bang, we removed all actions except −10, 0 and 10, essentially test-

ing the performance of the algorithms when only the actions of a bang-bang

controller were allowed. For the third scenario No Extreme we only removed

the most extreme options −10 and 10, since we observed that these were often

used by all algorithms. In the third scenario therefore 19 of the original 21

actions are still available. For all discrete algorithms after the action have

been removed the state action values corresponding to the removed actions

are simply not considered anymore. For Cacla the output of the actor gets

rounded to the closest available action from the smaller new action set.

After removing the actions, we measured the performance with a greedy

test run of 40 seconds. The results are given in Table 7.4. The parameter

settings are the same that were used for the best final greedy performance

after 2000 seconds of training, as shown in Table 7.2.

Cacla can adapt very successfully to the changed situations. The percent-

age of successful test runs remains high and the average number of failures

per second remains very small.

It is very interesting to consider the differences between the three sce-

narios. We see that on average performance goes down significantly for all

220 CHAPTER 7. CONTINUOUS STATES AND ACTIONS

Table 7.4: Mean amount of failures per second of the first test run after

removing odd actions (Even), all except −10, 0 and 10 (Bang), or just actions

−10 and 10 (No Extreme). Means and success percentages are averaged over

300 trials and sorted by performance before removing the actions.

Even Bang No Extreme

mean success mean success mean success

Cacla 0.002 98.8 % 0.004 96.0 % 0.003 98.5 %

Acla 0.117 77.3 % 0.209 44.1 % 1.028 3.8 %

AC 0.068 61.5 % 0.154 45.9 % 1.920 0.0 %

QV 2.967 11.8 % 2.894 0.6 % 4.136 0.0 %

R 2.071 22.2 % 3.702 2.5 % 4.187 0.1 %

Sarsa 3.512 10.7 % 2.411 0.2 % 4.107 0.0 %

Q 3.200 11.5 % 3.334 1.5 % 4.284 0.1 %

algorithms except Cacla when the odd actions are removed. However, Acla

and Actor Critic still manage to reach a perfect run without additional train-

ing in more than half of the 300 trials. In the scenario where we only removed

the actions corresponding to −10 N and 10 N performance of all discrete al-

gorithms drops considerably. This is due to the fact that almost all policies

found by the algorithms in the first 2000 seconds use these actions regularly.

Using its ability to generalize, Cacla will immediately push with 9 N where

it used to push with 10 N, but the other algorithms have to relearn which

action then to take, since they regard all actions as qualitatively different

options and apparently have not learned that 9 N is the second best option

when 10 N becomes unavailable.

To get a better intuition of what happens to the performances, Figure 7.2

shows the greedy performance of the best three algorithms: Cacla, Acla and

Actor Critic. As explained above, after 2000 seconds actions are removed

from the action space. In the left panel, we see that Acla and Actor Critic ex-

perience a temporary setback when the odd actions are removed, but quickly

regain former performance levels. However, in the right panel we see that if

the actions corresponding to −10 N and 10 N are removed they recover much

more slowly and to a less optimal level. In the bang scenario the algorithms

also recover more slowly, but they regain performance levels comparable and

eventually even better than before the actions were removed. Note that all

algorithms that are not shown in the figure perform much worse, as can be

deducted from Table 7.4.

The results in this subsection show that Cacla can easily adapt to chang-

ing action spaces when some of the actions are removed. We expect this to

also be the case if the action space is changed in other ways. It is non triv-

ial how to adapt a conventional reinforcement learning algorithm such as

7.6. EXPERIMENTS 221

Figure 7.2: The offline performance measured in average failures per second

for Cacla, Acla and Actor Critic. After 2000 s the odd actions (top panel,

scenario Even), all actions except −10 N, 0 N and 10 N (middle panel, scenario

Bang), or −10 N and 10 N (bottom panel, scenario No Extreme are removed.

The difference between Cacla and the other two algorithms is significant.

Q-learning when for instance a different set of available actions is chosen

from the continuous underlying action space, but Cacla can still simply use

its generalization property and adapt with little problems as long as the ac-

tion space that is used for training is somewhat representative of the action

space that is used for testing. This is a useful property, also because often

one will want to simulate a real-world problem and train an algorithm on

this simulation. If then the actual problem turns out to use a different action

space than the simulation, a trained Cacla algorithm can often still be used

successfully. For completeness, we note that the online results that are not

shown in this subsection are very similar to the offline results.

7.6.6 Double Cart Pole

As our next problem, we discuss the double cart pole. In this case, two sepa-

rate poles are attached to the pole. The two poles differ in length and mass

and both must be balanced by hitting the cart. We will compare the results of

Cacla to those in Heidrich-Meisner and Igel (2008), so we copy their dynamics,

which are taken fromWieland (1991). We will not explain the algorithms that

are used for those results in full, but Covariance Matrix Adaptation Evolution

222 CHAPTER 7. CONTINUOUS STATES AND ACTIONS

Strategy (CMA-ES) is an evolutionary algorithm that is considered the cur-

rent state of the art in optimization (Hansen et al., 2003; Jiang et al., 2008).

It was favorably compared to episodic Natural Actor Critic (NAC) (Peters and

Schaal, 2008a; Bhatnagar et al., 2009) in the same paper that we take our

dynamics from. The NES algorithm we described earlier can be seen as a

simpler variant on the CMA-ES algorithm. It usually performs slightly worse

than CMA-ES, even with multiple improvements that we did not discuss (Sun

et al., 2009; Glasmachers et al., 2010). So therefore, if Cacla compares favor-

ably to CMA-ES, it also compares favorably on similar problems to NES, NAC

and other state of the art reinforcement learning algorithms.

The dynamics are as follows.

ẍ=
F−µcsign(ẋ)+

∑2
i=12miω̇

2
i
sinωi+ 3

4mi cosωi

(

2
µiω̇i

mi l i
+ gsinωi

)

mc+
∑2

i=1mi

(

1− 3
4 cos

2ωi

)

ω̈=−
3

8l i

(

ẍcosωi+ gsinωi+2
µiω̇i

mi l i

)

Here l1 = 1m, l2 = 0.1m, mc = 1kg, m1 = 0.1kg, m2 = 0.01kg and g= 9.81m/s2.

This time, the friction is also modeled with coefficients µc = 5 ·10−4Ns/m and

µ1 =µ2 = 2 ·10−6Nms.

In this setting, the admissible state space was defined by x ∈ [−2.4m,2.4m]

and ωi ∈ [−36◦,36◦]. On leaving the admissible state space, the episode ends.

Every time step yield a reward of r t = 1. No explicit penalty is given when

an episode ends; the agent should learn, based on the lack of future rewards.

The agent can choose an action from the range [−50N,50N] every 0.02s. Be-

cause CMA-ES and NAC need complete episodes, the task wasmade explicitly

episodic by resetting the environment every 20s. The state feature vector is
~φ(s) = (x, ẋ,ω1,ω̇1,ω2,ω̇2)

T . All episodes start in ~φ(s) = (0,0,1◦,0,0,0)T . The

discount factor in the work we compare with was γ = 1. Since we store a

state value function, this would mean that the state values are in principle

unbounded. Therefore, we use a discount factor of γ = 0.99. In this settings,

the optimal policies for both versions will be very similar, if not equal. Fur-

thermore, we look at the reward per episode as our performance metric. This

performance metric was explicitly optimized by CMA-ES and NAC, while Ca-

cla optimizes the discounted cumulative rewards.

The results by CMA-ES we will compare to are shown in Figure 7.3. In

addition, NAC was shown to perform far worse, except if it was initialized

close to the optimal policy. Then, after somewhere between 3,000 and 4,000

episodes, the median performance reaches the optimal reward per episode of

1,000 (see Heidrich-Meisner and Igel, 2008, for details).

CMA-ES and NAC were used to train a linear controller, so we will use

Cacla to find a linear controller as well. We allow for a bias feature that is

7.6. EXPERIMENTS 223

Figure 7.3: Median performance of CMA-ES out of 500 repetitions of the ex-

periment. The x-axis shows the number of episodes. Picture is taken from

Heidrich-Meisner and Igel (2008).

always equal to one, so we are looking for a parameter vector ~ψ ∈ R
7, such

that the actor is defined by

Act(st)=~ψT
t
~φ(st)+=

6
∑

i=1
ψt,iφi(st)+ψt,7 .

We put in a hard threshold, such that if the output of the actor is larger than

50N or smaller than −50N, the agent outputs 50N or −50N, respectively. As

before, the critic is an MLP with 40 hidden nodes.

We ran Cacla for 500 episodes with learning rates of αt = βt = 10−3 and

Gaussian exploration with σ = 500 or σ = 5000. The reason for the high ex-

ploration is that Cacla effectively learns a bang controller: the resulting actor

outputs values far above 50N and far below −50N. We also ran Cacla with a

uniform random action selection policy in [−50N,50N] and an ǫ-greedy policy

with ǫ= 0.1. This version does not learn a bang controller, because the targets

for the actor are always within the admissible range.

Table 7.5 shows the results of our experiments. In Figure 7.3 the median

performances are shown, but we show the mean performances. The reason for

this is that all exploration types except fully random uniform exploration find

perfect policies with and without exploration within 500 training episodes.

Therefore, the median results would be equal to 1,000 for all these variants.

The Gaussian bang controllers are significantly better than the best median

CMA-ES controller after only 500 episodes of learning. In comparison, the

224 CHAPTER 7. CONTINUOUS STATES AND ACTIONS

Table 7.5: The results for Cacla with α = β = 10−3 for the training episodes

401 until 500 (final online) and the performance of the greedy policy after 500

episodes of training (final greedy). Averaged over 100 repetitions.

final online

exploration mean se success

σ= 500 956.4 18.7 94 %

σ= 5000 973.9 12.4 92 %

ǫ= 1 29.1 0.2 0 %

ǫ= 0.1 808.8 30.1 56 %

final greedy

exploration mean se success

σ= 500 969.5 15.4 96 %

σ= 5000 981.8 11.0 97 %

ǫ= 1 533.4 34.0 29 %

ǫ= 0.1 840.1 33.1 80 %

best CMA-ES controller tops off at about 850 after 5,000 episodes. The dif-

ferences between σ = 500 and σ = 5000 are not significant. Interestingly,

even the fully random uniform exploration reaches quite reasonable greedy

policies in relatively little time. Naturally, its online performance is poor, be-

cause the policy is random. But the greedy performance is much better than

the performance of CMA-ES after the same number of episodes. The ǫ-greedy

exploration with ǫ = 0.1 additionally reaches quite respectable online perfor-

mance, even though on average one in every ten actions is fully random and

Cacla’s actor can only learn from these exploratory actions.

As mentioned before, in Heidrich-Meisner and Igel (2008) NACwas shown

to reach a perfect median performance of 1,000 after somewhere between

3,000 and 4,000 episodes. However, this only occurs if NAC is bootstrapped

on a policy that is already close to the optimal policy. In other words, consid-

erable domain knowledge is needed to get this level of performance. In con-

trast, we put no domain knowledge into the Cacla algorithm and its initial

controller was initialized with uniformly random parameters between −0.3
and 0.3. Additionally, no attempt was made to optimize this initial range

for the parameters. However, for any reasonable exploration—if we consider

fully random exploration as unreasonable, because it is too destructive—

Cacla already reaches success percentages larger than 50% within the first

500 episodes for both its online and offline performance. As mentioned, this

implies that the median performance at this time is already perfect, at 1,000.

We did not investigate how fast the success percentage on average surpasses

50%, but the high percentages of the Gaussian exploration versions indicate

7.6. EXPERIMENTS 225

that this even happens a lot sooner than after 500 episodes.

This experiment indicates that the relatively simple Cacla algorithm is

very effective at solving difficult continuous reinforcement learning problems.

In other work, similar results have been published that show that natural

gradient and evolutionary algorithms typically need a few thousand episodes

to learn a good policy on the double pole, but also on the single pole task

(see e.g., Sehnke et al., 2010). Naturally, this does not mean that the other

approaches have no meaningful applications in reinforcement learning. For

instance, we have only tested Cacla on MDPs. If the state space is partially

observable, it may be beneficial to use a recurrent neural network. Then it is

still possible to use Cacla to train such a network, for instance with real-time

recurrent learning (Williams and Zipser, 1989) or backpropagation through

time (Werbos, 2002). However, in such cases direct parameter search may be

beneficial. Which method is then preferred is a matter of future research.

7.6.7 Multi-Actor Cacla

The actor of Cacla can potentially get stuck in a local optimum. We conducted

some preliminary experiments where we used Cacla with multiple actors that

were all initialized differently. Then, one can consider these actors as actions

and we use a discrete selector algorithm to choose which actor to use. When

an actor is selected, this actor explores and potentially updates, just like in

ordinary Cacla.

Here we use QV-learning as the selector, since the state value function

that is needed for QV-learning is already present anyway in the critic of Ca-

cla. The additional learning rate for the action values—or in this case actor

values is a more appropriate term—was also set to 10−3. Any other discrete

algorithm can be considered for the selector.

We conducted a small test on the double pole, using four actors and ǫ-

greedy exploration with ǫ= 0.1 for both QV-learning and Cacla. This implies

that first QV-learning chooses the actor it deems best with probability 0.9 or

a random actor with probability 0.1. Then, the actor that is chosen performs

the action it outputs with probability 0.9 and a random uniform action from

[−50N,50N] otherwise. If this random action results in a positive temporal-

difference error for the value function, the actor is updated towards this ac-

tion. The same value function was used as critic for all four actors and for the

update by QV-learning.

The results for this QV-Cacla algorithm are shown in Table 7.6. Since

we made no attempt to tune the algorithm, the results are very promising.

The success rate of the online policy is lower that than of Cacla with ǫ-greedy

exploration, but we note that since QV-Cacla explores first in the selector and

then in the actor, this is to be expected. In one in every ten actions an actor

that has only rarely been updated will be chosen and additionally, even when

226 CHAPTER 7. CONTINUOUS STATES AND ACTIONS

Table 7.6: The results for QV-Cacla with α = β = 10−3 for the training

episodes 401 until 500 (final online) and the performance of the greedy policy

after 500 episodes of training (final greedy). Averaged over 100 repetitions.

final online

exploration mean se success

ǫ= 0.1 814.8 26.1 25 %

final greedy

exploration mean se success

ǫ= 0.1 905.5 24.6 86 %

the best actor is chosen then in one in ten of those time steps a uniformly

random action is selected by the actor. This causes more noise than just the

ǫ-greedy policy followed by ordinary Cacla. In that light it is all the more

impressive that the mean reward, which equals the average number of steps

per episode, is actually slightly better for QV-Cacla.

As for the offline performance, 86 out of the 100 runs were successful,

compared to 80 out of 100 for the similar Cacla version. More impressively,

the average number of steps per episode has gone up from 840.1 to 905.5.

The difference is not statistically significant, but recall that we have made

no attempt to tune any of the parameters of QV-Cacla to improve on the per-

formance. All in all, the results look promising, although further analyses

and more extensive tests of these multi-actor algorithms are needed to reach

definitive conclusions. This will be left for future research.

7.7 Conclusion

We will conclude this chapter with a short summary and some pointers to

future work.

7.7.1 Summary

We have discussed the existing relevant literature for reinforcement learning

in continuous spaces. This includes policy-gradient algorithms and evolution-

ary algorithms, which can be considered the current state of the art for con-

tinuous reinforcement learning. The advantage of these methods is that they

can be applied directly to problems where the action space is also continuous.

For problems with a discrete action space, we have discussed how to ex-

tend the temporal-difference algorithms that were described in Chapter 5

with function approximation. We discussed linear and non-linear function

approximation and have tested a neural network approach on the mountain

7.7. CONCLUSION 227

car problem. Except for the surprising good performance of Acla, all algo-

rithms were slightly worse than when a simple discretized state space was

used, as in Chapter 5. This indicates a first method to deal with continuous

spaces: discretize the space and find out if the algorithm of choice performs

desirably.

As the state spaces become larger, discretizing these can cause prohibitively

large state spaces, or too coarse a discretization to result in good performance.

If the action space is small enough, still the temporal-difference algorithms

from Chapter 5 can be used with fairly good results. However, if the action

space becomes larger it can be better to resort to other methods.

For continuous and large ordinal action spaces, the continuous actor critic

learning automaton (Cacla) algorithm was introduced. This algorithm was

shown to be competitive to the discrete algorithms even on the mountain car,

where there are only three available actions. On the cart pole problem, it

eventually performed better than all other algorithms and Acla learned good

online policies slightly faster.

Another advantage of Cacla in large ordinal action spaces is that it uses

the underlying continuous space to learn from. This is an advantage if the set

of actions that can actually be used changes, for instance when switching from

a simulation to an actual plant, or when one of the available actions becomes

unavailable due to a technical defect. We tested this by removing different

sets of actions from the cart pole problem. The discrete algorithms always

experienced a set back in performance and this set back was the largest when

actions were removed that were used the most often in successful policies.

Unfortunately, in real life this will often be the actions that will suffer the

most wear and tear and therefore may be the first actions to become unavail-

able due to this. In contrast, Cacla’s performance was barely affected by the

removal of actions. This shows that Cacla is very robust to such changes.

Incidentally, this is not a feature of Cacla per se, but will hold for any algo-

rithm that learns on the underlying continuous action space, rather than to

consider the available actions from an ordinal space as qualitatively different

actions, as discrete algorithms tend to do.

Finally, Cacla was compared to a state of the art evolutionary method

called Covariance Matrix Adaptation Evolution Strategy (CMA-ES) (Hansen

et al., 2003; Jiang et al., 2008; Heidrich-Meisner and Igel, 2008) on the double

pole problem. This problem is much harder than the single pole problem. In

earlier work, CMA-ES was compared favorably to other methods that can

be used for reinforcement learning, such as Natural Evolutionary Strategies

(NES) (Wierstra et al., 2008; Sun et al., 2009) and Natural Actor Critic (NAC)

(Peters and Schaal, 2008a; Bhatnagar et al., 2009). Our results show that

Cacla reaches much higher performance levels in a much smaller number

of episodes. A reason for this is that Cacla is an online temporal-difference

method, whereas the other methods need full episodes to deduce the direction

228 CHAPTER 7. CONTINUOUS STATES AND ACTIONS

to update the policy on. In other words, Cacla uses the available experiences

more effectively.

7.7.2 Future Work

In order to keep things simple, we have not extended Cacla with numerous

possible improvements. These improvements were not necessary to allow the

algorithm to perform better than the current state of the art on the double

pole task, but for other large problems it may be beneficial to use the exten-

sions we will mention here.

First, Cacla can be extended with eligibility traces. For instance, the value

function can be learned with TD(λ) or the new variants TDC and GTD2 (Sut-

ton et al., 2009), extended with eligibility traces. The actor can also be ex-

tended with traces that update the actor’s output is a certain state a little bit

towards the action that was taken there if positive TD errors are observed

later, but it is unclear whether this actually improves the performance.

Second, and perhaps more effective, Cacla can be extended with batch up-

dates that make more efficient use of the experiences that were observed in

the past. For instance, (incremental) least-squares temporal-difference learn-

ing (Bradtke and Barto, 1996; Boyan, 2002; Geramifard et al., 2006) or a

variant of (neural) fitted Q-iteration (Ernst et al., 2005; Riedmiller, 2005) can

be used.

Third, Cacla can be extended with multiple actors, as in the QV-Cacla al-

gorithm we introduced in Section 7.6.7. The preliminary results there look

promising, but still a lot of work has to be done to discover with which dis-

crete algorithm this multi-actor Cacla approach works best and how robust

it is to the choice of parameters. This latter point is relevant, since the addi-

tional selector will usually introduce at least one additional learning rate and

one additional exploration parameter. However, even without tuning these

parameters we observed promising results.

Unfortunately, no convergence guarantees are known at this time for Ca-

cla. Although we have mentioned that Cacla performs hill climbing in the

action space and that it can get stuck in a local optimum, there is no guar-

antee that a local optimum in fact is found. Cacla can converge towards good

actions quickly, regardless of how small the differences in the value space

are, because it uses only the sign of the temporal-difference error rather than

its size. However, we have shown in Chapter 5 that this cause Acla to con-

verge towards suboptimal policies. This will also hold for Cacla. However,

this is not too limiting on the applicability and the practical use of the algo-

rithm, since in the problems where Cacla works best very limited convergence

guarantees can be given anyway. The most advanced results we know of pose

restrictions such as a fixed policy and a specific interpolating function approx-

imation scheme for the actor (Szepesvári and Smart, 2004; Antos et al., 2008).

7.7. CONCLUSION 229

It will be interesting future work to determine under which conditions Cacla

can be guaranteed to find good policies and under which conditions Cacla will

perhaps perform poorly.

CHAPTER 8

DISCUSSION

In this chapter, we will discuss our general findings and give some pointers

for future research. Additionally, we summarize our conclusions with some

rules of thumb that can be used to find a good algorithm for many problems,

without having to try all possible algorithms in all possible settings or having

to select an algorithm without any guidance. First we give a summary of the

previous chapters.

8.1 Summary

In Chapters 1 and 2 we introduce and discuss the relevant general concepts

for this dissertation, such as the formal definitions of states, actions, rewards

and agents. Additionally, we discuss some well-known algorithms, such as

value iteration, Q-learning and Sarsa.

In Chapter 3 we show that the value of the maximal element from any

set of random values will be a positively biased estimate for the maximal

expected value of that set. This bias can be prevented by using a second

set of estimates. The resulting double estimator approach can experience a

negative bias, but the size of the bias is often smaller.

In Chapter 4 we show that Q-learning suffers from the positive bias that

is discussed in Chapter 3. In stochastic problems, Q-learning can suffer from

large overestimations of the action values and this may lead to poor policies.

This problem is mitigated somewhat by Double Q-learning, that uses two ac-

tion value functions and the double estimator approach to estimate the value

of the best action in the next state. Although Double Q-learning can under-

estimate the action values, it can find good solutions much faster in some

stochastic settings.

In Chapter 5 we look at other alternatives to Q-learning. We discuss Ex-

pected Sarsa, which is shown to be an improvement over Sarsa because it

has a lower variance in its updates. Expected Sarsa is generalized to Gen-

eral Q-learning. Q-learning, Sarsa and Expected Sarsa can all be considered

special cases of this algorithm that uses a behavior policy and an additional

estimation policy. We prove convergence of General Q-learning to the opti-

mal policy in the limit under standard conditions. Another algorithm named

QV-learning is discussed and we show that this algorithm can sometimes

reach good policies faster than Q-learning and Sarsa. Finally, we discuss

actor-critic methods and the actor critic learning automaton (Acla) algorithm.

231

232 CHAPTER 8. DISCUSSION

All the algorithms are compared on various problems and we can conclude

that for different problems different algorithms perform best. In general,

Q-learning performs well on deterministic problems and Double Q-learning

performs well on many stochastic settings. QV-learning is one of the more

consistent algorithms and Expected Sarsa also performs well in many occa-

sions.

In Chapter 6 we discuss various ways to combine different reinforcement

learning algorithms in ensembles. In contrast to most earlier work, we con-

sider methods that can be used to combine the policies of the algorithms,

rather than combining the action values. This allows us to construct ensem-

bles that include algorithms that store action values as well as algorithms

that store preference values. Even algorithms that search the policy space

directly or that are based on heuristics can then be added without problems.

We conclude that plurality voting often performs well and because it is easy

to interpret and easy to implement, it therefore can be considered a practical

choice. Interestingly, in at least one case plurality voting is far better than

the ensemble method called policy summation, even though policy summa-

tion has the same bias and a lower variance in its policy. The reason is that

a lower variance in a policy does not imply a better performance, since some-

times some extra noise is needed to break out of poor suboptimal policies.

In Chapter 7 we explain how the previously discussed algorithms can

be applied to problems with continuous state spaces through function ap-

proximation. Additionally, some current state-of-the-art approaches are dis-

cussed, including policy-gradient methods and evolutionary algorithms. Some

of these methods can easily be applied to problems with continuous action

spaces, whereas this is not trivial for the temporal-difference algorithms from

the earlier chapters. We introduce and discuss the model-free temporal-difference

learning algorithm called continuous actor-critic learning automaton (Cacla)

and show that it is very competitive in the problems we test it on. We consider

Cacla to be a very practical choice, since it performs well, computes fast, is

easy to implement and easy to interpret. The only drawback is that it can get

stuck in local optima in the action space, but this can be mitigated somewhat

if the algorithm is extended with multiple actors and an additional learning

algorithm to choose between these actors. For instance, if QV-learning is used,

the resulting QV-Cacla algorithm needs two additional parameters, but it of-

ten reaches better performance levels with the same number of experiences

than Cacla and it is more likely to avoid most of the local optima.

8.2 Conclusions

In the introduction of this dissertation, we state that one of the reasons that

we mainly look at model-free temporal-difference methods is that these al-

8.2. CONCLUSIONS 233

gorithms are fast, easy, widely applicable and that they often perform well.

Indeed, the algorithms we discussed all only need a couple of lines of code to

implement and their computation speed depends only linearly on the size of

the state space. Also, we have seen some good performances on a variety of

problems.

However, a major issue is that there are many different methods and it is

apparently very problem-dependent which algorithm works best in a particu-

lar setting. We have not tuned any of the algorithms specifically for any of the

problems we tested them on and we have not incorporated any domain know-

ledge. Therefore, the differences in performance are most likely structural

differences between the algorithms. As such, we cannot really say that one

algorithm is truly better than another in general, even if theoretical analyses

seem to indicate this.

For instance, in Section 5.5 we compared Q-learning, Sarsa, Expected

Sarsa and QV-learning on two very simple problems. On the first problem,

QV-learning is better than Expected Sarsa, which is better than Sarsa, while

Q-learning performs worst. On the second problem, the ordering of the algo-

rithms is exactly opposite. In these small problems we can analyze why this

is the case. As it turns out, the first problem favors algorithms that under-

estimate the action values, while the second problem favors algorithms that

overestimate the action values. However, it may not always be clear before-

hand what type of algorithms are preferred for a given problem, especially if

the problem is complex and hard to analyze or if it is even not known before-

hand what the exact characteristics of the environment are. If in such cases

an algorithm is selected based on general theoretic guarantees under slightly

different assumptions or based on its performance on an unrelated different

problem, there is a good chance that the problem has some characteristics

that do not match well with the selected algorithm.

Although fairly general convergence proofs exist for some reinforcement

learning algorithms, there are still problems where the proofs do not hold,

or where the guarantees these proofs offer are not of enough practical worth.

There are ways to solve these issues, at least partially. Below we give some

general rules of thumb. These rules can be used to find a reasonable algo-

rithm for a given problem. Additionally, in principle these rules could them-

selves be incorporated into a meta-algorithm that first determines the type

of MDP and then selects the best available algorithm for that problem. Such

a meta-algorithm could even switch algorithms during operation and learn

which learning algorithm works best in which situation. This could prove to

be an important step towards a generally applicable learning algorithm that

performs well on almost any problem.

234 CHAPTER 8. DISCUSSION

8.3 Rules of Thumb

In this section we give some pointers for whenwhich algorithm shuold be used

from the algorithms we have discussed. This does not mean there is a guar-

antee that the recommended algorithm will perform better than all the other

available options, only that we have some evidence that indicates that it is a

reasonable choice for this type of problem. Of course, if there is any domain

knowledge available, one should try to incorporate as much of this knowledge

beforehand. Here we will assume only general properties are known.

As mentioned above, these rules can be used to find a reasonable algo-

rithm for a particular problem, or they could be incorporated into a meta-

algorithm. The rules are unavoidably subjective and biased on the experience

of the author with these algorithms. However, we believe it is better to have

some indications than none at all and these rules can be considered a first

step that can be fine-tuned by future research.

We will divide the possible problems one may encounter in a coarse man-

ner. Other divisions are possible, but this can serve as something of a guide-

line in order to easily choose a fairly good algorithm for any problem. We

believe the algorithms that we recommend will perform well enough to be

considered a good ‘default’ option.

8.3.1 Problems with Small State Spaces

If the problem is very simple and can likely be modeled easily or if a model

is already known, it can be beneficial to use a model-based algorithm such as

value iteration. Possibly, some interaction with the environment can be used

to first construct the model if it is not known and then the optimal policy can

be found exactly by dynamic programming or by a planning algorithm. For

the rest of this section we assume that the environment is either (partially)

unknown, or that it is too complex to solve with an exact dynamic program-

ming approach.

When the state and action spaces are both fairly small and the MDP is

deterministic, one can use Q-learning with a learning rate equal to one. If the

MDP is not deterministic, but the stochasticity is quite low, Q-learning with

a slightly lower learning rate is probably still a good choice.

For a small stochastic MDP, the first choice is Double Q-learning. If it is

unknown whether the MDP is stochastic or not, and this cannot reliably be

checked beforehand, QV-learning or Expected Sarsa are fairly robust options.

It is also a good idea to use one of these latter on-policy algorithms if too much

exploration during training can result in actions that are costly, for instance

because the experiments are done on a physical system that can get damaged

if it is not controlled properly. If there is a safe way to solve a problem and

there is a more dangerous way that is faster, on-policy algorithms are more

8.3. RULES OF THUMB 235

likely to find the first variant, while off-policy algorithms such as Q-learning

are more likely to find the second variant.

All the algorithms above can be extended with eligibility traces to speed

up learning. From the literature, it seems that values between λ = 0.8 and

λ= 0.9 usually work well (see for instance Sutton and Barto, 1998). Further-

more, all of the suggested algorithms can be replaced with a plurality voting

ensemble that contains at least that algorithm. To be effective, an ensemble

should consist of different algorithms. This can mean that algorithms with

different update rules such as Q-learning and Sarsa are used, or it can mean

different variants of the same algorithm are used, such as General Q-learning

with different estimation policies. Also one can consider making an ensemble

with multiple versions of the same algorithm with different discount and el-

igibility parameters. If the action space is large compared to the number of

included algorithms it is probably better to use a policy summation ensemble

than a plurality voting ensemble, although this needs to be verified empiri-

cally in future research.

8.3.2 Problems with Large State Spaces and Small Action

Spaces

In problems with large or continuous state spaces, some form of function ap-

proximation should be used. If the state space can probably be clustered or

discretized while the general problem and solution structures are likely to

stay intact, the same algorithms can be used on this discretized state space

as discussed in the previous section.

If generalization across the state space is important and it is likely that

optimal values and optimal policies change smoothly for small differences in

states, it is probably better to use a smooth function approximation. Then, for

deterministic MDPs we suggest to use Q-learning or Greedy-GQ (Maei et al.,

2010). Greedy-GQ can be transformed into a double estimator variant that we

call Greedy General Double Q-learning, or Greedy-GDQ. This variant is prob-

ably better in stochastic MDPs, although an extensive empirical verification

of this is left for future research. A relatively safe option if little is known

about the problem at hand is to use QV-learning with a gradient temporal-

difference algorithm for the state value, such as TDC or GTD2 (Sutton et al.,

2009).

8.3.3 Problems with Large State and Action Spaces

If the action space is large, but it consists of a large number of qualitatively

different actions, we call this a nominal action space. Then, the best option is

to use a policy summation ensemble with a relatively large number of agents.

236 CHAPTER 8. DISCUSSION

Alternatively, one can try to find clusters in the action space and use any of

the relevant methods from the former subsections.

If the action space is large and discrete, but the actions can be interpreted

as points on a (possibly multi-dimensional) continuous underlying space, we

call this an ordinal action space. Then, it is probably best to use a continuous-

action algorithm on the underlying space. The output of the algorithm can

then be rounded to the nearest available action. A good algorithm for con-

tinuous spaces is the Cacla algorithm. If the action space is likely to contain

many locally optimal policies, it is a good idea to extend Cacla with multiple

actors and use an additional selection algorithm, as in QV-Cacla. The value

estimates in Cacla and QV-Cacla can benefit from eligibility traces for faster

convergence.

For truly continuous action spaces the same suggestions hold as in ordinal

action spaces, since we treat these spaces in a similar way. If it is known

beforehand that good policies contain many discontinuities, it may be better

to discretize the action space and to use a discrete action algorithm on the

discretized space. For this, tile coding or adaptive tile coding (Sherstov and

Stone, 2005) can be considered.

8.3.4 In Summary

The rules of thumb we discussed are summarized in Table 8.1. The abbrevi-

ations used in the table can be found in Table 8.2. Naturally, in most specific

cases better algorithms exist than the model-free temporal-difference algo-

rithms that are suggested here. We have seen a notable example in Chapter

7, where it was shown that the Acla algorithm performs much better than

all other algorithms on the continuous mountain car task. However, the al-

gorithms that are shown in the table have been shown to perform well on a

fairly large number of different settings.

For many types of problems, Table 8.1 lists several alternatives. For in-

stance, the first line indicates that in an MDP with a small (indicated by ‘s’)

state space, a small (‘s’) action space and deterministic (‘dt.’) transitions and

rewards it is advised to use either Q-learning (‘Q’) or plurality voting with

Q-learning, Expected Sarsa, QV-learning and perhaps other algorithms (‘PV

with Q, ES, QV, . . . ’). In problems with large or continuous state spaces (‘L’), it

is advised to use some form of function approximation. This is indicated with

the letters FA in the subscript of the algorithms. Which type of function ap-

proximation is useful is problem dependent. For instance, if the space is likely

to contain many discontinuities it is advised to use tile coding rather than a

smooth function approximator, as discussed earlier. These recommendations

are not shown in the table to avoid making it too large and cluttered.

8.4. CONCLUSION 237

Table 8.1: Suggestions for which model-free temporal-difference algorithms

to use in different problem classes. XFA indicates that algorithm X should be

combined with some form of function approximation.

S A P,R Recommended algorithm

s s dt. Q or PV with Q, ES, QV, . . .

s s st. DQ or PV with DQ, ES, QV, . . .

s s - QV or ES or PV with Q, DQ, ES, QV, . . .

L s dt. GQFA

L s st. GDQFA or QVFA with TDC

L s - QVFA with TDC

L N all PS with QFA, DQFA, ESFA, QVFA, . . .

L O all Cacla or QV-Cacla

L C all Cacla or QV-Cacla

8.4 Conclusion

We can expect the suggestions from the former section to become outdated

as research continues and further insights are obtain and better algorithms

are discovered. If we are very lucky, one day Table 8.1 can be replaced with

a single line that states an algorithm that works well in all possible settings.

We think it is most likely that such an algorithm would be a meta-algorithm

that can choose between different algorithms that are good in different do-

mains. Such an algorithm is especially useful if very little is known about the

problem at hand.

A promising approach—and perhaps one of the most important concrete

future research steps that can be conducted based on this perspective—is the

extension of ensemble algorithms to include weights on the constituting algo-

rithms. These weighted ensembles were shortly discussed in Section 6.6. The

idea is to construct an ensemble with many potentially good algorithms—and

possibly a fair number of poor ones—and to let the ensemble automatically

weigh the algorithms based on their contributions. The resulting ensemble

should eventually reach a performance level that is at least as good as the

best individual algorithm that was included.

The ensemble methods we discussed are fairly light in terms of their com-

putational overhead and the complexity of such an approach will be the same

as the complexity of the slowest algorithm that is included. This implies that

the ensemble’s speed can be linear in the size of the observations if only

temporal-difference methods and other similarly fast algorithms are used.

The selection process that learns the proper weights for the different algo-

rithms might cause a slight overhead in terms of required experiences before

good policies are found, but the results in Chapter 6 indicate that this over-

238 CHAPTER 8. DISCUSSION

Table 8.2: Abbreviations used in Table 8.1.

MDP Symbol

State space S

Action space A

State transition function P

Reward distribution function R

Property Symbol

Small space s

Large or continuous state space L

Large nominal action space N

Large ordinal action space O

Continuous action space C

Deterministic MDP dt.

Stochastic MDP st.

Unknown -

Algorithm Symbol

Q-learning Q

Double Q-learning DQ

Sarsa S

Expected Sarsa ES

General Q-learning GQ

General Double Q-learning GDQ

QV-learning QV

Plurality voting ensemble PV

Policy summation ensemble PA

Algorithm X with function approximation XFA

head is very light as well. In any case, a small overhead is a small price to

pay to avoid the chance of selecting an algorithm that is far below optimal for

the problem that you want to solve.

In the meantime, this dissertation can serve as a step towards better un-

derstanding of the algorithms that we discussed. Already, the existing rein-

forcement learning algorithms that we discussed can solve many interesting

problems if they are applied correctly. As such, we feel the focus of the re-

search field should not lie only on performance, but also on practical usability

of the algorithms. We hope this dissertation can help towards this goal by

indicating some pitfalls and pointing towards promising directions for future

research.

PUBLICATIONS BY THE AUTHOR

This section lists the publications by the author and gives a short explana-

tion of how these publications correspond to various parts of the disserta-

tion. Many sections of this dissertation are either completely new or only

very lightly based on previously published work. The sections that are more

heavily inspired or based on earlier publications are discussed below.

The single estimator and the double estimator from Sections 3.3 and 3.4

are described in condensed form in van Hasselt (2010). This paper mentions

the overestimation of Q-learning—which is the topic of Chapter 3—and it

introduces Double Q-learning. There is significant overlap between the paper

and Sections 4.4 and 4.5.

Expected Sarsa was rigorously compared to Q-learning and Sarsa in van

Seijen et al. (2009). Our discussion in Chapter 5 is based loosely on this paper

and includes the variance comparison to Sarsa that was published therein. In

Chapter 5 we shortly mention the possibility for other algorithms related to

QV-learning. These algorithms were investigated in Wiering and van Hasselt

(2009). Acla was introduced in Wiering and van Hasselt (2007), along with

QV-learning that had been proposed earlier (Wiering, 2005). The version of

Acla in Chapter 5 is a slightly simplified and improved version of the original

algorithm that was first published in van Hasselt and Wiering (2007a).

Chapter 6 is based on some of the ideas inWiering and van Hasselt (2008),

but greatly extends this paper with a better grounding in voting theory, more

ensemble methods, a more thorough analysis and more pointers to relevant

previous work.

The Cacla algorithm that we discussed in Chapter 7 was first introduced

in van Hasselt and Wiering (2007a). In that paper it was shown that Cacla

works better than a few other continuous algorithms and that it is beneficial

for the performance to use the sign of the temporal-difference error, rather

than its size. Both Cacla and Acla are compared to other discrete algorithms

on the mountain car and the cart pole in van Hasselt and Wiering (2009). The

results on these tasks that are shown in section 7.6 are taken from this paper.

QV-Cacla and the results on the double pole task are new to this dissertation.

A related paper of which we barely used any material shows the conver-

gence to the optimal policy of a temporal-difference method where the actor

can use a model to look one step in the future (van Hasselt and Wiering,

2007b). We left this proof out of the dissertation, because we mainly focus on

model-free approaches.

Finally, there are two papers of which we included no material, because

239

240 PUBLICATIONS BY THE AUTHOR

we feel the subject is largely orthogonal. Both these papers discuss the use of

learning mechanisms to adapt so-called serious games to the player (Westra

et al., 2009a,b). For instance, this can be usefully applied to a training simu-

lation, to adapt the difficulty of the training to the level of the trainee, such

that the training has the most positive effect on the learning experience.

H. P. van Hasselt. Double Q-Learning. In Advances in Neural Information

Processing Systems, volume 23. The MIT Press, 2010.

H. P. van Hasselt and M. A. Wiering. Using continuous action spaces to solve

discrete problems. In Proceedings of the International Joint Conference on

Neural Networks (IJCNN 2009), pages 1149–1156, 2009.

J. Westra, H. P. van Hasselt, F. Dignum, and V. Dignum. Adaptive serious

games using agent organizations. In Agents for Games and Simulations,

Trends in Techniques, Concepts and Design, Proceedings of the First In-

ternational Workshop on Agents for Games and Simulations (AGS-2009),

pages 206–220, 2009a.

H. van Seijen, H. P. van Hasselt, S. Whiteson, and M. A. Wiering. A the-

oretical and empirical analysis of Expected Sarsa. In Proceedings of the

IEEE International Symposium on Adaptive Dynamic Programming and

Reinforcement Learning, pages 177–184, 2009.

M. A. Wiering and H. P. van Hasselt. The QV family compared to other re-

inforcement learning algorithms. In Proceedings of the IEEE International

Symposium on Adaptive Dynamic Programming and Reinforcement Learn-

ing, pages 101–108, 2009.

J. Westra, H. P. van Hasselt, V. Dignum, and F. Dignum. On-line adapting

games using agent organizations. In Proceedings of the IEEE Symposium

On Computational Intelligence and Games (CIG-08), pages 243–250. IEEE,

2009b.

M. A. Wiering and H. P. van Hasselt. Ensemble algorithms in reinforcement

learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 38

(4):930–936, 2008.

M. A. Wiering and H. P. van Hasselt. Two novel on-policy reinforcement

learning algorithms based on TD(λ)-methods. In Proceedings of the IEEE

International Symposium on Adaptive Dynamic Programming and Rein-

forcement Learning (ADPRL-07), pages 280–287, 2007.

H. P. van Hasselt and M. A. Wiering. Reinforcement learning in continu-

ous action spaces. In Proceedings of the IEEE International Symposium

on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL-

07), pages 272–279, 2007a.

PUBLICATIONS BY THE AUTHOR 241

H. P. van Hasselt and M. A. Wiering. Convergence of model-based temporal

difference learning for control. In Proceedings of the IEEE International

Symposium on Adaptive Dynamic Programming and Reinforcement Learn-

ing (ADPRL-07), pages 60–67, 2007b.

SIKS DISSERTATIONS

1998-1 Johan van den Akker (CWI) DEGAS - An Active, Temporal Database of Autonomous Objects

1998-2 Floris Wiesman (UM) Information Retrieval by Graphically Browsing Meta-Information

1998-3 Ans Steuten (TUD) A Contribution to the Linguistic Analysis of Business Conversations within

the Language/Action Perspective

1998-4 Dennis Breuker (UM) Memory versus Search in Games

1998-5 E.W. Oskamp (RUL) Computerondersteuning bij Straftoemeting

1999-1 Mark Sloof (VU) Physiology of Quality Change Modelling; Automated modelling of Quality

Change of Agricultural Products

1999-2 Rob Potharst (EUR) Classification using decision trees and neural nets

1999-3 Don Beal (UM) The Nature of Minimax Search

1999-4 Jacques Penders (UM) The practical Art of Moving Physical Objects

1999-5 Aldo de Moor (KUB) Empowering Communities: A Method for the Legitimate User-Driven

Specification of Network Information Systems

1999-6 Niek J.E. Wijngaards (VU) Re-design of compositional systems

1999-7 David Spelt (UT) Verification support for object database design

1999-8 Jacques H.J. Lenting (UM) Informed Gambling: Conception and Analysis of a Multi-Agent

Mechanism for Discrete Reallocation.

2000-1 Frank Niessink (VU) Perspectives on Improving Software Maintenance

2000-2 Koen Holtman (TUE) Prototyping of CMS Storage Management

2000-3 Carolien M.T. Metselaar (UVA) Sociaal-organisatorische gevolgen van kennistechnologie; een

procesbenadering en actorperspectief.

2000-4 Geert de Haan (VU) ETAG, A Formal Model of Competence Knowledge for User Interface De-

sign

2000-5 Ruud van der Pol (UM) Knowledge-based Query Formulation in Information Retrieval.

2000-6 Rogier van Eijk (UU) Programming Languages for Agent Communication

2000-7 Niels Peek (UU) Decision-theoretic Planning of Clinical Patient Management

2000-8 Veerle Coup (EUR) Sensitivity Analyis of Decision-Theoretic Networks

2000-9 Florian Waas (CWI) Principles of Probabilistic Query Optimization

2000-10 Niels Nes (CWI) Image Database Management System Design Considerations, Algorithms and

Architecture

2000-11 Jonas Karlsson (CWI) Scalable Distributed Data Structures for Database Management

2001-1 Silja Renooij (UU) Qualitative Approaches to Quantifying Probabilistic Networks

2001-2 Koen Hindriks (UU) Agent Programming Languages: Programming with Mental Models

2001-3 Maarten van Someren (UvA) Learning as problem solving

2001-4 Evgueni Smirnov (UM) Conjunctive and Disjunctive Version Spaces with Instance-Based Bound-

ary Sets

2001-5 Jacco van Ossenbruggen (VU) Processing Structured Hypermedia: A Matter of Style

243

244 SIKS DISSERTATIONS

2001-6 Martijn van Welie (VU) Task-based User Interface Design

2001-7 Bastiaan Schonhage (VU) Diva: Architectural Perspectives on Information Visualization

2001-8 Pascal van Eck (VU) A Compositional Semantic Structure for Multi-Agent Systems Dynamics.

2001-9 Pieter Jan ’t Hoen (RUL) Towards Distributed Development of Large Object-Oriented Models,

Views of Packages as Classes

2001-10 Maarten Sierhuis (UvA) Modeling and Simulating Work Practice BRAHMS: a multiagent

modeling and simulation language for work practice analysis and design

2001-11 Tom M. van Engers (VUA) Knowledge Management: The Role of Mental Models in Business

Systems Design

2002-01 Nico Lassing (VU) Architecture-Level Modifiability Analysis

2002-02 Roelof van Zwol (UT) Modelling and searching web-based document collections

2002-03 Henk Ernst Blok (UT) Database Optimization Aspects for Information Retrieval

2002-04 Juan Roberto Castelo Valdueza (UU) The Discrete Acyclic Digraph Markov Model in Data

Mining

2002-05 Radu Serban (VU) The Private Cyberspace Modeling Electronic Environments inhabited by

Privacy-concerned Agents

2002-06 Laurens Mommers (UL) Applied legal epistemology; Building a knowledge-based ontology of

the legal domain

2002-07 Peter Boncz (CWI) Monet: A Next-Generation DBMS Kernel For Query-Intensive Applications

2002-08 Jaap Gordijn (VU) Value Based Requirements Engineering: Exploring Innovative E-Commerce

Ideas

2002-09 Willem-Jan van den Heuvel (KUB) Integrating Modern Business Applications with Objecti-

fied Legacy Systems

2002-10 Brian Sheppard (UM) Towards Perfect Play of Scrabble

2002-11 Wouter C.A. Wijngaards (VU) Agent Based Modelling of Dynamics: Biological and Organisa-

tional Applications

2002-12 Albrecht Schmidt (Uva) Processing XML in Database Systems

2002-13 Hongjing Wu (TUE) A Reference Architecture for Adaptive Hypermedia Applications

2002-14 Wieke de Vries (UU) Agent Interaction: Abstract Approaches to Modelling, Programming and

Verifying Multi-Agent Systems

2002-15 Rik Eshuis (UT) Semantics and Verification of UML Activity Diagrams for Workflow Modelling

2002-16 Pieter van Langen (VU) The Anatomy of Design: Foundations, Models and Applications

2002-17 Stefan Manegold (UVA) Understanding, Modeling, and Improving Main-Memory Database

Performance

2003-01 Heiner Stuckenschmidt (VU) Ontology-Based Information Sharing in Weakly Structured En-

vironments

2003-02 Jan Broersen (VU) Modal Action Logics for Reasoning About Reactive Systems

2003-03 Martijn Schuemie (TUD) Human-Computer Interaction and Presence in Virtual Reality Ex-

posure Therapy

2003-04 Milan Petkovic (UT) Content-Based Video Retrieval Supported by Database Technology

2003-05 Jos Lehmann (UVA) Causation in Artificial Intelligence and Law - A modelling approach

2003-06 Boris van Schooten (UT) Development and specification of virtual environments

2003-07 Machiel Jansen (UvA) Formal Explorations of Knowledge Intensive Tasks

SIKS DISSERTATIONS 245

2003-08 Yongping Ran (UM) Repair Based Scheduling

2003-09 Rens Kortmann (UM) The resolution of visually guided behaviour

2003-10 Andreas Lincke (UvT) Electronic Business Negotiation: Some experimental studies on the in-

teraction between medium, innovation context and culture

2003-11 SimonKeizer (UT) Reasoning under Uncertainty in Natural Language Dialogue using Bayesian

Networks

2003-12 Roeland Ordelman (UT) Dutch speech recognition in multimedia information retrieval

2003-13 Jeroen Donkers (UM) Nosce Hostem - Searching with Opponent Models

2003-14 Stijn Hoppenbrouwers (KUN) Freezing Language: Conceptualisation Processes across ICT-

Supported Organisations

2003-15 Mathijs de Weerdt (TUD) Plan Merging in Multi-Agent Systems

2003-16 Menzo Windhouwer (CWI) Feature Grammar Systems - Incremental Maintenance of Indexes

to Digital Media Warehouses

2003-17 David Jansen (UT) Extensions of Statecharts with Probability, Time, and Stochastic Timing

2003-18 Levente Kocsis (UM) Learning Search Decisions

2004-01 Virginia Dignum (UU) A Model for Organizational Interaction: Based on Agents, Founded in

Logic

2004-02 Lai Xu (UvT) Monitoring Multi-party Contracts for E-business

2004-03 Perry Groot (VU) A Theoretical and Empirical Analysis of Approximation in Symbolic Problem

Solving

2004-04 Chris van Aart (UVA) Organizational Principles for Multi-Agent Architectures

2004-05 Viara Popova (EUR) Knowledge discovery and monotonicity

2004-06 Bart-Jan Hommes (TUD) The Evaluation of Business Process Modeling Techniques

2004-07 Elise Boltjes (UM) Voorbeeldig onderwijs; voorbeeldgestuurd onderwijs, een opstap naar ab-

stract denken, vooral voor meisjes

2004-08 Joop Verbeek (UM) Politie en de Nieuwe Internationale Informatiemarkt, Grensregionale poli-

tiële gegevensuitwisseling en digitale expertise

2004-09 Martin Caminada (VU) For the Sake of the Argument; explorations into argument-based rea-

soning

2004-10 Suzanne Kabel (UVA) Knowledge-rich indexing of learning-objects

2004-11 Michel Klein (VU) Change Management for Distributed Ontologies

2004-12 The Duy Bui (UT) Creating emotions and facial expressions for embodied agents

2004-13 Wojciech Jamroga (UT) Using Multiple Models of Reality: On Agents who Know how to Play

2004-14 Paul Harrenstein (UU) Logic in Conflict. Logical Explorations in Strategic Equilibrium

2004-15 Arno Knobbe (UU) Multi-Relational Data Mining

2004-16 Federico Divina (VU) Hybrid Genetic Relational Search for Inductive Learning

2004-17 Mark Winands (UM) Informed Search in Complex Games

2004-18 Vania Bessa Machado (UvA) Supporting the Construction of Qualitative Knowledge Models

2004-19 Thijs Westerveld (UT) Using generative probabilistic models for multimedia retrieval

2004-20 Madelon Evers (Nyenrode) Learning from Design: facilitating multidisciplinary design teams

2005-01 Floor Verdenius (UVA) Methodological Aspects of Designing Induction-Based Applications

2005-02 Erik van der Werf (UM)) AI techniques for the game of Go

2005-03 Franc Grootjen (RUN) A Pragmatic Approach to the Conceptualisation of Language

246 SIKS DISSERTATIONS

2005-04 Nirvana Meratnia (UT) Towards Database Support for Moving Object data

2005-05 Gabriel Infante-Lopez (UVA) Two-Level Probabilistic Grammars for Natural Language Pars-

ing

2005-06 Pieter Spronck (UM) Adaptive Game AI

2005-07 Flavius Frasincar (TUE) Hypermedia Presentation Generation for Semantic Web Information

Systems

2005-08 Richard Vdovjak (TUE) A Model-driven Approach for Building Distributed Ontology-based

Web Applications

2005-09 Jeen Broekstra (VU) Storage, Querying and Inferencing for Semantic Web Languages

2005-10 Anders Bouwer (UVA) Explaining Behaviour: Using Qualitative Simulation in Interactive

Learning Environments

2005-11 Elth Ogston (VU) Agent Based Matchmaking and Clustering - A Decentralized Approach to

Search

2005-12 Csaba Boer (EUR) Distributed Simulation in Industry

2005-13 Fred Hamburg (UL) Een Computermodel voor het Ondersteunen van Euthanasiebeslissingen

2005-14 Borys Omelayenko (VU) Web-Service configuration on the Semantic Web; Exploring how se-

mantics meets pragmatics

2005-15 Tibor Bosse (VU) Analysis of the Dynamics of Cognitive Processes

2005-16 Joris Graaumans (UU) Usability of XML Query Languages

2005-17 Boris Shishkov (TUD) Software Specification Based on Re-usable Business Components

2005-18 Danielle Sent (UU) Test-selection strategies for probabilistic networks

2005-19 Michel van Dartel (UM) Situated Representation

2005-20 Cristina Coteanu (UL) Cyber Consumer Law, State of the Art and Perspectives

2005-21 Wijnand Derks (UT) Improving Concurrency and Recovery in Database Systems by Exploiting

Application Semantics

2006-01 Samuil Angelov (TUE) Foundations of B2B Electronic Contracting

2006-02 Cristina Chisalita (VU) Contextual issues in the design and use of information technology in

organizations

2006-03 Noor Christoph (UVA) The role of metacognitive skills in learning to solve problems

2006-04 Marta Sabou (VU) Building Web Service Ontologies

2006-05 Cees Pierik (UU) Validation Techniques for Object-Oriented Proof Outlines

2006-06 Ziv Baida (VU) Software-aided Service Bundling - Intelligent Methods & Tools for Graphical

Service Modeling

2006-07 Marko Smiljanic (UT) XML schemamatching – balancing efficiency and effectiveness by means

of clustering

2006-08 Eelco Herder (UT) Forward, Back and Home Again - Analyzing User Behavior on the Web

2006-09 Mohamed Wahdan (UM) Automatic Formulation of the Auditor’s Opinion

2006-10 Ronny Siebes (VU) Semantic Routing in Peer-to-Peer Systems

2006-11 Joeri van Ruth (UT) Flattening Queries over Nested Data Types

2006-12 Bert Bongers (VU) Interactivation - Towards an e-cology of people, our technological environ-

ment, and the arts

2006-13 Henk-Jan Lebbink (UU) Dialogue and Decision Games for Information Exchanging Agents

2006-14 Johan Hoorn (VU) Software Requirements: Update, Upgrade, Redesign - towards a Theory of

SIKS DISSERTATIONS 247

Requirements Change

2006-15 Rainer Malik (UU) CONAN: Text Mining in the Biomedical Domain

2006-16 Carsten Riggelsen (UU) Approximation Methods for Efficient Learning of Bayesian Networks

2006-17 Stacey Nagata (UU) User Assistance for Multitasking with Interruptions on a Mobile Device

2006-18 Valentin Zhizhkun (UVA) Graph transformation for Natural Language Processing

2006-19 Birna van Riemsdijk (UU) Cognitive Agent Programming: A Semantic Approach

2006-20 Marina Velikova (UvT) Monotone models for prediction in data mining

2006-21 Bas van Gils (RUN) Aptness on the Web

2006-22 Paul de Vrieze (RUN) Fundaments of Adaptive Personalisation

2006-23 Ion Juvina (UU) Development of Cognitive Model for Navigating on the Web

2006-24 Laura Hollink (VU) Semantic Annotation for Retrieval of Visual Resources

2006-25 Madalina Drugan (UU) Conditional log-likelihood MDL and Evolutionary MCMC

2006-26 Vojkan Mihajlovic (UT) Score Region Algebra: A Flexible Framework for Structured Informa-

tion Retrieval

2006-27 Stefano Bocconi (CWI) Vox Populi: generating video documentaries from semantically anno-

tated media repositories

2006-28 Borkur Sigurbjornsson (UVA) Focused Information Access using XML Element Retrieval

2007-01 Kees Leune (UvT) Access Control and Service-Oriented Architectures

2007-02 Wouter Teepe (RUG) Reconciling Information Exchange and Confidentiality: A Formal Ap-

proach

2007-03 Peter Mika (VU) Social Networks and the Semantic Web

2007-04 Jurriaan van Diggelen (UU) Achieving Semantic Interoperability in Multi-agent Systems: a

dialogue-based approach

2007-05 Bart Schermer (UL) Software Agents, Surveillance, and the Right to Privacy: a Legislative

Framework for Agent-enabled Surveillance

2007-06 Gilad Mishne (UVA) Applied Text Analytics for Blogs

2007-07 Natasa Jovanovic (UT) To Whom It May Concern - Addressee Identification in Face-to-Face

Meetings

2007-08 Mark Hoogendoorn (VU) Modeling of Change in Multi-Agent Organizations

2007-09 David Mobach (VU) Agent-Based Mediated Service Negotiation

2007-10 Huib Aldewereld (UU) Autonomy vs. Conformity: an Institutional Perspective on Norms and

Protocols

2007-11 Natalia Stash (TUE) Incorporating Cognitive/Learning Styles in a General-Purpose Adaptive

Hypermedia System

2007-12 Marcel van Gerven (RUN) Bayesian Networks for Clinical Decision Support: A Rational Ap-

proach to Dynamic Decision-Making under Uncertainty

2007-13 Rutger Rienks (UT) Meetings in Smart Environments; Implications of Progressing Technology

2007-14 Niek Bergboer (UM) Context-Based Image Analysis

2007-15 Joyca Lacroix (UM) NIM: a Situated Computational Memory Model

2007-16 Davide Grossi (UU) Designing Invisible Handcuffs. Formal investigations in Institutions and

Organizations for Multi-agent Systems

2007-17 Theodore Charitos (UU) Reasoning with Dynamic Networks in Practice

2007-18 Bart Orriens (UvT) On the development an management of adaptive business collaborations

248 SIKS DISSERTATIONS

2007-19 David Levy (UM) Intimate relationships with artificial partners

2007-20 Slinger Jansen (UU) Customer Configuration Updating in a Software Supply Network

2007-21 Karianne Vermaas (UU) Fast diffusion and broadening use: A research on residential adoption

and usage of broadband internet in the Netherlands between 2001 and 2005

2007-22 Zlatko Zlatev (UT) Goal-oriented design of value and process models from patterns

2007-23 Peter Barna (TUE) Specification of Application Logic in Web Information Systems

2007-24 Georgina Ramírez Camps (CWI) Structural Features in XML Retrieval

2007-25 Joost Schalken (VU) Empirical Investigations in Software Process Improvement

2008-01Katalin Boer-Sorbán (EUR) Agent-Based Simulation of Financial Markets: Amodular,continuous-

time approach

2008-02 Alexei Sharpanskykh (VU) On Computer-Aided Methods for Modeling and Analysis of Orga-

nizations

2008-03 Vera Hollink (UVA) Optimizing hierarchical menus: a usage-based approach

2008-04 Ander de Keijzer (UT) Management of Uncertain Data - towards unattended integration

2008-05 Bela Mutschler (UT) Modeling and simulating causal dependencies on process-aware informa-

tion systems from a cost perspective

2008-06 Arjen Hommersom (RUN) On the Application of Formal Methods to Clinical Guidelines, an

Artificial Intelligence Perspective

2008-07Peter van Rosmalen (OU) Supporting the tutor in the design and support of adaptive e-learning

2008-08 Janneke Bolt (UU) Bayesian Networks: Aspects of Approximate Inference

2008-09 Christof van Nimwegen (UU) The paradox of the guided user: assistance can be counter-

effective

2008-10 Wauter Bosma (UT) Discourse oriented summarization

2008-11 Vera Kartseva (VU) Designing Controls for Network Organizations: A Value-Based Approach

2008-12 Jozsef Farkas (RUN) A Semiotically Oriented Cognitive Model of Knowledge Representation

2008-13 Caterina Carraciolo (UVA) Topic Driven Access to Scientific Handbooks

2008-14 Arthur van Bunningen (UT) Context-Aware Querying; Better Answers with Less Effort

2008-15 Martijn van Otterlo (UT) The Logic of Adaptive Behavior: Knowledge Representation and Al-

gorithms for the Markov Decision Process Framework in First-Order Domains.

2008-16 Henriette van Vugt (VU) Embodied agents from a user’s perspective

2008-17 Martin Op ’t Land (TUD) Applying Architecture and Ontology to the Splitting and Allying of

Enterprises

2008-18 Guido de Croon (UM) Adaptive Active Vision

2008-19Henning Rode (UT) From Document to Entity Retrieval: Improving Precision and Performance

of Focused Text Search

2008-20 Rex Arendsen (UVA) Geen bericht, goed bericht. Een onderzoek naar de effecten van de intro-

ductie van elektronisch berichtenverkeer met de overheid op de administratieve lasten van bedrijven

2008-21 Krisztian Balog (UVA) People Search in the Enterprise

2008-22 Henk Koning (UU) Communication of IT-Architecture

2008-23 Stefan Visscher (UU) Bayesian network models for the management of ventilator-associated

pneumonia

2008-24 Zharko Aleksovski (VU) Using background knowledge in ontology matching

2008-25 Geert Jonker (UU) Efficient and Equitable Exchange in Air Traffic Management Plan Repair

SIKS DISSERTATIONS 249

using Spender-signed Currency

2008-26 Marijn Huijbregts (UT) Segmentation, Diarization and Speech Transcription: Surprise Data

Unraveled

2008-27 Hubert Vogten (OU) Design and Implementation Strategies for IMS Learning Design

2008-28 Ildiko Flesch (RUN) On the Use of Independence Relations in Bayesian Networks

2008-29Dennis Reidsma (UT) Annotations and Subjective Machines - Of Annotators, Embodied Agents,

Users, and Other Humans

2008-30 Wouter van Atteveldt (VU) Semantic Network Analysis: Techniques for Extracting, Repre-

senting and Querying Media Content

2008-31 Loes Braun (UM) Pro-Active Medical Information Retrieval

2008-32 Trung H. Bui (UT) Toward Affective Dialogue Management using Partially Observable Markov

Decision Processes

2008-33 Frank Terpstra (UVA) Scientific Workflow Design; theoretical and practical issues

2008-34 Jeroen de Knijf (UU) Studies in Frequent Tree Mining

2008-35 Ben Torben Nielsen (UvT) Dendritic morphologies: function shapes structure

2009-01 Rasa Jurgelenaite (RUN) Symmetric Causal Independence Models

2009-02 Willem Robert van Hage (VU) Evaluating Ontology-Alignment Techniques

2009-03 Hans Stol (UvT) A Framework for Evidence-based Policy Making Using IT

2009-04 Josephine Nabukenya (RUN) Improving the Quality of Organisational Policy Making using

Collaboration Engineering

2009-05 Sietse Overbeek (RUN) Bridging Supply and Demand for Knowledge Intensive Tasks - Based

on Knowledge, Cognition, and Quality

2009-06 Muhammad Subianto (UU) Understanding Classification

2009-07 Ronald Poppe (UT) Discriminative Vision-Based Recovery and Recognition of Human Motion

2009-08 Volker Nannen (VU) Evolutionary Agent-Based Policy Analysis in Dynamic Environments

2009-09 Benjamin Kanagwa (RUN) Design, Discovery and Construction of Service-oriented Systems

2009-10 Jan Wielemaker (UVA) Logic programming for knowledge-intensive interactive applications

2009-11 Alexander Boer (UVA) Legal Theory, Sources of Law & the Semantic Web

2009-12 Peter Massuthe (TUE, Humboldt-Universitaet zu Berlin) Operating Guidelines for Services

2009-13 Steven de Jong (UM) Fairness in Multi-Agent Systems

2009-14 Maksym Korotkiy (VU) From ontology-enabled services to service-enabled ontologies (making

ontologies work in e-science with ONTO-SOA)

2009-15 Rinke Hoekstra (UVA) Ontology Representation - Design Patterns and Ontologies that Make

Sense

2009-16 Fritz Reul (UvT) New Architectures in Computer Chess

2009-17 Laurens van der Maaten (UvT) Feature Extraction from Visual Data

2009-18 Fabian Groffen (CWI) Armada, An Evolving Database System

2009-19 Valentin Robu (CWI) Modeling Preferences, Strategic Reasoning and Collaboration in Agent-

Mediated Electronic Markets

2009-20 Bob van der Vecht (UU) Adjustable Autonomy: Controling Influences on Decision Making

2009-21 Stijn Vanderlooy (UM) Ranking and Reliable Classification

2009-22 Pavel Serdyukov (UT) Search For Expertise: Going beyond direct evidence

2009-23 Peter Hofgesang (VU) Modelling Web Usage in a Changing Environment

250 SIKS DISSERTATIONS

2009-24 Annerieke Heuvelink (VUA) Cognitive Models for Training Simulations

2009-25 Alex van Ballegooij (CWI) RAM: Array Database Management through Relational Mapping

2009-26 Fernando Koch (UU) An Agent-Based Model for the Development of Intelligent Mobile Services

2009-27 Christian Glahn (OU) Contextual Support of social Engagement and Reflection on the Web

2009-28 Sander Evers (UT) Sensor Data Management with Probabilistic Models

2009-29 Stanislav Pokraev (UT) Model-Driven Semantic Integration of Service-Oriented Applications

2009-30 Marcin Zukowski (CWI) Balancing vectorized query execution with bandwidth-optimized stor-

age

2009-31 Sofiya Katrenko (UVA) A Closer Look at Learning Relations from Text

2009-32 Rik Farenhorst (VU) and Remco de Boer (VU) Architectural Knowledge Management: Sup-

porting Architects and Auditors

2009-33 Khiet Truong (UT) How Does Real Affect Affect Affect Recognition In Speech?

2009-34 Inge van de Weerd (UU) Advancing in Software Product Management: An Incremental Method

Engineering Approach

2009-35Wouter Koelewijn (UL) Privacy en Politiegegevens; Over geautomatiseerde normatieve informatie-

uitwisseling

2009-36 Marco Kalz (OUN) Placement Support for Learners in Learning Networks

2009-37 Hendrik Drachsler (OUN) Navigation Support for Learners in Informal Learning Networks

2009-38 Riina Vuorikari (OU) Tags and self-organisation: a metadata ecology for learning resources in

a multilingual context

2009-39 Christian Stahl (TUE, Humboldt-Universitaet zu Berlin) Service Substitution – A Behavioral

Approach Based on Petri Nets

2009-40 Stephan Raaijmakers (UvT) Multinomial Language Learning: Investigations into the Geome-

try of Language

2009-41 Igor Berezhnyy (UvT) Digital Analysis of Paintings

2009-42 Toine Bogers Recommender Systems for Social Bookmarking

2009-43 Virginia Nunes Leal Franqueira (UT) Finding Multi-step Attacks in Computer Networks us-

ing Heuristic Search and Mobile Ambients

2009-44 Roberto Santana Tapia (UT) Assessing Business-IT Alignment in Networked Organizations

2009-45 Jilles Vreeken (UU) Making Pattern Mining Useful

2009-46 Loredana Afanasiev (UvA) Querying XML: Benchmarks and Recursion

2010-01 Matthijs van Leeuwen (UU) Patterns that Matter

2010-02 Ingo Wassink (UT) Work flows in Life Science

2010-03 Joost Geurts (CWI) A Document Engineering Model and Processing Framework for Multimedia

documents

2010-04 Olga Kulyk (UT) Do You Know What I Know? Situational Awareness of Co-located Teams in

Multidisplay Environments

2010-05 Claudia Hauff (UT) Predicting the Effectiveness of Queries and Retrieval Systems

2010-06 Sander Bakkes (UvT) Rapid Adaptation of Video Game AI

2010-07 Wim Fikkert (UT) Gesture interaction at a Distance

2010-08 Krzysztof Siewicz (UL) Towards an Improved Regulatory Framework of Free Software. Pro-

tecting user freedoms in a world of software communities and eGovernments

2010-09 Hugo Kielman (UL) A Politiele gegevensverwerking en Privacy, Naar een effectieve waarborg-

SIKS DISSERTATIONS 251

ing

2010-10 Rebecca Ong (UL) Mobile Communication and Protection of Children

2010-11 Adriaan Ter Mors (TUD) The world according to MARP: Multi-Agent Route Planning

2010-12 Susan van den Braak (UU) Sensemaking software for crime analysis

2010-13 Gianluigi Folino (RUN) High Performance Data Mining using Bio-inspired techniques

2010-14 Sander van Splunter (VU) Automated Web Service Reconfiguration

2010-15 Lianne Bodenstaff (UT) Managing Dependency Relations in Inter-Organizational Models

2010-16 Sicco Verwer (TUD) Efficient Identification of Timed Automata, theory and practice

2010-17 Spyros Kotoulas (VU) Scalable Discovery of Networked Resources: Algorithms, Infrastructure,

Applications

2010-18 Charlotte Gerritsen (VU) Caught in the Act: Investigating Crime by Agent-Based Simulation

2010-19 Henriette Cramer (UvA) People’s Responses to Autonomous and Adaptive Systems

2010-20 Ivo Swartjes (UT) Whose Story Is It Anyway? How Improv Informs Agency and Authorship of

Emergent Narrative

2010-21 Harold van Heerde (UT) Privacy-aware data management by means of data degradation

2010-22 Michiel Hildebrand (CWI) End-user Support for Access to Heterogeneous Linked Data

2010-23 Bas Steunebrink (UU) The Logical Structure of Emotions

2010-24 Dmytro Tykhonov Designing Generic and Efficient Negotiation Strategies

2010-25 Zulfiqar Ali Memon (VU) Modelling Human-Awareness for Ambient Agents: A Human Min-

dreading Perspective

2010-26 Ying Zhang (CWI) XRPC: Efficient Distributed Query Processing on Heterogeneous XQuery

Engines

2010-27 Marten Voulon (UL) Automatisch contracteren

2010-28 Arne Koopman (UU) Characteristic Relational Patterns

2010-29 Stratos Idreos (CWI) Database Cracking: Towards Auto-tuning Database Kernels

2010-30 Marieke van Erp (UvT) Accessing Natural History - Discoveries in data cleaning, structuring,

and retrieval

2010-31 Victor de Boer (UVA) Ontology Enrichment from Heterogeneous Sources on the Web

2010-32 Marcel Hiel (UvT) An Adaptive Service Oriented Architecture: Automatically solving Interop-

erability Problems

2010-33 Robin Aly (UT) Modeling Representation Uncertainty in Concept-Based Multimedia Retrieval

2010-34 Teduh Dirgahayu (UT) Interaction Design in Service Compositions

2010-35 Dolf Trieschnigg (UT) Proof of Concept: Concept-based Biomedical Information Retrieval

2010-36 Jose Janssen (OU) Paving the Way for Lifelong Learning; Facilitating competence development

through a learning path specification

2010-37 Niels Lohmann (TUE) Correctness of services and their composition

2010-38 Dirk Fahland (TUE) From Scenarios to components

2010-39 Ghazanfar Farooq Siddiqui (VU) Integrative modeling of emotions in virtual agents

2010-40 Mark van Assem (VU) Converting and Integrating Vocabularies for the Semantic Web

2010-41 Guillaume Chaslot (UM) Monte-Carlo Tree Search

2010-42 Sybren de Kinderen (VU) Needs-driven service bundling in a multi-supplier setting - the com-

putational e3-service approach

2010-43 Peter van Kranenburg (UU) A Computational Approach to Content-Based Retrieval of Folk

252 SIKS DISSERTATIONS

Song Melodies

2010-44 Pieter Bellekens (TUE) An Approach towards Context-sensitive and User-adapted Access to

Heterogeneous Data Sources, Illustrated in the Television Domain

2010-45 Vasilios Andrikopoulos (UvT) A theory and model for the evolution of software services

2010-46 Vincent Pijpers (VU) e3alignment: Exploring Inter-Organizational Business-ICT Alignment

2010-47 Chen Li (UT) Mining Process Model Variants: Challenges, Techniques, Examples

2010-48 Milan Lovric (EUR) Behavioral Finance and Agent-Based Artificial Markets

2010-49 Jahn-Takeshi Saito (UM) Solving difficult game positions

2010-50 Bouke Huurnink (UVA) Search in Audiovisual Broadcast Archives

2010-51 Alia Khairia Amin (CWI) Understanding and supporting information seeking tasks in multiple

sources

2010-52 Peter-Paul van Maanen (VU) Adaptive Support for Human-Computer Teams: Exploring the

Use of Cognitive Models of Trust and Attention

2010-53 Edgar Meij (UVA) Combining Concepts and Language Models for Information Access

2011-01 Botond Cseke (RUN) Variational Algorithms for Bayesian Inference in Latent Gaussian Models

2011-02 Nick Tinnemeier (UU) Organizing Agent Organizations. Syntax and Operational Semantics of

an Organization-Oriented Programming Language

2011-03 Jan Martijn van der Werf (TUE) Compositional Design and Verification of Component-Based

Information Systems

2011-04 Hado van Hasselt (UU) Insights in Reinforcement Learning

SAMENVATTING (DUTCH SUMMARY)

Reinforcement learning is een onderzoeksveld waarin systemen die kunnen

leren door te interacteren met hun omgeving centraal staan. Denk hierbij aan

bijvoorbeeld robots of software programma’s die een specifieke taak moeten

oplossen, waarvoor de oplossing niet bekend is bij de ontwerper van het pro-

gramma, maar er wel feedback uit de omgeving beschikbaar is over de waarde

van gekozen acties. Een aanpak die goed blijkt te werken is het opslaan van

de waarde van iedere actie in elke situatie op basis van de feedback die uit de

omgeving verkregen wordt. Het bepalen van deze waardes kan echter lastig

zijn, bijvoorbeeld omdat een actie een beloning tot gevolg heeft die pas enige

tijd later waargenomen kan worden. Reinforcement learning houdt zich bezig

met het onderzoeken en ontwerpen van automatische algoritmes dit op basis

van interactie met de omgeving goede acties kunnen leren voor iedere mo-

gelijke situatie. Er zijn vele voorbeelden van problemen die hiermee opgelost

kunnen worden. Bijvoorbeeld in de robotica kan een robot bepaalde taken

leren uitvoeren op basis van feedback van buitenaf. Ook kunnen software

programma’s ontworpen worden die automatisch kunnen leren om spelletjes

te leren. Zo is er bijvoorbeeld met behulp van reinforcement learning een

backgammonspeler ontworpen die net zo goed speelt als de beste menselijke

spelers, terwijl de programmeur van deze speler geen goede kennis van goede

backgammonstrategieën hoeft te hebben.

Dit proefschrift gaat met name over zogenaamde model-free temporal-

difference learning algoritmes. Deze algoritmes zijn een specifiek type rein-

forcement learning algoritmes. De term model-free impliceert dat deze algo-

ritmes niet een compleet model van de omgeving construeren, om hierna dit

model te proberen op te lossen. Een voordeel hiervan is dat er vaak vrij veel

ruimte nodig is om zo’n model op te slaan. Ook is het in sommige gevallen

veel moeilijker om het model met genoeg zekerheid te bepalen, terwijl goede

acties en strategieën vaak makkelijker te bepalen zijn. De algoritmes heten

temporal-difference algoritmes, omdat ze bij het leren gebruik maken van

eerder opgeslagen informatie. Dat werkt als volgt. Als het systeem een actie

kiest en deze uitvoert zal het systeem de feedback van de omgeving waarne-

men en de nieuwe situatie die het gevolg is van de actie. Een temporal-

difference algoritme zal dan de zojuist genomen actie waarderen aan de hand

van de directe feedback èn de huidige schatting van de waarde van de nieuwe

situatie. Dit betekent bijvoorbeeld dat er niet gewacht hoeft te worden totdat

een spel is afgelopen voordat het systeem beter kan leren spelen op basis van

de in de tussentijd verkregen feedback.

253

254 SAMENVATTING

Er zijn vele mogelijke varianten vanmodel-free temporal-difference learn-

ing algoritmes. In dit proefschrift demonstreren we dat een veel gebruikt al-

goritme, genaamd Q-learning, last kan hebben van enorme overschattingen

in bepaalde problemen. Deze overschattingen kunnen tot ongewenst gedrag

leiden, zoals de voorkeur om roulette te blijven spelen, zelfs nadat er al vele

duizenden dollars verloren zijn. De reden voor deze overschattingen wordt ge-

analyseerd en een gedeeltelijke opgelost met behulp van die analyse. Echter,

het blijkt uit verdere analyses en experimenten dat er tot nog toe geen enkel

algoritme bestaat dat heel goed werkt op alle mogelijke problemen.

Om toch redelijk goede resultaten te behalen op een probleem waarvan

onbekend is welk algoritme daar het meest voor geschikt is, wordt aanbevolen

om een ensemble te maken met verschillende algoritmes. Er wordt aange-

toond dat zo’n ensemble vaak bijna zo goed werkt als het best presterende

algoritme dat erin is opgenomen. In sommige gevallen werkt het ensemble

zelf beter dan het beste losstaande algoritme. Dit geeft aan dat dit een inter-

essante richting is voor verder onderzoek.

In het proefschrift wordt ook onderzocht hoe goed reinforcement learning

algoritmes functioneren in omgevingen waarbij de situaties en acties continu

zijn. In zulke continue problemen zijn er feitelijk oneindig veel situaties en

acties mogelijk. Oudere reinforcement learning algoritmes zijn echter ontwor-

pen voor problemen met een klein, eindig aantal mogelijke situaties en acties.

Na een analyse van de huidige kennis over goede algoritmes om dit soort

problemen aan te pakken, wordt een nieuw model-free temporal-difference

algoritme geïntroduceerd. Dit algoritme blijkt beter te werken dan de huidig

beste algoritmes op een taak waarbij er twee stokjes gebalanceerd moeten

worden die met scharnieren aan een kar bevestigd zijn. Aangezien de stok-

jes gelijktijdig gebalanceerd moeten worden door tegen de kar aan te slaan,

is dit een moeilijk dynamisch probleem. De goede resultaten van het nieuwe

algoritme zijn erg bemoedigend en geven aan dat deze richting van onderzoek

mogelijk kan leiden tot zeer goede algoritmes voor dit soort problemen.

Tot slot wordt een grove onderverdeling gemaakt van alle mogelijke soorten

problemen die opgelost kunnen worden met reinforcement learning. Per type

probleem wordt een algoritme genoemd dat waarschijnlijk goed werkt als

er een probleem van dit type opgelost moet worden. Als verder onderzoek

wordt aanbevolen dit soort aanbevelingen op basis van een automatisch meta-

algoritme te doen, zodat op basis van algemene eigenschappen van een prob-

leem een geschikt algoritme gekozen kan worden om het probleem op te

lossen.

DANKWOORD

Ten eerste wil ik graag Marco Wiering bedanken. Zijn colleges over machine

learning—en specifiek over reinforcement learning—waren voor mij een voor-

name reden om verder te willen in de wetenschap. Ook wil ik Marco graag

samen met John-Jules Meyer en Lambert Schomaker bedanken voor het mo-

gelijk maken van dit promotieonderzoek en voor hun commentaar op eerdere

versies van dit proefschrift. Han La Poutré wil ik graag bedanken voor het

vertrouwen ommij aan te nemen nog voordat mijn proefschrift geheel voltooid

was en voor de geboden kans om in de wetenschap actief te blijven. De

leescommissie, bestaande uit Robert Babuska, Frans Groen, Eric Postma,

Arno Siebes en Richard Sutton, wil ik bedanken voor het lezen en goedkeuren

van mijn proefschrift.

Verder wil ik graag mijn collega’s bedanken, onder meer voor de koffie, de

borrels, de gezelligheid en het tafeltennissen. Bas, Christiaan, Eric, Frank,

Huib, Joost, Liz, Marieke, Michal, Nick, Nieske, Paolo, Susan, Tom, en ieder

die ik mogelijkerwijs vergeet, bedankt. Speciaal wil ik ook nog mijn oud-

kamergenoten Geert en Maaike bedanken en hierbij mijn excuses aanbieden

als ik hen incidenteel van het werk heb gehouden als ik zelf even wat minder

inspiratie had.

Hessel is verantwoordelijk voor de prachtige kaft van dit proefschrift,

waarvoor ik natuurlijk erg dankbaar ben. Verder wil ik hem en mijn an-

dere vrienden bedanken voor hun vriendschap en support, of ze dit nu lieten

blijken door het aanhoren van mijn (muzikale) meningen in de band, door mij

te laten winnen met squash, door op de katten te passen als we op vakantie

waren of op welke andere manier dan ook.

Tot slot wil ik Viola bedanken voor haar liefde, geduld en support, die erg

belangrijk voor mij zijn geweest tijdens het schrijven van dit proefschrift. Ik

ben trots en gelukkig met haar mijn leven te kunnen delen.

255

BIBLIOGRAPHY

J. S. Albus. A theory of cerebellar function. Mathematical Biosciences, 10:

25–61, 1975a.

J. S. Albus. A new approach to manipulator control: The cerebellar model ar-

ticulation controller (CMAC). Dynamic Systems, Measurement and Control,

pages 220–227, 1975b.

S. I. Amari. Natural gradient works efficiently in learning. Neural computa-

tion, 10(2):251–276, 1998. ISSN 0899-7667.

C. W. Anderson. Learning to control an inverted pendulum using neural net-

works. IEEE Control Systems Magazine, 9(3):31–37, 1989.

A. Antos, R. Munos, and C. Szepesvari. Fitted Q-iteration in continuous

action-space mdps. Advances in neural information processing systems

(NIPS-07), 20:9–16, 2008.

K. Appel, W. Haken, and J. Koch. Every planar map is four colorable. part ii:

Reducibility. Illinois Journal of Mathematics, 21(3):491–567, 1977. ISSN

0019-2082.

Aristotle. Metaphysics, 350BC.

B. C. Arnold and R. A. Groeneveld. Bounds on expectations of linear system-

atic statistics based on dependent samples. The Annals of Statistics, 7(1):

220–223, 1979.

B. C. Arnold, N. Balakrishnan, and H. N. Nagaraja. A first course in order

statistics. Society for Industrial Mathematics, 2008.

K. J. Arrow. A difficulty in the concept of social welfare. The Journal of

Political Economy, 58(4):328–346, 1950.

K. J. Arrow. Social choice and individual values. Yale Univ Press, 1963.

P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multi-

armed bandit problem. Machine learning, 47(2):235–256, 2002.

T. Aven. Upper (lower) bounds on the mean of the maximum (minimum) of a

number of random variables. Journal of applied probability, 22(3):723–728,

1985.

257

258 BIBLIOGRAPHY

T. Bäck. Evolutionary algorithms in theory and practice: evolution strategies,

evolutionary programming, genetic algorithms. Oxford University Press,

USA, 1996.

T. Bäck and H. P. Schwefel. An overview of evolutionary algorithms for pa-

rameter optimization. Evolutionary computation, 1(1):1–23, 1993.

L. Baird. Residual algorithms: Reinforcement learning with function ap-

proximation. In A. Prieditis and S. Russell, editors, Machine Learning:

Proceedings of the Twelfth International Conference, pages 30–37. Morgan

Kaufmann Publishers, San Francisco, CA, 1995.

L. C. Baird and A. H. Klopf. Reinforcement learning with high-dimensional,

continuous actions. Technical Report WL-TR-93-114, Wright Laboratory,

Wright-Patterson Air Force Base, OH, 1993.

S. Banach. Sur les opérations dans les ensembles abstraits et leur application

aux équations integrales. Fundamenta Mathematicae, 3:133–181, 1922.

M. Bardi and I. C. Dolcetta. Optimal control and viscosity solutions of

Hamilton–Jacobi–Bellman equations. Springer, 1997.

H. B. Barlow. Unsupervised learning. Neural Computation, 1(3):295–311,

1989.

A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuronlike adaptive elements

that can solve difficult learning control problems. IEEE Transactions on

Systems, Man, and Cybernetics, SMC-13:834–846, 1983.

J. Baxter and P. L. Bartlett. Infinite-horizon policy-gradient estimation. Jour-

nal of Artificial Intelligence Research, 15:319–350, 2001.

R. Beard, G. Saridis, and J. Wen. Approximate solutions to the time-invariant

Hamilton–Jacobi–Bellman equation. Journal of Optimization theory and

Applications, 96(3):589–626, 1998. ISSN 0022-3239.

R. Bellman. Dynamic Programming. Princeton University Press, 1957.

H. Benbrahim and J. A. Franklin. Biped dynamic walking using reinforce-

ment learning. Robotics and Autonomous Systems, 22(3-4):283–302, 1997.

ISSN 0921-8890.

D. A. Berry and B. Fristedt. Bandit Problems: sequential allocation of experi-

ments. Chapman and Hall, London/New York, 1985.

D. P. Bertsekas. Dynamic Programming and Optimal Control, vol. II. Athena

Scientific, 2007.

BIBLIOGRAPHY 259

D. P. Bertsekas and J. N. Tsitsiklis. Neuro-dynamic Programming. Athena

Scientific, Belmont, MA, 1996.

D. P. Bertsekas, V. S. Borkar, and A. Nedic. Improved temporal difference

methods with linear function approximation. Handbook of Learning and

Approximate Dynamic Programming, pages 235–260, 2004.

D. Bertsimas, K. Natarajan, and C. P. Teo. Tight bounds on expected order

statistics. Probability in the Engineering and Informational Sciences, 20

(04):667–686, 2006.

S. Bhatnagar, R. S. Sutton, M. Ghavamzadeh, andM. Lee. Natural actor-critic

algorithms. Automatica, 45(11):2471–2482, 2009. ISSN 0005-1098.

C. M. Bishop. Neural networks for pattern recognition. Oxford University

Press, USA, 1995.

C. M. Bishop. Pattern recognition and machine learning. Springer New York:,

2006.

D. Black. The theory of committees and elections. Cambridge: At the Univer-

sity Press, 1958.

L. Bottou, C. Cortes, J. S. Denker, H. Drucker, I. Guyon, L. D. Jackel, Y. Le-

Cun, U. A. Muller, E. Sackinger, P. Simard, and V. Vapnik. Comparison of

classifier methods: a case study in handwritten digit recognition. In Pro-

ceedings of the 12th IAPR International Conference on Pattern Recognition,

1994. Vol. 2 - Conference B: Computer Vision & Image Processing., volume 2,

pages 77–82, 1994.

C. Boutilier, T. Dean, and S. Hanks. Decision-theoretic planning: Structural

assumptions and computational leverage. Journal of Artificial Intelligence

Research, 11(1):94, 1999.

J. A. Boyan. Technical update: Least-squares temporal difference learning.

Machine Learning, 49(2):233–246, 2002. ISSN 0885-6125.

S. J. Bradtke and A. G. Barto. Linear least-squares algorithms for temporal

difference learning. Machine Learning, 22:33–57, 1996.

R. I. Brafman and M. Tennenholtz. R-max–a general polynomial time algo-

rithm for near-optimal reinforcement learning. Journal of Machine Learn-

ing Research, 3:213–231, 2003.

S. J. Brams and P. C. Fishburn. Approval voting. American Political Science

Review, 72:831–847, 1978.

260 BIBLIOGRAPHY

L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

R. A. Brooks. Intelligence without representation. Artificial Intelligence, 47

(1-3):139–159, 1991.

A. Bryson and Y. Ho. Applied Optimal Control. Blaisdell Publishing Co.,

1969.

N. J. Calkin. A curious binomial identity. Discrete Mathematics, 131(1-3):

335–337, 1994.

E. Capen, R. Clapp, and T. Campbell. Bidding in high risk situations. Journal

of Petroleum Technology, 23:641–653, 1971.

A. R. Cassandra. Exact and Approximate Algorithms for Partially Observable

Markov Decision Processes. PhD thesis, Brown University, Providence, RI,

May 1998.

C. E. Clark. The greatest of a finite set of random variables. Operations

Research, 9(2):145–162, 1961.

K. Conn, C. Liu, N. Sarkar, W. Stone, and Z. Warren. Towards affect-sensitive

assistive intervention technologies for children with autism, chapter 20,

pages 365–390. RS/I-Tech Education and Publishing, 2008.

C. H. Coombs. A theory of data. Psychological review, 67(3):143–159, 1960.

R. Coulom. Reinforcement Learning Using Neural Networks, with Applica-

tions to Motor Control. PhD thesis, Institut National Polytechnique de

Grenoble, 2002.

R. H. Crites and A. G. Barto. Improving elevator performance using rein-

forcement learning. In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo,

editors, Advances in Neural Information Processing Systems 8, pages 1017–

1023, Cambridge MA, 1996. MIT Press.

R. H. Crites and A. G. Barto. Elevator group control using multiple reinforce-

ment learning agents. Machine Learning, 33(2/3):235–262, 1998.

H. A. David and H. N. Nagaraja. Order Statistics. John Wiley & Sons, 3

edition, 2003.

L. Davis. Handbook of genetic algorithms. Arden Shakespeare, 1991.

P. Dayan. The convergence of TD(λ) for general lambda. Machine Learning,

8:341–362, 1992.

BIBLIOGRAPHY 261

P. Dayan and T. Sejnowski. TD(λ): Convergence with probability 1. Machine

Learning, 14:295–301, 1994.

J. C. de Borda. Mémoire sur les élections au scrutin. Histoire de l’académie

royale des sciences année 1781, 2:657–665, 1784.

M. J. A. N. de Caritat, le marquis de Condorcet. Essai sur l’application de

l’analyse à la probabilité des décisions rendues à la pluralité des voix, 1785.

A. de Moivre. The doctrine of chances, or, a method of calculating the prob-

ability of events in play. Printed by W. Pearson, for the Author, London,

1718.

G. Deboeck and T. Kohonen. Visual Explorations in Finance with self-

organizing maps. Springer New York, 1998.

D. C. Dennett. Cognitive wheels: The frame problem of AI. Language and

Thought, page 217, 2005.

A. E. Eiben and J. E. Smith. Introduction to evolutionary computing. Springer

Verlag, 2003.

D. Ernst, M. Glavic, and L. Wehenkel. Power systems stability control: Re-

inforcement learning framework. IEEE transactions on power systems, 19

(1):427–435, 2004.

D. Ernst, P. Geurts, and L. Wehenkel. Tree-based batch mode reinforcement

learning. Journal of Machine Learning Research, 6(1):503–556, 2005.

E. Even-Dar and Y. Mansour. Learning rates for Q-learning. Journal of Ma-

chine Learning Research, 5:1–25, 2003.

E. Even-Dar, S. Mannor, and Y. Mansour. PAC bounds for multi-armed bandit

and Markov decision processes. In COLT: Proceedings of the Workshop on

Computational Learning Theory, Morgan Kaufmann Publishers, 2002.

D. M. Farrell. Electoral systems: A comparative introduction. Wiley Online

Library, 2001.

C.-N. Fiechter. Efficient reinforcement learning. In Proceedings of the seventh

annual conference on Computational learning theory COLT ’94, pages 88–

97, New York, NY, USA, 1994. ACM.

P. C. Fishburn. Condorcet social choice functions. SIAM Journal on Applied

Mathematics, pages 469–489, 1977.

P. C. Fishburn. Monotonicity paradoxes in the theory of elections. Discrete

Applied Mathematics, 4(2):119–134, 1982.

262 BIBLIOGRAPHY

R. A. Fisher. On the mathematical foundations of theoretical statistics. Philo-

sophical Transactions of the Royal Society of London. Series A, Containing

Papers of a Mathematical or Physical Character, 222:309–368, 1922.

R. A. Fisher. Statistical methods for research workers. Oliver & Boyd, Edin-

burgh, 1925.

K. Främling. Replacing eligibility trace for action-value learning with func-

tion approximation. In Proceedings of the 15th European Symposium on

Artificial Neural Networks (ESANN-07), pages 313–318. d-side publishing,

2007.

S. Franklin and A. Graesser. Is it an agent, or just a program?: A taxonomy for

autonomous agents. In J. Müller, M. Wooldridge, and N. Jennings, editors,

Intelligent Agents III Agent Theories, Architectures, and Languages, volume

1193 of Lecture Notes in Computer Science, pages 21–35. Springer Berlin /

Heidelberg, 1997.

Y. Freund and R. E. Schapire. Experiments with a new boosting algorithm. In

Proceedings of the thirteenth International Conference on Machine Learn-

ing, pages 148–156. Morgan Kaufmann, 1996.

C. Gaskett, D. Wettergreen, and A. Zelinsky. Q-learning in continuous state

and action spaces. Advanced Topics in Artificial Intelligence, pages 417–

428, 1999.

A. Geramifard, M. Bowling, and R. S. Sutton. Incremental least-squares tem-

poral difference learning. In Proceedings of the 21st national conference on

Artificial intelligence-Volume 1, pages 356–361. AAAI Press, 2006.

T. Glasmachers, T. Schaul, S. Yi, D. Wierstra, and J. Schmidhuber. Expo-

nential natural evolution strategies. In Proceedings of the 12th annual

conference on Genetic and evolutionary computation, pages 393–400. ACM,

2010.

G. J. Gordon. Stable function approximation in dynamic programming. In

A. Prieditis and S. Russell, editors, Proceedings of the Twelfth Interna-

tional Conference on Machine Learning (ICML-95), pages 261–268, San

Francisco, CA, 1995. Morgan Kaufmann.

G. J. Gordon. Approximate Solutions to Markov Decision Processes. PhD the-

sis, Carnegie Mellon University, 1999.

A. D. Grazia. Mathematical derivation of an election system. Isis, 44(1/2):

42–51, 1953. ISSN 00211753.

BIBLIOGRAPHY 263

E. Greensmith, P. L. Bartlett, and J. Baxter. Variance reduction techniques

for gradient estimates in reinforcement learning. The Journal of Machine

Learning Research, 5:1471–1530, 2004.

B. Grofman and S. L. Feld. If you like the alternative vote (a.k.a. the instant

runoff), then you ought to know about the Coombs rule. Electoral Studies,

23(4):641–659, 2004.

S. S. Gupta and S. Panchapakesan. Order statistics arising from indepen-

dent binomial populations. Technical report, Purdue University, september

1967.

A. Hans and S. Udluft. Ensembles of neural networks for robust reinforce-

ment learning. In Proceedings of the 9th IEEE International Conference on

Machine Learning and Applications, pages 401–406. IEEE, 2010.

A. Hans, D. Schneegaß, A. M. Schäfer, and S. Udluft. Safe exploration for

reinforcement learning. In Proceedings of the 16th European Symposium

on Artificial Neural Networks, (ESANN 2008), pages 143–148, 2008.

N. Hansen, S. D. Müller, and P. Koumoutsakos. Reducing the time complexity

of the derandomized evolution strategy with covariance matrix adaptation

(CMA-ES). Evolutionary Computation, 11(1):1–18, 2003. ISSN 1063-6560.

T. Hare. The election of representatives, parliamentary and municipal: A trea-

tise. Longmans, Green, Reader, and Dyer, 1873.

J. A. Hartigan. Clustering algorithms. John Wiley & Sons, Inc. New York,

NY, USA, 1975.

T. Hastie, R. Tibshirani, J. Friedman, and J. Franklin. The elements of sta-

tistical learning: data mining, inference and prediction. The Mathematical

Intelligencer, 27(2):83–85, 2005.

W. K. Hastings. Monte Carlo sampling methods using Markov chains and

their applications. Biometrika, pages 97–109, 1970.

S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall

PTR, 1994.

V. Heidrich-Meisner and C. Igel. Evolution strategies for direct policy search.

Parallel Problem Solving from Nature–PPSN X, pages 428–437, 2008.

T. K. Ho, J. J. Hull, and S. N. Srihari. Decision combination in multiple clas-

sifier systems. IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, 16(1):66–75, 1994.

264 BIBLIOGRAPHY

W. Hoeffding. Probability inequalities for sums of bounded random variables.

Journal of the American Statistical Association, 58(301):13–30, 1963.

J. H. Holland. Outline for a logical theory of adaptive systems. Journal of the

ACM (JACM), 9(3):297–314, 1962.

J. H. Holland. Adaptation in Natural and Artificial Systems. University of

Michigan Press, Ann Arbor, 1975.

J. H. Holland. Adaptation in natural and artificial systems: an introduc-

tory analysis with applications to biology, control, and artificial intelligence.

MIT Press, 1992. ISBN 0262581116.

R. A. Howard. Dynamic programming and Markov processes. MIT Press,

1960.

T. Jaakkola, M. I. Jordan, and S. P. Singh. On the convergence of stochastic

iterative dynamic programming algorithms. Neural Computation, 6:1185–

1201, 1994.

T. Jaakkola, S. P. Singh, and M. I. Jordan. Reinforcement learning algorithm

for partially observable Markov decision problems. In G. Tesauro, D. S.

Touretzky, and T. K. Leen, editors, Advances in Neural Information Pro-

cessing Systems 7, pages 345–352. MIT Press, Cambridge MA, 1995.

R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton. Adaptive mixtures

of local experts. Neural Computation, 3(1):79–87, 1991.

J. L. W. V. Jensen. Sur les fonctions convexes et les inégalités entre les valeurs

moyennes. Journal Acta Mathematica, 30(1):175–193, 1906.

F. Jiang, H. Berry, and M. Schoenauer. Supervised and evolutionary learning

of echo state networks. Parallel Problem Solving from Nature–PPSN X,

pages 215–224, 2008.

J. Jiang and M. S. Kamel. Aggregation of reinforcement learning algorithms.

In Proceedings of the International Joint Conference on Neural Networks

(IJCNN 2006), pages 68–72, 2006.

L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in

partially observable stochastic domains, 1995. Unpublished report.

L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A

survey. Journal of Artificial Intelligence Research, 4:237–285, 1996.

S. Kakade. A natural policy gradient. In T. G. Dietterich, S. Becker, and

Z. Ghahramani, editors, Advances in Neural Information Processing Sys-

tems 14 (NIPS-01), pages 1531–1538. MIT Press, 2001.

BIBLIOGRAPHY 265

M. J. Kearns and S. P. Singh. Finite-sample convergence rates for Q-learning

and indirect algorithms. In Neural Information Processing Systems 12,

pages 996–1002. MIT Press, 1999.

M. J. Kearns and S. P. Singh. Near-optimal reinforcement learning in polyno-

mial time. Machine Learning, 49(2):209–232, 2002.

J. Kennedy and R. C. Eberhart. Particle swarm optimization. In Proceed-

ings of IEEE international conference on neural networks, volume 4, pages

1942–1948. Perth, Australia, 1995.

S. Kirkpatrick. Optimization by simulated annealing: Quantitative studies.

Journal of Statistical Physics, 34(5):975–986, 1984.

V. R. Konda and V. Borkar. Actor-critic type learning algorithms for Markov

decision processes. SIAM Journal on Control and Optimization, 38(1):94–

123, 1999.

V. R. Konda and J. N. Tsitsiklis. Actor-critic algorithms. SIAM Journal on

Control and Optimization, 42(4):1143–1166, 2003.

D. Kortenkamp, R. P. Bonasso, and R. Murphy. Artificial intelligence and

mobile robots: case studies of successful robot systems. MIT Press, 1998.

P. S. Laplace. Mémoire sur les approximations des formules qui sont fonctions

de très grands nombres et sur leur application aux probabilités. Mémoires

de l’Académie Royale des Sciences de Paris, 10:301–347, 1810.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,

and L. D. Jackel. Back-propagation applied to handwritten zip code recog-

nition. Neural Computation, 1(4):541–551, 1989.

A. M. Liapunov. Nouvelle forme du théorème sur la limite des probabilités.

Mémoires de l’Académie imp’eriale de Saint-Pétersbourg, 12:1–24, 1901.

C. S. Lin and H. Kim. CMAC-based adaptive critic self-learning control. IEEE

Transactions on Neural Networks, 2(5):530–533, 1991.

L.-J. Lin. Reinforcement Learning for Robots Using Neural Networks. PhD

thesis, Carnegie Mellon University, Pittsburgh, January 1993.

M. L. Littman. Markov games as a framework for multi-agent reinforcement

learning. In A. Prieditis and S. Russell, editors, Machine Learning: Pro-

ceedings of the Eleventh International Conference, pages 157–163. Morgan

Kaufmann Publishers, San Francisco, CA, 1994.

266 BIBLIOGRAPHY

M. L. Littman and C. Szepesvári. A generalized reinforcement-learning

model: Convergence and applications. In L. Saitta, editor, Proceedings of

the 13th International Conference on Machine Learning (ICML-96), pages

310–318, Bari, Italy, 1996. Morgan Kaufmann.

C. Liu, K. Conn, N. Sarkar, and W. Stone. Online affect detection and robot

behavior adaptation for intervention of children with autism. IEEE Trans-

actions on Robotics, 24(4):883–896, 2008.

F. J. Lobo, C. F. Lima, and Z. Michalewicz, editors. Parameter Setting in

Evolutionary Algorithms. Springer, 2007.

W. S. Lovejoy. A survey of algorithmsmethods for partially observable Markov

decision processes. Annals of Operations Research, 28:47–66, 1991.

H. R. Maei and R. S. Sutton. GQ (λ): A general gradient algorithm for

temporal-difference prediction learning with eligibility traces. In Proceed-

ings of the Third Conference On Artificial General Intelligence (AGI-10),

pages 91–96, Lugano, Switserland, 2010. Atlantis Press.

H. R. Maei, C. Szepesvári, S. Bhatnagar, D. Precup, D. Silver, and R. Sut-

ton. Convergent temporal-difference learning with arbitrary smooth func-

tion approximation. Advances in Neural Information Processing Systems

22 (NIPS-09), 22, 2009.

H. R. Maei, C. Szepesvári, S. Bhatnagar, and R. S. Sutton. Toward off-policy

learning control with function approximation. In Proceedings of the 27th

Annual International Conference on Machine Learning (ICML-10), New

York, NY, USA, 2010. ACM.

S. Mahadevan. Average reward reinforcement learning: Foundations, algo-

rithms, and empirical results. Machine Learning, 22:159–196, 1996.

S. Mannor and J. N. Tsitsiklis. The sample complexity of exploration in the

multi-armed bandit problem. Journal of Machine Learning Research, 5:

623–648, 2004.

S. Mannor, D. Simester, P. Sun, and J. N. Tsitsiklis. Bias and variance approx-

imation in value function estimates. Management Science, 53(2):308–322,

2007.

B. P. Marron. One person, one vote, several elections: Instant runoff voting

and the constitution. Vermont Law Review, 28:343, 2003.

J. McCarthy and P. Hayes. Some philosophical problems from the standpoint

of artificial intelligence. Stanford University, 1968.

BIBLIOGRAPHY 267

J. Michels, A. Saxena, and A. Y. Ng. High speed obstacle avoidance using

monocular vision and reinforcement learning. In Proceedings of the 22nd

international conference on Machine learning, page 600. ACM, 2005.

D. Michie and R. Chambers. BOXES: An experiment in adaptive control.

Machine intelligence, 2(2):137–152, 1968.

T. M. Mitchell. Machine learning. McGraw Hill, New York, US, 1996.

G. E. Monahan. A survey of partially observable Markov decision processes:

Theory, models, and algorithms. Management Science, 28(1):1–16, 1982.

D. E. Moriarty and R. Miikkulainen. Efficient reinforcement learning through

symbiotic evolution. Machine Learning, 22:11–32, 1996.

D. E. Moriarty, A. C. Schultz, and J. J. Grefenstette. Evolutionary algorithms

for reinforcement learning. Journal of Artificial Intelligence Research, 11:

241–276, 1999.

J. J. Murray, C. J. Cox, G. G. Lendaris, and R. Saeks. Adaptive dynamic

programming. Systems, Man, and Cybernetics, Part C: Applications and

Reviews, IEEE Transactions on, 32(2):140–153, 2002. ISSN 1094-6977.

M. B. Naghibi-Sistani, M. R. Akbarzadeh-Tootoonchi, M. H. J.-D. Bayaz, and

H. Rajabi-Mashhadi. Application of Q-learning with temperature variation

for bidding strategies in market based power systems. Energy Conversion

and Management, 47(11/12):1529–1538, 2006. ISSN 0196-8904.

K. S. Narendra and M. A. L. Thathachar. Learning automata - a survey. IEEE

Transactions on Systems, Man, and Cybernetics, 4:323–334, 1974.

K. S. Narendra and M. A. L. Thathachar. Learning automata: an introduc-

tion. Prentice-Hall, Inc. Upper Saddle River, NJ, USA, 1989.

T. W. Nattkemper and A. Wismüller. Tumor feature visualization with unsu-

pervised learning. Medical Image Analysis, 9(4):344–351, 2005.

A. Nedić and D. P. Bertsekas. Least squares policy evaluation algorithms

with linear function approximation. Discrete Event Dynamic Systems, 13

(1-2):79–110, 2003.

J. Neyman and E. S. Pearson. On the use and interpretation of certain test

criteria for purposes of statistical inference part i. Biometrika, 20(1):175–

240, 1928.

R. G. Niemi. The problem of strategic behavior under approval voting. Amer-

ican Political Science Review, pages 952–958, 1984.

268 BIBLIOGRAPHY

M. J. Osborne and A. Rubinstein. A course in game theory. The MIT press,

1994.

S. Pandey, D. Chakrabarti, and D. Agarwal. Multi-armed bandit problems

with dependent arms. In Proceedings of the 24th international conference

on Machine learning, pages 721–728. ACM, 2007.

N. Papadatos. Maximum variance of order statistics. Annals of the Institute

of Statistical Mathematics, 47:185–193, 1995.

R. Parr and S. Russell. Approximating optimal policies for partially observ-

able stochastic domains. In Proceedings of the International Joint Confer-

ence on Artificial Intelligence (IJCAI-95), pages 1088–1094. Morgan Kauf-

mann, 1995.

J. Pazis and M. G. Lagoudakis. Binary action search for learning continuous-

action control policies. In Proceedings of the 26th Annual International

Conference on Machine Learning, pages 793–800. ACM, 2009.

B. A. Pearlmutter and G. E. Hinton. G-maximization: An unsupervised learn-

ing procedure for discovering regularities. In J. S. Denker, editor, Neural

Networks for Computing: American Institute of Physics Conference Proceed-

ings 151, volume 2, pages 333–338, 1986.

J. Peng. Efficient dynamic programming-based learning for control. PhD

thesis, Northeastern University, 1993.

J. Peng and R. J. Williams. Incremental multi-step Q-learning. Machine

Learning, 22:283–290, 1996.

J. Peters and S. Schaal. Natural actor-critic. Neurocomputing, 71(7-9):1180–

1190, 2008a.

J. Peters and S. Schaal. Reinforcement learning of motor skills with policy

gradients. Neural Networks, 21(4):682–697, 2008b.

J. Peters, S. Vijayakumar, and S. Schaal. Reinforcement learning for hu-

manoid robotics. In IEEE-RAS international conference on humanoid

robots (Humanoids2003). IEEE Press, 2003.

E. L. Porteus. Some bounds for discounted sequential decision processes.

Management Science, 18(1):7–11, 1971.

W. B. Powell. Approximate Dynamic Programming: Solving the Curses of

Dimensionality. Wiley-Blackwell, 2007.

BIBLIOGRAPHY 269

D. Precup and R. S. Sutton. Off-policy temporal-difference learning with func-

tion approximation. In Machine learning: proceedings of the eighteenth

International Conference (ICML 2001), pages 417–424, Williams College,

Williamstown, MA, USA, 2001. Morgan Kaufmann.

D. Precup, R. S. Sutton, and S. P. Singh. Eligibility traces for off-policy pol-

icy evaluation. In Proceedings of the Seventeenth International Conference

on Machine Learning (ICML 2000), pages 766–773, Stanford University,

Stanford, CA, USA, 2000. Morgan Kaufmann.

D. Prokhorov and D. Wunsch. Adaptive critic designs. IEEE Transactions on

Neural Networks, 8(5):997–1007, 2002.

M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic

Programming. John Wiley & Sons, Inc. New York, NY, USA, 1994.

M. L. Puterman and M. C. Shin. Modified policy iteration algorithms for

discounted Markov decision problems. Management Science, 24(11):1127–

1137, 1978.

J. Randløv and P. Alstrøm. Learning to drive a bicycle using reinforcement

learning and shaping. In Machine Learning, Proceedings of the Fifteenth

International Conference (ICML ’98), pages 463–471. Morgan Kaufmann,

San Francisco, CA, 1998.

C. R. Rao and S. J. Poti. On locally most powerful tests when alternatives

are one sided. Sankhyā: The Indian Journal of Statistics, pages 439–439,

1946.

P. Ray. Independence of irrelevant alternatives. Econometrica: Journal of the

Econometric Society, 41(5):987–991, 1973.

I. Rechenberg. Evolutionsstrategie - Optimierung technischer Systeme nach

Prinzipien der biologischen Evolution. Fromman-Holzboog, 1971.

R. Richie, C. Kleppner, and T. Bouricius. Instant runoffs: A cheaper, fairer,

better way to conduct elections. National Civic Review, 89(1):95–110, 2000.

M. Riedmiller. Neural fitted Q iteration - first experiences with a data efficient

neural reinforcement learning method. In J. Gama, R. Camacho, P. Brazdil,

A. Jorge, and L. Torgo, editors, Proceedings of the 16th European Conference

on Machine Learning (ECML’05), pages 317–328. Springer, 2005.

M. Riedmiller, J. Peters, and S. Schaal. Evaluation of policy gradient meth-

ods and variants on the cart-pole benchmark. In Approximate Dynamic

Programming and Reinforcement Learning, 2007. ADPRL 2007. IEEE In-

ternational Symposium on, pages 254–261. IEEE, 2007. ISBN 1424407060.

270 BIBLIOGRAPHY

B. D. Ripley. Pattern recognition and neural networks. Cambridge University

Press, 2008.

H. Robbins. Some aspects of the sequential design of experiments. Bull. Amer.

Math. Soc, 58(5):527–535, 1952.

H. Robbins and S. Monro. A stochastic approximation method. The Annals of

Mathematical Statistics, pages 400–407, 1951.

A. Ross. Computing bounds on the expected maximum of correlated normal

variables. Methodology and Computing in Applied Probability, 12:111–138,

2010.

T. Rückstieß, F. Sehnke, T. Schaul, D. Wierstra, Y. Sun, and J. Schmidhuber.

Exploring parameter space in reinforcement learning. Paladyn, 1(1):14–24,

2010.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal rep-

resentations by error propagation. In Parallel Distributed Processing, vol-

ume 1, pages 318–362. MIT Press, 1986.

G. A. Rummery and M. Niranjan. On-line Q-learning using connectionist

sytems. Technical Report CUED/F-INFENG-TR 166, Cambridge Univer-

sity, UK, 1994.

S. J. Russell and P. Norvig. Artificial intelligence: a modern approach. Pren-

tice hall, 2009.

D. G. Saari and J. Newenhizen. The problem of indeterminacy in approval,

multiple, and truncated voting systems. Public Choice, 59(2):101–120,

1988.

J. C. Santamaria, R. S. Sutton, and A. Ram. Experiments with reinforcement

learning in problems with continuous state and action spaces. Adaptive

behavior, 6(2):163–217, 1997. ISSN 1059-7123.

C. Schaffer. A conservation law for generalization performance. In Proceed-

ings of the Eleventh International Conference on Machine Learning (ECML

1994), pages 259–265, 1994.

L. Schomaker. Using stroke-or character-based self-organizing maps in the

recognition of on-line, connected cursive script. Pattern Recognition, 26(3):

443–450, 1993. ISSN 0031-3203.

A. Schwartz. A reinforcement learning method for maximizing undiscounted

rewards. InMachine Learning: Proceedings of the Tenth International Con-

ference, pages 298–305. Morgan Kaufmann, Amherst, MA, 1993.

BIBLIOGRAPHY 271

H. P. Schwefel. Numerische Optimierung von Computer-Modellen.

Birkhäuser, Basel, 1977. Volume 26 of Interdisciplinary Systems Research.

F. Sehnke, C. Osendorfer, T. Rückstieß, A. Graves, J. Peters, and J. Schmid-

huber. Parameter-exploring policy gradients. Neural Networks, 23(4):551–

559, 2010. ISSN 0893-6080.

L. S. Shapley. Stochastic games. Proceedings of the National Academy of

Sciences of the United States of America, 39(10):1095–1100, 1953.

A. A. Sherstov and P. Stone. Function approximation via tile coding: Automat-

ing parameter choice. In J.-D. Zucker and L. Saitta, editors, Abstraction,

Reformulation and Approximation, 6th International Symposium, SARA

2005, Airth Castle, Scotland, UK, volume 3607 of Lecture Notes in Com-

puter Science, pages 194–205. Springer, 2005. ISBN 3-540-27872-9.

S. P. Singh. The efficient learning of multiple task sequences. In J. E. Moody,

S. J. Hanson, and R. P. Lippman, editors, Advances in Neural Information

Processing Systems 4, pages 251–258, San Mateo, CA, 1992. Morgan Kauf-

mann.

S. P. Singh and R. S. Sutton. Reinforcement learning with replacing eligibility

traces. Machine Learning, 22:123–158, 1996.

S. P. Singh and R. C. Yee. An upper bound on the loss from approximate

optimal-value functions. Machine Learning, 16, 1994.

S. P. Singh, T. Jaakkola, M. L. Littman, and C. Szepesvári. Convergence re-

sults for single-step on-policy reinforcement-learning algorithms. Machine

Learning, 38(3):287–308, 2000.

R. D. Smallwood and E. J. Sondik. The optimal control of partially observable

Markov processes over a finite horizon. Operations Research, pages 1071–

1088, 1973.

W. D. Smart and L. P. Kaelbling. Effective reinforcement learning for mo-

bile robots. In Proceedings of the 2002 IEEE International Conference on

Robotics and Automation (ICRA 2002), pages 3404–3410, Washington, DC,

USA, 2002.

J. E. Smith and R. L. Winkler. The optimizer’s curse: Skepticism and postde-

cision surprise in decision analysis. Management Science, 52(3):311–322,

2006.

J. H. Smith. Aggregation of preferences with variable electorate. Economet-

rica: Journal of the Econometric Society, pages 1027–1041, 1973.

272 BIBLIOGRAPHY

W. D. Smith. Range voting. Technical report, NEC Research Institute, 2000.

E. J. Sondik. The Optimal Control of Partially Observable Markov Decision

Processes. PhD thesis, Standford, California, 1971.

P. D. Straffin Jr. Topics in the Theory of Voting. Birkhaeuser Verlag, 1980.

A. L. Strehl and M. L. Littman. A theoretical analysis of model-based interval

estimation. In Proceedings of the 22nd international conference on Machine

learning, pages 857–864. ACM, 2005.

A. L. Strehl, L. Li, E. Wiewiora, J. Langford, and M. L. Littman. PAC model-

free reinforcement learning. In Proceedings of the 23rd international con-

ference on Machine learning, pages 881–888. ACM, 2006.

A. L. Strehl, L. Li, and M. L. Littman. Reinforcement learning in finite MDPs:

PAC analysis. Journal of Machine Learning Research, 10:2413–2444, 2009.

R. Sun and T. Peterson. Multi-agent reinforcement learning: weighting and

partitioning. Neural Networks, 12(4-5):727–753, 1999.

Y. Sun, D. Wierstra, T. Schaul, and J. Schmidhuber. Efficient natural evo-

lution strategies. In Proceedings of the 11th Annual conference on Genetic

and evolutionary computation (GECCO-09), pages 539–546. ACM, 2009.

R. S. Sutton. Temporal Credit Assignment in Reinforcement Learning. PhD

thesis, University of Massachusetts, Dept. of Comp. and Inf. Sci., 1984.

R. S. Sutton. Learning to predict by the methods of temporal differences.

Machine Learning, 3:9–44, 1988.

R. S. Sutton. Integrated architectures for learning, planning and reacting

based on dynamic programming. In Machine Learning: Proceedings of the

Seventh International Workshop, 1990.

R. S. Sutton. Generalization in reinforcement learning: Successful examples

using sparse coarse coding. In D. S. Touretzky, M. C. Mozer, and M. E.

Hasselmo, editors, Advances in Neural Information Processing Systems 8,

pages 1038–1045. MIT Press, Cambridge MA, 1996.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. The

MIT press, Cambridge MA, 1998.

R. S. Sutton and S. P. Singh. On step-size and bias in temporal-difference

learning. In Proceedings of the Eighth Yale Workshop on Adaptive and

Learning Systems, pages 91–96. Citeseer, 1994.

BIBLIOGRAPHY 273

R. S. Sutton, D. Precup, and S. P. Singh. Intra-Option Learning about Tem-

porally Abstract Actions. In Proceedings of the Fifteenth International Con-

ference on Machine Learning (ICML-98, pages 556–564. Morgan Kaufmann

Publishers Inc., 1998.

R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient meth-

ods for reinforcement learning with function approximation. Advances in

Neural Information Processing Systems 13 (NIPS-00), 12:1057–1063, 2000.

R. S. Sutton, C. Szepesvári, and H. R. Maei. A convergent O(n) algorithm

for off-policy temporal-difference learning with linear function approxima-

tion. Advances in Neural Information Processing Systems 21 (NIPS-08), 21:

1609–1616, 2008.

R. S. Sutton, H. R. Maei, D. Precup, S. Bhatnagar, D. Silver, C. Szepesvári,

and E. Wiewiora. Fast gradient-descent methods for temporal-difference

learning with linear function approximation. In Proceedings of the 26th

Annual International Conference on Machine Learning (ICML-09), pages

993–1000. ACM, 2009.

C. Szepesvári. The asymptotic convergence-rate of Q-learning. In NIPS ’97:

Proceedings of the 1997 conference on Advances in neural information pro-

cessing systems 10, pages 1064–1070, Cambridge, MA, USA, 1998. MIT

Press. ISBN 0-262-10076-2.

C. Szepesvári. Algorithms for reinforcement learning. Synthesis Lectures on

Artificial Intelligence and Machine Learning, 4(1):1–103, 2010.

C. Szepesvári and M. L. Littman. A unified analysis of value-function-based

reinforcement-learning algorithms. Neural Computation, 11(8):2017–2059,

1999.

C. Szepesvári and W. D. Smart. Interpolation-based Q-learning. In Pro-

ceedings of the twenty-first international conference on Machine learning

(ICML-04), page 100. ACM, 2004.

D. M. J. Tax, M. Van Breukelen, and R. P. W. Duin. Combining multiple

classifiers by averaging or by multiplying? Pattern recognition, 33(9):1475–

1485, 2000.

M. E. Taylor, S. Whiteson, and P. Stone. Comparing evolutionary and tempo-

ral difference methods in a reinforcement learning domain. In Proceedings

of the 8th annual conference on Genetic and evolutionary computation, page

1328. ACM, 2006.

274 BIBLIOGRAPHY

G. Tesauro. Practical issues in temporal difference learning. In D. S. Lippman,

J. E. Moody, and D. S. Touretzky, editors, Advances in Neural Information

Processing Systems 4, pages 259–266. San Mateo, CA: Morgan Kaufmann,

1992.

G. Tesauro. TD-Gammon, a self-teaching backgammon program, achieves

master-level play. Neural computation, 6(2):215–219, 1994.

G. J. Tesauro. Temporal difference learning and TD-Gammon. Communica-

tions of the ACM, 38:58–68, 1995.

R. H. Thaler. Anomalies: The winner’s curse. Journal of Economic Perspec-

tives, 2(1):191–202, Winter 1988.

C. K. Tham. Reinforcement learning of multiple tasks using a hierarchical

CMAC architecture. Robotics and Autonomous Systems, 15(4):247–274,

1995.

N. Tideman. The single transferable vote. Journal of Economic Perspectives,

9(1):27–38, 1995.

T. N. Tideman. Independence of clones as a criterion for voting rules. Social

Choice and Welfare, 4(3):185–206, 1987.

C. F. Touzet. Neural reinforcement learning for behaviour synthesis. Robotics

and Autonomous Systems, 22(3/4):251–281, 1997.

J. N. Tsitsiklis. Asynchronous stochastic approximation and Q-learning. Ma-

chine Learning, 16:185–202, 1994.

J. N. Tsitsiklis and B. Van Roy. An analysis of temporal-difference learn-

ing with function approximation. Technical Report LIDS-P-2322, Cam-

bridge,MA: MIT Laboratory for Information and Decision Systems, 1996.

J. N. Tsitsiklis and B. Van Roy. An analysis of temporal-difference learning

with function approximation. IEEE Transactions on Automatic Control, 42

(5):674–690, 1997.

A. M. Turing. Computing machinery and intelligence. Mind, 59(236):433–

460, 1950.

M. A. Turk and A. P. Pentland. Face recognition using eigenfaces. In Pro-

ceedings of the IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR-91), pages 586–591. IEEE, 2002.

E. Van den Steen. Rational overoptimism (and other biases). American Eco-

nomic Review, 94(4):1141–1151, September 2004.

BIBLIOGRAPHY 275

J. van der Wal. Discounted Markov games: generalized policy iteration

method. Journal of Optimization Theory and Applications, 25(1):125–138,

1978.

M. Van Erp and L. Schomaker. Variants of the borda count method for com-

bining ranked classifier hypotheses. In Proceedings of the Seventh Interna-

tional Workshop on Frontiers in Handwriting Recognition, pages 443–452,

2000.

H. P. van Hasselt. Double Q-Learning. In Advances in Neural Information

Processing Systems, volume 23. The MIT Press, 2010.

H. P. van Hasselt and M. A. Wiering. Reinforcement learning in continu-

ous action spaces. In Proceedings of the IEEE International Symposium

on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL-

07), pages 272–279, 2007a.

H. P. van Hasselt and M. A. Wiering. Convergence of model-based temporal

difference learning for control. In Proceedings of the IEEE International

Symposium on Adaptive Dynamic Programming and Reinforcement Learn-

ing (ADPRL-07), pages 60–67, 2007b.

H. P. van Hasselt and M. A. Wiering. Using continuous action spaces to solve

discrete problems. In Proceedings of the International Joint Conference on

Neural Networks (IJCNN 2009), pages 1149–1156, 2009.

J. Van Nunen. A set of successive approximation methods for discounted

Markovian decision problems. Mathematical Methods of Operations Re-

search, 20(5):203–208, 1976.

H. van Seijen, H. P. van Hasselt, S. Whiteson, and M. A. Wiering. A the-

oretical and empirical analysis of Expected Sarsa. In Proceedings of the

IEEE International Symposium on Adaptive Dynamic Programming and

Reinforcement Learning, pages 177–184, 2009.

V. N. Vapnik. The nature of statistical learning theory. Springer Verlag, 1995.

D. Vrabie, O. Pastravanu, M. Abu-Khalaf, and F. Lewis. Adaptive optimal

control for continuous-time linear systems based on policy iteration. Auto-

matica, 45(2):477–484, 2009. ISSN 0005-1098.

F. Y. Wang, H. Zhang, and D. Liu. Adaptive dynamic programming: An intro-

duction. Computational Intelligence Magazine, IEEE, 4(2):39–47, 2009.

C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, King’s

College, Cambridge, England, 1989.

276 BIBLIOGRAPHY

C. J. C. H. Watkins and P. Dayan. Q-learning. Machine Learning, 8:279–292,

1992.

B. L. Welch. The generalization of ‘Student’s’ problem when several different

population variances are involved. Biometrika, 34:28–35, 1947. ISSN 0006-

3444.

P. J. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the

Behavioral Sciences. PhD thesis, Harvard University, 1974.

P. J. Werbos. Advanced forecasting methods for global crisis warning and

models of intelligence. In General Systems, volume XXII, pages 25–38,

1977.

P. J. Werbos. Neural networks for control and system identification. In Pro-

ceedings of IEEE/CDC Tampa, Florida, 1989a.

P. J. Werbos. Backpropagation and neurocontrol: A review and prospectus. In

IEEE/INNS International Joint Conference on Neural Networks, Washing-

ton, D. C., volume 1, pages 209–216, 1989b.

P. J. Werbos. Consistency of HDP applied to a simple reinforcement learning

problem. Neural Networks, 2:179–189, 1990.

P. J. Werbos. Backpropagation through time: What it does and how to do it.

Proceedings of the IEEE, 78(10):1550–1560, 2002. ISSN 0018-9219.

J. Westra, H. P. van Hasselt, F. Dignum, and V. Dignum. Adaptive serious

games using agent organizations. In Agents for Games and Simulations,

Trends in Techniques, Concepts and Design, Proceedings of the First In-

ternational Workshop on Agents for Games and Simulations (AGS-2009),

pages 206–220, 2009a.

J. Westra, H. P. van Hasselt, V. Dignum, and F. Dignum. On-line adapting

games using agent organizations. In Proceedings of the IEEE Symposium

On Computational Intelligence and Games (CIG-08), pages 243–250. IEEE,

2009b.

S. Whiteson and P. Stone. Evolutionary function approximation for reinforce-

ment learning. Journal of Machine Learning Research, 7:877–917, 2006.

S. Whiteson, M. E. Taylor, and P. Stone. Empirical studies in action selection

with reinforcement learning. Adaptive Behavior, 15(1):33, 2007.

D. Whitley, S. Dominic, R. Das, and C. W. Anderson. Genetic reinforce-

ment learning for neurocontrol problems. Machine Learning, 13(2):259–

284, 1993.

BIBLIOGRAPHY 277

B. Widrow and M. E. Hoff. Adaptive switching circuits. 1960 IRE WESCON

Convention Record, 4:96–104, 1960. New York: IRE. Reprinted in Anderson

and Rosenfeld [1988].

A. P. Wieland. Evolving neural network controllers for unstable systems. In

International Joint Conference on Neural Networks, volume 2, pages 667–

673, Seattle, 1991. IEEE, New York.

M. A. Wiering. QV(λ)-learning: A new on-policy reinforcement learning algo-

rithm. In D. Leone, editor, Proceedings of the 7th European Workshop on

Reinforcement Learning, pages 17–18, 2005.

M. A. Wiering and J. H. Schmidhuber. Fast online Q(λ). Machine Learning,

33(1):105–116, 1998.

M. A. Wiering and H. P. van Hasselt. Two novel on-policy reinforcement

learning algorithms based on TD(λ)-methods. In Proceedings of the IEEE

International Symposium on Adaptive Dynamic Programming and Rein-

forcement Learning (ADPRL-07), pages 280–287, 2007.

M. A. Wiering and H. P. van Hasselt. Ensemble algorithms in reinforcement

learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 38

(4):930–936, 2008.

M. A. Wiering and H. P. van Hasselt. The QV family compared to other re-

inforcement learning algorithms. In Proceedings of the IEEE International

Symposium on Adaptive Dynamic Programming and Reinforcement Learn-

ing, pages 101–108, 2009.

D. Wierstra, T. Schaul, J. Peters, and J. Schmidhuber. Natural evolution

strategies. In Evolutionary Computation, 2008. CEC 2008.(IEEE World

Congress on Computational Intelligence). IEEE Congress on, pages 3381–

3387. IEEE, 2008.

R. J. Williams. Simple statistical gradient-following algorithms for connec-

tionist reinforcement learning. Machine Learning, 8:229–256, 1992.

R. J. Williams and D. Zipser. A learning algorithm for continually running

fully recurrent neural networks. Neural computation, 1(2):270–280, 1989.

ISSN 0899-7667.

D. R. Wilson and T. R. Martinez. The general inefficiency of batch training for

gradient descent learning. Neural Networks, 16(10):1429–1451, 2003.

D. Wingate, C. Diuk, L. Li, M. Taylor, and J. Frank. Workshop summary:

Results of the 2009 reinforcement learning competition. In Proceedings of

the 26th Annual International Conference on Machine Learning (ICML-09),

page 1, New York, NY, USA, 2009. ACM.

278 BIBLIOGRAPHY

D. H. Wolpert and W. G. Macready. No free lunch theorems for search. Tech-

nical Report SFI-TR-95-02-010, The Santa Fe Institute, Santa Fe, N. M.,

1995.

D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization.

IEEE transactions on evolutionary computation, 1(1):67–82, 1997.

L. E. Zachrisson. Markov games. Advances in Game Theory, pages 211–253,

1964.

